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We consider a model of relativistic three-body scattering with a bound state in the two-body subchannel.
We show that the naiïve K-matrix type parametrization, here referred to as the B-matrix, has nonphysical
singularities near the physical region. We show how to eliminate such singularities by using dispersion
relations and also show how to reproduce unitarity relations by taking into account all relevant open
channels.
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I. INTRODUCTION

Strong interactions between quarks and gluons give rise
to a rich spectrum of resonances, many of which decay into
three or more hadrons. To understand this aspect of the
QCD phenomenology, it is necessary to construct analytic
reaction amplitudes. This is because the extraction of
resonance parameters from experimental data [1–10] and
lattice QCD (LQCD) simulations of hadron scattering
[11–27] requires a continuation of the amplitudes in
energies and momenta outside of the physical region. It
is particularly important for the identification of new states
and the determination of their nature, e.g., in the context of
the quark model classification. For example, the a1ð1420Þ
decaying into three pions [28,29] may result from a
kinematical reflection rather than being a genuine reso-
nance, while the χc1ð3872Þ [also known as Xð3872Þ]
decaying to D0D̄0π and J=ψππ [30,31] may be a dimeson
molecule instead of a compact quark bound state.
Two classes of relativistic three-body approaches are

currently being pursued, especially in connection with future
analyses of LQCD simulations. One is based on linear
equations, which in effect sum up particle exchange inter-
actions. These are often motivated by a generic relativistic
effective field theory (EFT) [32–42]. The other follow the
S-matrix philosophy by applying unitarity constraints
[43–46] to determine imaginary parts of the on-shell
amplitudes. The real parts are either parametrized using
the three-body analog of the two-body K matrix referred to
as the B matrix or derived from analyticity. In the following,
we refer to the two approaches as the EFT and the B-matrix,
respectively. They have recently been applied to the study of
various three-body phenomena [47–53].

Both formalisms lead to a representation of the three-
body amplitude that has a form of an integral equation. The
kernel in this equation may contain both the long-range,
one-particle-exchange amplitude (OPE) and short-range
interactions. In practice, a description of the off-shell part of
the OPE kernel is the main difference between the EFT and
B-matrix approaches. In the EFT framework, the OPE
kernel contains both real and virtual components, while in
the B-matrix approach, where all amplitudes are on-shell,
the former is not explicit but can be included in the short-
range part of the B-matrix kernel. As demonstrated in
Refs. [42,46], in both the infinite and finite volumes, the
two approaches are equivalent, albeit related by a set of
complicated integral relations. In practice, however, since
the off-shell effects or left-hand cuts are often parametrized
in each analysis independently, results from the two
frameworks may be different.
Our interest in this paper is primarily in assessing the

suitability of the B-matrix formalism in studying the
formation of three-body bound states. Therefore, we con-
sider a simplified model of the three-body scattering, in
which the long-range one-particle exchanges are neglected,
and only short-range contact interactions are included.
Furthermore, it is assumed that a bound state can develop
in the two-body subchannel.
The analysis leads us to the conclusion that “simple"

short-range, contact interaction kernels in the B-matrix
formalism result in the three-body amplitudes with non-
physical analytic properties. In particular, in the presence of
singularities near the two-particle threshold, spurious
singularities may appear arbitrarily close to the three-body
threshold and hinder the formation of genuine three-body
singularities: poles or virtual states. Moreover, in the
B-matrix formalism, one cannot obtain the bound state–
particle amplitude from the three-body amplitude. One
would do this by setting the incoming and outgoing isobar
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energies equal to the two-body bound-state energy [54–56],
which is, however, outside the physical region of the 3 → 3
amplitude and thus affected by the spurious left-hand cuts.
We show that to obtain the correct results in the B-matrix

approach it is necessary to explicitly include the channel
representing bound state–particle scattering. Furthermore,
since the B-matrix formalism builds upon on-shell, unitary
amplitudes, to remove the undesired left-hand singularities,
it is necessary to use dispersion relations. It would be
interesting to see what analytic behavior emerges in other,
e.g., EFT, approaches when using such interactions.
The paper is organized as follows. In Sec. II, following

Refs. [44,46], the B-matrix framework for 3 → 3 scatter-
ing is reviewed. We compare the B-matrix ladder equation
with the EFT equivalents and pinpoint the key differences
between the two. In Sec. III, we introduce the multi-
particle generalization of the B-matrix representation,
based on the multichannel unitarity of the S-matrix and
give the formal solutions for the amplitudes. In Sec. IV,
we present the short-range interaction model for S-wave
scattering and discuss the dispersive representation, which
removes the nonphysical singularities. Conclusions and
outlook are summarized in Sec. V. The paper contains four
Appendixes. In Appendix A, the three-body kinematics
and conventions are explained. In Appendix B, we show
the relation between the nonrelativistic EFT (NREFT)
scattering amplitude of Ref. [55] and the nonrelativistic
approximation of the three-body B-matrix ladder equa-
tion. In Appendix C, the multichannel unitarity relations
are presented, together with the proof that they are
satisfied by the generalized B-matrix representation.
Finally, Appendix D includes additional figures to illus-
trate the discussion of the analytic structures.

II. B-MATRIX PARAMETRIZATION

We start with a brief overview of the B-matrix formalism
and the 3 → 3 scattering introduced in Refs. [44–46].
A summary of notation and normalization conventions,
which are adopted from Ref. [46], is given in Appendix A.
In particular, the three-body amplitude M33, for spin-0
particles, and its unsymmetrized partial-wave projected
version M33;p0p are defined in Eqs. (A6) and (A7),
respectively. The B-matrix parametrization for the con-
nected part A33;p0p of the amplitude M33;p0p is given by the
matrix-integral linear equation

A33;p0p ¼ F p0B33;p0pF p þ
Z
q
F p0B33;p0qA33;qp; ð1Þ

as illustrated in Fig. 1. The amplitudeA33;p0p and the kernel
B33;p0p are matrices in the space labeled by the spin ðl; mlÞ
of the isobar. The isobar is defined through the 2 → 2
partial wave amplitude F p. The product of F p and the
momentum-conserving delta function for the spectator

defines the disconnected part of M33;p0p, as in Eq. (A8).
The B-matrix kernel is written as a sum of two terms,

B33;p0p ¼ Gp0p þRp0p; ð2Þ

where the matrix Gp0p represents the long-range interaction
due to OPE between the isobar and spectator and Rp0p is a
real matrix that absorbs all short-range interactions.
Analytic structure of the S-wave OPE, as a function of

the total invariant mass squared s, for fixed subchannel
invariant masses σp0 , σp, was explored in Ref. [44]. A single
iteration of the kernel B33;p0p generates so-called bubble
(R ×R), triangle (R × G), and box (G × G) diagrams.
Since these are determined by direct channel unitarity
only, they do not have the analytical structure of covariant
Feynman amplitudes. This results in spurious left-hand
cuts, and a dispersion prescription was proposed as a way to
remove them. It was presented for the triangle diagram,
and, as shown in Sec. IV, a similar situation is found in
our model, which effectively sums up a series of bubble
diagrams.
One can consider Eq. (1) in the approximation in which

only the OPE amplitude is included in the B33;p0p kernel,
leading to the solution driven exclusively by the exchanges
between 2 → 2 subprocesses. Namely, assuming Rp0p ¼ 0

and defining the amplitude given by such an equation as
Dp0p, one obtains

Dp0p ¼ F p0Gp0pF p þ
Z
q
F p0Gp0qDqp: ð3Þ

This special case of Eq. (1) is referred to as the ladder
equation, and its solution is referred to as the ladder
amplitude. Figure 2 shows a diagrammatic representation
of the ladder series solution. The connected amplitude
A33;p0p can be rewritten as [45,46]

FIG. 1. Diagrammatic representation of (a) A33, as given by
Eq. (1), and (b) the B-matrix kernel of Eq. (2). As explained in
Appendix A, a single external line represents a spectator, while a
double external line represents an isobar. A solid circle with both
external isobars and spectators is the three-body connected
amplitude A33;p0p, and a solid circle only with external isobars
is the two-body amplitude F p.
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A33;p0p ¼ Dp0p þ
Z
q

Z
q0
L̃p0q0 T̃ q0qL̃qp; ð4Þ

where the amplitude T̃ p0p is given by the integral equation

T̃ p0p ¼ Rp0p þ
Z
q

Z
q0
Rp0q0L̃q0qT̃ qp; ð5Þ

with L̃p0p ¼ F p0pδp0p þDp0p. In this form, Eq. (1) is
explicitly split into terms that are generated individually
by either the OPE or the R matrix. Since, as discussed
below, different formalisms of the three-body scattering
differ by R, while the OPE amplitude is universal, Eq. (3)
needs to be solved only once for a given F , and there are
ongoing efforts to calculate the ladder amplitude in the
presence of the bound states [56]. Once the ladder
amplitude is known, one can include the short-range effects
via the solution of Eq. (5). The distinction between the
long-range particle exchange and genuine short-range
interactions due to virtual exchanges becomes important
in addressing the nature of shallow bound states or
resonances that are produced close to the opening of a
three-particle channel. An example of such a system, the
χc1ð3872Þ mentioned earlier, has a mass only about 7 and
0.4 MeV away from the D0D̄0π0 and D0D̄�0 thresholds,
respectively. It was hypothesized to be a hadronic
molecule of D̄�0 and D0 bound via a pion exchange
[57–61]. Such a model can be conveniently addressed by
the B-matrix formalism, with its clear distinction between
the short-range and long-range amplitudes. Namely, if the
ladder amplitude alone was sufficient in generating the
resonance, it would strongly suggest the molecular
interpretation.
Equation (1) is a general representation of the on-shell

amplitude based on the principle of unitarity; therefore, it is
expected that any formalism of the 3 → 3 scattering can be
rewritten in this form [42,46]. The difference between
various formalisms lies mainly in the definition of the
short-range interaction kernel Rp0p. For example, the
divergence-free K matrix of the relativistic EFT formalism
of Ref. [33] can be transformed into the R matrix via a
complicated integral formula (see Eq. (31) of Ref. [46]).
The ladder equations in both frameworks look formally
identical, since they do not involve the short-range inter-
actions. However, there is a significant difference coming

from the way the integration range over the intermediate
particles momenta in both formalism is defined. In general,

Z
q
≡
Z

dΩq

4π

Z
qmax

0

dqq2

2π2ωq
¼
Z

dΩq

4π

Z ð ffiffisp
−mÞ2

σmin

dσq
2π

τðs;σqÞ:

ð6Þ

Here, τðs; σqÞ ¼ λ1=2ðs; σq; m2Þ=8πs is the three-body
phase space factor. The relation between jqj, which is
the magnitude of the spectator momentum in the three-
particle rest frame, and the invariant mass of the isobar σq is
given by

ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σq þ q2

q
; ð7Þ

or

jqj ¼ λ1=2ðσq; s; m2Þ
2
ffiffiffi
s

p : ð8Þ

At fixed s, increasing the UV momentum cutoff qmax
corresponds to the decreasing of the lower limit σmin in the
integral over σq. The B-matrix parametrization is defined by
σmin ¼ 4m2. It is a natural value in this formulation, since
the amplitude is constrained by the elastic unitarity only in
the interval 4m2 ≤ σq ≤ ð ffiffiffi

s
p

−mÞ2. The advantage of this
choice is that it incorporates only the physical intermediate
degrees of freedom, and there is no need to regularize the
virtual states, as they are absent from the formalism.
Moreover, that makes the B-matrix framework capable
of providing a clear distinction between what one under-
stands by the long-range and short-range effects in the
formation of resonances, with the OPE amplitude giving a
probability for an exchange of a real, on-shell particle. On
the other hand, using a different, lower σmin as in EFT
models [33,43] pushes the nonphysical singularities asso-
ciated with this end point further away from the physical
region.
In particular, the difference in the integration limits

between the EFTand B-matrix approaches has an important
consequence for the behavior of the amplitude below the
three-particle threshold when the isobar can form a two-
particle bound state, i.e., when F p has a pole below the

FIG. 2. Diagrammatic representation of the ladder Eq. (2). Here, the black box represents Dp0p.
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two-particle threshold 4m2. In this case, one would expect
to obtain the bound state–spectator scattering amplitude
M22 by amputating external interaction amplitudes F p

fromM33;p0p and setting
ffiffiffiffiffi
σp

p and ffiffiffiffiffiffi
σp0

p equal to the bound-
state mass. This can only happen, however, if the integra-
tion over the intermediate momentum covers the physical
region available to bound state–spectator states, which is
not the case when σmin ≥ 4m2. When σmin ¼ 4m2, the two-
particle bound state pole is outside the integration limits,
and the resulting amplitude M22 has a wrong two-body
threshold behavior.
Let us illustrate this with an example. We consider

S-wave scattering in the ladder approximation, so we can
drop all angular momentum indices. We define the ampu-
tated ladder amplitude D̃p0p by, Dp0p ¼ F p0D̃p0pF p, and it
satisfies

D̃ðσp0 ; s; σpÞ ¼ Gðσp0 ; s; σpÞ

þ
Z ð ffiffisp

−mÞ2

σmin

dσq
2π

Gðσp0 ; s; σqÞτðs; σqÞ

× F ðσqÞD̃ðσq; s; σpÞ: ð9Þ

The S-wave projection of the OPE amplitude is given by

Gðσp0 ; s; σpÞ ¼
1

4jp0jjpj log
�
zp0p − 1

zp0p þ 1

�
; ð10Þ

with

zp0p ¼
2sσp − ðsþ σp −m2Þðsþm2 − σp0 Þ

λ1=2ðs; σp0 ; m2Þλ1=2ðs; σp; m2Þ : ð11Þ

For the two-body, isobar amplitude, we use the effective
range expansion in the leading-order approximation,

1

F ðσqÞ
¼ −

1

a0
− iρðσqÞ: ð12Þ

The relativistic two-body phase space factor is

ρðσqÞ ¼
1

2!

q
8π

ffiffiffiffiffi
σq

p ¼ 1

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

σq

s
; ð13Þ

while the dimensionless parameter a0 is related to the
scattering length. Near the bound-state pole, which is
determined by condition F ðσbÞ−1 ¼ 0, the isobar ampli-
tude is

F ðσqÞ ¼ −
g2

σq − σb þ iϵ
; ð14Þ

with the pole position and the residue given by

σb ¼
4m2

1þ ð32πa0 Þ2
; g ¼ 32πffiffiffiffiffiffiffi

2a0
p σb

m
; ð15Þ

respectively. The contribution from the imaginary part
ImF ðσqÞ ¼ −πδðσq − σbÞ to the integral in Eq. (9) in
the limit σp0 ; σp → σb reproduces the bound state–spectator
phase space factor

ρ2ðsÞ ¼
λ1=2ðs; σb; m2Þ

16πs
: ð16Þ

However, this is not the case if σmin ¼ 4m2 > σb, for which
the two-particle unitarity constraint on the imaginary part is
not reproduced. A similar argument can be made in the
low-energy approximation, see Appendix B, where a
comparison of the B-matrix formalism with the nonrela-
tivistic EFT is presented.
The B-matrix is constructed to respect only the direct-

channel unitarity while being nescient about left-hand
singularities. Thus, to describe bound state–spectator scat-
tering, such a state, or any other particle below the three-
particle threshold, has to be included explicitly. For this
reason, the B-matrix description of 3 → 3 scattering alone
cannot be directly compared, for example, with the recent
calculations of the bound state–spectator scattering length
in Refs. [49,56]. In the following sections, we show how
resolve these issues and first give the multichannel
generalization.

III. MULTICHANNEL FORMALISM

We consider the 2 → 2, 3 → 2, 2 → 3, and 3 → 3
scattering processes. The two-particle state contains a
bound state of mass M < 2m, formed by the isobar
appearing in the three-particle channel and the spectator
of mass m. For simplicity, the particles are taken to be
scalars and distinguishable. We introduce the n → m
amplitudes Mmn, which are matrix elements of the T
matrix describing different reaction channels. Their
precise definition is provided in Appendix C. As in
the elastic 3 → 3 case, the amplitude M33 has both a
connected and disconnected parts, while M32, M23,
and M22 are connected by definition. Therefore, one
can consistently write Mnm ¼ Anm for both n, m ≠ 3.
The three-particle states are described using kinematic
variables ðplmlÞ, described in Appendix A. In this
basis partial wave projected 2 → 3 amplitude is a
“vector” (meaning it depends only on angular momen-
tum of one external isobar) A32;p0 , while the 2 → 2
amplitude A22 is a “scalar.” The two-body system of
the bound state and spectator is described by the total
invariant mass squared s or the relative momentum k
between the particles in the center of mass frame given
by
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jkj ¼ 1

2
ffiffiffi
s

p λðs;M2; m2Þ: ð17Þ

The angular orientation Ωk̂ of the outgoing spectator’s
momentum in the two-body system is defined with
respect to the incoming spectator’s momentum, either in
the two-body or three-body state.
Each amplitude has its corresponding B-matrix

kernel. These are real functions B22 ≡ B22ðs; k̂Þ, B23;p ≡
B23;lml

ðs; σp; k̂Þ, and B32;p0 ≡ B32;l0m0
l
ðσp0 ; s; k̂Þ, uncon-

strained by unitarity. The B33;p0p kernel was defined in
the previous section and is defined in Appendix A.
Denoting integration over the implicit angular dependence

by
R
k̂ ¼

R dΩk̂
4π , the generalized B-matrix parametrization of

the connected amplitudes Amn is given by

A22 ¼ B22 þ
Z
k̂
B22iρ2A22 þ

Z
q
B23;qA32;q; ð18Þ

A23;p ¼ B23;pF p þ
Z
k̂
B22iρ2A23;p þ

Z
q
B23;qA33;qp; ð19Þ

A32;p0 ¼ F p0B32;p0 þ
Z
k̂
F p0B32;p0iρ2A22

þ
Z
q
F p0B33;p0qA32;q; ð20Þ

A33;p0p ¼ F p0B33;p0pF p þ
Z
k̂
F p0B32;p0iρ2A23;p

þ
Z
q
F p0B33;p0qA33;qp: ð21Þ

As shown in Appendix C, the amplitudes given above
satisfy unitarity above the three-body threshold sth;3 ¼
ð3mÞ2. It is important to note that this representation in
general does not satisfy the unitary between the bound
state–particle threshold sth;2 ¼ ðM þmÞ2 and the three-
body threshold sth;3. This is because the three-body channel
can contribute a nonzero imaginary part of the amplitude
Amn below sth;3. The diagrammatic representation of the
above equations is shown in Fig. 3, and the formalism can
be easily generalized to include other channel.
Equations (18)–(21) involve mixing between different

channels. As can be seen, amplitudes A22 and A32;p0

depend on each other, but not on A23 or A33. However,
it would be incorrect to infer that the B-matrix representa-
tion presented above does not couple the 3 → 3 and 2 → 2
physics and is two pairs of independent linear equations.
The physical content of the dynamics is contained in Bnm
kernels, which are shared by the seemingly uncoupled
equations. This can be seen clearly when formally decou-
pling them and solving for the individual amplitudes.
First, in an analogy with the 3 → 3 formalism, the isobar

amplitude is amputated in the three-body channels con-
taining isobars, defining A32;p0 ¼ F p0Ã32;p0 etc. Although
there is no amputation needed for the bound state–particle
channels, A22 ¼ Ã22 is written to maintain consistency in
the notation. Having the equivalents of Eqs. (18)–(21) for
the amputated amplitudes, one can eliminate Ã23;p, by
transforming Eq. (19) to the form

Ã23;p ¼
1

1 − iρ2B22

�
B23;p þ

Z
q
B23;qF qÃ33;qp

�
: ð22Þ

And using the above result in Eq. (21), one obtains

Ã33;p0p ¼ H33;p0p þ
Z
q
H33;p0qF qÃ33;qp; ð23Þ

where the effective three-body kernel is

H33;p0p ≡ B33;p0p þ
B32;p0 iρ2B23;p

1 − iρ2B22

; ð24Þ

and it includes the all-orders coupling of the three particle
state to the two-particle state containing the bound-state
and the spectator. This interaction is not present in the
elastic 3 → 3 B-matrix formalism and thus has to be
included explicitly via Eq. (22) above. Analogously, using
Eq. (18) in Eq. (20), one obtains the integral equation for
the Ã32 amplitude,

Ã32;p0 ¼ H32;p0 þ
Z
q
H33;p0qF qÃ32;q; ð25Þ

where

FIG. 3. Diagrammatic representation of the multichannel
B-matrix framework, Eqs. (18)–(21). Amplitudes Amn are rep-
resented by solid circles and can be differentiated from the
different types of external legs. The dashed line represents the
two-body bound state of mass M. The B33 kernel is decomposed
as in Fig. 1, while other, real kernels describe just short-range
interactions.
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H32;p0 ¼ B32;p0 þ
B32;p0iρ2B22

1 − iρ2B22

: ð26Þ

To obtain decoupled equations for the Ã22 and Ã23, one
would have to solve Eqs. (23) and (25) first. Following
matrix notation of Ref. [46] and Appendix A, in which
amplitudes are labeled by generalized indices α ¼ ðplmlÞ,
one writes down their formal solutions in the matrix form

Ã33 ¼ ½1 −H33F �−1H33; ð27Þ

Ã32 ¼ ½1 −H33F �−1H32: ð28Þ

Then, the remaining amplitudes are

Ã22 ¼
1

1 − iρ2B22

½B22 þ B23F ½1 −H33F �−1H32�; ð29Þ

Ã23 ¼
1

1 − iρ2B22

½B23 þ B23F ½1 −H33F �−1H33�: ð30Þ

As can be seen, B33 enters the solution for Ã22 throughH33

in the denominator term in Eq. (29) and affects the two-
body physics as long as B23 and B32 are nonzero. The result
can also be expressed in a more concise form by directly
solving the generalized matrix equivalents of Eqs. (18)
and (20), which leads to

Ã22 ¼ ½1 −H22iρ2�−1H22; ð31Þ

Ã23 ¼ ½1 −H22iρ2�−1H23; ð32Þ

where

H22 ¼ B22 þ B23F ½1 − B33F �−1B32; ð33Þ

H23 ¼ B23 þ B23F ½1 − B33F �−1B33: ð34Þ

The 2 → 2 scattering can occur even in the absence of
the direct interactions between the bound- state and the
spectator, i.e., for B22 ¼ 0. In this case, the dynamics of the
two-body scattering is described entirely by the physics
involving the three particles. The solution for the Ã33

amplitude is governed by the H33 kernel, which contains
the direct interaction kernel B33 and an effective interaction
due to mixing with the bound state–spectator intermediate
state. Potential problems with the analytic continuation of
the single-channel 3 → 3 scattering with two-body reso-
nances were already discussed in Ref. [44]. In the following
section, we discuss the analytical properties in the case
under study, i.e., in the presence of two-body bound states.

IV. SHORT-RANGE INTERACTIONS MODEL

We turn to investigation of the generalized B-matrix
parametrization presented in Eqs. (18)–(21) within the
contact-interaction model, i.e., with the effects of long-
range interactions being neglected. The OPE amplitude is
set to zero, G ¼ 0, in which case B33;p0p ¼ Rp0p, and the
short-range kernels R33;p0p and B23;p, B32;p0 , and B22 are
assumed to be momentum independent. They are rewritten
as a set of real coupling constants R33 ¼ g33, B23 ¼ g23 ¼
B32 ¼ g32, and B22 ¼ g22. We consider only the S-wave
and amputate the external isobars interactions, which
allows us to obtain equations for the amplitudes,

ã22ðsÞ ¼ g22 þ g22iρ2ðsÞã22ðsÞ

þ g32

Z
q
F ðσqÞã32ðσq; sÞ; ð35Þ

ã32ðσp0 ; sÞ ¼ g32 þ g32iρ2ðsÞã22ðsÞ

þ g33

Z
q
F ðσqÞã32ðσq; sÞ; ð36Þ

ã23ðs; σpÞ ¼ g32 þ g22iρ2ðsÞã23ðs; σpÞ

þ g32

Z
q
F ðσqÞã33ðσq; s; σpÞ; ð37Þ

ã33ðσp0 ; s; σpÞ ¼ g33 þ g32iρ2ðsÞã23ðs; σpÞ

þ g33

Z
q
F ðσqÞã33ðσq; s; σpÞ; ð38Þ

where ã was used to differentiate the amplitudes in this
approximation from the more general case discussed in the
previous section. One can immediately find uncoupled
equations for ã33 and ã32 using Eqs. (23) and (25),

ã33ðσp0 ; s; σpÞ ¼ h33ðsÞ þ h33ðsÞ
Z
q
F ðσqÞã33ðσq; s; σpÞ;

ð39Þ

and

ã32ðσp0 ; sÞ ¼ h32ðsÞ þ h33ðsÞ
Z
q
F ðσqÞã32ðσq; sÞ; ð40Þ

where h33 and h32 follow from Eqs. (24) and (26),

h33ðsÞ ¼ g33 þ
g232iρ2ðsÞ

1 − g22iρ2ðsÞ
; ð41Þ

h32ðsÞ ¼ g32 þ
g22g32iρ2ðsÞ
1 − g22iρ2ðsÞ

: ð42Þ
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Inspecting Eqs. (39) and (40), one notices that their rhs
do not depend on the left argument σp0 , meaning the
amplitudes on the lhs ã33ðσp0 ; s; σpÞ ¼ ã33ðs; σpÞ and
ã32ðσp0 ; sÞ ¼ ã32ðsÞ. Furthermore, since the integration
kernel h33 depends only on the s variable, the s and σp
dependence of the 3 → 3 amplitude can be factorized,
eventually eliminating the latter from ã33. In consequence,
both amplitudes can be moved outside of the corresponding
integrals, yielding algebraic equations with solutions

ã33ðsÞ ¼
h33ðsÞ

1 − h33ðsÞIðsÞ

¼ g33 þ Giρ2ðsÞ
1 − g22iρ2ðsÞ − ½g33 þ Giρ2ðsÞ�IðsÞ

; ð43Þ

ã32ðsÞ ¼
h32ðsÞ

1 − h33ðsÞIðsÞ
¼ g32

1 − g22iρ2ðsÞ − ½g33 þ Giρ2ðsÞ�IðsÞ
; ð44Þ

where G≡ g232 − g33g22, and

IðsÞ ¼
Z ð ffiffisp

−mÞ2

σmin

dσq
2π

τðs; σqÞF ðσqÞ

¼ 1

16π2s

Z ð ffiffisp
−mÞ2

σmin

dσqJ ðσq; sÞ: ð45Þ

As can be seen, the above solutions are special cases of the
formal solutions in Eqs. (27) and (28). Analogous argu-
ments lead to solutions for the remaining amplitudes,

ã23ðsÞ ¼
g32

1 − g22iρ2ðsÞ − ½g33 þ Giρ2ðsÞ�IðsÞ
; ð46Þ

ã22ðsÞ ¼
g22 þ GIðsÞ

1 − g22iρ2ðsÞ − ½g33 þ Giρ2ðsÞ�IðsÞ
: ð47Þ

To make our considerations more concrete, from now on,
we take the model of Eq. (12) for the isobar interaction
amplitude F ðσqÞ, which results in the integrand in Eq. (45)
given by

J ðσ; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − ½ ffiffiffisp

−m�2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ − ½ ffiffiffisp þm�2
p

− 1
a0
þ 1

32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

σ − 1

q : ð48Þ

In addition to the canonical B-matrix model, in which
σmin ¼ 4m2 and couplings can take arbitrary values, we
also distinguish the “EFT-like” contact interaction model,
which imitates the three-body EFTapproaches by including
the virtual momenta in the integration. It is introduced in
order to emphasize the consequences of the different
choices of σmin. We denote the EFT-like kernel, which is

defined by the setting σmin ¼ 0 in Eq. (45), as IEFT. It can
be shown that below the three-body threshold sth;3,

ImIEFTðsÞ ¼ g2ρ2ðsÞθðs − sth;2Þ; ð49Þ

i.e., ImIEFT, behaves as the two-body phase space multi-
plied by the isobar residue of Eq. (15). Apart of the cutoff
choice, in this model the couplings g22 ¼ g23 ¼ 0.
Moreover, since the three-body interactions are different
in the B-matrix and EFT-like models, to distinguish them
from each other we rename the coupling as g33;EFT in the
latter. Thus, below the three-body threshold, the EFT-like
amplitude is given by

ã33;EFT ¼ 1

g2
1

1
g2g33;EFT

− iρ2ðsÞ
: ð50Þ

The corresponding2 → 2 and 2 → 3 amplitudes are obtained
by removing the residues of the external isobar amplitudes,
namely, ã22;EFT ¼ g2ã33;EFT, and ã32;EFT ¼ gã33;EFT.
Unitarity relations summarized in Eqs. (C9)–(C12)

imply

Imã22ðsÞ ¼ ρ2ðsÞjã22ðsÞj2θðs − sth;2Þ
þ ImIðsÞjã32ðsÞj2θðs − sth;3Þ; ð51Þ

Imã32ðsÞ ¼ ρ2ðsÞã�32ðsÞã22ðsÞθðs − sth;2Þ
þ ImIðsÞjã32ðsÞj2θðs − sth;3Þ; ð52Þ

Imã33ðsÞ ¼ ρ2ðsÞjã32ðsÞj2θðs − sth;2Þ
þ ImIðsÞjã33ðsÞj2θðs − sth;3Þ: ð53Þ

with 2 → 3 case being identical to the 3 → 2 one. Because
of the step function θðs − sth;3Þ, the contribution to the rhs
from the three-body channel ought to vanish below sth;3.
However, by directly calculating the imaginary part of
Eq. (47), one obtains

Imã22ðsÞ ¼ ρ2ðsÞjã22ðsÞj2 þ ImIðsÞjã32ðsÞj2: ð54Þ

This agrees with above equations for s ≥ sth;3 but disagrees
if ImIðsÞ is nonzero for sth;3 > s ≥ sth;2.
We can now investigate the analytic properties of the

amplitudes. The integrand J ðσ; sÞ considered as a function
of σ, i.e., for fixed values of s, has a singularity structure
characterized by five points: a left-hand cut branch point at
σ0 ¼ 0, a fixed two-body bound state pole at σb ¼ M2,
a two-body threshold branch point at σ2 ¼ ð2mÞ2, and
two s-dependent branch points σ3ðsÞ ¼ ð ffiffiffi

s
p

−mÞ2 and
σ4ðsÞ ¼ ð ffiffiffi

s
p þmÞ2. Since σ3;4 depend on s, the position

and number of singular points change with s. Namely, at
the three-particle threshold, s ¼ sth;3 points σ2 and σ3
coincide. For s ¼ sth;2, the singularity at σ3 coincides with
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the location of the bound-state pole σ3 ¼ σb, while for
s ¼ m2, σ0 ¼ σ3 and σ2 ¼ σ4. Finally, for s ¼ 0, points σ3
and σ4 coincide, and as s becomes negative and decreases,
they become complex and move away from the real axis.
The change in behavior of J for decreasing values of s is
illustrated in Fig. 11 in Appendix D. The trajectories of the
singularities σ3 and σ4 as functions of s are shown
in Fig. 10.
In general, singularities of I can appear for those values

of s for which a) one of the singularities in σ discussed
above coincides with the lower limit of integration, σmin; b)
one of the singularities in σ discussed above coincides with
the upper limit of integration ð ffiffiffi

s
p

−mÞ2; and c) two
movable singularities of J ðσ; sÞ pinch the integration
contour, which in our case is the real line interval between
σmin and ð ffiffiffi

s
p

−mÞ2. The plot of I for two choices of the
lower limit, i.e., for σmin ¼ 4m2, which is canonical for the
B-matrix formalism and σmin ¼ 0, which gives the EFT-like
model, is shown in Fig. 4.
We shall discuss these two cases separately, starting with

the EFT-like model. At s ¼ 0, there is a pole originating
from the three-body phase space. Then, there is the right-
hand branch cut that starts at s ¼ sth;2. It originates form the
two-body bound-state pole at σ ¼ M2, colliding with the
upper limit of integration (condition b). The three-body
branch cut starts at sth;3 and originates from the upper
integration limit coinciding with σ2 ¼ ð2mÞ2 (condition b).
In total, we find one pole and two branch cuts. The cuts are
physical (to the right) and are associated with two- and
three-body thresholds.
Now, we consider the case when σmin ¼ 4m2. There is

the same pole at s ¼ 0 and the right-hand cut associated
with the three-body threshold as in the EFT-like model. In
addition, however, nonphysical branch points appear.
Instead of the right-hand cut associated with the two-body
threshold sth;2, there is now a left cut starting at this point.
The direction of the cut is different than in the EFT-like
model because the direction of the integration in Eq. (45)
changes, since ð ffiffiffiffiffiffiffiffi

sth;2
p −mÞ2 < σmin. Additionally, a left-

hand cut appears at sth;3 from the lower integration limit
σmin colliding with the movable singularity σ3 (condition a).
The nonphysical left-hand cuts of IðsÞ have dire

consequences for the scattering amplitude. In the B-matrix
model, with σmin ¼ 4m2, the imaginary part of I is nonzero
between the two thresholds sth;2 and sth;3, and as a
consequence, the ã22 amplitude does not satisfy the two-
body unitarity relation of Eq. (54), i.e., Im½ã22ðsÞ�−1 ≠
−ρðsÞ. Furthermore, when the three-body interactions
are decoupled from the bound state–particle channel,
g32 ¼ g22 ¼ 0, one finds

ã33ðsÞ ¼
1

1
g33

− IðsÞ : ð55Þ

The location of a three-body bound state is given by
conditions

ReIðsÞ ¼ 1

g33
; ImIðsÞ ¼ 0 ð56Þ

and can happen of a single value of g33, since, as shown in
Fig. 4(b), ImIðsÞ vanishes only for one value of s below the
sth;3 threshold. This is in contrast to what happens in the
EFT-like model, where, as can be seen in Fig. 4(a), there is
a finite interval of energies for which ImIEFTðsÞ vanishes.
In other words, in the B-matrix model, once the two-body
scattering length a0 is fixed, the control over the only

(a)

(b)

FIG. 4. The kernel IðsÞ for two different choices of σmin. The
bound state has a mass M2 ¼ 3m2, which corresponds to the
bound state–spectator threshold energy sth;2 ≈ 7.456m2. For
s ¼ 0, the singularity from the definition of the three-body
phase space factor τðσ; sÞ occurs. The three-body threshold
occurs at sth;3 ¼ ð3mÞ2. The points of nonanalyticity are high-
lighted by the dashed red lines. (a) EFT-like model with cutoff
σmin=m2 ¼ 0 and (b) B-matrix model with the physical limit of
integration σmin=m2 ¼ 4.
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parameter of the three-body physics, such as g33, becomes
illusory, as it does not affect the physical predictions of the
model. This can be seen in Fig. 5(a), where the amplitude
ã33 shows only a nonphysical bump, which scales with g33,
and a spurious singularity occurring at sth;2.
The B-matrix formalism is the extension of the K-matrix

approach to a three-body channel. What was found here is
that this simple extension results in numerous spurious
singularities, which can be arbitrary close to the physical

region. In the following section, a dispersive representation
is constructed, which resolves these problems.

A. Improved B-matrix formalism

The problems with nonphysical singularities discussed in
the previous section can be resolved by a dispersion repre-
sentation.We use it to construct a new kernelI → Id, which
inherits only the right-hand, three-body unitarity cut from I ,

IdðsÞ ¼
ðs − ssÞ2

π

Z
∞

ð3mÞ2
ds0

ImIðs0Þ
ðs0 − s − iϵÞðs0 − ss − iϵÞ2 ;

ð57Þ

where ss is the subtraction point. In the following, we set
ss ¼ 0. Two subtractions are needed given the asymptotic
behavior of ImIðsÞ. By construction, the imaginary part of
IdðsÞ is zero below sth;3. The plot ofIdðsÞ is shown in Fig. 6.
For completeness, we also replace the two-body phase space
iρ2ðsÞ → iρ2;dðsÞ by theChew-Mandelstam function,which
removes the nonphysical singularity at s ¼ 0,

iρ2;dðsÞ ¼
s
π

Z
∞

ðMþmÞ2
ds0

ρ2ðs0Þ
s0ðs0 − sÞ : ð58Þ

Equivalently, one can also consider a model with a simpler,
“improved” version of ρ2ðsÞ,

iρ2;impðsÞ ¼ −
1

16πm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þmÞ2 − s

q
; ð59Þ

inwhich termscontributing to the left-handsingularitieshave
been removedbyhand.Note thatwith these replacements the
amplitudes are now defined on the physical sheet.
The improved (or “dispersed”) B-matrix parametrization

results in the 2 → 2 amplitude with the proper analytical
behavior below sth;3,

(a)

(b)

FIG. 5. The comparison between the 3 → 3 amplitudes in the
model with undispersed (a) and dispersed (b) integral kernel
IðsÞ. The values of the couplings are g22 ¼ 1, G ¼ 0, and
g33 ¼ 100 or g33 ¼ 30. The two-body bound-state pole is at
M2 ¼ 3m2, which corresponds to the bound state–spectator
threshold energy sth;2 ≈ 7.456m2. The three-body threshold is at
s ¼ 9m2. The points of nonanalyticity are highlighted by the
dashed, vertical, red lines. As can be seen, the analytic structure
of original model is insensitive to the changes of g33 and has a
nonphysical branch cut below sth;2. The dispersed model
ã33;dðsÞ has no singularities below the three-body threshold
other than the three-body bound-state pole at s�=m2 ≈ 3.618 for
large enough g33. For coupling which is too small, the pole does
not appear on the real axis.

FIG. 6. The dispersed kernel IdðsÞ. The two-body bound state
pole is at M2 ¼ 3m2, which corresponds to the energy
sth;2 ≈ 7.456m2. Three-body threshold sth;3 is highlighted by
the dashed red line. Above sth;3, the dispersed integral IdðsÞ
is identical to the original model IðsÞ.
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ã22;dðsÞ ¼
1

1
KðsÞ − iρ2;impðsÞ

; ð60Þ

where the real K matrix is given by

KðsÞ ¼ g22 þGIdðsÞ
1 − g33IdðsÞ

: ð61Þ

The above general formula can be simplified by choosing
G ¼ 0, i.e., for couplings to factorize, g22g33 ¼ g223. This
would happen, for example, in a microscopic model in
which gmn are effective couplings originating from an
exchange of a heavy mediator; see Fig. 7. In this case,
at s ¼ sth;2, for which the relative momentum between the
bound state and spectator vanishes, K becomes the bound
state–particle scattering length b0. It is determined by both
the two-body and three-body interactions,

b0 ¼ −
g22

ð1 − g33Idðsth;2ÞÞ
: ð62Þ

We see that for Idðsth;2Þ ¼ 1=g33 the scattering length
jb0j → ∞ and a shallow three-particle bound state appears
at the sth;2 threshold; see Fig. 8. As expected, this is a purely
three-body effect, as it does not depend on the value of the
bound state–spectator coupling g22, which is responsible
for scaling of b0. Since Idðsth;2Þ is a monotonic function
of a0, there can exist only one three-body bound state for
a given two-body scattering length. The 3 → 3 improved
B-matrix amplitude becomes

ã33;dðsÞ ¼
1

1−g22iρ2;impðsÞ
g33þGiρ2;impðsÞ − IdðsÞ

¼G→0

�
g33
g22

�
1

1
KðsÞ − iρ2;impðsÞ

; ð63Þ

and therefore below the three-particle threshold,

Im½ã33;dðsÞ�−1 ¼ −ρ2;impðsÞ
�

g232
g233 þ G2½ρ2;impðsÞ�2

�

¼ −ρ2;impðsÞ
���� ã32;dðsÞã33;dðsÞ

����2; ð64Þ

which now agrees with the unitarity relation in Eq. (53).

FIG. 7. Motivation for the G ¼ 0 condition. In the microscopic
model, the contact interaction amplitudes gmn (small black
circles) are explained as a heavy particle exchange (“zigzag”
line), which couples with a strength λ to three particles and η to a
bound state and a particle. This gives g22 ∼ η2, g33 ∼ λ2, and
g32 ∼ ηλ, which satisfies g232 ¼ g22g33.

(a)

(b)

FIG. 8. Panel (a): dispersed kernel ImIdðsth;2Þ as a function of
a0 on the logarithmic plot. Color lines correspond to the inverted
couplings of the Fig. 8(b), while color points are solutions of the
Idðsth;2Þ ¼ 1=g33 three-body bound-state equation. Panel (b):
dependence of the bound state–spectator scattering length b0,
defined in Eq. (62) for G ¼ 0, on the two-body dimensionless
scattering length a0. Results for various values of g33 are shown,
while the coupling g22 ¼ 1. It can be seen that for large enough
g33 and particular values of a0 a shallow three-body bound state is
developed, with a mass equal to M þm.
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Finally, it is interesting to compare the above results with
the EFT-like model of Eq. (50). The EFT-like model 2 → 2
and 3 → 3 amplitudes are related by the proportionality
factor of g2. In the improved B-matrix model, the relation
between ã22 and ã33 is s dependent. This is to be expected
in general, when there are no constraints between two- and
three-body interactions. When factorization of couplings is
imposed, the amplitudes become proportional. By requir-
ing that the improved B-matrix amplitudes are related in
exactly the same way as in the EFT-like model, one can
establish a relation between the couplings and the two-body
residue g,

g2 ¼
�
g32
g33

�
2

¼ g22
g33

: ð65Þ

Moreover, to ensure that results of the dispersed B-matrix
model and the EFT-like model agree with each other, it is
required they have identical scattering lengths b0. This
condition allows us to relate the three-body EFT-like
coupling to the B-matrix coupling, namely,

1

g33;EFT
þ 1

g33
¼ Idðsth;2Þ: ð66Þ

To conclude, for fixed g33 and a0, conditionG ¼ 0 together
with Eqs. (65) and (66) allows us to reproduce the results of
the EFT-like model from the dispersed B-matrix formalism
and vice versa.

V. CONCLUSIONS

In this work, the analytic features of the B-matrix
formulation were discussed. We emphasized that within
this framework intermediate particles are on shell. This
allows for a clear interpretation of the long-range inter-
actions, by identifying them with an exchange of physical
particles. However, it leads to spurious left-hand singular-
ities and prevents one from extracting amplitudes involving
a two-body bound state from the three-body ones.
We have shown how these shortcomings are eliminated

when the physical, coupled channels are included and
dispersion relations are used to push the spurious singu-
larities into nonphysical sheets. A generalization of the
elastic 3 → 3 B-matrix was proposed, i.e., a parametriza-
tion which includes 2 → 2, 2 → 3, and 3 → 2 scattering
channels explicitly. It was shown that above the three-body
threshold the new B-matrix equations satisfy the unitarity
relation for the multichannel S-matrix. We introduced a
dispersion procedure that removed artificial left-hand
branch points from the integration kernel and led to
controllable and correct amplitudes, which satisfy the
unitarity constraint above all relevant thresholds. Our
analysis provides an additional argument for the necessity
of implementing a dispersion procedure for the B-matrix

kernel, which was first shown in the study of the triangle
diagram in Ref. [44].
The generalization of the B-matrix formalism described

here provides ground to study coupled-channels problems
within the unitarity approach. For example, presented
equations, once the spin of the nucleon is accounted for,
could suitably describe the Roper resonance Nð1440Þ,
decaying predominantly to Nππ and Nπ final states.
Moreover, recent results concerning the spectrum of the
πππ system on the lattice [19,26,50–53,62,63] open the
possibility of applying the B-matrix to the real physical
problems. As explained in Sec. II, analysis of the Xð3872Þ
resonance is a particularly interesting one and will be
explored in the future.
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APPENDIX A: CONVENTIONS AND
KINEMATICS FOR THE THREE-BODY

ELASTIC SCATTERING

This Appendix is based on the introductory discussion of
Ref. [46]. It is intended as a short review of the notation,
definitions, and relevant three-body kinematic quantities.
Additional details can be found in Sec. II and Appendix A
of Ref. [44] or in textbooks [64].

1. Three-body kinematics

We consider an elastic scattering process, in which the
incoming and outgoing states consist of three indistin-
guishable particles of mass m. The initial total 4-momen-
tum is denoted P ¼ ðE;PÞ, and the final is P0 ¼ ðE0;P0Þ,
with the total invariant mass squared of the system
being s ¼ P2 ¼ P02. The three particles in the final and
initial states are divided into an isobar (a pair) and a
spectator (a single particle). The initial spectator has a
4-momentum p ¼ ðωp; pÞ, with the on-shell energy being

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, while the corresponding initial isobar

is characterized by 4-momentum Pp ¼ ðEp;P − pÞ ¼
ðE − ωp;P − pÞ and its invariant mass squared σp ¼ P2

p.
For the on-shell isobar, it belongs to the interval
σp ∈ ½4m2; ð ffiffiffi

s
p

−mÞ2�. The magnitude of the spectator
momentum can be related to the corresponding isobar
invariant mass squared via formula

jpj ¼ 1

2
ffiffiffi
s

p λ1=2ðs;m2; σpÞ; ðA1Þ

where
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λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx ðA2Þ

is the Källen triangle function. Four-momenta of two
constituents of the isobar are qp and P − p − qp, respec-
tively. Finally, analogous variables for outgoing particles
are denoted with a prime; e.g., the outgoing spectator’s
four-momentum is p0 ¼ ðωp0 ; p0Þ.
In this paper, the center-of-mass frame (CMF) is

assumed, i.e., total momenta P ¼ P0 ¼ 0. However, one
also distinguishes the rest frame of the isobar, called the
helicity frame (HF),1 in which a notion of the isobar angular
momentum can be introduced. The HF is denoted by a ⋆
symbol and defined by a condition P⋆ − p⋆ ¼ 0. In this
frame, the particles inside the pair have momenta q⋆p and
−q⋆p , while the spectator momentum p⋆ makes the −z axis.
The relative momentum of the pair in the HF can be
expressed by the σp invariant and is equal to

jq⋆p j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σp − 4m2

q
: ðA3Þ

Since the initial and final isobars are different, so are
their associated helicity frames. It is useful to write down
formulas for magnitudes of the momentum of the initial
spectator in the final HF, p⋆p0 and of the final spectator in the
initial HF, p0p⋆ in terms of the CMF quantities. They are

jp⋆p0 j ¼
1

2
ffiffiffiffiffiffi
σp0

p λ1=2ððPp0 − pÞ2; σp0 ; m2Þ; ðA4Þ

jp0p⋆j ¼
1

2
ffiffiffiffiffi
σp

p λ1=2ððPp − p0Þ2; σp; m2Þ: ðA5Þ

From the energy-momentum conservation, one has
Pp − p0 ¼ Pp0 − p. The kinematics of three particles is
illustrated in Fig. 9.

2. Three-body amplitude

The elastic 3 → 3 scattering amplitudeM33 is defined as

houtjT33jini ¼ ð2πÞ4δð4ÞðP0 − PÞM33; ðA6Þ

where the T33-matrix is given by S ¼ 1þ iT33. Here, the 33
subscript is used, absent in Ref. [46], to distinguish M33

from other amplitudes appearing in the more general treat-
ment of Sec. III. Amplitude M33 is symmetrized with
respect to exchanges within any pair of incoming (outgoing)
particles; however, it is easier to work with the unsymme-
trized amplitude ½Mp0p�l0m0

l;lml
, written in the so-called

ðplmlÞ basis. It can be treated as an infinite-dimensional
matrix in the angular momentum space. The amplitude
depends on eight variables: initial and final isobar invariant
masses squared σp and σp0 ; total invariant mass squared of
three particles s; angle between incoming and outgoing
spectator Θp0p (or equivalently the total angular momentum
J; see the discussion in Ref. [44]); and angular momenta of
isobars ðl; mlÞ and ðl0; m0

lÞ. The symmetric amplitude is
related to the unsymmetrized one by

M33 ¼ Sym

�
4π
X
l0 ;m0

l
l;ml

Yl0m0
l
ðq̂⋆

p0 Þ½M33;p0p�l0m0
l;lml

Y�
lml

ðq̂⋆
pÞ
�
;

ðA7Þ

where the operation Sym½•� means symmetrizing with
respect to particle permutations. We omit the angular
momentum labels when convenient and simplify the σp
and s dependence notation by using just the spectator
momentum subscripts, i.e., by writing M33;p0p. The p
dependence will be left explicit unless otherwise noted.
The amplitude M33;p0p is be separated into a connected

and disconnected parts, Ap0p and F pδp0p, respectively,

M33;p0p ¼ Ap0p þ F pδp0p: ðA8Þ

In the disconnected piece, the momentum conserving δ
function is included, δp0p ¼ ð2πÞ32ωpδ

ð3Þðp0 − pÞ. The dis-
connected part has a form of a two-body scattering
amplitude in the isobar subchannel, with the spectator
not taking part in the interaction. It depends on the isobar
angular momentum and its invariant mass squared σp. It is
represented by the diagram:

ðA9Þ

The connected term Ap0p contains off-diagonal contribu-
tions in spin indices. The corresponding diagram is

(a) (b)

FIG. 9. A three-particle state in the (a) CMF and (b) HF.
Lorentz boost with β ¼ −ðP − pÞ=ðE − ωpÞ transforms between
the frames. The angular momentum of the pair ðl; mlÞ is defined
in the HF with respect to the spherical angles of q⋆p .

1In Ref. [44], it is just called the isobar rest frame.
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ðA10Þ

The B-matrix parametrization of Eq. (1) is built upon the
integral kernel B33. It contains the OPE amplitude Gp0p and
a real function Rp0p called the R-matrix; see Eq. (2). The
OPE amplitude is

ðA11Þ

and describes the probability of a particle exchange
between the isobar and a spectator. The form of the
R-matrix is unconstrained by the unitarity principle.

APPENDIX B: THE NREFT LADDER EQUATION

In Sec. V of Ref. [46], it was shown that the non-
relativistic limit of Eq. (1) reproduces properly the Faddeev
equations of Ref. [65], showing that Eq. (1) can be used
to describe the low-energy physics. Here, we derive the
correspondence between the NREFT approach of Ref. [55]
and the B-matrix equations. There, a S-wave scattering of a
dimer (two-body bound state) with a single scalar particle is
considered, with the inclusion of the short-range, three-
body forces. In the region of applicability, the predictions
of NREFTagree numerically with an implementation of the
relativistic three-body quantization condition in Ref. [49]
and solution of the relativistic three-body ladder equation in
Ref. [56]. Here, we focus on the analytic relation between
the relativistic and nonrelativistic versions of the ladder
amplitude.
We consider the S-wave scattering, Eq. (9), and include

the momentum-independent R-matrix Rp0p ¼ r. One can
introduce the nonrelativistic kinetic energy of three particles
s ¼ ðΔEþ 3mÞ2 and expand ωp ¼ mþ p2=2mþOðp4Þ.
Here, the nonrelativistic notation p ¼ jpj, p0 ¼ jp0j, q ¼ jqj
is used. The argument of the OPE reduces to

zpp0 ≈
1

pp0 ðmΔE − p2 − p02Þ; ðB1Þ

therefore,

Gnrðp0;ΔE; pÞ ¼ 1

4p0p
log

�
mΔE − p02 − p2 − pp0

mΔE − p02 − p2 þ pp0

�
:

ðB2Þ

From Eq. (12), one derives the low-energy isobar amplitude

F−1
nr ðqÞ ¼

 
−
32πm
a0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2

4
−mΔE

r !
1

32πm
: ðB3Þ

Moreover, converting back to the momentum integral via
Eq. (6), one obtains

Z
dσq
2π

λ1=2ðs;m2; σqÞ
8πs

¼
Z

dqq2

2π22ωq
: ðB4Þ

The overall factor from Eq. (B3) and integration measure in
Eq. (B4) simplify in the nonrelativistic limit to

32πm
2π22ωq

¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 2Eωq þm2

q
π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p ≈
8

π
: ðB5Þ

Finally, one defines a nonrelativistic scattering length of the
proper dimension, 32πm=a0 ¼ 1=a2, and obtains a non-
relativistic equation for the three-body connected amplitude
a33;nrðp0; pÞ,

a33;nrðp0; pÞ ¼ Gnrðp0;ΔE; pÞ þ r

þ 8

π

Z
qmax;nr

0

dqq2
a33;nrðq;ΔE; pÞ

− 1
a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2

4
−mΔE

q
× ½Gnrðp0;ΔE; pÞ þ r�: ðB6Þ

The integration interval ½4m2; ð ffiffiffi
s

p
−mÞ2� is transformed

into the corresponding nonrelativistic interval ½0; qmax;nr ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mΔE=3

p �. This result can be compared with Eq. (7) in
Ref. [55],

tðk; pÞ ¼ mg2

pk
log
�
p2 þ pkþ k2 −mE
p2 − pkþ k2 −mE

�
þ h

þ 2

π

Z
Λ

0

dqq2
tðk; qÞ

− 1
a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2

4
−mE

q
×

�
1

pq
log

�
p2 þ pqþ q2 −mE
p2 − pqþ q2 −mE

�
þ h
mg2

�
;

ðB7Þ
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where E ¼ 3k2
4m − B2 and B2 is the binding energy of the

bound state. The constant g is a coupling of the effective field
theory and h describes strength of the three-body contact
interactions. Both equations look similar, however important
differences occur. Firstly, amplitudes are normalized differ-
ently and related via

a33;nrðp0;ΔE; pÞ ¼ tðp0; pÞ
4mg2

. ðB8Þ

Moreover, the values of three-particle energy are not
equal (since the three-particle energy has not yet been
continued to the bound-state energy ΔE → ΔEb ¼
3p2

4m − 1
ma2

2

). Finally, they differ in their choice of the regu-

larization parameter. Because for the bound state energy
qmax;nr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mΔEb=3

p
, the bound-state pole is not included

in the integration interval, and a33;nr is not a correct bound
state–spectator scattering amplitude.
Indeed, in Ref. [55], an off-shell two-body amplitude

aðp0; pÞ is defined,

atðp0; pÞ
p2 − p02 þ iϵ

¼ 1

mg2
tðp0; pÞ

− 1
a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p02
4

−mΔE
q ; ðB9Þ

which satisfies the Lippmann–Schwinger-like equation

aðk;pÞ ¼Mðk;pÞ þ 2

π

Z
Λ

0

dqMðq;pÞ q2

q2 − k2 − iϵ
aðk;qÞ:

ðB10Þ

The kernel

Mðq; pÞ ¼ 4

3

 
1

a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3p2

4
−mE

r !

×

�
1

pq
log

�
p2 þ pqþ q2 −mE
p2 − pqþ q2 −mE

þ h
mg2

��
:

ðB11Þ

By splitting the “propagator”

1

q2 − k2 − iϵ
¼ iπδðq2 − k2Þ þ P:V

�
1

q2 − k2

�
; ðB12Þ

for large Λ, one obtains

aðk; pÞ ¼ Mðk; pÞ þ iMðk; pÞaðk; kÞk

þ 2

π
P:V

Z
Λ

0

dqMðq; pÞ q2

q2 − k2
aðk; qÞ ðB13Þ

and can express the amplitude in the form which explicitly
satisfies the two-body unitarity,

aðk; kÞ ¼ 1
1

Kðk;kÞ − ik
; ðB14Þ

where Kðk; pÞ is a real function satisfying equation:

Kðk;pÞ ¼Mðk;pÞ þ 2

π
P:V

Z
Λ

0

dqMðq;pÞ q2

q2 − k2
Kðk;qÞ:

ðB15Þ

However, with our choice of qmax;nr, the Dirac delta
does not contribute to the momentum integral and an
incorrect imaginary part of ½aðk; kÞ�−1 below the three-body
threshold.

APPENDIX C: UNITARITY OF THE
MULTICHANNEL FORMALISM

In this Appendix, the results of Ref. [44] and
Appendix A of Ref. [46] are extended. First, conventions
of the generalized multichannel formulation are explained.
Then follows the presentation of the unitarity relations
for the amplitudes describing scattering in the coupled
two- and three-particle channels. Finally, it is shown that
the representation given in Eqs. (18)–(21) satisfies those
constraints.

1. Unitarity relations

We consider 2 → 2, 3 → 2, 2 → 3, and 3 → 3 coupled
scattering processes with the bound state of mass M in the
two-body channel. The scattering matrix is decomposed as
S ¼ 1þ iT, and the scattering amplitude for the n → m
process Mmn is defined as a matrix element,

hm0jTjni ¼ ð2πÞ4δð4ÞðP0 − PÞMmn; ðC1Þ

where jni ¼ jp1p2…pni is an incoming state of n particles,
which inherits its normalization from one-particle states:
h10j1i≡ hp01jp1i ¼ ð2πÞ32ωpδ

ð3Þðp01 − p1Þ. From now on,
the letter k is used exclusively to denote momenta of the
two-particle states and letter p for momenta of the three-
particle states. The 4-vectors P, P0 are incoming and
outgoing total 4-momenta of the particles. As described
in Appendix A, the amplitude M33 is symmetrized with
respect to exchanges among incoming and outgoing par-
ticles and depends on eight kinematic variables: angular
momenta and invariant masses of the incoming and out-
going isobars, total invariant mass, and an angle between
incoming and outgoing spectator. The amplitude M23

(and M32) is symmetrized with respect to exchanges
among three incoming (outgoing) particles and depends
on five variables: incoming (outgoing) isobar angular
momentum and invariant mass, total invariant mass, and
an angle between incoming and outgoing spectator. Finally,
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M22 does not need symmetrization—since in the two-body
channel particles are not identical—and it depends on two
variables: total invariant mass and an angle between the
incoming and outgoing spectator. Similarly to the 3 → 3
case, for 2 → 3 and 3 → 2 amplitudes, a particular choice
of a spectator and a pair in the three-particle channel is
made, and one can perform a partial wave expansion in the
spherical angles of the pair relative momentum in its HF.
Therefore, in the following, we use amplitudes, which are
unsymmetrized in the three-body channels, generalizing

the formulation of matrices in the ðplmlÞ basis from
Appendix A. Namely, in this basis, we define the multi-
channel, unsymmetrized amplitudes as a matrix M33;p0p,
vectors M23;p and M32;p0 , and a scalar M22.
The unitarity relation for the S-matrix S†S ¼ 1 is

equivalent to iT†T ¼ T − T†, which, after appropriate
projections on the j2i and j3i scattering states subspaces,
can be expressed in terms of the scattering amplitudes
Mmn. They are

Y2
i¼1

Z
k00i

ð2πÞ4δð4Þ
�X

l

k00l − P

�
M�

22M22 þ
1

3!

Y3
j¼1

Z
p00j

ð2πÞ4δð4Þ
�X

l

p00l − P

�
M�

23M32 ¼ 2ImM22; ðC2Þ

Y2
i¼1

Z
k00i

ð2πÞ4δð4Þ
�X

l

k00l − P

�
M�

32M22 þ
1

3!

Y3
j¼1

Z
p00j

ð2πÞ4δð4Þ
�X

l

p00l − P

�
M�

33M32 ¼ 2ImM32; ðC3Þ

Y2
i¼1

Z
k00i

ð2πÞ4δð4Þ
�X

l

k00l − P

�
M�

22M23 þ
1

3!

Y3
j¼1

Z
p00j

ð2πÞ4δð4Þ
�X

l

p00l − P

�
M�

23M33 ¼ 2ImM23; ðC4Þ

Y2
i¼1

Z
k00i

ð2πÞ4δð4Þ
�X

l

k00l − P

�
M�

32M23 þ
1

3!

Y3
j¼1

Z
p00j

ð2πÞ4δð4Þ
�X

l

p00l − P

�
M�

33M33 ¼ 2ImM33: ðC5Þ

For clarity, we do not write here the momentum depend-
ence of the amplitudes explicitly—one should keep in
mind that they depend on the incoming and outgoing
momenta of scattered particles and, where integration is
preformed, on the momenta of the intermediate states.
Because of the existence of two channels, there are two
types of integration involved: the first is over the momenta
k001 and k002 of the intermediate on-shell bound state and
spectator, and the second is over momenta p001; p

00
2; p

00
3 of

the three identical particles. The two-body phase space
integral simplifies to

Y2
i¼1

Z
k00i

ð2πÞ4δð4Þ
�X

l

k00l − P

�

¼ 2ρ2ðsÞθðs − sth;2Þ
Z

dΩk

4π
≡ 2ρ̄2ðsÞ

Z
k̂
; ðC6Þ

with ρ̄2ðsÞ ¼ θðs − sth;2Þρ2ðsÞ and the bound state–particle
threshold sth;2 ¼ ðM þmÞ2. The integral is performed
over the spherical angle Ωk̂ of the relative momentum k
between the intermediate bound state and spectator. The
three-body integral is simplified to

Y3
j¼1

Z
p00j

ð2πÞ4δð4Þ
�X

l

p00l − P

�

¼ 2θðs − ssh;3Þ
Z
q
ρq

Z dΩq̂⋆
p00

4π
; ðC7Þ

in the case when no recoupling between different inter-
mediate pairs occurs. When it does, one writes instead

Y3
j¼1

Z
p00j

ð2πÞ4δð4Þ
�X

l

p00l − P

�

¼ 2θðs − ssh;3Þ
Z
q0

Z
q
πδððPq − q0Þ2 þm2Þ; ðC8Þ

preserving the unintegrated Dirac delta for the particle
exchanged between pairs. The intermediate spectator has
momentum p00. Using the unsymmetrized amplitudes, and
separating the 3 → 3 amplitude into a connected and
disconnected piece, M33;p0p ¼ F pδp0p þA33;p0p, one ar-
rives at the unitarity constraints
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ImA22 ¼ ρ̄2

Z
k̂
A†

22A22 þ
Z
q
A†

23;qρqA32;q

þ
Z
q

Z
q0
A†

23;qCqq0A32;q0 ; ðC9Þ

ImA32;p0 ¼ ρ̄2

Z
k̂
A†

32;p0A22 þ
Z
q
A†

33;p0qρqA32;q

þ
Z
q

Z
q0
A†

33;p0qCqq0A32;q0 þ F †
p0ρp0A32;p0

þ
Z
q
F †

p0Cp0qA32;q; ðC10Þ

ImA23;p ¼ ρ̄2

Z
k̂
A†

22A23;p þ
Z
q
A†

23;qρqA33;qp

þ
Z
q

Z
q0
A†

23;q0Cqq0A33;qp þA†
23;pρpF p

þ
Z
q
A†

23;qCp0qF p; ðC11Þ

ImA33;p0p ¼ ρ̄2

Z
k̂
A†

32;p0A23;p þ
Z
q
A†

33;p0qρqA33;qp

þ
Z
q

Z
q0
A†

33;p0q0Cqq0A33;qp

þ
Z
q
F †

p0Cp0qA33;qp þ
Z
q
A†

33;p0qCp0qF p

þ F †
p0ρp0A33;p0p þA†

33;p0pρpF p

þ F p0Cp0pF p: ðC12Þ

Here, Cp0p ¼ Im½Gp0p�, as in Ref. [46], and the three-body-
threshold step functions are included implicitly where
necessary. Above equations can be considered a gener-
alization of Eq. (A4) in the above reference.

2. Proof

To prove that the multichannel B-matrix represent-
ation of Eqs. (18)–(21) satisfies unitarity relations in
Eqs. (C9)–(C12), we employ the generalized matrix nota-
tion. Here, only the 2 → 2 case is considered. Taking the
imaginary part of Eq. (31), one arrives at

ImA22 ¼ Im½1 −H22iρ2�−1H22

þ ½1þH�
22iρ2�−1ImH22: ðC13Þ

The first term above can be expanded as

Im½1 −H22iρ2�−1
¼ ½1þH�

22iρ2�−1H�
22ρ2½1 −H22iρ2�−1

þ ½1þH�
22iρ2�−1ImH22iρ2½1 −H22iρ2�−1; ðC14Þ

which used in Eq. (C13) together with the formal solution
for Ã22, given in Eq. (31), gives

ImA22 ¼ A�
22ρ2A22 þ ½1þH�

22iρ2�−1ImH22ð1þ iρ2A22Þ:
ðC15Þ

Also, since H22 ¼ B22 þ B23F ½1 − B33F �−1B32 and

ImH22 ¼ B23ImF ½1 − B33F �−1B32

þ B23F �Im½1 − B33F �−1B32; ðC16Þ

where

Im½1 − B33F �−1 ¼ ½1 − B�
33F

��−1ImB33F ½1 − B33F �−1
þ ½1 − B�

33F
��−1B�

33ImF ½1 − B33F �−1;
ðC17Þ

the second term of Eq. (C15) can be transformed
accordingly,

ImA22 ¼ A�
22ρ2A22 þ ð½1þH�

22iρ2�−1B23ImF ½1 − B33F �−1
þ ½1þH�

22iρ2�−1B23F �½1 − B�
33F

��−1ImB33F ½1 − B33F �−1
þ ½1þH�

22iρ2�−1B23F �½1 − B�
33F

��−1B�
33ImF ½1 − B33F �−1Þ × ðB32 þ B32iρ2A22Þ: ðC18Þ

The last step is to match the terms in the above equation with those of Eq. (C9). First, it is useful to notice that
Ã32 ¼ ½1 − B33F �−1ðB32 þ B32iρ2A22Þ. Next, one can employ the unitarity relation for the isobar amplitude
ImF ¼ F �ρF . Finally, the imaginary part of the B-matrix kernel is rewritten as ImB33 ¼ ImG ¼ C. After these three
steps, one obtains

ImA22 ¼ A�
22ρ2A22 þ ½1þH�

22iρ2�−1ðB23 þ B23F �½1 − B�
33F

��−1B�
33ÞImFÃ32

þ ½1þH�
22iρ2�−1B23F �½1 − B�

33F
��−1ImB33FÃ32 ðC19Þ

¼ A�
22ρ2A22 þ Ã�

23F �ρFÃ32 þ Ã�
32F �CFÃ32; ðC20Þ
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which agrees with the two-body unitarity relation in Eq. (C9) after the amputation procedure. The last term in the
above expression was obtained from iterating once the geometric series ½1 − B�

33F
��−1 ¼ 1þ ½1 − B�

33F
��−1B�

33F
�,

that is,

½1þH�
22iρ2�−1B23F �½1 − B�

33F
��−1ImB33FÃ32

¼ ½1þH�
22iρ2�−1ðB23 þ B23F �½1 − B�

33F
��−1B�

33ÞF �ImB33FÃ32

¼ Ã�
23F �ImB33FÃ32: ðC21Þ

Analogous calculations performed in Eqs. (27), (28), and (32), following the procedure shown here and in Ref. [44], show
that the B-matrix parametrization satisfies unitarity above the three-body threshold also in the case of the other amputated
amplitudes.

APPENDIX D: SPECTRUM OF THE CONTACT INTERACTION MODEL

In this Appendix, two figures which illustrate the discussion of the integrand J ðσ; sÞ in Sec. IVare included. In Fig. 10,
the motion of the singularities σ3;4ðsÞ with the changing invariant mass squared s is presented. Figure 11 shows the changes
of the real and imaginary parts of J ðσ; sÞ for s decreasing from s=m2 ¼ 10 to s=m2 ¼ 0.

FIG. 10. The trajectories of the movable singularities σ3 and σ4 as a functions of s. Here, s is decreasing from s=m2 ¼ 9 to −3. The σ3
point travels on the real axis until it reaches s=m2 ¼ 1, where it becomes complex, with a positive imaginary part. The σ4 moves on the
real axis to the left until it reaches the value σ4 ¼ 0 for s=m2 ¼ 1, and then it moves to the right and becomes complex for s ¼ 0.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 11. The integrand J ðσ; sÞ of Eq. (48) as a function of σ for fixed, real values of s, decreasing from s=m2 ¼ 10 to s=m2 ¼ 0. The
bound-state pole occurs at M2 ¼ 3m2. The s-dependent branch points σ3;4 are specified by arrows, while fixed points σ0=m2 ¼ 0,
σb=m2 ¼ 3, and σ2=m2 ¼ 4 are marked with dashed vertical lines. The plot was obtained for ϵ=m2 ¼ 10−4.
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