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We study the bulk and shear viscosity and the electrical conductivity in a quasiparticle approach to
Yang–Mills theory and QCD with light and strange quarks to assess the dynamical role of quarks in
transport properties at finite temperature. The interactions with a hot medium are embodied in effective
masses of the constituents through a temperature-dependent running coupling extracted from the lattice
QCD thermodynamics. In Yang–Mills theory, the bulk viscosity to entropy density ratio exhibits a
nonmonotonous structure around the phase transition temperature. In QCD, this is totally dissolved
because of a substantial contribution from quark quasiparticles. The bulk to shear viscosity ratio near the
phase transition behaves consistently to the scaling with the speed of sound derived in the AdS=CFT
approach, whereas at high temperature it obeys the same parametric dependence as in perturbation theory.
Thus, the employed quasiparticle model is adequate to capture the transport properties in the weak and
strong coupling regimes of the theory. This feature is not altered by including dynamical quarks which,
however, retards the system from restoring conformal invariance. We also examine the individual flavor
contributions to the electrical conductivity and show that the obtained behavior agrees qualitatively well
with the recent results of lattice simulations and with a class of phenomenological approaches.

DOI: 10.1103/PhysRevD.103.014007

I. INTRODUCTION

Two decades of intensive theoretical explorations of the
flow observables in ideal [1–5] and viscous [6–13] hydro-
dynamics have successfully delineated the quark gluon
plasma (QGP) created at the Relativistic Heavy Ion
Collider (RHIC) and LHC as a strongly coupled fluid.
Thus, its transport properties characterized by the corre-
sponding transport parameters are of particular importance
in the evolution of deconfined QCD matter.
The bulk viscosity ζ indicates the energy dissipation

during the expansion of a medium. It vanishes in non-
interacting systems of massless particles and, thus mea-
sures the fate of conformal invariance in strongly
interacting theories. The dimensionless ratio of the bulk
viscosity to entropy density ζ=s and the specific shear
viscosity η=s is the major input in the hydrodynamic
equations [14–17], and they reflect a deviation of the
medium from local thermodynamic equilibrium.
The bulk viscosity of strongly interacting matter has

been evaluated in various frameworks, e.g., the kinetic
quasiparticle models [18–26], the parton-hadron string
dynamics [27], the Nambu-Johna-Lasinio model [28–32],

the Polyakov-quark-meson model [33], the Green–Kubo
formalism [34–37], the Chapman–Enskog method [38],
and the holographic QCD approach [39–41]. The dynamic
criticality of the bulk viscosity has been discussed as a
probe of a QCD critical point [29,42].
It has been shown in a quasiparticle model [21] that, near

the phase transition, the bulk to shear viscosity ratio of a
gluon plasma decreases as predicted in the AdS=CFT
approach, whereas at a higher temperature as in perturbative
QCD (pQCD). This has been further confirmed in models
based on the Gribov–Zwanziger quantization [43–45].
The approach based on quasiparticle excitations is thus
capable to describe a dynamical link between the strong and
weak coupling regions of Yang–Mills thermodynamics.
The same framework has been recently applied to compute
the specific shear viscosity at a finite temperature, and
the role of dynamical quark quasiparticles has been
assessed [46].
The other important parameter is the electrical conduc-

tivity σ. It characterizes the linear response of a system to an
external electric field that generates an electrically charged
current in the medium. Thus, it is of relevance in noncentral
heavy-ion collisions, where strong electric and magnetic
fields are expected to emerge [47–50]. It has been shown
that σ quantifies the diffusion of a magnetic field in the
medium [51] and the soft dilepton emission [52], as well as
the photon production rate [53,54]. The electrical conduc-
tivity of deconfined matter has been examined in various
methods, such as phenomenological quasiparticle models
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in the relaxation time approximation [24,26,33,55–58],
the Green–Kubo formalism [55,56,59], the Chapman–
Enskog method [38,60], and the color string percolation
approach [61].
The precise determination of the transport parameters as

functions of temperature and chemical potential, as well as
their incorporation to the fluid dynamical simulations, is
one of the main steps towards understanding the nontrivial
evolution of strongly interacting matter. This requires
comprehension of the dynamical role of light and strange
quark quasiparticles on the transport properties. In particu-
lar, their individual contributions to scattering cross sec-
tions and the thermodynamically consistent formulation of
the transport coefficients are of major importance.
In this paper, we utilize the quasiparticle model (QPM)

developed in [46] to study the specific bulk viscosity and
the bulk to shear viscosity ratio, as well as the electrical
conductivity of Yang–Mills and QCD matter. We aim at
assessing the role of dynamical quark quasiparticles in
transport properties in the strong and weak coupling
domains of QCD. In Sec. II, the QPM is briefly outlined
and the speed of sound in the two theories is presented with a
close comparison to other approaches. In Sec. III and Sec. IV,
the transport coefficients derived in the kinetic theory under
the relaxation time approximation [20–22,57,62] are studied
with special emphasis on their flavor dependence. Finally,
we give a brief summary of our results and concluding
remarks in Sec. V.

II. QUASIPARTICLE MODEL

We employ the well-established quasiparticle model [63]
to study transport properties of the QGP above but not far
from the deconfinement phase transition. The main build-
ing blocks are quasiparticle excitations with effective
masses depending on temperature and chemical potential,
and the QGP is described as a dynamical fluid composed of
the quasiparticles. In this paper, we restrict ourselves to
studying the QGP at finite temperature and vanishing
chemical potential.
In thermal equilibrium the quasiparticles are assumed to

propagate on shell with energies Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

p
, where p

represents a three-momentum and mi is the effective mass
of a particle species i given by

m2
i ¼ ðm0

i Þ2 þ Πi: ð1Þ

Here, m0
i is a bare mass of the quasiparticle, and Πi is the

dynamically generated self-energy. For the QGP composed
of weakly interacting light (degenerate up and down)
quarks, strange quarks, and gluons, we set the bare masses
at m0

l ¼ 5 MeV, m0
s ¼ 95 MeV, and m0

g ¼ 0. The quasi-
particles at a given temperature T are characterized by the
gauge-independent hard thermal loop (HTL) self-energies
Πi with the asymptotic forms [64,65]

ΠlðTÞ ¼ 2

�
m0

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðTÞ2

6
T2

r
þ GðTÞ2

6
T2

�
; ð2Þ

ΠsðTÞ ¼ 2

�
m0

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðTÞ2

6
T2

r
þGðTÞ2

6
T2

�
; ð3Þ

ΠgðTÞ ¼
�
3þ Nf

2

�
GðTÞ2

6
T2: ð4Þ

In order to incorporate nonperturbative features near the
QCD phase transition into the model, we introduce an
effective running coupling GðTÞ which can be extracted
from the equation of state calculated in lattice gauge theory.
We utilize the lattice results of the entropy density for
the QGP with 2þ 1 quark flavors [66] and for pure SU(3)
Yang–Mills theory [67]. The resultant coupling GðTÞ cap-
tures the nontrivial dynamics near a crossover with
Nf ¼ 2þ 1 (a first-order phase transition with Nf ¼ 0)
and reproduces the perturbative behavior in the very high-
temperature regime [46]. Figure 1 shows the effective
masses calculated via Eq. (1) scaled with temperature in
pure Yang–Mills theory and in QCD with Nf ¼ 2þ 1.
Their characteristic behavior is a direct consequence of the
effective running coupling GðTÞ extracted according to the
aforementioned prescription. For Nf ¼ 0, an abrupt change
in the effective gluon mass near Tc is responsible for
describing a jump in the entropy density at the first-order
phase transition. For Nf ¼ 2þ 1, the temperature profile
of GðTÞ becomes much milder and smoother at any
temperature. The hierarchy in the effective masses are
in accordance with the flavor indices and bare-mass
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FIG. 1. Effective quasiparticle masses scaled with temperature
as functions of T=Tc. Open bullets represent dynamical masses of
gluons (circles), strange (squares) and light (triangles) quarks in
QCD with Nf ¼ 2þ 1, whereas full circles stand for the mass of
gluons in pure Yang–Mills theory. The error bars are due to the
uncertainties of the entropy density s=T3 in the lattice data [66,67].
We use Tc ¼ 155 MeV for Nf ¼ 2þ 1 and Tc ¼ 260 MeV for
Nf ¼ 0.
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dependence in Eqs. (1)–(4) [46]. All the scaled effective
masses vanish logarithmically at high temperatures, match-
ing the perturbative expectation for particles with thermal
momenta p ∼ T [68].

A. Speed of sound

In the quasiparticle model, all thermodynamic quantities
in thermal equilibrium are expressed as standard phase-
space integrals over the distribution functions. The entropy
density for Nf ¼ 2þ 1 at vanishing chemical potential is
given by the sum of contributions from light (as a sum of up
and down) quarks l, strange quarks s, their antiparticles and
gluons g as

s ¼
X

i¼l;l̄;s;s̄;g

di
2π2

Z
dpp2

ð4
3
p2 þm2

i Þ
EiT

f0i ; ð5Þ

where the spin-color degeneracy factor di reads expli-
citly as dl;l̄ ¼ 2NcNl ¼ 12 for Nl ¼ 2 light (anti-)quarks,
ds;s̄ ¼ 2Nc ¼ 6 for strange (anti-)quarks, and
dg ¼ 2ðN2

c − 1Þ ¼ 16 for gluons; f0i ¼ðexpðEi=TÞ�1Þ−1
denotes the standard distribution function for fermions with
the upper sign and for bosons with the lower sign. In pure
Yang–Mills theory, the thermodynamics of a gluon plasma
is obtained by setting Nf ¼ 0, i.e., dl;l̄;s;s̄ ¼ 0.
As we will see in the next section, the speed of sound is

one of the essential building blocks of the bulk viscosity to
measure a deviation from the conformal limit. The speed of
sound squared is obtained once the entropy density is
calculated as a function of temperature via

c2s ¼
∂P
∂ϵ ¼ s

T

�∂s
∂T

�
−1
; ð6Þ

where P denotes the pressure, ϵ the energy density, and s
the entropy density calculated in Eq. (5). The results are
presented in Fig. 2 for pure Yang–Mills theory (left) and for
QCD with Nf ¼ 2þ 1 (right).
In the left panel, one readily finds that the speed of sound

squared of the gluon plasma in the QPM is in excellent
agreement, both in confined and deconfined phases, with
the results deduced from the lattice data for the pressure and
energy density in pure Yang–Mills theory [67]. This arises
from the effective running coupling GðTÞ defined with the
entropy density in the same lattice setup.
It is also instructive to compare the QPM result with the

model for a glueball resonance gas (GRG). This can be
done along with the parametric form for the entropy density
suggested in [67],

sconfðTÞ
T3

¼
�
−0.2

T
Tc

− 0.134FðTÞ
�
; ð7Þ

with FðTÞ ¼ log½1.024 − T
Tc
�. This includes the contribu-

tion from the GRG beyond the two-particle threshold, i.e.,
including the Hagedorn density of states [69]. The resultant
c2s is found easily as

c2s ¼
ð1.024Tc − TÞð0.2 T

Tc
þ 0.134FðTÞÞ

ð0.412Tc − 0.402TÞFðTÞ þ Tð0.686 − 0.8 T
Tc
Þ ; ð8Þ

which well captures the behavior near Tc as seen in the
figure.
As a useful reference, one takes a simple model for an

ideal bosonic gas including only the lowest glueball. The
speed of sound squared is calculated analytically as in the
form [70,71]
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FIG. 2. Speed of sound squared as a function of temperature. Left: The result for pure Yang–Mills theory obtained in the quasiparticle
model (circles) is compared with c2s deduced from the lattice data in Ref. [67] (triangles), from the glueball resonance gas with the
Hagedorn spectrum [67,69] (diamonds), and from the ideal gas of the lowest glueball [70,71] (solid line). Right: The same quantity but
forNf ¼ 2þ 1 (squares), in comparison to the corresponding result of the lattice QCD simulations [66] (triangles) and [72] (circles) and
to the hadron resonance gas with the states below 2.5 GeV [70,71] (diamonds). The dashed vertical lines indicate the (pseudo)critical
temperatures in both theories.
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c2s ¼
�
3þ m2

0K2ðm0=TÞ
4T2K2ðm0=TÞ þm0TK1ðm0=TÞ

�
−1
; ð9Þ

where K1;2 are the modified Bessel functions of the second
kind. The parameter m0 denotes the glueball mass, and we
take m0 ¼ 2 GeV. The comparison with the GRG and the
QPM approaches, as well as the lattice result, clearly
illustrates that it is insufficient to describe the thermody-
namics near Tc with the lowest state only, and Eq. (9) fails
even qualitatively, although it describes the c2s better at
lower temperature.
In Fig. 2 (right), we present the c2s of the QGP with

Nf ¼ 2þ 1 quark flavors in the QPM and hadron
resonance gas (HRG) model, as well as those in lattice
QCD. Within the errors, the overall behavior of the
QPM result is fairly consistent with lattice QCD [66,72].
The HRG model [70] describes the c2s rather well near the
crossover and an apparent deviation from the lattice data
emerges just above Tc, indicating that the hadronic picture
of the QCD thermodynamics breaks down.
The c2s exhibits a nonmonotonicity around the corre-

sponding Tc in the two theories, whereas this behavior
is much stronger in pure Yang–Mills theory, as a conse-
quence of the rapid change with temperature in the entropy
density at the first-order phase transition. At higher tem-
perature, the c2s approaches the Stefan–Boltzmann limit
∂P=∂ϵ ¼ 1=3. We will explore how the system recovers
its conformality depending on the quark flavors in the
next section.
We have explicitly demonstrated that the QPM captures

the nonperturbative properties of the bulk thermodynamic
quantities, not only in a deconfined phase, but also some-
what below Tc in pure Yang–Mills and full QCD. However,
we emphasize that such an agreement with the hadronic
picture in a confined phase would not be expected for
transport coefficients since they carry the details of kin-
ematics with entirely different constituents, i.e., hadrons
versus quarks and gluons. We will, therefore, restrict our
temperature range to the domain of T=Tc > 0.9 in the
subsequent sections.

III. BULK VISCOSITY

Assuming that a system deviates from thermal equilib-
rium only slightly, we can determine the transport param-
eters via the Boltzmann kinetic equation. In the relaxation
time approximation, the bulk viscosity of a hot matter
composed of quark and gluon quasiparticles reads [21,22]

ζ ¼ 1

T

X
i¼l;l̄;s;s̄;g

Z
d3p
ð2πÞ3 dif

0
i ð1� f0i Þ

τi
E2
i

×

��
E2
i − T2

∂ΠiðTÞ
∂T2

� ∂P
∂ϵ −

p2

3

�
2

; ð10Þ

where the upper (lower) sign corresponds to Fermi–Dirac
(Bose–Einstein) statistics, τi denotes the energy-averaged
relaxation time, and ∂P=∂ϵ is the speed of sound squared
given by Eq. (6). One can deduce the bulk viscosity of a
gluon plasma by setting Nf ¼ 0 and i ¼ g, with the
effective coupling for pure Yang–Mills theory.
The collision term of the Boltzmann equation is para-

metrized with the relaxation time τ defined by τ−1 ¼ nσ̄,
with the equilibrium number density n and the thermal-
averaged total cross section σ̄ for microscopic scattering
processes between the medium constituents. In pure Yang–
Mills theory, the relaxation time is quantified by elastic
gluon-gluon interactions as τg−1 ¼ ngσ̄gg→gg. In QCD with
Nf ¼ 2þ 1 quark flavors, the QGP as a multicomponent
medium is characterized by a set of relaxation times. This is
given conveniently in the following matrix form [46,62]

0
BBBBBB@

τ−1l
τ−1
l̄

τ−1s

τ−1s̄
τ−1g

1
CCCCCCA

¼

0
BBBBBB@

σ̄ll σ̄ll̄ σ̄ls σ̄ls̄ σ̄lg

σ̄ l̄l σ̄ l̄ l̄ σ̄ l̄s σ̄ l̄ s̄ σ̄ l̄g
σ̄sl σ̄sl̄ σ̄ss σ̄ss̄ σ̄sg

σ̄s̄l σ̄s̄ l̄ σ̄s̄s σ̄s̄ s̄ σ̄s̄g

σ̄gl σ̄gl̄ σ̄gs σ̄gs̄ σ̄gg

1
CCCCCCA

0
BBBBBB@

nl
nl̄
ns
ns̄
ng

1
CCCCCCA
; ð11Þ

with the equilibrium number density for each species
ni ¼

R
d3p=ð2πÞ3dif0i , and σ̄ij being the thermal-averaged

total cross sections for the two-body elementary scattering
processes between the quasiparticles i and j. The cross
sections are evaluated at tree level with the Feynman
propagators of quarks and gluons which carry the effective
masses introduced in Eq. (1).
The relaxation time approximation is valid in a diluted

system, i.e., when the mean free path λ is greater than the
average interparticle distance d, λ ∼ τ ≫ d ∼ n−1=3 [73,74],
where n ¼ P

ni is the total particle number density of the
system. In the QPM formulated in [46] we find that at Tc in
pure Yang–Mills theory, τ ∼ 0.4 fm and d ∼ 10−4 fm.
When temperature reaches 3Tc, the relaxation time remains
of the same order, whereas the average distance between
the quasiparticles decreases to the order of 10−6 fm. Thus,
the condition τ ≫ d is satisfied in the whole range of
temperature considered in this paper. Similar numbers
satisfying the condition are also obtained in QCD with
Nf ¼ 2þ 1 [46].
Our major assumption in this study is that all the

transport parameters for a given particle species carry a
common relaxation time. Each parameter is characterized
by a particular dissipative phenomenon formed in the
viscous fluid, thus, the corresponding relaxation times
are, in general, different. The shear viscosity emerges
because of the longitudinal fluid motion, hence it is
sensitive to the changes of the transverse momentum
density, which are carried on the microscopic level by
the elastic 2 → 2 scattering processes included in Eq. (11).
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The bulk viscosity, on the other hand, characterizes the
diffusion of the particles during a uniform expansion of the
medium, therefore, its relaxation time essentially depends
on the inelastic collisions changing the number density of
the excitations [75]. In this context, within a scalar field
theory [37], response functions of the energy-momentum
tensor have been carefully examined to derive the shear and
bulk relaxation times. Further, electrical conductivity mea-
sures the transfer of the electric charge, separately from the
momentum transfer, resulting in a different relaxation time
from those for the shear and bulk viscosities. We will not
take those complications into account, but we rather aim at
clarifying the dynamical role of the quasiquarks in the
QGP. We also note that the relaxation time defined above is
independent of momentum since it is introduced as a mean.
With given scattering amplitudes, one can evaluate the
momentum-dependent relaxation times including inelastic
collisions as instructed in [22]. To justify that the averaged
relaxation time adequately assesses the properties of the
transport parameters, we also compute the ζ=s ratio in pure
Yang–Mills theory using the energy-dependent relaxation
time τðsÞ in Appendix A.

A. Bulk viscosity to entropy density ratio

The term −∂Πi=∂T2 in Eq. (10) readily generates a
temperature derivative of the effective coupling in the form
of −midG=dT, displayed in Fig. 3 (left). In pure Yang–
Mills theory, the derivative −mgdG=dT exhibits a promi-
nent maximum at the critical temperature Tc, whereas in
QCDwithNf ¼ 2þ 1, for any type of constituents it varies
smoothly and the strong nonmonotonicity seen in the
Nf ¼ 0 case disappears. The resultant bulk viscosity to
entropy density ratio ζ=s is shown in Fig. 3 (right), and one
finds that the characteristic features of the quasiparticle
masses and their thermal profiles are encoded in the ratio.
The presence of light and strange quasiquarks causes a

significant delay of the QGP approaching a noninteracting
gas with ζ → 0 at high temperature.
In Fig. 3 (right), the QPM result for the QGP with

Nf ¼ 2þ 1 is confronted with that evaluated in the
DQPM [26]. The overall behaviors as functions of T=Tc
in the two approaches are similar, whereas the ζ=s in the
DQPM decreases much faster as temperature increases. The
observed difference can be traced back to the fact that in the
DQPM, the quasiparticles carry finite lifetimes, which
reproduce the same lattice equation of state but modify
the expressions for the relaxation times. This may explain
the gap between the two results at high temperature.1

In Fig. 4 (left), the ζ=s ratio in pure Yang–Mills theory is
compared with the results in other approaches. The QPM
result above Tc is fairly consistent to the collected data sets
from lattice gauge theory [77–79], as well as to that from an
approach based on the gauge-gravity correspondence [39].
In a confined phase, the lattice results show that the ratio
continuously decreases as temperature increases toward Tc,
but this behavior is not captured either by the holography or
the QPM. As emphasized in Sec. II, the QPM is not capable
to correctly describe the kinematics of glueballs, which is
essential to evaluate the total cross sections below Tc.
Therefore, the interpretation of the bulk viscosity should be
made with caution. The observed minimum right below Tc
and the result at lower temperature might be the artifacts of
the quasiparticle approximation, and they require further
justifications in a more refined approach which resembles
confinement.
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FIG. 3. Left: Temperature derivative of the effective coupling multiplied by the masses as a function of T=Tc. The result in pure Yang–
Mills theory (full circles) is compared to those for each particle species in QCD with 2þ 1 flavors: gluons (open circles), strange quarks
(squares), and light quarks (triangles). Right: Bulk viscosity to entropy density ratio as a function of T=Tc for the gluon plasma (full
circles) and QGP (full squares). The dashed line corresponds to the dynamical quasiparticle model (DQPM) result for Nf ¼ 2þ 1 [26].

1In addition, as the standard prescription, we evaluated the
total cross sections in the large angle scattering (LAS) approxi-
mation [28,73,74], while this is not used in [26]. When the LAS
approximation is relaxed, the specific shear viscosity η=s de-
creases by a factor of ∼2=3 [46] and appears close to the result of
the Bayesian analysis comparing a hydrodynamical model to the
experimental data [76].
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The right panel of Fig. 4 shows the total specific bulk
viscosity of the QGP for Nf ¼ 2þ 1 along with the
contributions coming from different quasiparticle species.
The ζl;s;g=s ratios are evaluated individually in Eq. (10)
divided by the total entropy density given by Eq. (5). The
light quarks bring the main impact to the total bulk
viscosity of the QGP, while the contributions of strange
quarks and gluons are relatively suppressed by their
larger effective masses, as in Fig. 1. We find that the
strange quarks and gluons contribute almost equally to the
bulk viscosity coefficient via different quantum statis-
tics encoded in the characteristic derivatives of the self-
energies. The quantitative resemblance between ζs=s and
ζg=s comes from the convolution of the degeneracy factors
dg > ds, the relaxation times τs > τg, and the effective
masses mg > ms entering the corresponding energies Ei in
Eq. (10). This is a clear distinction to the specific shear
viscosity, in which the strange-quark component is larger at
any temperature than the contribution from gluons [46].

B. Bulk to shear viscosity ratio

Taking the high-temperature limit in Eqs. (6) and (10),
we find that the bulk viscosity ζ vanishes as the speed of
sound squared c2s approaches the value 1=3. Thus, the
nonvanishing ζ near Tc measures how far from the
conformal limit the system is. The bulk to shear viscosity
ratio of an interacting photon gas [80] and in scalar field
theory [75] is given unambiguously by

ζ

η
¼ 15

�
1

3
− c2s

�
2

: ð12Þ

The shear and bulk viscosities have been evaluated at high
temperature perturbatively [81,82], from which one finds
that the ratio ζ=η follows quantitatively the same trend as
in Eq. (12).

In contrast, for strongly coupled theories along with
gauge/gravity duality, the ratio behaves as [83]

ζ

η
∝
�
1

3
− c2s

�
: ð13Þ

Yet another nonperturbative approach, which describes the
Yang–Mills plasma based on the Gribov–Zwanziger quan-
tization, leads to the ratio ζ=η linearly proportional to the
quantity Δc2s ¼ 1=3 − c2s [84] and, thus to an intriguing
agreement with the result from gauge-gravity duality.
In a similar QPM framework for pure Yang–Mills theory,

it has been shown that the ratio ζ=η linearly depends onΔc2s
near the first-order phase transition temperature Tc,
whereas it scales quadratically with Δc2s at high temper-
ature [21]. To quantify the impact of the quasiquarks on the
same quantity, we shall study the quark-flavor dependence
encoded in the transport coefficients within the QPM. We
recall that in the kinetic theory under the relaxation time
approximation, the shear viscosity of the QGP for
Nf ¼ 2þ 1 reads [20–22,62,85,86]

η ¼ 1

15T

X
i¼l;l̄;s;s̄;g

Z
d3p
ð2πÞ3

p4

E2
i
diτif0i ð1� f0i Þ: ð14Þ

The shear viscosity to entropy density ratio in the two
theories, pure Yang–Mills and QCD with Nf ¼ 2þ 1, has
been explored in [46], and therein, the details on the Nf-
dependence, as well as a comprehensive comparison to
other approaches, are found.
The ratio of bulk to shear viscosity is readily calculated

with Eqs. (10) and (14) in pure Yang–Mills and QCD with
the corresponding effective masses. Based on the obser-
vations in [21,87,88], the full QPM results will be com-
pared with the linear and quadratic dependence on Δc2s :
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FIG. 4. Left: Bulk viscosity to entropy density ratio in pure Yang–Mills theory (full circles). For comparison, we show the
corresponding lattice gauge theory results from [77] (open triangles), [78] (open squares), and [79] (open circles and diamond), as well
as the holographic result from [39] (dashed line). Right: The same quantity but for QCD with Nf ¼ 2þ 1 quark flavors. The total
specific bulk viscosity (full squares) is compared to the individual contributions coming from light quarks (triangles), strange quarks
(open squares), and gluons (circles). The antiparticle contributions are not included in the ratios ζl;s;g=s.
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Linear∶
ζ

η
¼ α

�
1

3
− c2s

�
þ β; ð15Þ

Quadratic∶
ζ

η
¼ γ

�
1

3
− c2s

�
2

þ δ; ð16Þ

with fit parameters α, β, γ, and δ, under the assumption of
equal relaxation times for the shear and bulk viscosities.
Figure 5 presents the bulk to shear viscosity ratio in pure
Yang–Mills theory (left) and in QCD with Nf ¼ 2þ 1

(right). Consistent with the earlier study in Yang–Mills
thermodynamics [21], the QPM result is well captured by
the linear ansatz (15) near Tc and by the quadratic one (16)
at higher temperature. A clear changeover from the linear to
quadratic scaling emerges at T ≃ 1.3Tc. Near Tc the ζ=η in
the QPM agrees fairly well with the same quantity deduced
from the available lattice data [78,89] and [77,90]. Above
T ≃ 1.4Tc, it is in line with the pQCD prediction [81,82],

wherein the shear and bulk viscosities are given in the next-
to-leading-log expansion by

ηNLL ¼ T3

g4
η1

lnðμ�1=mDÞ
; ζNLL ¼ Aα2sT3

lnðμ�2=mDÞ
; ð17Þ

with the strong coupling αs ¼ g2=4π and the Debye mass
squared m2

D ¼ ð1þ Nf=6Þg2T2. For Nf ¼ 0, the set of
parameters reads η1 ¼ 27.126, μ�1=T ¼ 2.765, A ¼ 0.443,
and μ�2=T ¼ 7.14, while for Nf ¼ 3, η1 ¼ 106.66,
μ�1=T ¼ 2.957, A ¼ 0.657, and μ�2=T ¼ 7.77.
The QPM with Nf ¼ 2þ 1 retains the same feature, but

the changeover between the two scaling behaviors appears
at a higher temperature, T ≃ 2Tc. One observes a somewhat
larger difference from the pQCD result, arising from the
presence of quasiquarks. Including the matter fields also
results in a delay of restoring conformal invariance at
high temperature, as seen in the ζ=s ratio presented in
Fig. 3 (right).
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FIG. 5. The bulk to shear viscosity ratio as a function of T=Tc. The QPM results are compared with the linear and quadratic
dependence on the squared speed of sound, Eqs. (15) and (16), with the fit parameters α ¼ 4.5, β ¼ −0.3, γ ¼ 12, δ ¼ 0.002 for Yang–
Mills theory (left) and α ¼ 2.15, β ¼ −0.085, γ ¼ 14, δ ¼ 0 for QCD with Nf ¼ 2þ 1 (right). Left: ζ=η in pure Yang–Mills theory
(full circles) parametrized by linear (dashed line) and quadratic (solid line) functions of the c2s . The results deduced from the lattice data
in [78,89] (open diamonds) and [77,90] (open circles), as well as those from perturbative QCD [81,82] (full pentagons) are shown for
comparison. Right: The same quantity but in Nf ¼ 2þ 1 QCD (full squares), shown along with linear (checkered band) and quadratic
(plain-colored band) parametrizations.
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To look further into the relation between the bulk
viscosity and conformality, in Fig. 6 we show a flavor
dependence of the ζ=η ratio as a function of the measure
Δc2s , as well as the explicit temperature profiles of c2s at and
above Tc. One readily finds that (i) the speed of sound
squared in QCD approaches its conformal value at high
temperature, but much slower than in Yang–Mills theory
because of the presence of dynamical quarks, and (ii) the
changeover of the two scaling behaviors in the ζ=η ratio is
preserved.

IV. ELECTRICAL CONDUCTIVITY

The electrical conductivity σ quantifies the ability of a
system to conduct the electric charge. In the relaxation time
approximation, the σ of QGP with Nf ¼ 2þ 1 reads [57]

σ ¼ 1

3T

X
i¼u;ū;d;d̄;s;s̄

Z
d3p
ð2πÞ3

p2

E2
i
q2i diτif

0
i ð1 − f0i Þ; ð18Þ

where the quark electric charge qi is given explicitly by
qu ¼ −qū ¼ 2e=3 and qd;s ¼ −qd̄;s̄ ¼ −e=3. The electron
charge reads e ¼ ð4παÞ1=2 with the fine structure constant
α ≃ 1=137, and the degeneracy factor in the above expres-
sion is du;d;s ¼ 6. The contribution from light quarks will
be denoted by σl ¼ σu þ σd.
In Fig. 7 (left), we present the scaled electrical conduc-

tivity σ=T including the results of various approaches. The
QPM result is quite consistent with the earlier study [55],
where σ has been evaluated in the Green–Kubo formalism
and in the relaxation time approximation. A slight differ-
ence from the approach employed in [55] arises from a few
key features in modeling the QCD thermodynamics: the
effective coupling is parametrized as [23]

g2ðTÞ ¼ 48π2

ð11Nc − 2NfÞ ln½λð TTc
− Ts

Tc
Þ�2 ; ð19Þ

with λ ¼ 2.6 and Ts=Tc ¼ 0.57 to reproduce the equation
of state in lattice QCD [66]. Their quasiparticle masses are
introduced as mg ¼ 3g2T2=4 and m2

q ¼ g2T2=3, i.e., all
quarks are degenerate. The transport cross sections used
in [55] depend on the Debye mass originated from the
HTL approach,

σijtot ¼ βij
πα2s
m2

D

s
sþm2

D
; ð20Þ

where βij are the group factors responsible for different
interactions between quarks and gluons: βqq ¼ 16=9,
βqq

0 ¼ 8=9, βqg ¼ 2, βgg ¼ 9. The result corresponding
to perturbative QCD is deduced by setting the effective
coupling to [55]

gpQCD ¼ 8π

9
ln−1

�
2πT
ΛQCD

�
: ð21Þ

One finds anoverall qualitative agreementwith theDQPM
result [26], although their approach yields a somewhat
smaller σ=T at any temperature. A similar trend was already
observed in the ζ=s ratio (Fig. 3-right). Furthermore, as
briefly discussed in Sec. III A, the large angle scattering
approximation in evaluating the cross section leads to a
systematic upward shift of any transport parameters.
The QPM also well captures the behavior in the

vicinity of Tc, consistently to that found in the lattice
calculations [91–93]. To look into the role of different
quark flavors, we present the contributions from light and
strange quarks along with the total electrical conductivity in
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FIG. 7. Left: Ratio of the total electrical conductivity to temperature as a function of T=Tc. Besides our QPM result (full squares), we
show the results in other approaches collected in [55]: the pQCD-based calculation (full diamonds), the Green–Kubo formalism
(full triangles), and the QPM with a different setup (solid line). The dashed line corresponds to the DQPM result [26]. The available
results of lattice simulations are shown by open symbols: squares [91], triangles [92], and circles [93]. Right: The total σ=T ratio of the
QGP (full squares) along with the light (open triangles) and strange (open squares) quark components. The corresponding lattice data is
deduced from [94] for the total electrical conductivity (open circles) and for light and strange quark contributions (diamonds and crosses,
respectively). Here, our σl;s=T ratios do not include the antiparticle contributions for a direct comparison to the lattice QCD data, which
are just for the particles.
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Fig. 7 (right). The light-quark contribution is larger than
that of the strange quarks, as anticipated with their mass
differences shown in Fig. 1. The corresponding lattice data
[94] near Tc is rather compatible to the QPM result,
whereas the discrepancy between them emerges at T ≃
1.5Tc and increases gently with temperature. This can be
attributed to the fact that the lattice setup includes the pion
mass Mπ ¼ 384ð4Þ MeV, heavier than the physical one
used in our model building. In fact, by increasing the bare
mass of light quarks, we obtain a decrease of the electrical
conductivity, and this is smaller than the result with
physical quark masses at any temperature.

V. SUMMARY

We have examined the transport coefficients, the bulk ζ
and shear η viscosity, and the electrical conductivity σ of
deconfined strongly interacting matter in pure Yang–Mills
theory and QCD with Nf ¼ 2þ 1 at vanishing chemical
potential. We employed the kinetic approach for a medium
whose thermodynamics is described in a QPM under the
relaxation time approximation. The dynamical masses of
quasiparticles are characterized by an effective running
coupling depending explicitly on temperature, deduced
from the entropy density in lattice simulations with differ-
ent quark flavors, Nf ¼ 0 and 2þ 1. To verify the validity
of the QPM to bulk thermodynamic quantities near the
phase transition, we computed the speed of sound squared,
c2s , in the QPM and the hadron resonance gas model and
confronted it with the corresponding lattice results. It is
found that the QPM captures extremely well not only the
behavior at high temperature but also that in the vicinity of
the phase transition and even slightly below Tc. The c2s
below but near Tc requires a tower of hadronic resonances,
and this nontrivial physics is properly encoded in the
effective coupling.
Assuming that all the transport coefficients studied in

this paper are characterized by the same relaxation times τi,
we used the total cross sections calculated for the elemen-
tary two-body scattering processes of the quasiquarks and
gluons given in [46]. In pure Yang–Mills theory, the
temperature derivative of the gluon effective mass yields
a striking peak at the critical temperature, and this, though
much weakened, results in a mild nonmonotonicity in the
bulk viscosity to entropy density ratio ζ=s. The bulk
viscosity decreases as temperature increases, consistently
to the general anticipation, and conformal invariance
becomes restored at high temperature. Including light
and strange quasiquarks considerably modifies the τi and
ζ, as well as the entropy density s. For the QGP with
Nf ¼ 2þ 1, the ratio ζ=s does not exhibit any apparent
nonmonotonicity around the crossover, and decreases with
increasing temperature much slower than in the Nf ¼ 0

case, indicating a larger breaking of a scale symmetry.

Given the bulk and shear viscosities, we constructed the
ratio ζ=η to confront with the linear and quadratic depend-
ence on the measure Δc2s ¼ 1=3 − c2s representing a
deviation from conformal invariance. We find that the ratio
scales linearly near Tc, as predicted in the AdS=CFT
approach [83], then switches to the quadratic behavior
consistently to the perturbative QCD result [81,82]. The
emerging changeover depends on the quark flavors: in pure
Yang–Mills theory it appears at T ≃ 1.3Tc, whereas in
QCD with Nf ¼ 2þ 1 at T ≃ 2Tc. Thus, the segment in
temperature where one finds the system nonperturbative is
interestingly extended in the presence of dynamical qua-
siquarks. The QPM well captures the smooth but Nf-
depending changeover to describe the nonperturbative and
perturbative domains. We also found that the presence of
quasiquarks results in a significant delay of restoring
conformal invariance at high temperature, compared with
pure Yang–Mills thermodynamics.
We also studied the electrical conductivity of the

QGP with Nf ¼ 2þ 1. The ratio σ=T is found to be
qualitatively consistent with earlier results in a class
of QPM [26,55], as well as with the recent lattice QCD
results [94]. In particular, the individual contributions to the
electrical conductivity were calculated separately for the
light and strange quarks and confronted with the corre-
sponding lattice data. We find that the behaviors are even
quantitatively close to the lattice results but systematically
lower than those. This is explained by the fact that the
simulations in [94] carried out for a heavy pion mass,
Mπ ≈ 384 MeV.
We have quantified the impact of dynamical quarks on

the major transport parameters. The QPM has the
capability to describe systematically a nontrivial link
between the nonperturbative and perturbative physics
relevant for the transport properties of the deconfined
matter. As explored recently in [95], the resultant trans-
port coefficients are quantitatively sensitive to the detailed
prescriptions to deal with the non-equilibrium nature.
Besides, a more realistic estimate may require further
extensions going beyond the major assumptions made in
this paper, i.e., the momentum-independent relaxation
times common for the shear and bulk viscosities and
the electrical conductivity. Those can be implemented
into our kinetic approach as guided in [22,37,75,95] in
offering more reliable medium profiles of the transport
coefficients for hydrodynamic simulations.
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APPENDIX: ENERGY-DEPENDENT
RELAXATION TIME

All transport parameters in the QPM are computed with
the mean relaxation time based on the thermal-averaged
total cross sections of the quasiparticles. To illustrate how
it works, we evaluate the specific bulk viscosity in pure
Yang–Mills theory using the energy-dependent relaxation
time, as well in this Appendix. A comparison to the ζ=s
ratio with the mean τ is shown in Fig. 8.
It is clear that both results share the same qualitative

trend and that they are even quantitatively close to each
other. This feature is also expected in QCD with 2þ 1
quark flavors since there exists just a smooth crossover,
not anything drastic like a phase transition. Thus, in view
of the main goal of our study, it is sufficient to use the
energy-averaged relaxation time to capture the correct
physics and to clarify the role of dynamical quarks in
the transport properties of the QGP.
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