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We study the critical point in the QCD phase diagram in the Nambu–Jona-Lasino (NJL) model by
including a scalar-vector coupled interaction. We find that varying the strength of this interaction, which
has no effect on the vacuum properties of QCD, can significantly affect the location of the critical point in
the QCD phase diagram, particularly the value of the critical temperature. This provides a convenient way
to use the NJL-based transport or hydrodynamic model to extract information about the QCD phase
diagram from relativistic heavy-ion collisions.
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I. INTRODUCTION

Studying the QCD phase structure is among the most
important goals of ongoing experiments on heavy-ion
collisions [1–3]. By changing the beam energy and select-
ing different system sizes and the rapidities of measured
particles, it is possible to probe different regions of the
QCD phase diagram, particularly the critical end point
(CEP) [4] on the first-order phase transition line. To make
this possible requires, however, versatile dynamic models
to describe the expansion of created hot dense matter with a
flexible equation of state that can have the critical point at
varying temperatures (T) and baryon chemical potentials
(μB) in the QCD phase diagram [5–15].
At zero and small baryon chemical potentials, the lattice

quantum chromodynamics (LQCD) [16–18] has shown
that the quark-gluon plasma (QGP) to hadronic matter
phase transition is a smooth crossover. However, it is not
yet possible for the lattice QCD to study the quark-hadron
phase transition at large baryon chemical potentials due to
the fermion sign problem. On the other hand, studies
based on effective theories have suggested that the phase
transition is a first-order one at large baryon chemical
potentials [4,19–25], indicating the existence of a CEP on

the first-order phase transition line in the μB − T plane of
the QCD phase diagram, albeit with large uncertainties in
its location [23].
Among the effective models for studying the QCD phase

diagram at finite baryon chemical potentials, a frequently
used one is the Nambu–Jona-Lasinio model [26,27].
Formulated in terms of quark degrees of freedom [28,29],
thismodel allows the description of chiral phase transition at
both finite temperature and chemical potential [30] besides
providing a framework to describe hadronic systems in the
vacuum based on dynamical chiral symmetry breaking and
its restoration [31–33]. The extended NJL model with the
Polyakov-loop (PNJL) alsomakes it possible to describe the
confinement-deconfinement phase transition of the quark
matter [20,34–40]. The parameters in theNJLmodel and the
PNJL model are largely constrained by the vacuum proper-
ties of QCD and the known chiral dynamics in hadronic
systems at zero temperature. The predicted temperature of
the critical point varies from 40 to 80MeVin the NJLmodel
[23,30] and can be larger than 100 MeV in the PNJL model
[40,41]. For the purpose of locating the critical point via
comparing model calculations with the experimental data
from heavy-ion collisions, it will be useful to extend the
NJL-type models to further expand the region in the μB − T
plane, where possible locations of the critical point can be
accommodated.
Although a repulsive vector interaction can be included in

the NJL or PNJLmodel to change the critical temperature of
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the chiral and/or deconfinement phase transition [20], it,
however, leads to a decrease of the critical temperature,
making the deviation from the LQCD results even larger
[42]. Another way to extend the NJL model is to include
higher-order multiquark interactions. Besides the six-quark
interaction term from the ’t Hooft determinant interaction
that breaks the UAð1Þ symmetry [43], the eight-quark
interactions, including scalar-scalar, vector-vector, and
scalar-vector coupled interaction terms, have also been
considered [44–46]. These higher-order interactions are
produced from quantum effects in the high momentum
region of the nonperturbative renormalization group calcu-
lation [47]. Their possible effects on the vacuum properties
of low-lying spin zero mesonic spectra have been carefully
studied in Refs. [48–50]. In addition, the inclusion of a
complete set of spin zero terms from explicit symmetry
breaking effects [51,52] has led to amore precise description
of low-lying pseudoscalar and scalar nonets aswell as a good
description of a wide range of observables from LQCD
calculations [53].
Since the attractive scalar-scalar coupled interaction

affects the QCD vacuum properties, its strength is con-
strained and cannot be arbitrarily changed to modify the
location of the critical point [45]. Although the repulsive
vector-vector coupled interaction does not affect the QCD
vacuum properties, it always decreases the critical temper-
ature of baryon-rich quark matter, similar to the effect of the
vector interaction. For the scalar-vector coupled interaction,
it is known to be important for reproducing the nuclear
saturation properties when using the NJL-type model for
nuclear matter [54]. As to its application to the quark-
hadron phase transition [55], it turns out to be a good
candidate because it has no effects on the QCD vacuum
properties, and more importantly, its strength can affect the
location of the critical point as shown below. By varying the
strength of the scalar-vector coupled interaction, one can
easily change the location of the critical point in the phase
diagram from low to very high temperatures. These features
of the scalar-vector coupled interaction term have not been
fully explored in previous studies [44–46,51–53].
In the present study, we first calculate the phase diagram

from the two-flavor NJL model by including the scalar-
vector coupled interaction among quarks. We then extend
the calculations to the three-flavor case and also to the
PNJL model to study in detail its effect on the location of
the critical point in the QCD phase diagram.

II. THE SCALAR-VECTOR COUPLED
INTERACTION IN THE (P)NJL MODEL

A. The two-flavor NJL model

We first consider the two-flavor NJL model, which is
usually described by the following Lagrangian density [30]:

LSUð2Þ
NJL ¼ L0 þ LS þ LSV; ð1Þ

with

L0 ¼ ψ̄ðiγμ∂μ − m̂Þψ ;
LS ¼ GS½ðψ̄ψÞ2 þ ðψ̄ iγ5τ⃗ψÞ2�;
LSV ¼ GSV½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�

× ½ðψ̄γμψÞ2 þ ðψ̄γ5γμτ⃗ψÞ2�: ð2Þ

In the above, ψ ¼ ðu; dÞT represents the two-flavor
quark fields, m̂ ¼ diagðmu;mdÞ is the current quark mass
matrix, γμ with μ ¼ 0; 1; 2; 3 are Dirac matrices,
γ5 ¼ iγ0γ1γ2γ3, and τ⃗ ¼ ðτ1; τ2; τ3Þ are Pauli matrices in
the flavor space. The Lagrangian densities L0, LS, and LSV
are, respectively, for the free quarks and their scalar and
pseudoscalar interactions with the coupling constant GS as
well as the scalar-vector, scalar-axial vector, pseudoscalar-
vector, and pseudoscalar-axial vector coupled interactions
with the coupling constantGSV. We note that the sign of the
GSV term in Eq. (2) is the same as the one first introduced in
Ref. [54], which is opposite to that used in Refs. [45,55].
As in most studies using the NJL model, we adopt the

mean-field approximation [56] to linearize the model by
introducing following substitutions:

ðψ̄ΓiψÞ2 ¼ 2ψ̄Γiψhψ̄Γiψi − hψ̄Γiψi2
ðψ̄Γiψψ̄ΓjψÞ2 ¼ hψ̄Γiψi2ð2ψ̄Γjψhψ̄ΓjψiÞ

þ hψ̄Γjψi2ð2ψ̄Γiψhψ̄ΓiψiÞ
− 3hψ̄Γiψi2hψ̄Γjψi2; ð3Þ

where Γ ¼ f1; iγ5τ⃗; γμ; γ5γμg and the angular bracket
denotes the expectation value from the quantum-statistical
average. Due to the parity symmetry in a static quark
matter, one has hψ̄γkψi ¼ hψ̄γ5τ⃗ψi ¼ hψ̄γ5γμψi ¼ 0 with
k ¼ 1; 2; 3, and the Lagrangian density can then be
rewritten as

LSUð2Þ
NJL ¼ ūðγμi∂uμ−MuÞuþ d̄ðγμi∂dμ−MdÞd

þ2GSVðρuþρdÞðϕuþϕdÞ2ðūγ0uþ d̄γ0dÞ
−GSðϕuþϕdÞ2−3GSVðϕuþϕdÞ2ðρuþρdÞ2: ð4Þ

In the above, Mu and Md are the in-medium effective
masses of u and d quarks, respectively, given by

Mu ¼ mu − 2GSðϕu þ ϕdÞ
− 2GSVðρu þ ρdÞ2ðϕu þ ϕdÞ;

Md ¼ md − 2GSðϕu þ ϕdÞ
− 2GSVðρu þ ρdÞ2ðϕu þ ϕdÞ; ð5Þ

with ϕu ¼ hūui and ϕd ¼ hd̄di being the u and d quark
condensates, respectively, and ρu and ρd denoting the net u
and d quark number densities, respectively.
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The thermodynamic properties of a two-flavor quark
matter are determined by the partition function Z ¼
Tr½exp½−βðĤ − μN̂Þ��, where β ¼ 1=T and Ĥ are, respec-
tively, the inverse of the temperature T and the Hamiltonian
operator, and μ and N̂ are, respectively, the chemical
potential and corresponding conserved charge number
operator. The thermodynamic grand potential of the quark
matter is then given by

ΩSUð2Þ
NJL ¼ −

1

βV
lnZ

¼ GSðϕu þ ϕdÞ2 þ 3GSVðϕu þ ϕdÞ2ðρu þ ρdÞ2

− 2NC

X
i¼u;d

Z
d3p
ð2πÞ3 Ei

− 2T
X
i¼u;d

Z
d3p
ð2πÞ3 ðz

þðEiÞ þ z−ðEiÞÞ; ð6Þ

where V is volume of the system, NC ¼ 3 is the number of
colors, Ei ¼ ðm2

i þ p2Þ1=2, and

z�ðEiÞ ¼ Nc ln½1þ e−βðEi∓μ�i Þ�; ð7Þ

with the effective chemical potentials,

μ�u ¼ μu þ 2GSVðρu þ ρdÞðϕu þ ϕdÞ2;
μ�d ¼ μd þ 2GSVðρu þ ρdÞðϕu þ ϕdÞ2: ð8Þ

The quark condensate ϕi and the net quark number
density ρi can be determined by minimizing the grand
potential, i.e.,

∂ΩSUð2Þ
NJL

∂ϕi
¼ ∂ΩSUð2Þ

NJL

∂ρi ¼ 0; ð9Þ

and they are

ϕi ¼ 2NC

Z
d3p
ð2πÞ3

Mi

Ei
ðnþi þ n−i − 1Þ; ð10Þ

ρi ¼ 2NC

Z
d3p
ð2πÞ3 ðn

þ
i − n−i Þ; ð11Þ

with n�i ¼ ½eβðEi∓μ�i Þ þ 1�−1. Because the NJL model is a
nonrenormalizable effective model, a momentum cutoffΛ is
needed in evaluating the momentum integral in Eqs. (6), (10)
and (11) as well as those appearing later in the paper. In the
present study, we employ the parameters mu ¼ md ¼
5.5 MeV, GSΛ2 ¼ 2.135, and a cutoff Λ ¼ 651 MeV
[39,40], which are summarized in Table I together with
the quark in-mediummass and condensate, to study theQCD
phase diagram with various values for GSV.

With the quark condensates and net quark density given
in the above, one can see from Eqs. (5) and (8) that the GSV
term affects the effective masses of quarks and their
effective chemical potentials in a quark matter. Although
its effects depend on the quark condensates, which have
negative values and increase with decreasing quark density,
they also depend on the quark density. As a result,
including the GSV term in the NJL model does not affect
its description of QCD vacuum properties at zero baryon
density, and treating the value of GSV as a free parameter
allows one to obtain different scenarios for the properties of
quark matter.
The effects of the GSV term can be qualitatively under-

stood for quark matter at low density. According to Eq. (8),
a negative GSV resembles a vector interaction in the NJL
model [30], which induces a repulsive interaction among
quarks or antiquarks and an attractive interaction between
quark and antiquark. Compared to the scalar coupled term
GS in the NJL model, which reduces the quark in-medium
masses because of the reduction of quark condensates, a
negative GSV counteracts this effect as can be seen from
Eq. (5). With its quadratic dependence on the quark density,
the effect of the GSV term on the quark in-medium masses
at low quark densities is, however, significantly reduced
with increasing quark density, thus resulting in an effec-
tively attractive interaction among quarks. Since the repul-
sive quark interaction due to a negative GSV in the vector
channel turns out to be stronger than the attractive quark
interaction in the scalar channel for quark matter at low
densities, the net effect of a negative GSV is repulsive. In
quark matter at very high densities, where the chiral
symmetry is largely restored and the quark condensates
are close to zero, the effects of the GSV term become less
important, which is different from the usual vector inter-
action in the NJL model [30] that gets stronger at high
densities. For quark matter at intermediate densities, the
effects of the GSV term are, however, more complex, and
whether this leads to a repulsive or an attractive quark
interaction depends on the value of the quark density. For a
positive GSV, its effects on the properties of quark matter
are opposite to those of a negative GSV.
Quantitatively, the effects of the GSV term on the

properties of quark matter can be understood from its

pressure, which is given by p ¼ −ΩSUð2Þ
NJL , as a function of

the net quark number density. In Fig. 1, we show the results
for quark matter at temperature T ¼ 36 MeV, which is the
critical temperature in the two-flavor NJL model for
GSV ¼ 0, for different values of the scalar-vector coupling
constant GSV. It is seen that a positive GSV ¼ 100 Λ−8

TABLE I. Parameters in the two-flavor NJL model [39,40].

Λ [MeV] GSΛ2 mu;d [MeV] Mu;d [MeV] hūui1=3 [MeV]

651 2.135 5.5 325.1 −251.3
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hardens the equation of state at net quark number density
of around 0.9 fm−3, while a negative GSV ¼ −100 Λ−8

has the opposite effects. As a result, the critical temperature
is increased by a negative GSV and decreased by a
positive GSV.
Figure 2 shows the coexistence line in the temperature

and net quark number density plane for different values of
GSV. For points on the coexistence line that have the same
temperature, they correspond to quark matters of different
densities but the same pressure and chemical potential.
The region below the coexistence line is unstable
against phase separation. The blue solid line is the result
calculated with GSV ¼ 0, i.e., the default NJL model, and

the corresponding critical point is located at temperature
T ≈ 36 MeV and net quark number density ρ ≈ 0.64 fm−3.
Results obtained with a scalar-vector coupled interaction of
GSV ¼ −200 Λ−8 are shown by the dashed line, and the
critical point in this case shifts to the temperature T ≈
105.5 MeV and net quark density ρ ≈ 0.79 fm−3. Changing
to a scalar-vector coupled interaction of GSV ¼ 100 Λ−8

reduces the temperature and net quark number density of
the critical point to T ≈ 14 MeV and ρ ≈ 0.32 fm−3,
respectively. Hence, the critical temperature can be easily
varied by changing the value of GSV. The locations of the
critical point obtained from the two-flavor NJL model for
different values of GSV are also shown in Fig. 3 by the red
line. Although it is not possible to obtain a critical point
near the μB ¼ 0 axis by further reducing the value of GSV,
because its effects on the effective mass and chemical
potential vanish at μB ¼ 0, the range of values for the
critical temperature shown in Fig. 2 by varying GSV is
sufficiently large to cover the region that can be probed in
realistic heavy-ion collisions.
The value ofGSV affects not only the location of the CEP

but also the growth rate γk of spinodal unstable modes in
the phase coexistence region. The latter is related via the
relation γk ¼ jvjk, where k is the wave number of the
density ripples [57], to the isothermal speed of sound v that
is purely imaginary and thus corresponds to a nonpropa-
gating and self-amplified sound wave. With the square of
the speed of sound evaluated according to v2 ¼ ρ

ϵþp ð∂p∂ρÞT in
terms of the net quark density ρ and the quark energy
density ϵ and pressure p, its values as a function of ρ in a
quark matter of temperature T ¼ 30 MeV are shown by the

FIG. 1. Pressure as a function of net quark number density at
temperature T ¼ 36 MeV from the two-flavor NJL model for
different values of the scalar-vector coupling constant GSV and
with the values of other parameters given in Table I.

FIG. 2. Coexistence lines in the temperature and net quark
number density plane from the two-flavor NJL model for
different values of the scalar-vector coupling constant GSV and
with the values of other parameters given in Table I. The solid
circles denote corresponding critical points.

FIG. 3. Location of the critical point in two-flavor and three-
flavor NJL models and PNJL models with the scalar-vector
coupled interaction in the plane of temperature T and baryon
chemical potential μB. The lines are obtained by changing the
value of the coupling constant GSV with other parameters in the
two-flavor and three-flavor (P)NJL models given in Table I and
Table II, respectively.
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solid and dashed lines in the upper panel of Fig. 4 for the
quark scalar-vector interaction strength GSV equal to 0 and
−200 Λ−8, respectively. It is seen that in the spinodal
unstable region defined by ð∂p∂ρÞT < 0, a negative-valued

GSV leads to a more negative v2, corresponding to a larger
growth rate of spinodal unstable modes and hence, a faster
phase separation.
Both the size of the phase-coexistence region in the QCD

phase diagram and the growth rate of spinodal unstable
modes can affect the observation of the first-order phase
transition in heavy-ion collisions. This is because it requires
the phase trajectory of produced quark matter to pass
through the phase-coexistence region in the QCD phase
diagram and the rapid development of fluctuations in density
in order for clusters to form [57–59] and light nuclei to be
more easily produced [59]. Therefore, a negativeGSV makes
the signals of a first-order phase transition more prominent
in the simulations of heavy-ion collisions based on either the
hydrodynamic or the transport approach.
To quantify the density inhomogeneity/fluctuation in

quark matter, we consider the Nth order scaled density
moments [57], i.e.,

yN ¼ ½R dxρðxÞ�N−1½R dxρðNþ1ÞðxÞ�
½R dxρ2ðxÞ�N ; ð12Þ

which has a value of one for a uniform density distribution.
For small density fluctuations, ρðxÞ ¼ ρ0 þ δρðxÞ with ρ0
being the average density, it can be written as

y2 ≈ 1þ
R
dxðδρðxÞÞ2R

dxρ20
≡ 1þ Δρ; ð13Þ

in terms of the relative density fluctuationΔρ averaged over
space [60,61]. As shown in Refs. [59–62], the quantities y2
andΔρ are directly related to the yield ratio of light nuclei in
heavy-ion collisions. To see the influence of the scalar-
vector term on y2, we evaluate its value in an infinitely quark
matter of temperature T ¼ 30 MeV at the end of its first-
order phase separation. With the densities of the dense and
dilute phases determined by theMaxwell’s construction, the
results for y2 obtainedwithGSV equal to 0 and−200 Λ−8 are
shown in the lower panel of Fig. 4 by the solid and dashed
lines, respectively, as a function of the averaged densities. It
is seen that the y2, hence the density inhomogeneity or
fluctuation, is significantly larger forGSV ¼ −200 Λ−8 than
forGSV ¼ 0. Also, the density at which y2 peaks shifts from
ρ ∼ 0.53 fm−3 to 0.23 fm−3 when the value ofGSV changes
from zero to GSV ¼ −200Λ−8.
To search for the CEP, the beam energy scan program has

been carried out at RHIC, with a particular emphasis on the
possible nonmonotonic behavior of the fourth-order cumu-
lant of net-proton multiplicity distribution as a function of
collision energy, which has been assumed to be related to a
similar behavior in the fourth-order quark number suscep-
tibility of a thermally equilibrated QGP as it evolves
towards its CEP as a result of the induced long-range
correlations [63–65]. On the other hand, it has been
suggested that the effects of the first-order phase transition
in quark matter, which can lead to a large density
inhomogeneity or fluctuation, could also be studied via
cluster formation [57–59]. In particular, it has been shown
that the first-order chiral phase transition in quark matter
can result in an enhanced production of light nuclei in
relativistic heavy-ion collisions [59]. For both observables,
a detailed comparison between experimental data and
theoretical results from the transport or hydrodynamic
model is essential for extracting information on the
QCD phase diagram from heavy-ion collisions in the beam
energy scam program.

B. The three-flavor NJL model

The three-flavor NJL model includes also the strange
quark, which plays an important role in the partonic
dynamic of heavy-ion collisions at high collision energies,
The Lagrangian density in this model is given by [30]

LSUð3Þ
NJL ¼ L0 þ LS þ LSV þ Ldet; ð14Þ

with

FIG. 4. Panel (a): square of sound velocity (v2) in the two-
flavor NJL model. Panel (b): second-order scaled density moment
(y2) obtained from the Maxwell construction of a first-order
phase transition in quark matter.
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L0 ¼ ψ̄ðiγμ∂μ − m̂Þψ ;

LS ¼ GS

X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2�;

Ldet ¼ −K½det ψ̄ð1þ γ5Þψ þ det ψ̄ð1 − γ5Þψ �; ð15Þ

where ψ ¼ ðu; d; sÞT now represents the three-flavor quark
fields and m̂ ¼ diagðmu;md;msÞ is the corresponding
current quark mass matrix. In the above, λaða ¼ 1; ...; 8Þ
with λ0 being the identity matrix multiplied by

ffiffiffiffiffiffiffiffi
2=3

p
are

the Gell-Mann matrices. The Lagrangian density Ldet is
the Kobayashi-Maskawa-t’Hooft (KMT) interaction [43]
that breaks Uð1ÞA symmetry with “det” denoting the
determinant in the flavor space [66], i.e., detðψ̄ΓψÞ ¼P

i;j;kðūΓqiÞðd̄ΓqjÞðs̄ΓqkÞ. This term gives rise to six-point
interactions in three flavors and is responsible for the flavor
mixing effect. We assume in the present study that only u
and d quarks can have the scalar-vector coupled interaction,
so the term LSV has the same form as in Eq. (2). Although
this breaks the SUð3Þ × SUð3Þ symmetry in a specific way,
a scalar-vector interaction term is still expected to be
produced from quantum effects in the high momentum
region of the nonperturbative renormalization group cal-
culation of Ref. [47]. As in the case of the two-flavor NJL
model, the value ofGSV in the present study will be taken as
a parameter to model the variation in the temperature and
baryon chemical potential of the critical point of the quark
matter.
In the mean-field approximation [56], the gap equations

in the three-flavor NJL model for the quark in-medium
effective masses, including that (Ms) of strange quark, are
given by

Mu ¼ mu − 4GSϕu þ 2Kϕdϕs

− 2GSVðρu þ ρdÞ2ðϕu þ ϕdÞ;
Md ¼ md − 4GSϕd þ 2Kϕuϕs

− 2GSVðρu þ ρdÞ2ðϕu þ ϕdÞ;
Ms ¼ ms − 4GSϕs þ 2Kϕuϕd: ð16Þ

Besides the light quark condensates ϕu and ϕd as in the
two-flavor NJL model, there is also the strange quark
condensate given by

ϕs ¼ 2Nc

Z
d3p
ð2πÞ3

Ms

Es
ðnþs þ n−s − 1Þ; ð17Þ

where n�s ¼ ½eβðEs∓μsÞ þ 1�−1 with Es ¼ ðM2
s þ p2Þ1=2 and

μs being the strange quark chemical potential. The thermo-
dynamic potential of the system can then be written as

ΩSUð3Þ
NJL ¼ 2GSðϕ2

u þϕ2
d þϕ2

sÞþ 3GSVðϕu þϕdÞ2ðρu þ ρdÞ2

− 4Kϕuϕdϕs − 2NC

X
i¼u;d;s

Z
d3p
ð2πÞ3Ei

− 2T
X

i¼u;d;s

Z
d3p
ð2πÞ3 ðz

þðEiÞþ z−ðEiÞÞ: ð18Þ

To study the thermodynamic properties of a quark matter
in the three-flavor NJL model, we employ the parameters
mu ¼ md ¼ 5.5 MeV, ms ¼ 135.7 MeV, GSΛ2¼1.835,
KΛ5¼9.29, and a cutoff Λ ¼ 631.4 MeV [30], which
are summarized in Table II together with the quark in-
medium masses and condensates. The locations of the
critical point in the temperature and baryon chemical
obtained from the three-flavor NJL model with the sca-
lar-vector coupled interaction are shown in Fig. 3 by the
short dashed line. This line is almost identical to the solid
line from the two-flavor NJL model except that the critical
point in the three-flavor case moves to a higher temperature
and smaller baryon chemical potential compared to the
two-flavor case when the same GSV is used in the two
calculations. The main reason for this similarity is because
the parameters in the two-flavor and three flavor NJL
models (see Tables I and II) give similar properties of the
QCD vacuum, e.g., the quark condensates and in-medium
masses. Results from these two models will not be identical
if one uses different values for these parameters [30].
The scalar-vector term in the extended NJL Lagrangian

shown in Eq. (14) respects the isospin symmetry but breaks
the SUð3Þ symmetry in flavor space. Since the SUð3Þ
flavor symmetry is already broken in the usual NJL
Lagrangian by the much larger current mass of s quark
than those of u and d quarks, our approach preserves the
same symmetries as the original NJL Lagrangian. Similar
approaches have been adopted in the study of quark stars
[67] and heavy-ion collisions [68–70] by introducing in the
three-flavor NJL model additional scalar-isovector and
vector-isovector interaction terms for u and d quarks with
their strengths determined from empirical neutron star
masses and radii as well as the isospin-dependent flow
data from relativistic heavy ion collisions.
In principle, one can also include the scalar-vector

coupled interactions for strange quarks. In this case, the
dependence of the critical temperature on the value of GSV
becomes much weaker than the results shown in the above.
This is because the in-medium mass of strange quark is

TABLE II. Parameters in the three-flavor NJLmodel [30,39,40].

Λ [MeV] GSΛ2 KΛ5 mu;d [MeV] ms [MeV]

631.4 1.835 9.29 5.5 135.7

Mu;d [MeV] Ms [MeV] hūui1=3 [MeV] hs̄si1=3 [MeV]

335 527 −246.9 −267
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much larger than the light quark masses, which makes it
much harder for the quark matter to restore the sponta-
neously broken chiral symmetry. To quantify the effects of
the scalar-vector interaction for strange quarks, we show in
Fig. 5 the pressure of a quark matter at temperature T ¼
47 MeV as a function of its net-quark number density from
the three-flavor NJL model. The red dash-dotted and blue
dashed lines denote, respectively, the results from our
approach and the approach including the strange quark
scalar-vector interaction with the same coupling constant
GSV ¼ −100 Λ−8. Although the quark matter equation of
state at densities ρ ¼ 0.5 − 0.8 fm−3, where ð∂P=∂ρÞT ≈ 0
if GSV ¼ 0, is affected by the scalar-vector interaction in
both approaches, the effect is much smaller in the case
including the scalar-vector interaction for strange quarks.
For GSV ¼ −100 Λ−8, the critical temperature in our
approach is increased from 47 MeV to 86 MeV, while it
is only increased to 58 MeV if the strange quark scalar-
vector interaction is also included. Therefore, allowing the
scalar-vector interaction to act only on d and s quarks or u
and s quarks would reduce the effect of this interaction on
the temperature of the critical point.

C. The NJL model with Polyakov loop

To include also the confinement-deconfinement phase
transition, a constant temporal background gauge field
representing the Polyakov loopsΦ and Φ̄ has been added to
the NJL model [20]. This so-called PNJL model changes
the NJL Lagrangian density to

LPNJL ¼ ψ̄ðiγμDμ − m̂Þψ þ LS þ LSV

− UðΦ½A�; Φ̄½A�; TÞ; ð19Þ

where the covariant derivative is defined as Dμ ¼ ∂μ − iAμ

with Aμ ¼ gAμ
aðxÞλa=2≡ δμ0A0 being the SUð3Þ gluon

field in the Polyakov gauge and g being the QCD strong
coupling constant. Concerning the effective potential U for
the Polyakov loops, various choices have been used in the
literature [20,40,71–74]. In the present study, we adopted
the following parametrization:

UðΦ;Φ̄;TÞ
T4

¼−
1

2
aðTÞΦ̄Φ

þbðTÞ ln½1− 6Φ̄Φþ 4ðΦ̄3þΦ3Þ− 3ðΦ̄ΦÞ2�;
ð20Þ

with

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

;

bðTÞ ¼ b3

�
T0

T

�
3

; ð21Þ

where the parameters a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15.2,
and b3 ¼ −1.75 are fitted to the results from the LQCD
calculations of the thermodynamic properties of a pure
gluon system [39,40]. For the temperature parameter T0, its
value is 270 MeV, corresponding to the critical temperature
for the deconfinement phase transition of a pure gluon
matter at zero baryon chemical potential [75]. The inclusion
of quarks leads to a smaller value of T0 ¼ 210 MeV.
The grand potential of a quark matter at finite temper-

ature and quark baryon potential in the PNJL model has a
similar expression as Eq. (6) for the two-flavor or Eq. (18)
for the three-flavor NJL model except the expression in
Eq. (7) is replaced by

z�Φ ¼ ln½1þ 3ðΦ̄þΦe−βðEi∓μ�i ÞÞe−βðEi∓μ�i Þ

þ e−3βðEi∓μ�i Þ�: ð22Þ

As in the NJL model, the quark condensate and quark
density are obtained by minimizing the grand potential, i.e.,
∂ΩSUð3Þ

PNJL∂ϕi
¼ ∂ΩSUð3Þ

PNJL∂ρi ¼ 0. Their expressions are similar to those
given in Eqs. (10) and (11), except the color-averaged
equilibrium quark occupation numbers n�i are replaced by

n�Φ ¼ Φ̄e2βðE∓μ�Þ þ 2ΦeβðE∓μ�Þ þ 1

e3βðE∓μ�Þ þ 3Φ̄e2βðE∓μ�Þ þ 3ΦeβðE∓μ�Þ þ 1
: ð23Þ

From the above expression, one can see that the quark
distribution retains the normal Fermi-Dirac form at high
temperature when the Polyakov loops are Φ ¼ Φ̄ ¼ 1,
while it becomes the Fermi-Dirac form with a reduced
temperature T=3 at low temperature when Φ ¼ Φ̄ ¼ 0.
Hence, the critical temperature in the PNJL model is
generally higher than that in the NJL model as quarks in

FIG. 5. Pressure as a function of net quark number density at
temperature T ¼ 47 MeV from the three-flavor NJL model for
two different values of the scalar-vector (SV) coupling constant
GSV and with and without including the strange quark in this
interaction term.
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PNJL model have a lower effective temperature. Note that
the PNJL model at zero temperature is identical to the
NJL model.
Minimizing the grand potential with respect to the

Polyakov loops, i.e., ∂ΩSUð3Þ
PNJL∂Φ ¼ ∂ΩSUð3Þ

PNJL∂Φ̄ ¼ 0, leads to the
following mean-field equations for Φ and Φ̄ [68]:

∂ΦU ¼ 6T
X

i¼u;d;s

Z
d3p
ð2πÞ3

�
e−βðEi−μ�i Þ

expðzþΦðEiÞÞ
þ e−2βðEiþμ�i Þ

expðz−ΦðEiÞÞ
�
;

∂Φ̄U ¼ 6T
X

i¼u;d;s

Z
d3p
ð2πÞ3

�
e−2βðEi−μ�i Þ

expðzþΦðEiÞÞ
þ e−βðEiþμ�i Þ

expðz−ΦðEiÞÞ
�
:

ð24Þ

In Fig. 3, we show the locations of the critical point in the
plane of temperature and baryon chemical potential
obtained from both the two-flavor and the three-flavor
PNJL model with the inclusion of the quark scalar-vector
coupled interaction. As shown by the dashed line for the
two flavor PNJL model and the dash-dotted line for the
three-flavor NJL model, the effects of GSV are similar in
these two cases. We also see that the effect of GSV on the
critical chemical potential is smaller in the PNJL model
than in the NJL model for both the two-flavor and the

three-flavor case. The effects of the scalar-vector interac-
tion remain qualitatively the same for other choices of the
Polyakov loop potential.
We further compare in Fig. 6 the critical point obtained

from the three-flavor NJL (dash line) and PNJL (dotted
line) models by varying the value of GSV, with solid circles
denoting those obtained with GSV ¼ 0, with selected
predictions from LQCD [76–82], Dyson-Schwinger
equation [83–86], the functional renormalization method
[87,88], and the method of black hole engineering [89].
Predictions from other effective methods can be found in
Refs. [23] and references therein. It is seen that with
sufficiently attractive scalar-vector coupled interaction, the
locations of the critical point in the NJL and PNJL models
can be brought closer to those predicted from these first
principle approaches.

III. CONCLUSIONS

Based on the NJL model with both two flavors and three
flavors as well as with the inclusion of Polyakov loops, we
have studied the effect of the eight-quark scalar-vector
coupled interaction, which has no effects on the QCD
vacuum properties, on the critical end point of the first-
order QCD phase transition line in the QCD phase diagram.
We have found that the location of the critical point in the
temperature and baryon chemical potential plane is very
sensitive to the strength of this interaction and can be easily
shifted by changing its value. This flexible dependence of
the quark equation of state on its strength is useful for
locating the phase boundary in QCD phase diagram by
comparing the experimental data with results from transport
model simulations [90] or hydrodynamic calculations based
on equations of states from such generalized NJL and PNJL
models. However, this flexibility hinges on the specific
choice of the scalar-vector interaction in the SU(3) flavor
space that it acts only on u and d quarks, although there is no
evidence that this choice is realized in nature.
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