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2Dipartimento di Fisica, Università di Roma La Sapienza, P.le A. Moro 2, 00185 Rome, Italy

3INFN, Sezione di Roma, P.le A. Moro 2, 00185 Rome, Italy

(Received 19 October 2020; accepted 8 December 2020; published 4 January 2021)

A dynamical model is applied to the study of the pion valence light-front (LF) wave function, obtained
from the actual solution of the Bethe-Salpeter equation in Minkowski space, resorting to the Nakanishi
integral representation. The kernel is simplified to a ladder approximation containing constituent quarks, an
effective massive gluon exchange, and the scale of the extended quark-gluon interaction vertex. These three
input parameters carry the infrared scale ΛQCD and are fine-tuned to reproduce the pion weak decay
constant, within a range suggested by lattice calculations. Besides fπ , we present and discuss other
interesting quantities on the null-plane like (i) the valence probability, (ii) the dynamical functions
depending upon the longitudinal or the transverse components of the LF momentum, represented by
LF-momentum distributions and distribution amplitudes, and (iii) the probability densities both in the
LF-momentum space and the 3D space given by the Cartesian product of the covariant Ioffe-time and
transverse coordinates, in order to perform an analysis of the dynamical features in a complementary way.
The proposed analysis of the Minkowskian dynamics inside the pion, though carried out at the initial stage,
qualifies the Nakanishi integral representation as an appealing effective tool, with still unexplored
potentialities to be exploited for addressing correlations between dynamics and observable properties.
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I. INTRODUCTION

The pion plays a pivotal role within quantum chromo-
dynamics (QCD), since its Goldstone boson nature is
associated with the dynamical generation of the mass of
the hadrons and nuclei constituting the visible universe.
The pion has a rich structure that stems from the spin
degrees of freedom of its constituents, which are neces-
sarily associated with the covariant Minkowski space
formulation of QCD. Its dynamics entangles in a con-
spicuous way the space and spin distributions of the
fundamental degrees of freedom within a hadron. The pion
is still puzzling by its Goldstone boson nature and its
composition in terms of quarks and gluons (see, e.g.,
Ref. [1]), so that its momentum distributions, the most
typical dynamical quantities, have been a target of intense
investigation in recent years [2–11], as well as of planned
experimental research at the future Electron Ion Collider.
Hadron imaging is driving experimental [12,13] and

theoretical [14] research efforts toward the exploration of
the Fock-space structure of the light-front (LF) wave

functions, even beyond the valence component. By prop-
erly selecting the imaging space, the Fock-space structure
of the hadron can be revealed by looking at single-parton
distributions with or without spin polarization, double-
parton distributions (see, e.g., Refs. [15,16]), triple-parton
distributions, and in general n-parton distributions. It is
clear that such a program, when developed, would provide
the ideal framework to study in great detail the Fock-space
components of the hadron wave function. Therefore,
research efforts to explore the Fock-space content of the
hadron LF wave function are necessary, either by using
Euclidean Lattice discretization, i.e., lattice QCD (LQCD)
(see, e.g., Ref. [17]) or continuous QCD techniques (see,
e.g., Ref. [18]).
The challenge on the theory side is to extract from

Euclidean calculations the relevant observables defined in
theMinkowski space. Vigorous research is pursued to extend
LQCD calculations, carried out in Euclidean space, and
eventually attain the parton distribution functions (PDFs).
With such an aim, several strategies have been proposed, like
the one based on (i) the quasiparton distribution functions
(QPDFs) [19] (see, e.g., Ref. [20] for early results), (ii) the
pseudo-parton distribution functions [21] (see, e.g., Ref. [22]
for the pion case), and (iii) the so-called lattice cross-section
method, as applied in Refs. [10,23]. Another approach is the
analytical continuation of the solution of the Euclidean
Bethe-Salpeter (BS) equation to the Minkowski space.
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This method uses the Nakanishi integral representation
(NIR) [24] of the Euclidean BS amplitude, allowing to
perform the analytical extension to the Minkowski space.
Despite that the extraction of the Nakanishi weight function
(NWF) from the Euclidean calculations constitutes an ill-
posed numerical problem and is highly challenging, the NIR
method has been applied for obtaining the pion valence PDF
from the Euclidean amplitude [25] and the idea was further
explored in Refs. [26,27]. Although delicate issues on
nonperturbative renormalization were pointed out in
Ref. [28], there is a possibility of using the NIR to compute
QPDFs, allowing to bridge the continuumMinkowski-space
QCD to LQCD calculations.
As is well known [29], the phenomenological description

of hadron states on the null-plane can take advantage of a
meaningful Fock expansion, once a tiny mass is assigned to
the exchanged bosons. Hence, the LF approach can usefully
exploit the powerful physical intuition based on the Fock
space, without the difficulties present in the covariant
phenomenological models. In order to formally obtain the
LF valencewave function from the BS amplitude, one has to
perform its projection onto the null-plane. As amatter of fact,
by applying the LF projection to the correlator, built with the
minimum number of field operators and providing a nonzero
matrix element between the vacuum and the hadron state
[30,31], one eventually gets the valence wave function (see
also, e.g., Ref. [32] and the Appendix A). Indeed, one could
generalize the procedure, since to a given hadron state one
can associate an infinite number of BS amplitudes, with any
number of legs, i.e., quarks and gluons, compatible with the
hadron quantum numbers. In turn, each BS amplitude, when
projected onto the null-plane, gives the corresponding
amplitude of the Fock state with the number of constituents
equal to the fields present in the BS amplitude itself. In
principle, images of the probability densities obtained from
those LF amplitudes shed light on the dynamics inside the
hadron with an unprecedented level of detail on the Fock
content of the hadron state. However, even the BS amplitude
with the minimal number of legs has information on the full
LF Fock-space composition of the hadron [30,31]. It should
be recalled that gauge links are always required between the
quark field operators in an observable [33], like, e.g., a
photon absorption amplitude, to keep color gauge invariance,
while the BS amplitude by itself is not gauge invariant.
On the theory side, the NIR of the BS amplitude can be a

useful tool to solve BS equations in Minkowski space
[34–41] and provide the parton distribution amplitudes
(DAs) as well as the elementary fragmentation functions.
We have no proof yet that QCD, which embodies confine-
ment, allows such integral representation in the nonper-
turbative domain, although bound state solutions of the BS
equation (without confinement) can be actually achieved by
using NIR (more precisely, by formally converting the BSE
into a generalized eigenvalue problem). In order to use the
integral representation to solve the BS equation in its full

glory, it is necessary to write the quantities entering the
kernel, e.g., the quark-gluon vertex and the propagators, in
terms of the NIR. As we mentioned, the nice feature of the
NIR is that one can analytically extend it from Minkowski
to Euclidean space by performing the Wick rotation, so that
a direct comparison with LQCD results can be feasible. It is
worthwhile to point out that within the NIR approach one
can prove that the form of the valence wave function for
asymptotically large transverse momentum presents the
factorization of the dependences upon ξ (the fraction of
the longitudinal momentum) and k⊥, naturally recovering
the power-law falloff in the UV region [39,42,43]. Such a
property can be extended to higher Fock components of the
wave function. Furthermore, at the initial scale, even the
simplified calculation of the PDF, based on the Mandelstam
formula involving the BS amplitude, will include partons
from Fock-state components beyond the valence one. This
is an immediate consequence of the solution of the BS
equation in Minkowski space.
In the perspective of exploring dynamical models, incor-

porating as much as possible nonperturbative features
of QCD in Minkowski space, and to take advantage of
the results for building useful hadron imaging, we study the
response of the pion valence momentum distribution to the
variation of (i) the effective masses of both quark and gluon
and (ii) the scale governing the size of the interaction quark-
gluon vertex. The variation range of the three input param-
eters in the ladder BSE of a qq̄ bound system in Minkowski
space is suggested by the corresponding quantities suggested
by LQCD calculations (see, e.g., Refs. [44–46]).
Our approach relies on the use of the ladder one-gluon

exchange kernel, assuming that the effect of nonplanar
diagrams is Nc suppressed. As recently shown in a study
for bosonic bound states with color degrees of freedom [47],
Nc ¼ 3 is already large enough to reduce the nonplanar
contributions in the structure observables of the bound state
to atmost 5%, even for strongly bound systems.We solve the
BS equation adopting the technique based on (i) the
Nakanishi integral representation of the BS amplitude and
(ii) the LF projection of the BSE (following the initial
elaboration of Ref. [48] and the further developments of
Refs. [39,40]). The dynamical inputs in the model are the
constituent quark mass, the effective gluon mass, ranging
between ∼ΛQCD=10 and 2ΛQCD, and the size of the quark-
gluon vertex, of the order ∼ΛQCD (see, e.g., Refs. [45,46]).
In our covariant model, the pion state contains an infinite

set of LF components that are built by a qq̄ and any
arbitrary number of effective gluons (as needed to obtain
the bound-state pole in the four-point Green function). In
order to better understand the influence of those higher-
Fock states, we analyze (i) the decay constant, (ii) the
valence probability and its spin decompositions, (iii) the
longitudinal- and transverse-momentum distributions, with
a particular attention to the end-point behavior of the first
one, (iv) the distribution amplitudes, and (v) the 3D image
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on the null-plane, using both the LF-momentum space and
the 3D space, described by the covariant Ioffe-time and the
transverse coordinates. It has to be emphasized that apart
from the obvious exception of the decay constant, all the
other quantities are investigated also in terms of their spin
decomposition, opening a window on genuinely relativistic
effects inside the pion. Such an extensive analysis repre-
sents a distinctive feature of our approach carried out
directly in Minkowski space, where the physical processes
take place. This is a fundamental step toward a future goal
of constructing a framework where Euclidean and
Minkowskian studies of the dynamics inside hadrons can
be made complementary.
The paper is organized as follows. In Sec. II, we outline

the formalism for solving the BS equation within the
Nakanishi integral representation framework, and we
briefly illustrate its application to the 0− bound state. In
Sec. III, the valence component of the pion is analyzed in
terms of its spin decomposition and an analogous study is
extended to the LF-momentum distributions. Section IV is
devoted to the formulation of the pion decay constant in
terms of the NIR, showing its direct relation with the
antialigned spin component of the valence wave function.
In Sec. V, the valence wave function of the pion is
investigated in the 3D configuration space associated with
the null-plane, in parallel with the 3D representation of the
pion obtained in momentum space. In Sec. VI, our wide
numerical exploration is presented and discussed, ranging
from the pion decay constant to the valence probability
(with its spin decomposition), and from the LF-momentum
distributions to the 3D pion imaging. We close the work in
Sec. VII, drawing our conclusions and presenting perspec-
tives of future developments.

II. THE BETHE-SALPETER EQUATION
AND THE NAKANISHI INTEGRAL

REPRESENTATION

We briefly summarize the formalism for solving the BSE
inMinkowski space for the 0− quark-antiquark bound state,
within the approach based on both the LF-projection
technique and the NIR [24]. More details can be attained
from, e.g., Refs. [39,40], (cf. the equivalent treatment
within the covariant LF framework of Refs. [36,48]).
For instance, in the case of a positively charged pion, the

BS amplitude and its conjugate are given in the coordinate
space by (the translation invariance has been applied)

Ψðx1; x2; pÞ ¼ e−ip·Xh0jT
�
U

�
x
2

�
D̄

�
−
x
2

��
jπþi

Ψ̄ðx1; x2; pÞ ¼ eip·XhπþjT
�
D
�
−
x
2

�
Ū
�
x
2

��
j0i; ð1Þ

where (i) U and D are fields with quantum numbers
corresponding to u and d quarks, respectively;

(ii) X ¼ η1x1 þ η2x2, with η1 þ η2 ¼ 1 (in the present case
ηi ¼ 1=2); (iii) x ¼ x1 − x2; and (iv) p is the total momen-
tum, withM2 ¼ p2 the bound-state squared mass. It should
be pointed out that

Ψ̄ðx1; x2; pÞ ≠ γ0Ψ†ðx1; x2; pÞγ0; ð2Þ

since one has also to fulfill the Feynman prescription, as
encoded into the chronological operator (if one innocently
applies the Dirac conjugation, then one gets an antichro-
nological ordering). In the momentum space, the intrinsic
components are given by

Φðk; pÞ ¼
Z

d4xeik·xh0jT
�
U

�
x
2

�
D̄

�
−
x
2

��
jπþi

× Φ̄ðk; pÞ
Z

d4xe−ik·xhπþjT

×

�
D

�
x
2

�
Ū

�
−
x
2

��
j0i: ð3Þ

Notice that the chronological operator acting in the coor-
dinate space generates the presence of þiϵ in the momen-
tum space.
The BS amplitude, Φðk; pÞ, fulfills the BS equation, that

in the ladder approximation reads

Φðk; pÞ ¼ Sðkþ p=2Þ
Z

d4k0

ð2πÞ4 S
μνðqÞΓμðqÞ

×Φðk0; pÞΓ̂νðqÞSðk − p=2Þ; ð4Þ

where (i) the off-mass-shell constituents have four-
momenta given by p1ð2Þ ¼ p=2� k, with p2

1ð2Þ ≠ m2 with

m the constituent mass, (ii) p ¼ p1 þ p2 is the total
momentum, (iii) k ¼ ðp1 − p2Þ=2 is the relative four-
momentum, and (iv) q ¼ k − k0 the momentum transfer.
The Dirac and gluon free propagators are given by

Sðk� p=2Þ ¼ i
=k� =p=2þm

ðk� p=2Þ2 −m2 þ iϵ
;

SμνðqÞ ¼ −i
gμν

q2 − μ2 þ iϵ
: ð5Þ

Notice that the effective gluon propagator is chosen in the
Feynman gauge. Moreover, Γμ is the interaction vertex and
Γ̂νðqÞ ¼ CΓνðqÞC−1 with the charge operator given by
C ¼ iγ2γ0. In the present model, the quark-gluon extended
vertex is described by

ΓμðqÞ ¼ i g
μ2 − Λ2

q2 − Λ2 þ iϵ
γμ; ð6Þ

where g is the coupling constant and Λ a suitable scale for
taking into account the size of the color distribution of the
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interaction vertex. A quantitative estimate of this parameter
is suggested by Refs. [45,46].

A. Solving the BSE for the 0− bound state

The most general expressions for Φðk; pÞ and Φ̄ðk; pÞ
allowed by the parity and the four-momenta at disposal is
[48] (see also Ref. [49])

Φðk; pÞ ¼ S1ðk; pÞϕ1ðk; pÞ þ S2ðk; pÞϕ2ðk; pÞ
þ S3ðk; pÞϕ3ðk; pÞ þ S4ðk; pÞϕ4ðk; pÞ;

Φ̄ðk; pÞ ¼ −S1ðk; pÞϕ1ðk; pÞ þ S2ðk; pÞϕ2ðk; pÞ
þ S3ðk; pÞϕ3ðk; pÞ þ S4ðk; pÞϕ4ðk; pÞ; ð7Þ

where ϕi are suitable scalar functions that depend upon
fk2; p2; k · pg and contain the analytical behavior imposed
by the Feynman prescription, i.e., þiϵ. They have to fulfill
well-defined properties under the exchange k → −k,
according to the anticommutation rule for the involved
fermionic fields. As a result, one has even scalar functions
for i ¼ 1, 2, 4 and an odd one for i ¼ 3, when k → −k. The
allowed Dirac structures are represented by the 4 × 4
matrices Si, given by

S1 ¼ γ5; S2 ¼
=p
M

γ5; S3 ¼
k · p
M3

=pγ5 −
1

M
=kγ5;

S4 ¼
i
M2

σμνpμkνγ5: ð8Þ

The above matrices satisfy orthogonality relations that
allow one to reduce the BS equation (4) to a system of
four coupled integral equations for ϕiðk; pÞ. The scalar
functions can be conveniently written in terms of the NIR
as follows:

ϕiðk; pÞ ¼
Z

1

−1
dz0

Z
∞

0

dγ0
giðγ0; z0; κ2Þ

½k2 þ z0p · k − γ0 − κ2 þ iϵ�3 ;

ð9Þ

where

κ2 ¼ m2 −M2=4; ð10Þ

and giðγ0; z0; κ2Þ are called NWFs of the scalar function
ϕiðk; pÞ. Noteworthy, giðγ0; z0; κ2Þ are real functions which
are conjectured to be unique (cf. the theorem on the
uniqueness by Nakanishi in Ref. [24]). Those functions
encode all the nonperturbative dynamical information. The
power of the denominator in Eq. (9) can be chosen as any
convenient integer ≥ 3, since we are considering the BS
amplitude (see also Ref. [48]). The properties of the scalar
functions ϕiðk; pÞ under the exchange k → −k can be
straightforwardly translated into the corresponding

properties of the NWFs giðγ0; z0; κ2Þ under the exchange
z0 → −z0, i.e., they must be even for i ¼ 1, 2, 4 and odd
for i ¼ 3.
As is well known, Eq. (9) allows us to perform the LF

projection of the BS amplitude, leading to the valence
component of the state (see, e.g., Refs. [32,37] and
Sec. III). This motivates the application of the same
projection to both sides of BSE, with the aim of determin-
ing the NWFs, and eventually the full BS amplitude in
Minkowski space. In particular, following Refs. [39,40],
one starts from the coupled system of integral equations for
the scalar functions ϕiðk; pÞ and arrives at a coupled system
for the NWFs, viz.

Z
∞

0

dγ0
giðγ0; z; κ2Þ

½γ þ γ0 þm2z2 þ ð1 − z2Þκ2�2 ¼ iMg2

×
X
j

Z
∞

0

dγ0
Z

1

−1
dz0Lijðγ; z; γ0; z0Þgjðγ0; z0; κ2Þ; ð11Þ

where the kernel Lijðγ; z; γ0; z0Þ, in the ladder approxima-
tion, can be found in full detail in Ref. [40]. It is worth
noticing that the two-scalar case was also studied by using
an ordinary linear integral equation, where on the lhs
there is directly the NWF and on the rhs the folding of the
NWF with a suitable kernel. This integral equation was
obtained exploiting a uniqueness theorem by Nakanishi
[24], assumed to be valid for the nonperturbative case
and applied within the LF framework in Ref. [37].
Unfortunately, an analogous treatment for the two-fermion
case is hindered by the presence of singularities in the
interaction kernel (see below and Refs. [39,40]), making it
unclear whether or not the Nakanishi theorem can be
formally applied. Hence, a more careful analysis is neces-
sary and it will be presented elsewhere.
We strongly emphasize that the kernel receives contri-

butions from LF singularities originated by the treatment
of the spin degrees of freedom acting in the problem.
They were successfully taken into account by means of the
methods developed in [39] (see Ref. [50] for a previous
discussion of those singularities). The above set of integral
equations is solved numerically by matrix manipulation
algorithms, after expanding the NWFs onto the Cartesian
product of Laguerre polynomials, for the γ dependence,
and Gegenbauer ones, Cλi

n with suitable λi, for the z
dependence.

B. Normalization

In order to calculate hadronic properties, in our case the
valence probability and momentum distributions, the BS
amplitude has to be properly normalized. In the ladder
approximation, the normalization reads [51]
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Tr

�Z
d4k
ð2πÞ4

∂
∂p0μ fS−1ðk − p0=2ÞΦ̄ðk; pÞ

× S−1ðkþ p0=2ÞΦðk; pÞgjp0¼p

�
¼ −i2pμ: ð12Þ

It is worth noting that such a normalization can be easily
reverted into the charge normalization, within the adopted
ladder approximation.
By using Eq. (7) and performing the Dirac traces, the

normalization condition turns to be

iNc

Z
d4k
ð2πÞ4

�
ϕ1ϕ1 þ ϕ2ϕ2 þ bϕ3ϕ3 þ bϕ4ϕ4

− 4bϕ1ϕ4 − 4
m
M

ϕ2ϕ1

�
¼ 1; ð13Þ

where Nc is the number of colors and b ¼ ½ðk · pÞ2 −
k2M2�=M4. By introducing the amplitudes ϕi given in
terms of the NIR, Eq. (9), one can straightforwardly
perform the analytical integration of the momentum loop
using Feynman parametrization in Eq. (13), and finally get

1 ¼ − 3Nc

32π2

Z þ1

−1
dz0

Z
∞

0

dγ0
Z þ1

−1
dz

Z
∞

0

dγ

×
Z

1

0

dvv2ð1 − vÞ2 1

½κ2 þ M2

4
λ2 þ γ0vþ γð1 − vÞ�3

×

�
Gð1; 2Þ − 4 m

M G21ðγ0; z0; γ; zÞ
½κ2 þ M2

4
λ2 þ γ0vþ γð1 − vÞ�

þ 1

2M2
ðGð3; 4Þ − 4G14ðγ0; z0; γ; zÞÞ

�
; ð14Þ

where

Gð1; 2Þ ¼ G11ðγ0; z0; γ; zÞ þ G22ðγ0; z0; γ; zÞ;
Gð3; 4Þ ¼ G33ðγ0; z0; γ; zÞ þ G44ðγ0; z0; γ; zÞ; ð15Þ

with Gijðγ0; z0; γ; zÞ ¼ giðγ0; z0; κ2Þgjðγ; z; κ2Þ and λ ¼
½vz0 þ ð1 − vÞz�.
Even in the ladder approximation, the normalization,

Eq. (13), contains the contributions beyond the valence one
from the Fock expansion of the pion state, i.e., it takes into
account the infinite sum of states with a quark-antiquark
pair and any number of gluons (see, e.g., [31,52]).
We should call the attention of the reader to the fact that

from the normalization condition, Eq. (13), one can arrive
at the normalization fulfilled by the amplitudes of the pion-
state Fock components (see, e.g., Refs. [32,37]), so that a
probabilistic framework can be restored. In particular, the
normalization of the valence component is nothing else
than the probability to find the component with the lowest
number of constituents inside the pion.

III. VALENCE PROBABILITY AND
LF-MOMENTUM DISTRIBUTIONS

The valence probability and momentum distributions
can be derived resorting to the LF quantum-field theory
methods (see, e.g., Ref. [29]), where one defines the
creation and annihilation operators for particles and anti-
particles with arbitrary spin on the null-plane, in order to
construct the generic LF Fock state. Actually, the valence
component is defined by

φ2ðξ; k⊥; σi;M; Jπ; JzÞ
¼ ð2πÞ3

ffiffiffiffiffiffi
Nc

p
2pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξð1 − ξÞ
p

× h0jbðq̃2; σ2Þdðq̃1; σ1Þjp̃;M; Jπ; Jzi; ð16Þ

where bðq̃2; σ2Þ is the quark annihilation operator and
dðq̃1; σ1Þ is the antiquark one, q̃1 ≡ fqþ1 ¼ Mð1 − ξÞ;
−k⊥g, q̃2 ≡ fqþ2 ¼ Mξ;k⊥g, and ξ ¼ 1=2þ kþ=pþ.
Equation (16) is related to the BS amplitude by means
of the LF projection (see the details in Appendix A) as
follows:

φ2ðξ; k⊥; σi;M; Jπ; JzÞ

¼
ffiffiffiffiffiffi
Nc

p
pþ

1

4
ūαðq̃2; σ2Þ

Z
dk−

2π
½γþΦðk; pÞγþ�αβvβðq̃1; σ1Þ:

ð17Þ

From Eq. (17), one ultimately recognizes that the evalu-
ation of the valence wave function comes from the
elimination of the relative LF time between the quark
operators entering the BS amplitude (see also Ref. [32]).
Alternatively, the valence wave function can be obtained

using the quasipotential expansion method adapted to
perform the LF projection of the BS equation and ampli-
tude (see Refs. [30,31,52,53] for details).
As above mentioned, the Fock expansion of the inter-

acting system allows one to restore a probabilistic frame-
work that the BS amplitude is not able to yield. In
particular, one can get the valence probability given by

Pval ¼
1

ð2πÞ3
X
σ1σ2

Z
1

−1

dz
ð1 − z2Þ

Z
dk⊥

× jφn¼2ðξ; k⊥; σi;M; Jπ; JzÞj2; ð18Þ

where z ¼ 1–2ξ ¼ −2kþ=M. As it is shown in detail in
Appendix A, the valence component can be decomposed
into two spin contributions, given by the configurations we
indicate as antialigned and aligned. The first configuration
corresponds to a total spin of the quark-antiquark pair
S ¼ 0, while the second one pertains to the S ¼ 1 spin
state. It is important to emphasize that the antialigned
configuration, yielding the largest contribution to the pion
state, is coupled to the eigenstate of the operator Lz with
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eigenvalue lz ¼ 0. Within the LF framework, the
z-component of the orbital angular momentum is dia-
gonal in the Fock space, being a kinematical generator.
Differently the aligned configuration necessarily invokes
the eigenvalues lz ¼ �1, given the pseudoscalar nature of
the pion. Interestingly, the presence of the aligned-spin
contribution is an unavoidable and clear signature of the
relativistic dynamical regime inside the pion, since the
lz ¼ �1 orbital component is related to the small compo-
nent of the spinors in the Dirac theory. It is clear that
a quantitative study of the aligned component has a
pivotal role in understanding the relativistic features of
the light hadrons (and the possible relativistic corrections
for the heavier ones). Finally, it should be pointed out that
the lz ¼ �1 contribution is perfectly compatible with the
requested parity conservation (recall the minus signs in the
matrix γ0 entering the representation of the parity operator).
The obtained expression for φ2 is

φ2ðξ;k⊥; σi;M; Jπ; JzÞ
¼ −

σ2
2

ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
×
Z

dk−

2π

�
δσ2;−σ1

�
ϕ2ðk; pÞ þ

�
k−

2M
þ z
4

�
ϕ3ðk; pÞ

�

− δσ2;σ1
kLðRÞ

ffiffiffi
2

p

M
ϕ4ðk; pÞ

�
¼ −

σ2
2

ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
× fδσ2;−σ1ψ↑↓ðγ; zÞ ∓ δσ2;σ1e

∓iθψ↑↑ðγ; zÞg; ð19Þ

where kLðRÞ ¼ � 1ffiffi
2

p ðkx ∓ ikyÞ ¼� ffiffiγ
2

p
e∓iθ, with γ ¼ jk⊥j2.

Moreover,

ψ↑↓ðγ; zÞ ¼ ψ↓↑ðγ; zÞ ¼ ψ2ðγ; zÞ þ
z
2
ψ3ðγ; ξÞ

þ i
M3

Z
∞

0

dγ0
∂g3ðγ0; z; κ2Þ=∂z

γ þ γ0 þ z2m2 þ ð1 − z2Þκ2 − iϵ

ð20Þ

and

ψ↑↑ðγ; zÞ ¼ ψ↓↓ðγ; zÞ ¼
ffiffiffi
γ

p
M

ψ4ðγ; zÞ: ð21Þ

In the above equations, ψ i are given by

ψ iðγ; zÞ ¼ −
i
M

Z
∞

0

dγ0
giðγ0; z; κ2Þ

½γ þ γ0 þm2z2 þ ð1− z2Þκ2 − iϵ�2 :

ð22Þ

Notice that for the two spin configurations, S ¼ 0 and 1,
one has the suitable dependence upon the angle in the
transverse plane, as dictated by the eigenvalue lz, 0 and
�1, respectively.

After inserting Eq. (19) into Eq. (18), one can write the
valence probability in terms of the valence momentum-
distribution density, Pvalðγ; zÞ, i.e.,

Pval ¼
Z

1

−1
dz

Z
∞

0

dγPvalðγ; zÞ; ð23Þ

where

Pvalðγ; zÞ ¼ P↑↓ðγ; zÞ þ P↑↑ðγ; zÞ; ð24Þ

with the antialigned and aligned probability densities
defined by

P↑↓ðγ; zÞ ¼
Nc

16π2
jψ↑↓ðγ; zÞj2 ð25Þ

and

P↑↑ðγ; zÞ ¼
Nc

16π2
jψ↑↑ðγ; zÞj2

¼ Nc

16π2
γ

M2
jψ4ðγ; zÞj2: ð26Þ

Recall that jkLðRÞ
ffiffiffi
2

p j2 ¼ jk⊥j2 ¼ γ.
The valence longitudinal and transverse LF-momentum

distribution densities are obtained by properly integrating
the valence probability density Pvalðγ; zÞ. The longitudinal-
momentum distribution, with its spin decomposition, is
given by

ϕðξÞ ¼ ϕ↑↓ðξÞ þ ϕ↑↑ðξÞ; ð27Þ

with

ϕ↑↓ð↑↑ÞðξÞ ¼
Z

∞

0

dγP↑↓ð↑↑Þðγ; zÞ: ð28Þ

For the transverse-momentum distribution, one has

PðγÞ ¼ P↑↓ðγÞ þ P↑↑ðγÞ; ð29Þ

with

P↑↓ð↑↑ÞðγÞ ¼
Z

1

−1
dzP↑↓ð↑↑Þðγ; zÞ: ð30Þ

It should be pointed out that ϕðξÞ is the unpolarized
structure function, which one can access in the deep
inelastic limit of the leading order virtual photon absorption
process, as illustrated by the diagram on the left side of
Fig. 1. In this case, where the final states are given by qq̄
plane waves, the description of the inclusive process that
allows one to extract the longitudinal distribution can be
obtained by integrating on the final states, so that its
pictorial representation is yielded by the box diagram for
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on-mass-shell quarks, as discussed in Ref. [54] (for a
description of the deep-inelastic scattering (DIS) in an
exactly solvable LF model with a confining interaction, see,
e.g., Ref. [55]). The right side of Fig. 1 represents the
contribution from the one-gluon exchange in the final state,
that comes from the expansion of the Wilson line, needed
for assuring the color gauge invariance of the quark
correlator entering in the description of the deep-inelastic
process (see, e.g., Ref. [33]). It has to be pointed out that
such a contribution in the final state is also necessary for
obtaining nonvanishing T-odd transverse momentum dis-
tributions [56].

IV. DECAY CONSTANT

A basic observable that one has to reproduce for
assessing a given approach is surely the pion decay
constant, fπ . It is defined in terms of the BS amplitude
by (see, e.g., Ref. [57] for details)

ipμfπ ¼ Nc

Z
d4k
ð2πÞ4 Tr½γ

μγ5Φðp; kÞ�: ð31Þ

Contracting with pμ and using the decomposition of the BS
amplitude given by Eq. (7), one can perform the trace and
obtain

iM2fπ ¼ −4MNc

Z
d4k
ð2πÞ4 ϕ2ðk; pÞ: ð32Þ

It is worth noting that the decay constant is determined only
by one component (even under the exchange 1 → 2) of the
BS amplitude.
By using LF variables, one can manipulate Eq. (22)

and get

iM2fπ ¼ −4MNc
1

2

Z
dk⊥
ð2πÞ2

Z
dkþ

2π
ψ2ðγ; zÞ

¼ −
πM2

ð2πÞ3Nc

Z
dγ

Z
1

−1

dz
2π

ψ2ðγ; zÞ

¼ i
NcM
8π2

Z
∞

0

dγ
Z

1

−1
dz

Z
∞

0

dγ0

×
g2ðγ0; z; κ2Þ

½γ þ γ0 þm2z2 þ ð1 − z2Þκ2 − iϵ�2 : ð33Þ

Hence, within the NIR approach, the final expression for
the decay constant reads

fπ ¼
Nc

8π2M

Z
1

−1
dz0

Z
∞

0

dγ0
g2ðγ0; z0; κ2Þ

½γ0 þ κ2 þ z02M2=4� : ð34Þ

It should be recalled that g2 is properly normalized
through Eq. (14).
Equivalently, one can proceed from Eq. (32), by carrying

out the 4D integration on the NIR of the scalar function
ϕ2ðk; pÞ [see Eq. (9)] and eventually obtaining the result in
Eq. (34). As a matter of fact, one has

Z
d4k
ð2πÞ4

1

½k2 þ z0p · k − γ0 − κ2 þ iϵ�3

¼ iπ2

2ð2πÞ4
1

½−γ0 − κ2 − z02M2=4� ; ð35Þ

where, after applying the change of variable q¼ kþ z0p=2,
a Euclidean 4D integration has been performed, since the
analytic structure is known. Hence, inserting in Eq. (32)
first Eq. (9) and then the result given in Eq. (35), Eq. (34) is
reobtained.
Interestingly, one can reexpress fπ in terms of the

antialigned component, i.e., S ¼ 0, given in Eq. (20), once
an integration by part of the third term is performed, viz.

fπ ¼ i
πNc

ð2πÞ3
Z

∞

0

dγ
Z

1

−1
dzψ↑↓ðγ; zÞ: ð36Þ

It is worth noticing that this expression is expected, since
the famous argument applied for explaining the prevalence
of the muonic channel in the pion decay is based on both
the helicity conservation applied to a S ¼ 0 state and the
phase space constraint.

V. THE PION IMAGE ON THE NULL-PLANE

The analysis of DIS is usually carried out in the infinite-
momentum frame. In addition, one can study the DIS
processes in the target frame, adopting the configuration
space. Then, one is able to establish a framework where a
more detailed investigation of the space-time structure of
the hadrons can be performed. In particular, a fruitful and
far-reaching example of the above mentioned program is
the introduction of the so-called Ioffe-time [58–60]. In the
laboratory frame, it has a relevant role in addressing the
issue of a quantitative description of the interplay between
dynamical regimes governed by short- and long-range
interactions. Indeed, one can also introduce a covariant
realization (see, e.g., Ref. [61]) of the Ioffe-time, with the
same aim of studying the relative importance of short and
long lightlike distances, e.g., probed in DIS processes. This
covariant expression is particularly useful for the analysis
of the valence wave function, which, like all LF amplitudes

2

+

FIG. 1. Pion virtual photon absorption square amplitude. Low-
est order approximation (left frame) and one-gluon exchange
contribution (right frame).
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in the Fock expansion of the bound state, is a LF-boost
invariant quantity and properly encodes information on the
dynamics inside the hadron. It should be pointed out that
we use the Ioffe-time in the context of the BS amplitude,
i.e., the transition amplitude from a hadronic state to the
vacuum, while, e.g., in Refs. [21,62] the focus is on the
generalized parton distributions and/or the transverse-
momentum distributions.
As is well known, the null-plane xþ ¼ tþ z ¼ 0

defines a three-dimensional hypersurface, with spacelike
distances, where the LF wave functions live. The configu-
ration space associated with this hypersurface has longi-
tudinal coordinate x− ¼ t − z and transverse position x⊥.
The coordinate x− is called (c ¼ 1) Ioffe-time [58–60],
with the covariant version given by x · p that in the target
frame becomes x−pþ=2, on the null-plane. Notably, in
the target frame, when the DIS regime is reached, the
Ioffe-time measures the lightlike distance between the
production of a qq̄ pair by the virtual photon and its
interaction inside the hadron. Moreover, one can quickly
realize that the Björken xBj, or more precisely, the
longitudinal fraction ξ ¼ pþ

1 =p
þ, is the variable conjugated

to the Ioffe-time, once the Fourier transform of the matrix
elements of the electromagnetic current correlator is ana-
lyzed for obtaining DIS structure functions. As suggested
by phenomenological analyses (see, e.g., Refs. [63,64]),
one realizes that the Ioffe-time (also indicated as the
coherence length of the qq̄ pair) is ∝ 1=MxBj. This follows
from the energy-time uncertainty, involving the qq̄ pair off-
shell energy and the time interval between its production
and interaction with the hadronic medium, in the target
frame. Hence, longer and longer coherence lengths pertain
to the values of xBj, where the QCD dynamics is dominated
by the IR regime. This enforces the relevance of quantities
that depends upon the Ioffe-time, when we aim at disen-
tangling the different lightlike distances that the virtual
photon probes, and eventually shedding light on, e.g.,
higher Fock states production, onset of the confinement,
valence structure, etc.
In Sec. III, the valence wave function, φ2, has

been introduced by considering its dependence upon the
momentum-space variables, i.e., fξ ¼ kþ=pþ;k⊥g.
Obviously, one can study the valence amplitude also in
the configuration space, where the dependence results
to be upon the coordinates fz̃ ¼ x−pþ=2;bg [61] (notice
that the LF-boost invariant definition of the Ioffe-time has
been used and b≡ x⊥).
Rather than the Fourier transform of φ2ðξ;k⊥; σi;

M; Jπ; JzÞ, it is physically more interesting to address
the distribution probability in the coordinate space, in
analogy with the study carried out in the LF-momentum
space, where the distribution is given in Eq. (24) and
fulfills the sum rule (23). In view of this, it is better to
consider the Fourier transform of the two spin components
ψ↑↓ and ψ↑↑, Eqs. (20) and (21), that reads

ψ̃↑↓ð↑↑Þðz̃;bÞ ¼ e−
i
2
z̃eilzθb̂

Z
1

−1

dz
4π

e
i
2
zz̃

×
Z

dk⊥
ð2πÞ2 e

ik⊥·beilzðθk̂−θb̂Þψ↑↓ð↑↑Þðjk⊥j2; zÞ;

ð37Þ

where (i) lz ¼ 0, 1, for S ¼ 0, 1 respectively and (ii) for
xþ ¼ 0 the scalar product x · k reduces to x · k ¼
x−kþ=2 − b⊥ · k⊥ (in our convention). The amplitudes
ψ↑↓ð↑↑Þðjk⊥j2; zÞ vanish for z outside the interval ½−1; 1�.
Collecting the results presented in Appendix B, one can

write the Fourier transform of the two spin components,
Eqs. (20) and (21), in terms of auxiliary amplitudes, where
the leading asymptotic behavior for large b is factorized
out, i.e.,

ψ̃↑↓ðz̃;bÞ ¼ e−b κe−
i
2
z̃χ↑↓ðz̃; bÞ;

ψ̃↑↑ðz̃;bÞ ¼ eiθb̂e−b κe−
i
2
z̃χ↑↑ðz̃; bÞ; ð38Þ

with κ given in Eq. (10) and (recall that the product
zg3ðγ0; z; κ2Þ i s even in z)

χ↑↓ðz̃; bÞ ¼ −
i
M

eb κ

4ð2πÞ2
Z

∞

0

dγ0
Z

1

−1
dz cos

�
zz̃
2

�

×

�
F0
0ðz; γ0; bÞg2ðγ0; z; κ2Þ

þ F0
0ðz; γ0; bÞ

z
2
g3ðγ0; z; κ2Þ

−
1

M2
F0ðz; γ0; bÞ

∂
∂z g3ðγ

0; z; κ2Þ
�
;

χ↑↑ðz̃; bÞ ¼ −
i
M2

eb κ

4ð2πÞ2
Z

∞

0

dγ0
Z

1

−1
dz cos

�
zz̃
2

�
× F1ðz; γ0; bÞg4ðγ0; z; κ2Þ: ð39Þ

Notice that χ↑↓ and χ↑↑ are symmetric by z̃ → −z̃, i.e., the
inversion of the lightlike axis.
We will provide results for the amplitudes χ↑↓ðz̃; bÞ and

χ↑↑ðz̃; bÞ, where the exponential falloff in b is factorized
out, for the sake of presentation.
From the above elaboration, one can obtain the proba-

bility density in the 3D space z̃ ⊗ b⊥ that reads

P̃ðz̃; bÞ ¼ Nce−2bκ½jχ↑↓j2 þ jχ↑↑j2�; ð40Þ

and it fulfills by construction the following relation:

Pval ¼
Z

∞

−∞
dz̃

Z
dbP̃ðz̃; bÞ: ð41Þ

Finally, we observe that the null-plane components in
Eq. (38) at z̃ ¼ 0 can be directly obtained from
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Euclidean-space calculations, once the spin components of
the transverse amplitude are defined as follows:

φ̃T
↑↓ðbÞ ¼ jψ̃↑↓ð0;bÞj and φ̃T

↑↑ðbÞ ¼ jψ̃↑↑ð0;bÞj: ð42Þ

The above quantities come from the integration over
1
2
dkþdk− of the BS amplitude (leading to xþ ¼ x− ¼ 0).

Notably, given the analytic properties of the NIR, an equal
result can be obtained if one integrates on { dk0Edk

3, where
k0E is the Euclidean momentum component (see Ref. [42]
for the analytical details). Thus, it could be of interest to
compare the transverse functions obtained by direct cal-
culations in the Euclidean space for the pion BS amplitude
with the ones evaluated by solving the BSE in Minkowski
space through the NIR.

VI. QUANTITATIVE STUDY

This section is devoted to a wide presentation of a
quantitative study of the charged pion structure, carried out
within the approach previously outlined. In particular, we
discuss results for (i) the decay constant, (ii) the valence
probability and its spin decomposition, (iii) the valence
longitudinal- and transverse-momentum distributions, and
finally (iv) the 3D image of the pion, in the space described
by the Ioffe-time and the transverse coordinates,
i.e., fz̃;bg.
It is important to remind that the pion BSE amounts to a

set of four coupled integral equations for the scalar
functions ϕiðk; pÞ present in Eq. (7) (see Refs. [39,40]
for details), and it is formally transformed into a set of
coupled integral equations for the four NWFs gi [see
Eq. (11)], within the NIR approach. In turn, this set of
equations can be expressed as a generalized eigenvalue
problem. In order to accomplish this step, we exploit the
property of the NWFs to be real functions, depending upon
real variables (one compact and the other noncompact) by
expanding them onto a biorthonormal basis (for details,
see [40]).
As discussed in Sec. II, while solving the BSE in ladder

approximation, one has three input parameters: (i) the
constituent-quark mass and the gluon effective one, indi-
cated by m and μ, respectively and (ii) the scale Λ of the
extended interaction vertex. The values of the adopted
parameters cover a fairly broad spectrum, including the
values inspired by LQCD results. In practice, we have
considered 11 sets of values, where m ranges from 187 to
255 MeV, μ from 0.15 to 2.5m (i.e., from about 30 to
600 MeV) and Λ from m to 2m, to be of the same
magnitude ΛQCD as suggested in [45,46].
For completeness, we specify the basis and truncation

scheme adopted in our calculations and our numerical
accuracy. We use for each NWF an expansion of the form

giðγ; z; κ2Þ ¼
XNz

k¼0

XNγ

n¼0

Ai
knG

λi
2kþri

ðzÞLnðγÞ; ð43Þ

where Ai
kn are the coefficients to be determined and the

functions Gλ
n and Ln are defined by

Gλ
nðzÞ ¼ ð1 − z2Þð2λ−1Þ=4ΓðλÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!ðnþ λÞ

21−2λπΓðnþ 2λÞ

s
Cλ
nðzÞ;

LnðγÞ ¼
ffiffiffi
a

p
LnðaγÞe−aγ=2; ð44Þ

where Cλ
n denotes a Gegenbauer polynomial and Ln is a

Laguerre polynomial. Moreover, in order to speed up the
convergence of the Gaussian integration, it has been chosen
a ¼ 6=m2. It should be noticed that because of the
symmetry under z → −z one has

ri ¼
�
0; i ¼ 1; 2; 4;

1; i ¼ 3:
ð45Þ

The basis functions defined by (44) obey the orthogonality
relations Z

1

−1
dzGλ

l ðzÞGλ
nðzÞ ¼ δlnZ

∞

0

dγLjðγÞLlðγÞ ¼ δjl: ð46Þ

In our calculations, each index λi is a half-integer, i.e.,
λi ¼ li þ 1=2, with fl1;l2;l3;l4g ¼ f2; 4; 6; 6g, repre-
senting the best choice after checking the numerical
convergence, also varying the number of polynomials in
the basis. For obtaining the results presented in this section,
it was used up to Nγ ¼ Nz ¼ 60 basis functions for each
giðγ; z; κ2Þ. The checked accuracy in the coupling constant
is at the shown significant digits; for the valence probability
the accuracy is three significant digits; for fπ, the relative
accuracy is better than 0.1%; for ϕ↑↓ð↑↑ÞðξÞ, the pointwise
accuracy for 0.95 > ξ > 0.05 is about three significant
digits and decreasing toward the end points, i.e., within the
width of the lines shown in the following figures.

A. Static properties: The decay constant
and the valence probability

In our calculations of the pion structure, as it is custom-
ary in solving BSE, one assigns a value to the quark massm
and using mπ ¼ 140 MeV, one gets the binding B, defined
by B ¼ 2m −mπ. Hence, once we select a value for both
the gluon mass μ and the interaction-vertex scale Λ, we can
proceed in solving the generalized eigenvalue problem
where the quark-gluon coupling constant, g2, is the
eigenvalue (see Eq. (11), and notice that beyond the ladder
approximation one has to cope with a more general
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eigenvalue problem [43,65]). For the 11 sets of the three
input parameters, as shown in detail in Table I, we have
evaluated the following main quantities: (i) the adimen-
sional coupling

α ¼ g2

4π
ð1 − μ2=ΛÞ2 ð47Þ

that combines the bare coupling g2=4π and the factors from
the two extended interaction vertexes [see the definition in
Eq. (6)], (ii) the valence probability and its spin decom-
positions, and (iii) the charged-pion decay constant.
In Table I, we also inserted two other quantities, useful

for sharpening our physical insights. The first one is the
effective strength ᾱ, given by

ᾱ ¼ α
μ2

m2 þ 0.2
; ð48Þ

where the value of the average transverse momentumffiffiffiffiffiffiffiffiffi
hk2⊥i

p
∼

ffiffiffiffiffiffiffi
0.2

p
m has a close correspondence to the char-

acteristic scale of the decreasing behavior shown by the
transverse-momentum distribution in the model, as it will
be clear when presenting results for this quantity in the next
subsection. Loosely speaking, the denominator μ2 þ hk2⊥i
plays the role of an effective mass carried by the gluon in
the interaction region relevant for binding the qq̄ system.
The second quantity is the adimensional ratio fπ=m, that
yields an estimate of the strength of the effective quark-pion
coupling introduced in low-energy effective approaches,
like the Nambu-Jona-Lasinio one (see, e.g., Ref. [66]).
Table I is organized according to increasing values of the

valence probability, corresponding also to decreasing
values of the effective coupling ᾱ, since both of them
point to the same physical mechanism, as discussed below.
First of all, after slightly tuning the parameters in the

range suggested also by LQCD (see the eighth set), one is

able to reproduce the experimental value of the pion decay
constant, i.e., fexp

π� ¼ 130.50ð1Þð3Þð13Þ MeV [67], as well

as the LQCD average value fLQCD
π� ¼ 130.2ð0.8Þ MeV, as

given in Ref. [68]. By varying the sets of parameters, the
valence probability Pval, and fπ run in the interval [0.64–
0.71] and [77–134] MeV, respectively.
The valence probabilities for the antialigned and aligned

spin configurations are also shown in Table I, where one
recognizes the expected prevalence of the spin S ¼ 0
component, ranging from 0.55 to 0.58, and the minor role
of the S ¼ 1 configuration, from 0.09 to 0.14. In any case, it
is worth noticing that S ¼ 1 contribution, which is exclu-
sively relativistic in nature, is by no means negligible, since
the relative weight increases up to 30%. From the Fock-
expansion standpoint, the size of such a relative weight
indicates that the higher-Fock states are quite relevant in the
description of the pion state on the null-plane. In fact, the
ladder kernel of the BSE when projected onto the LF
hyperplane [30,31,52,53] takes into account an infinite
number of Fock components beyond the valence state, built
as a qq̄ pair and any number of gluons.
The remaining probability, 1 − Pval, is distributed among

the first Fock components beyond the valence one, and one
should notice the consistent picture that emerges from
observing the correlation between the decreasing values of
the valence probability and the increasing values of ᾱ. This
behavior is rather natural to be expected, as ᾱ weights in an
effective way the coupling to the higher Fock states present
in the dynamical model. Consequently, the larger ᾱ, the
smaller Pval, since more gluons can be present in the
intermediate states, and the valence state becomes less
likely. As to the pion decay constant, while fπ does not
show a regular behavior when ᾱ is decreasing, the ratio
fπ=m has less pronounced variations, since this ratio
combines the effect of the higher Fock states through
two different quantities. On one side, fπ is associated with

TABLE I. Static properties of the pion (mπ ¼ 140 MeV) for several sets of the input parameters: (i) the quark mass m, (ii) the gluon
mass μ=m (per mass unit), and (iii) the extended-vertex scale Λ=m [see text and Eq. (11)]. The following quantities are listed: (i) the
coupling constant α and the effective strength, ᾱS, defined in Eq. (48); (ii) the valence probability, Pval, and its decomposition in S ¼ 0
component, P↑↓, and S ¼ 1 component, P↑↑; (iii) the charged pion decay constant, fπ , and the adimensional ratio, fπ=m, proportional
to the quark-pion coupling in the effective approaches, at low energy.

Set m (MeV) B=m μ=m Λ=m αðᾱÞ Pval P↑↓ P↑↑ fπ (MeV) fπ=m

I 187 1.25 0.15 2 5.146 (23.13) 0.64 0.55 0.09 77 0.412
II 255 1.45 1.5 1 52.78 (21.54) 0.65 0.55 0.10 112 0.439
III 255 1.45 2 1 78.01 (18.57) 0.66 0.56 0.11 117 0.459
IV 215 1.35 2 1 76.28 (18.16) 0.67 0.57 0.11 98 0.456
V 187 1.25 2 1 74.26 (17.68) 0.67 0.56 0.11 84 0.449
VI 255 1.45 2.5 1 108.87 (16.87) 0.68 0.56 0.11 122 0.478
VII 255 1.45 2.5 1.1 87.66 (13.59) 0.69 0.56 0.12 127 0.498
VIII 255 1.45 2.5 1.2 72.32 (11.21) 0.70 0.57 0.13 130 0.510
IX 255 1.45 1 2 10.40 (8.665) 0.70 0.57 0.14 134 0.525
X 215 1.35 1 2 10.20 (8.50) 0.71 0.57 0.14 112 0.520
XI 187 1.25 1 2 9.96 (8.30) 0.71 0.58 0.14 96 0.513
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the antialigned component of the valence wave function at
the origin, i.e., z̃ ¼ bx ¼ by ¼ 0 [see Eq. (36)], and its
increase indicates a major role of more compact configu-
rations, necessarily related to the higher Fock states. On
the other side, the quark mass determines the binding
energy, and larger values of B ¼ 2m −mπ are related to
smaller size of the pion, i.e., more compact configurations
take place (cf. the values of m and ᾱ for sets III–V, as well
as IX–XI, where μ and Λ do not vary). Hence, the values of
fπ show a dependence upon quark mass, since both
quantities are driven by the relevance of states beyond
the valence one.
In conclusion, Table I provides two interesting insights,

which can be briefly highlighted: (i) the decay constant is
influenced by the compact configurations and the pion size;
thus, UV and IR properties are reflected in their actual
value, with the conspicuous relation to the constituent
quark mass, and (ii) also the valence probability encodes
signatures of the UV and IR regimes. This will become
more clear once the behavior at the end points of the
longitudinal distribution and the high-momentum tail of the
transverse momentum distribution are analyzed, and recall-
ing that fπ and Pval are obtained from both distributions
after properly integrating.

B. The valence LF-momentum distributions

In this subsection, we present the dynamical quantities
predicted for the pion on the null-plane: (i) the longitudinal-
momentum distribution, ϕðξÞ, Eq. (27), and the transverse
one, PðγÞ, Eq. (29); (ii) the valence LF-momentum density,
Pðγ; zÞ, Eqs. (24)–(26); and (iii) the distribution amplitude,
with its spin decomposition, and its transverse counter-
part. The calculation of such quantities represents the
needed first step, followed by the suitable evolution, for
meaningful comparisons with experimental results, e.g.,
obtained in DIS and semi-inclusive DIS processes, like the
pion parton distribution function and the transverse-
momentum distributions, as well as extracted from the
deeply virtual Compton scattering, like the generalized
parton distributions.
Let us first consider the longitudinal-momentum fraction

distribution for the valence LF component, as a function of
the quark longitudinal fraction ξ, and its antialigned and
aligned components. It has to be stressed that on the null-
plane, the longitudinal-momentum fraction distribution has
the proper support, and therefore it fulfills both normali-
zation and momentum sum rule when we take into account
the whole set of the Fock components. This is a remarkable
benefit for correctly analyzing DIS processes.
The calculations are shown in Fig. 2, for some illustrative

cases, with the normalization equal to 1 (i.e., each dis-
tribution is divided by the respective probability) and the
model parameters given in Table I. Recall that the values for
the gluon mass varies between 28 MeV ðμ=m ¼ 0.15Þ and
638 MeV ðμ=m ¼ 2.5Þ, while the scale Λ ranges between

255 MeV (Λ=m ¼ 1) and 430 MeV (Λ=m ¼ 2), covering a
quite large interval of possibilities.
Figure 2 shows that the decrease of the effective

dimensionless strength of the kernel, ᾱ, broadens ϕðξÞ
with a regular pattern, which is not too sensitive to the wide
variations of both gluon mass and vertex parameter. Notice
that even in the presence of a very light gluon, the valence
longitudinal distribution does not show dramatic changes,
although they are visible. As expected, given its genuinely
relativistic nature, the aligned distribution has a wider shape
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FIG. 2. From top to bottom: antialigned, aligned, and total pion
valence longitudinal-momentum distributions, normalized to 1,
for three different sets of inputs parameters (cf. Table I). Dashed
line: set I. Dotted line: set IV. Solid line: set VIII, yielding the
experimental value for fπ.
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than the antialigned one, namely, larger values of the quark
momentum prevail, but the overall impact on the total
distribution ismitigated by the smaller probability associated
with the S ¼ 1 configuration. This observation is quantita-
tively corroborated by the analysis summarized in Table II,
where it is shown, for a few examples, the correlation
between ᾱ and the exponent of the function ð1 − ξÞη, which
we use, as customary, for fitting the valence longitudinal-
momentum distributions close to the end points.
Notice that the distributions are symmetric at the initial

scale, while after evolving they cumulate at values ξ ≤ 0.5
(as it will be discussed elsewhere). As pointed out in the
previous subsection, the decreasing values of the valence
probability and the corresponding increasing value of ᾱ
were put in relation with the increasing role of compact
configurations, generated by higher Fock states. Plainly,
also the increasing values of the exponent η in the fitting
functions can be explained through an analogous mecha-
nism. In fact, the growth of the powers, shown in Table II,
depletes the valence quark distribution in the UV region,
corresponding to ξ → 1. The function ð1 − ξÞη becomes
smaller and smaller for increasing values of η, and the
probability of large longitudinal momenta decreases. This
implies a suppression of configurations with the valence qq̄
pair close together.
As already noticed, the aligned longitudinal-momentum

distribution is broader than the antialigned one (cf. Fig. 2).
This corresponds to a softer end-point behavior, with
exponents systematically smaller than the antialigned ones,
about η↑↓ − η↑↑ ∼ 0.2, as shown in Table II.
The results for the Mellin moments of the valence

longitudinal-momentum distributions are shown in
Table III, also with the decomposition in spin contributions.
It should be recalled that the present approach predicts a
quite robust longitudinal fraction carried by the valence qq̄
pair, according to Pval that ranges from 60% to 70%. This
can be assessed from the first Mellin moment, after noticing
that if the valence ϕðξÞ is normalized to 1, and not to Pval,
the value of hxi is always 0.5, due to the symmetry of the
valence wave function around ξ ¼ 0.5. It is interesting to
observe that the moments do not change too much for the

set of input parameters we have chosen, and the increasing
values correspond to the increasing relevance of the
momentum distribution close to the end points. Such a
behavior is clearly more evident for Mellin moments
associated to higher powers. To carry out a detailed
comparison with LQCD results and the analogous out-
comes from the continuum QCD approach (see, e.g.,
Ref. [18]), one has to determine first the initial scale of
the valence longitudinal-momentum distribution and then
apply the evolution (see, e.g., Ref. [69]).
The second dynamical quantity we have analyzed is the

transverse-momentum distribution, PðγÞ [Eq. (29)], and its
decomposition in spin configurations. The results, with
normalization equal to 1, are presented in Fig. 3 for the
same set of parameters adopted for the longitudinal-
momentum distribution in Fig. 2. The same general
behavior found for the longitudinal-momentum distribution
can be also recovered for the transverse-momentum one,
namely, the size of the tail at large values of γ becomes
smaller for larger values of ᾱ, and vice versa. As we
learned, this is correlated to the role played by the typical
size of the spatial correlation of the valence qq̄ pair.
The antialigned and aligned distributions are also shown

in Fig. 3. It is worth noticing that the last one has a slower
decay compared to the antialigned case, since it carries a
factor of γ, stemming from the relativistic spin-orbit
coupling, which eventually adds a factor k⃗⊥ to the
momentum dependence of the aligned component in the
valence wave function. The typical momentum scale that
determines the effective strength, ᾱ, i.e., γ=m2 ∼ 0.2, can be

TABLE II. An excerpt from the set of exponents of the fitting
function ð1 − ξÞη for ξ → 1, while varying the set of input
parameters. The three columns, labeled by η↑↓, η↑↑, and η,
correspond to the antialigned, aligned, and total valence longi-
tudinal-momentum distributions (cf. Fig. 2).

Set fπ=m ᾱ η↑↓ η↑↑ η

I 0.412 23.13 1.81 1.61 1.77
II 0.439 21.54 1.71 1.50 1.66
III 0.459 18.57 1.66 1.47 1.62
IV 0.478 18.16 1.61 1.42 1.57
VIII 0.510 11.21 1.44 1.26 1.40
IX 0.525 8.665 1.45 1.28 1.40

TABLE III. An excerpt from the set of Mellin moments of the
valence longitudinal-momentum distribution, up to the sixth
order. The contributions of the two spin configurations are
also shown. N.B. The adopted normalization for the valence
longitudinal-momentum distribution is equal to Pval.

Set hxi hx2i hx3i hx4i hx5i hx6i
I 0.31 0.18 0.11 0.076 0.054 0.039
↑↓ 0.27 0.16 0.10 0.066 0.047 0.034
↑↑ 0.045 0.026 0.017 0.012 0.008 0.006
II 0.32 0.19 0.12 0.080 0.057 0.042
↑↓ 0.28 0.16 0.10 0.068 0.049 0.036
↑↑ 0.048 0.028 0.018 0.013 0.009 0.007
III 0.33 0.19 0.12 0.083 0.059 0.044
↑↓ 0.28 0.16 0.10 0.070 0.050 0.037
↑↑ 0.053 0.031 0.020 0.014 0.011 0.008
IV 0.33 0.19 0.12 0.082 0.059 0.043
↑↓ 0.28 0.16 0.10 0.070 0.050 0.037
↑↑ 0.053 0.031 0.020 0.014 0.010 0.008
VIII 0.35 0.20 0.13 0.091 0.066 0.049
↑↓ 0.28 0.17 0.11 0.074 0.054 0.040
↑↑ 0.068 0.041 0.027 0.019 0.014 0.011
IX 0.35 0.20 0.13 0.091 0.066 0.049
↑↓ 0.28 0.17 0.11 0.074 0.054 0.040
↑↑ 0.068 0.041 0.027 0.019 0.014 0.011
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inferred from the behavior of PðγÞ=Pð0Þ close to γ ¼ 0, as
shown in Fig. 3. More explicitly, such value of γ roughly
indicates the region where PðγÞ is relevant for obtaining the
actual value of the valence probability. Hence, the above
mentioned range of γ can be associated with the size of the
region where the interaction is effective in building the qq̄
bound state (in momentum space). In other words, such a
low energy or IR scale should govern the kernel of the BSE,
so that it is effective in giving the strength necessary to
create the strongly bound qq̄ system, resulting in the pion.

Summarizing the first part of the analysis, one should
point out that the end-point behavior of ϕðξÞ is strongly
correlated to the UV properties of the adopted kernel in the
BSE, while the range of γ, where PðγÞ is large, is governed
by the size of the bound state, i.e., by the IR behavior of the
interaction.
An overall view of the pion in the 3D LF-momentum

space can be obtained from Fig. 4, where the LF-momen-
tum density Pðγ; ξÞ [cf. Eqs. (24)–(26)], is shown. One
should recall that the longitudinal and transverse distribu-
tions are obtained through the suitable integration of the
density Pðγ; ξÞ.
Finally, we show the distribution amplitude (DA)

[29,70–72]. This quantity is introduced through the fac-
torization of the amplitudes associated with exclusive
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FIG. 3. From top to bottom: antialigned, aligned, and total pion
valence transverse-momentum distributions, PðγÞ, normalized
to 1, for three different sets of input parameters (cf. Table I).
Dashed line: set I. Dotted line: set IV. Solid line: set VIII, yielding
the experimental value for fπ.

FIG. 4. The LF-momentum density Pðγ; ξÞ [see Eqs. (24)–(26)]
versus ξ and γ ¼ k2⊥. From top to bottom: results for the
parameter sets I, IV, and VIII, respectively.
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processes and can be expressed as an integral on the
transverse-momentum dependence of the valence wave
function. In particular, we have evaluated the following
spin decompositions:

φ↑↓ðξÞ ¼
R
∞
0 dγψ↑↓ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↓ðγ; zÞ

;

φ↑↑ðξÞ ¼
R∞
0 dγψ↑↑ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↑ðγ; zÞ

: ð49Þ

Analogously, we have introduced the transverse distri-
bution amplitude (TDA) by integrating the valence wave
function over the fraction of longitudinal momentum
carried by the valence quark (recall z ¼ 1–2ξ), viz.

φT
↑↓ðγÞ ¼

R
1
0 dξψ↑↓ðγ; zÞR

1
0 dξ

R
∞
0 dγψ↑↓ðγ; zÞ

;

φT
↑↑ðγÞ ¼

R
1
0 dξψ↑↑ðγ; zÞR

1
0 dξ

R∞
0 dγψ↑↑ðγ; zÞ

: ð50Þ

It has to be pointed out that the TDA is the Fourier
transform of Eq. (42), namely, the transverse amplitude
in the transverse-coordinates space. The TDA can be also
obtained from Euclidean-space calculations (see, e.g.,
Ref. [42]).
The results for the two spin configurations of both DA

and TDA, obtained by using the parameters of the set VIII,
are shown in Fig. 5. It is interesting to observe that the
aligned component of the DA is wider and decreases
slower at the end points than the antialigned component,
as it happens for the longitudinal-momentum distributions
(cf. Table II). The corresponding features can be recognized
in the TDA case, where calculations are presented up to
γ=m2 ∼ 5 (about 0.3 GeV2) showing the characteristic IR
scale of about γ=m2 ∼ 0.2, implicitly carried by our input
parameters. It should be recalled that while the UV region
is governed by the one-gluon exchange, i.e., the short-
range interaction, the IR region incorporates the features
dictated by the long-range correlations in the transverse-
coordinate space.

C. The 3D image of the pion on the null-plane

In the 3D space described by the Ioffe-time and the
transverse coordinates, one can obtain an image of the
pion in terms of the two spin components of the valence
wave function, i.e., χ↑↓ð↑↑Þðz̃; bÞ, given in Eq. (39). Such a
picture of the pion allows one to understand better the
interplay between short and long lightlike distances in the
description of the hadron structure (see Sec. V). In view of
this, one notices that the region with small values of fz̃;bg
is the place where the UV effects should manifest. Beside
the 3D image, we also present the transverse amplitudes,
φ̃T
↑↓ðbÞ and φ̃T

↑↑ðbÞ, given in Eq. (42), since they could be
the target of LQCD studies. To perform the calculations
shown in this subsection, we have used the parameter set
VIII (see Table I) that fits the pion decay constant.
The 3D image of the pion spin components on the null-

plane is provided in Fig. 6. Notice that the exponential
factor expð−κbÞ, present in the Fourier transform of
φ2ðξ;k⊥; σi;M; Jπ; JzÞ [cf. Eqs. (B2)–(B4)] is factorized
out in both χ↑↓ð↑↑Þðz̃; bÞ, allowing to use a linear scale in
the 3D plot. For the purpose of the figure, each component
is multiplied by the transverse coordinate b, canceling a
log-type singularity at b ¼ 0, generated by the Bessel
function K0.
A general feature of both densities is the sharp enhance-

ment for z̃ ¼ 0, i.e., at vanishing lightlike distances.
Inspired by such an enhancement, and in order to better
analyze the physically significant dependence upon z̃ of the
valence wave function, we have also studied the absolute
value squared of the integrals

Ψ̃↑↓ð↑↑Þðz̃Þ ¼
R∞
0 dbbψ̃↑↓ð↑↑Þðz̃; bÞR

∞
0 dbb

R
∞
−∞ dz̃ψ̃↑↓ð↑↑Þðz̃; bÞ

; ð51Þ
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with ψ̃↑↓ð↑↑Þðz̃; bÞ given in Eq. (38). These amplitudes have
a more direct link to the spin components of the valence LF
wave function since they also contain the original expo-
nential factor e−κb.
The integrated amplitudes in Eq. (51) describe each

spin configuration where the constituents are at lightlike

distance z̃ and have relative transverse-momentum k⊥ ¼ 0.
As shown in Fig. 7, the amplitudes jΨ̃↑↓ð↑↑Þðz̃Þj2 have a
nice diffraction pattern that represents a peculiar feature of
such quantities, emphasizing the interference content due to
the entangled qq̄ pair.
Finally, in Fig. 8, we present the Fourier transform of

the transverse amplitudes, φT
↑↓ð↑↑ÞðγÞ [Eq. (50)], in the

transverse-coordinate space, i.e.,

ϕT
↑↑ð↑↓ÞðbÞ ¼

R
∞
−∞ dz̃ψ̃↑↓ð↑↑Þðz̃; bÞR

∞
0 dbb

R
∞
−∞ dz̃ψ̃↑↓ð↑↑Þðz̃; bÞ

: ð52Þ

The log-plot allows one to recognize the characteristic
exponential decay at large distances, clearly dominated by
expð−κbÞ, which is the familiar falloff of the wave function
of a bound state (κ2 ¼ m2 −M2=4 > 0). Since the ampli-
tudes depend upon transverse coordinates, they should be
accessible to LQCD. Therefore, it could be interesting to
compare its predictions with phenomenological calcula-
tions in order to get information about the highly nonlinear
behavior of QCD at large transverse distances.

VII. CONCLUSIONS AND PERSPECTIVES

Within the light-front framework, where the physical
intuition based on the Fock-space expansion of the hadron
wave function can be used at large extent, we have studied
the strongly bound qq̄ system that generates the pion. In our
approach, the Bethe-Salpeter equation in Minkowski space
is solved by using the Nakanishi integral representation of
the BS amplitude. The ladder approximation of the BS
interaction kernel in the Feynman gauge has been consid-
ered, with the constituent quarks interacting by an effective
massive gluon exchange. An extended effective quark-
gluon vertex function is introduced through a form factor,
that contains a new scale parameter, beside the gluon mass.
The range where (i) the form-factor parameter Λ, (ii) the

FIG. 6. The pion in the 3D space fz̃;bg (notice the rotational
symmetry in the transverse plane) for the set VIII. Upper panel:
antialigned component, bjχ↑↓ðz̃; bÞj2. Lower panel: aligned
component, bjχ↑↑ðz̃; bÞj2. The variable bm has been adopted
for making the transverse coordinate adimensional.
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quark effective mass, and (iii) the gluon one can vary has
been chosen according to LQCD results, with the guideline
given by the value of the IR scale ΛQCD. We fine-tuned the
parameters around such a scale in order to reproduce fπ .
Once the BSE has been solved, we formally obtained the
valence LF wave function, that is well defined in terms of
the lowest number of fields associated to the BS amplitude,
and therefore it contains unambiguous information on the
dynamics that one can convey into the interaction kernel of
the BSE itself.
The detailed study of the valence Fock component has

been carried out by first addressing static (or integral)
quantities, like (i) the pion decay constant, fπ , and (ii) the
valence probability, whose value is around 70%, according
to our calculations. A relevant and peculiar feature of our
approach is the possibility of decomposing the valence
component in the two allowed spin configuration: the
dominant S ¼ 0 component and the purely relativistic
S ¼ 1 that yield a ∼20% contribution to the valence
probability. Such a decomposition also has been applied
to the second set of investigated quantities, bringing a
considerable wealth of dynamical information. In particu-
lar, we have analyzed (i) the longitudinal and transverse
LF-momentum distributions; (ii) the distribution ampli-
tudes that depend upon the longitudinal and transverse LF-
momentum components; and (iii) the probability densities
in momentum and configuration spaces (the last one is
given by the Cartesian product of the covariant Ioffe-
time and the Euclidean transverse coordinates). For each
quantity, we have highlighted signatures of the dynamics
governed by the one-gluon exchange and have also
emphasized the relevance of the transverse degrees of
freedom, more accessible to the LQCD studies.
Future developments of our approach are primarily

related to the implementation of both quark and gluon
dressed propagators, more realistic dressed quark-gluon
vertex, in order to extend to the Minkowski space the
successful studies of the spontaneously broken chiral
symmetry performed in the Euclidean space. In this way,
the kernel of the BSE can be improved systematically,
adding step by step new dynamical contents from QCD,
that one should explore in the elaboration of hadron
models. Furthermore, observables like the electromag-
netic form factor and generalized transverse-momentum-
dependent parton distributions (see, e.g., Ref. [73]) of the
pion are within our plans for future studies.
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APPENDIX A: THE VALENCE WAVE FUNCTION
AND THE VALENCE PROBABILITY

In this Appendix, the valence probability is decomposed
into the contributions generated by the spin configurations
active inside the pion.
Let us first illustrate the relation between the BS

amplitude and the valence wave function, i.e., the ampli-
tude with the lowest number of constituents in the Fock
expansion of the bound system. Recalling the key obser-
vation contained in Ref. [50], i.e., the independent degrees
of freedom described by the fermionic field on the null-
plane is given by the projections ψ ðþÞðx̃; xþ ¼ 0þÞ ¼
Λþψðx̃; xþ ¼ 0þÞ with x̃≡ fx−;x⊥g and

Λ�¼1

4
γ∓γ�; Λ�Λ�¼Λ�; ΛþþΛ−¼1;

Λ�γ0Λ�¼0; Λ�γ0Λ∓¼γ∓
2
; TrfΛ�g¼2; ðA1Þ

one can write the good component of the fermion field as
follows:

ψ ðþÞðx̃; xþ ¼ 0þÞ ¼
Z

dq̃

ð2πÞ3=2
θðqþÞffiffiffiffiffiffiffiffi
2qþ

p X
σ

× ½UðþÞðq̃; σÞbðq̃; σÞeiq̃·x̃ þ VðþÞðq̃; σÞd†ðq̃; σÞe−iq̃·x̃�;
ðA2Þ

where

UðþÞðq̃; σÞ ¼ Λþuðq̃; σÞ; VðþÞðq̃; σÞ ¼ Λþvðq̃; σÞ; ðA3Þ

with the normalization ūu¼ 2m and v̄ðq̃;σ0Þvðq̃;σÞ¼−2m.
Hence, one expresses the fermion creation and annihilation
operators associated with b and d, in terms of the good
component of the field, as follows:

ð2πÞ3=2θðqþÞ
ffiffiffiffiffiffiffiffi
2qþ

p
bðq̃; σ0Þ

¼
Z

dx̃e−iq̃·x̃UðþÞ†ðq̃; σ0Þψ ðþÞðx̃; xþ ¼ 0þÞ;

ð2πÞ3=2θðqþÞ
ffiffiffiffiffiffiffiffi
2qþ

p
d†ðq̃; σ0Þ

¼
Z

dx̃eiq̃·x̃VðþÞ†ðq̃; σ0Þψ ðþÞðx̃; xþ ¼ 0þÞ; ðA4Þ
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where

u†ðq̃; σ0ÞΛþuðq̃; σÞ ¼ qþδσ0;σ;

v†ðq̃; σ0ÞΛþvðq̃; σÞ ¼ qþδσ;σ0 : ðA5Þ

Once the creation and annihilation operators for the fer-
mions are defined, one can construct the Fock component
with the lowest number of constituents and therefore intro-
duce the LF valence amplitude, φ2ðξ; k⊥; σi;M; Jπ; JzÞ. It
reads

φ2ðξ; k⊥; σi;M; Jπ; JzÞ
¼ ð2πÞ3

ffiffiffiffiffiffi
Nc

p
2pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξð1 − ξÞ
p

× h0jbðq̃2; σ2Þdðq̃1; σ1Þjp̃;M; Jπ; Jzi; ðA6Þ

where q̃1≡fqþ1 ¼Mð1− ξÞ;−k⊥g, q̃2 ≡ fqþ2 ¼ Mξ;k⊥g,
and ξ ¼ 1=2þ kþ=pþ.
From the general expression of the BS amplitude

[cf. Eq. (1), adapted to the general notation of this
Appendix] and Eq. (A6), one can show that the valence
amplitude is related to the BS one by

φ2ðξ; k⊥; σi;M; Jπ; JzÞ

¼
ffiffiffiffiffiffi
Nc

p
pþ

1

4
ūαðq̃2; σ2Þ

Z
dk−

2π
½γþΦðk; pÞγþ�αβvβðq̃1; σ1Þ:

ðA7Þ

More explicitly, from Eqs. (7) and (8), one gets

φ2ðξ; k⊥; σi;M; Jπ; JzÞ

¼
ffiffiffiffiffiffi
Nc

p
pþ

1

4
ūðq̃2; σ2Þ

Z
dk−

2π

× γþ
�
=p
M

ϕ2 þ
�
k · p
M3

=p −
=k
M

�
ϕ3 −

1

M2
=p=kϕ4

�
γ5

× γþvðq̃1; σ1Þ

¼ −
ffiffiffiffiffiffi
Nc

p
pþ

Z
dk−

2π

��
ϕ2 þ

�
k−

2M
þ z
4

�
ϕ3

�

×Dσ1σ2
1 ðq̃1; q̃2Þ −

1

M
Dσ1σ2

2 ðq̃1; q̃2Þϕ4

�
; ðA8Þ

where the following relations have been exploited:
γ�γ� ¼ 0, γ−γþγ− ¼ 4γ− (and the analogous for the other
combination). Moreover,

Dσ1σ2
1 ðq̃1; q̃2Þ ¼ TrfPσ1σ2ðq̃1; q̃2Þγ5Λþg

Dσ1σ2
2 ðq̃1; q̃2Þ ¼ TrfPσ1σ2ðq̃1; q̃2Þk⊥ · γ⊥γ5Λþg; ðA9Þ

with

Pσ1σ2ðq̃1; q̃2Þ ¼ vðq̃1; σ1Þu†ðq̃2; σ2Þ: ðA10Þ

The spinors u and v in terms of the LF variables can be
found in Appendix B of Ref. [29], namely,

uðq̃; σÞ ¼ qþ þ γ0mþ γ0q⊥ · γ⊥ffiffiffiffiffiffiffiffi
2qþ

p �
χσ

σχσ

�
ðA11Þ

and

vðq̃;−σÞ ¼ qþ − γ0mþ γ0q⊥ · γ⊥ffiffiffiffiffiffiffiffi
2qþ

p �
cχσ

σχσ

�
; ðA12Þ

with σ ¼ �1. Notice that in v there is an opposite sign for
the helicity (in the LF framework helicity and third
component of the spin coincide, see, e.g., [74]). For a
quick evaluation of the above matrix elements in Eq. (A9),
it is useful to introduce the following dyadic products:

�
χσ

σχσ

�
ð χσ† σχσ† Þ ¼ ð1þ σγ5ÞΛþ; ðA13Þ

�
χ−σ

−σχ−σ

�
ð χσ† σχσ† Þ ¼ ð1 − σγ5Þ

γLðRÞffiffiffi
2

p ; ðA14Þ

where in Eq. (A14) for σ ¼ �1 one has to use γLðRÞ, with

γRðLÞ ¼∓ 1ffiffiffi
2

p ðγ1 � iγ2Þ: ðA15Þ

The actual expressions of D1 and D2 can be obtained
through suitable traces. In particular, for D−σσ

1 , one gets

D−σσ
1 ðq̃1; q̃2Þ ¼ Tr

�
qþ1 − γ0 m − γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi

2qþ1
p ð1þ σγ5ÞΛþ

×
qþ2 þ γ0 mþ γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi

2qþ2
p γ5 Λþ

�

¼
ffiffiffiffiffiffiffiffiffiffiffi
qþ1 q

þ
2

p
2

Trfð1þ σγ5ÞΛþ γ5Λþg

¼ σM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξð1 − ξÞ

p
¼ σ

M
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
; ðA16Þ

where we can properly move the projector Λþ inside the
trace for simplifying the whole expression, e.g.,

Λþ½qþ1 − γ0 m − γ0k⊥ · γ⊥�Λþ ¼ Λþ qþ1
Λþ½qþ2 þ γ0mþ γ0k⊥ · γ⊥�Λþ ¼ Λþ qþ2 : ðA17Þ

By using the previous relations, one can show that the
matrix D−σσ

2 vanishes, viz.
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D−σσ
2 ðq̃1; q̃2Þ ¼ Tr

�
qþ1 − γ0m − γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi

2qþ1
p

× ð1þ σγ5ÞΛþ qþ2 þ γ0mþ γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi
2qþ2

p
× q⊥ · γ⊥ γ5 Λþ

�
¼ 0: ðA18Þ

Also Dσσ
1 is vanishing, once the following relation is

adopted:

γ5½qþ2 − γ0mþ γ0k⊥ · γ⊥�Λþ

× ½qþ1 − γ0 m − γ0k⊥ · γ⊥�

¼ γ5 q
þ
2

�
qþ1 Λþ −

γ−

2
m −

γ−

2
k⊥ · γ⊥

�

− γ5
m
2

�
qþ1 γ

þ − γþ
γ−

2
m

�

þ γ5
1

2
k⊥ · γ⊥

�
qþ1 γ

þ − γþ
γ−

2
k⊥ · γ⊥

�
ðA19Þ

and the standard results for the traces of the Dirac matrixes.
Namely, one gets

Dσσ
1 ðq̃1; q̃2Þ ¼ Tr

�
qþ1 − γ0m − γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi

2qþ1
p

× ð1 − σγ5Þ
γLðRÞffiffiffi

2
p qþ2 þ γ0mþ γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi

2qþ2
p

× γ5 Λþ
�

¼ 0: ðA20Þ

The last matrix element Dσσ
2 is given by

Dσσ
2 ðq̃1; q̃2Þ ¼ Tr

�
qþ1 − γ0m − γ0k⊥ · γ⊥ffiffiffiffiffiffiffiffi

2qþ1
p ð1 − σγ5Þ

×
γLðRÞffiffiffi

2
p ðqþ2 þ γ0mÞk⊥ · γ⊥ þ γ0jk⊥j2ffiffiffiffiffiffiffiffi

2qþ2
p

× γ5 Λþ
�

¼ −
ffiffiffiffiffiffiffiffiffiffiffi
qþ1 q

þ
2

p
2

ffiffiffi
2

p

× Trfð1 − σγ5ÞγLðRÞðkRγL þ kLγRÞγ5Λþg

¼ σkLðRÞM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − z2Þ

2

r
; ðA21Þ

where

kRðLÞ ¼∓ 1ffiffiffi
2

p ðkx � ikyÞ; ðA22Þ

and the following relations have been used:

γRðLÞγRðLÞ ¼ 0;

1

4
Trfðγ5 − σÞγ−γþγLðRÞγRðLÞg

¼ 1

2
Trfðγ5 − σÞð1þ γ0γ3Þð1 − σσ12Þg

¼ −2σ − 2σ
1

4
Trfγ5 γ0γ3 iγ1γ2g

¼ −4σ; ðA23Þ

recalling that for σ ¼ �1 one has the product γLðRÞ γRðLÞ.
Finally, by inserting the above results into Eq. (A8), one
gets

φ2ðξ; k⊥; σi;M; Jπ; JzÞ
¼ −

σ2
2

ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
×
Z

dk−

2π

�
δσ2;−σ1

�
ϕ2ðk; pÞ þ

�
k−

2M
þ z
4

�
ϕ3ðk; pÞ

�

−
kLðRÞ

ffiffiffi
2

p

M
δσ2;σ1ϕ4ðk; pÞ

�
: ðA24Þ

The integration over k− can be readily performed by using
the NIR of the scalar functions ϕi, Eq. (9). Explicitly, one
gets (cf. Refs. [39,40])

ψ iðγ; ξÞ ¼ −
i
M

Z
∞

0

dγ0

×
giðγ0; z; κ2Þ

½γ0 þ γ þm2z2 þ ð1 − z2Þκ2 − iϵ�2 ; ðA25Þ

with z ¼ 1–2ξ. Hence, one can write

φ2ðξ; k⊥; σi;M; Jπ; JzÞ
¼ −

σ2
2

ffiffiffiffiffiffi
Nc

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
×

�
δσ2;−σ1

�
ψ2ðγ; zÞ þ

z
2
ψ3ðγ; zÞ

þ i
M3

Z
∞

0

dγ0
∂g3ðγ0; z; κ2Þ=∂z

γ þ γ0 þ z2m2 þ ð1 − z2Þκ2 − iϵ

�

−
kLðRÞ

ffiffiffi
2

p

M
δσ2;σ1 ψ4ðγ; zÞ

�
; ðA26Þ

where for σ2 ¼ σ1 ¼ �1 one has to use kLðRÞ. From
Refs. [39,40], the cumbersome term k− ϕ3 contains a LF
singularity, which can be manipulated as follows:Z

dk−

2π
k− ϕ3ðk; pÞ

¼
Z þ1

−1
dz0

Z
∞

0

dγ0g3ðγ0; z0; κ2ÞI1ðγ0; z0; zÞ; ðA27Þ
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where

I1ðγ0; z0; zÞ

¼
Z

dk−

2π

k−

½k−ðz0 − zÞM
2
− zz0 M

2

4
− γ − γ0 − κ2 þ iϵ�3 ;

ðA28Þ

with z ¼ −2kþ=M. N.B. the integral I1 becomes singular
for z0 ¼ z. Its evaluation proceeds by using (see also
Ref. [75])

Z
∞

−∞

dx
2π

1

½βx − y ∓ iϵ�n ¼ � i
n − 1

δðβÞ
½−y ∓ iϵ�n−1 : ðA29Þ

Thus, one gets

I1ðγ0; z0; zÞ ¼ −i
2

M2

δðz0 − zÞ
ðz0 − zÞ

×
1

½−zz0M2=4− γ − γ0 − κ2 þ iϵ�
¼ iδ0ðz0 − zÞ 2

M2

1

½−zz0M2=4− γ − γ0 − κ2 þ iϵ� ;

ðA30Þ

where the derivative of the delta function fulfills the
relation: xδ0ðxÞ ¼ −δðxÞ, since d½xδðxÞ�=dx ¼ 0. By
inserting this result into Eq. (A27), and properly integrating
by parts, one getsZ

dk−

2π

k−

2M
ϕ3ðk; pÞ

¼ i
M3

Z
∞

0

dγ0
∂g3ðγ0; z; κ2Þ=∂z

½γ þ γ0 þ z2m2 þ ð1 − z2Þκ2 − iϵ�
þ z
4
ψ3ðγ; ξÞ: ðA31Þ

APPENDIX B: ORBITAL ANGULAR
MOMENTUM DECOMPOSITION ON THE

TRANSVERSE PLANE

In this Appendix, we illustrate some formal steps for
obtaining the Fourier transform of the two spin components
of the valence wave function φ2 [cf. Eq. (19)], as given in
Eq. (37). As a by-product, the obtained results allow one to
emphasize the Lz content in each contribution (recall that
Lz ¼ xpy − ypx, and it is a kinematical generator, within
the LF framework).
Let us first recall that

eix cos θ ¼
Xm¼∞

m¼−∞
imJmðxÞeimθ; ðB1Þ

where JmðxÞ is the Bessel function of integer order. In
particular, the Fourier transform of the spin antialigned and
aligned components are associated with integrals of J0 and
J1, respectively, after performing the angular integration
in Eq. (37).
By adopting the expression of ψ↑↓ðγ; zÞ and ψ↑↓ðγ; zÞ

in terms of the respective NIRs [cf. Eqs. (20) and (21)],
one has to evaluate the following integrals. The first
one is

F0ðz; γ0; bÞ ¼
Z

∞

0

dγ
J0ðb ffiffiffi

γ
p Þ

γ þ γ0 þ κ2 þ z2 M2

4

¼ 2K0

�
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0 þ κ2 þ z2

M2

4

r �
; ðB2Þ

where KnðxÞ is the modified Bessel function of the second
kind. The other two integrals are

F0
0ðz; γ0; bÞ ¼

Z
∞

0

dγ
J0ðb ffiffiffi

γ
p Þ

ðγ þ γ0 þ κ2 þ z2 M2

4
Þ2

¼
bK1

	
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0 þ κ2 þ z2 M2

4

q 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0 þ κ2 þ z2 M2

4

q ðB3Þ

and

F1ðz; γ0; bÞ ¼
Z

∞

0

dγ
ffiffiffi
γ

p
J1ðb ffiffiffi

γ
p Þ

½γ þ γ0 þ κ2 þ z2 M2

4
�2

¼ bK0

�
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0 þ κ2 þ z2

M2

4

r �
: ðB4Þ

Notice that F0, F0
0, and F1 depend upon z2, and this allows

one to eliminate odd functions when integrating on z in
Eq. (37). The driving exponential falloff of F0, F0

0, and F1

in the asymptotic limit b → ∞ comes from KmðxÞ, which
reads

KmðxÞjx→∞ →

�
π

2x

�1
2

e−x: ðB5Þ

Hence, the leading exponential behavior in the inte-

grals (B2)–(B4) comes from values of e−b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0þκ2þz2M

2

4

p
[as seen from Eq. (B5)] with γ0 close to 0 and z ∼ 0,
namely,

F0ðz ∼ 0; γ0 ∼ 0; bÞjb→∞

¼ b−1=2F0
0ððz ∼ 0; γ0 ∼ 0; bÞjb→∞

¼ b−1F1ððz ∼ 0; γ0 ∼ 0; bÞjb→∞ ∼ e−bκ; ðB6Þ

with κ given in Eq. (10).
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