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We use a color-magnetic interaction model (CMIM), a traditional constituent quark model and a
multiquark color flux-tube model to systematically investigate the properties of the states ½Q1Q2�½Q̄3Q̄4�
(Q ¼ c, b). The dynamical investigation indicates that the CMIM can not completely absorb QCD
dynamical effects through the effective constituent quark mass and overestimates the color-magnetic
interaction in the states under the assumption of the same spatial configurations. The Coulomb interaction
plays a critical role in the dynamical model calculations on the heavy hadrons, which induces the fact that
none of bound states ½Q1Q2�½Q̄3Q̄4� can be found in the dynamical models. The color configuration
½½Q1Q2�6c ½Q̄3Q̄4�6̄c �1 should be taken seriously in the ground states due to the strong Coulomb attraction

between the ½Q1Q2�6c and ½Q̄3Q̄4�6̄c . The color configuration ½½Q1Q2�3̄c ½Q̄2Q̄4�3c �1 is absolutely dominant in

the excited states because of the strong Coulomb attraction within the ½Q1Q2�3̄c and ½Q̄2Q̄4�3c . The J=Ψ-
pair resonances recently observed by LHCb are difficult to be accommodated in the CMIM. The broad
structure ranging from 6.2 to 6.8 GeV can be described as the ground tetraquark state ½cc�½c̄c̄� in the various
dynamical models. The narrow structure Xð6900Þ can be identified as the excited state ½cc�½c̄c̄� with L ¼ 1

(L ¼ 2) in the constituent quark model (color flux-tube model).

DOI: 10.1103/PhysRevD.103.014001

I. INTRODUCTION

The dynamics in the fully-heavy tetraquark states is
very simple, which only includes perturbative one gluon
exchange (OGE) interaction and nonperturbative color
confinement potential. They can provide a unique envi-
ronment to examine the non-relativistic quark model with
quantum chromodynamics (QCD) effective potentials if
they do exist. The question of whether there exist such
states has been debated for more than 40 years [1], which
received much attention from the different theoretical
frameworks, such as the nonrelativistic quark models
[2–5], the color-magnetic interaction model (CMIM)
[6–9], the QCD sum rules [10], the Bethe-Salpeter equation
[11], MIT bag model [12], the lattice QCD [13] etc. The
conclusions were model dependent. Taking the state bbb̄b̄
as an example, it can exist as a stable state against strong
interaction in the spin-spin interaction model [14], while it

is not stable in the string model [15]. Due to these
controversial issues, relevant experimental studies are
significant to understand their properties.
On the experimental side, the ATLAS, CMS, and LHCb

collaborations have measured the cross section for double
charmonium production [16]. In 2018, the LHCb collabo-
ration investigated the ϒμþμ− invariant-mass distribution
to search for a possible fully-heavy tetraquark state bbb̄b̄,
and observed no significant excess [17]. Very recently, the
LHCb Collaboration researched the invariant mass spec-
trum of J=Ψ pairs using proton-proton collision data at
center-of-mass energies of

ffiffiffi
s

p ¼ 7, 8 and 13 TeV [18].
They found a broad structure ranging from 6.2 to 6.8 GeV
and a narrow structure around 6.9 GeV. The narrow
structure, denoted as Xð6900Þ, is assumed as a resonance
with the Breit-Wigner line shape. The structures are the
first to be made up of four heavy quarks of the same type,
which provides an extreme and yet theoretically fairly
simple case to explore the strong interaction and to test
models that can be used to explain the nature of ordinary
hadrons.
The structures have revitalized the investigations of

multiquark resonances made of heavy quarks and heavy
antiquarks. Many theoretical investigations have been
devoted to interpret the properties of the structures
[19,20]. However, their properties and spin-parity quantum
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numbers are not completely clear so far. It is therefore
necessary to carry out a dynamical investigation on the
fully-heavy tetraquark states from various theoretical
frameworks, which is propitious to identify the properties
of the structures and to broaden our horizons of the fully-
heavy exotic hadrons.
In this work, we prepare to make a systematical

research on the states ½Q1Q2�½Q̄3Q̄4� from the perspective
of the phenomenological models, including the color-
magnetic interaction model, traditional constituent quark
model and multiquark color flux-tube model. The CMIMs
have various versions [21], the model with reference mass
scale is employed here [22]. The traditional constituent
quark model includes the OGE interaction and two-body
confinement potential proportional to color charge. The
multiquark color flux-tube model based on the lattice
QCD color flux-tube picture and the traditional quark
model has been developed, which contains a multibody
confinement potential instead of two-body one. The model
was recently applied to systematically investigate the
states ½cs�½c̄s̄� [23]. Furthermore, the conclusions of other
phenomenological models are involved to make a com-
prehensive understanding on the fully-heavy tetraquark
states.
This paper is organized as follows. After the introduction

section, the descriptions of three models are given in
Sec. II. The wave function of the states ½Q1Q2�½Q̄3Q̄4� is
shown in Sec. III. The numerical results and discussions are
presented in Sec. IV. A brief summary is listed in the last
section.

II. THREE MODELS

QCD has been widely accepted as the fundamental
theory to describe the strong interaction among quarks
and gluons and hadron structure, in which quarks and
antiquarks are in the fundamental representation of the
non-Abelian SU(3) color gauge group while gluons
belong to the adjoint representation. At the hadronic
scale, QCD is highly nonperturbative due to the compli-
cated infrared behavior of the non-Abelian SU(3) gauge
group. Unfortunately, calculating the properties of
hadrons analytically from the QCD Lagrangian has
proven to be a very difficult task in this strongly coupled
nonlinear theory. In the long term, lattice QCD, which
formulates the theory on a discrete space-time lattice, is
the most promising technique. One can calculate hadron
properties from the first principles by constructing inter-
polating fields with the quantum numbers of physical
hadrons and evaluating their correlations on the lattice.
Although a great deal of progress has been made, it has
been slow since these calculations take enormous amounts
of computer time. A less rigorous approach, which has
proven to be quite useful and reasonably successful, has
been to use QCD-motivated phenomenological models to
describe hadron properties.

A. Color-magnetic interaction model

The original form of the color-magnetic interaction
between the particles i and j can be expressed as follows,

Vcm
ij ¼ −

παsδðrijÞλci · λcjσi · σj
6mimj

; ð1Þ

it is the spin-dependent part of the OGE interaction
Voge
ij [24],

Voge
ij ¼ αs

4
λci · λ

c
j

�
1

rij
−
2πδðrijÞσi · σj

3mimj

�
; ð2Þ

mi and ri are the effective mass and position of the particle i,
respectively. rij ¼ ri − rj and rij ¼ jri − rjj. λc and σ
represent the Gell-Mann matrices and the Pauli matrices,
respectively. αs is a running quark-gluon coupling constant
in the perturbative QCD. More details will be given in the
following introduction of the constituent quark model.
With the exception of the spin-color factor λci · λ

c
jσi · σj,

the other part of the color-magnetic interaction can be
denoted as

Cij ¼
παsδðrijÞ
6mimj

; ð3Þ

It incorporates the effects from the spatial configuration and
effective quark masses and describes the effective coupling
constant between the particles i and j. For n-body ground
states, the total color-magnetic interaction can be written as

Hn
cm ¼ −

Xn
i<j

Cijλci · λ
c
jσi · σj; ð4Þ

It leads to the mass splitting among different color-spin
configurations. In the conventional mesons and baryons,
the color factors are frozen because they are constant,
hλci · λcji ¼ − 8

3
for baryons and hλci · λcji ¼ − 16

3
for mesons.

The calculation of color-magnetic interaction therefore
reduces to the simple algebra of the spin-spin operator
σi · σj. In the case of the tetraquark state with diquark-
antiquark configuration, the values hσi · σji and hλci · λcji
can be calculated according to the symmetry properties of
the tetraquark wave function [25]. In addition, they can also
be calculated according to the definition of spin and color
operators with our computer programs. A multiquark state
with given total quantum numbers in general consists of
several channels with different intermediate quantum num-
bers. Using the values hσi · σji, hλci · λcji and Cij, the color-
magnetic interaction matrices can be obtained [22]. Finally,
the color-magnetic interaction energies of the multiquark
states can be achieved after we diagonalize the numerical
color-magnetic interaction matrices.
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The effective quark masses should also be involved in
the CMIM Hamiltonian, which is assumed to be able to
absorb other various QCD dynamic effects, such as kinetic
energy, Coulomb interaction and confinement potential.
Therefore, the mass formula of n-body ground states in the
CMIM reads

M ¼
Xn
i¼1

mi þ hHn
cmi: ð5Þ

In principle, the values of mi and Cij should be different
in the various hadron environment. However, it is difficult
to exactly obtain the effect from the spatial configura-
tion because of no knowing the spatial wave function.
Therefore, the CMIM assumes that two pairs of interac-
tional particles with the same quark content share the same
size in the generalization from conventional hadrons to
multiquark states. For the simplicity and model universal-
ity, the values of mi and Cij are usually extracted from the
masses of conventional hadrons and then extended to
multiquark states [21]. This mechanism has been applied
to investigate the properties of the well-known H particle
and heavy pentaquark state qqqqQ̄ [26,27]. Recently, the
mechanism was also widely utilized to study the natures of
some new hadrons [28].
The mass formula generally overestimate the mass of

conventional hadrons [21], especially the mesons. In the
case of various multiquark states, the obtained masses with
this mass formula are also the largest values [28]. The
reason of the overestimation on the mass is probably from
the fact that the dynamical effects cannot be simply
absorbed into the effective quark masses. In order to reduce
the uncertainties and obtain more appropriate estimations,
an alternative mass formula has been developed to avoid
generally overestimated masses [22],

M ¼ Mref − hHn
cmiref þ hHn

cmi: ð6Þ

Mref and hHn
cmiref are the physical mass of the reference

system and its corresponding color-magnetic interaction
energy, respectively. A multiquark (tetraquark) state is
generally related to a reference hadron-hadron (meson-
meson) system whose quark content and quantum numbers
are the same as those of the considered multiquark state.
This mass formula can evade the problem of using
extracted quark masses from conventional hadrons in the
multiquark states [29]. Meanwhile, it can phenomenologi-
cally compensate the part of missed attraction between
quark components in the multiquark states.
In the present work, we focus on the CMIM results of

the states ½Q1Q2�½Q̄3Q̄4� obtained from the reference mass
formula. The parameters Cij related to ground heavy-
meson states are taken from Ref. [21], some of which
are used here are listed in Table I.

According to the alternative mass formula, one can
define the binding energy of a tetraquark state as

ΔE ¼ M −Mref ¼ hHn
cmi − hHn

cmiref ð7Þ

to identify whether or not the state is stable against strong
interaction. If ΔE ≥ 0, the state can fall apart into the two
mesons through quark rearrangement. If ΔE < 0, the
strong decay into the two mesons is forbidden and therefore
the decay must be weak or electromagnetic interaction. In
fact, such an estimation method had been applied to search
for stable multiquark states many years ago [30].

B. Constituent quark model

Constituent quark model (CQM) is formulated under the
assumption that hadrons are color singlet nonrelativistic
bound states of constituent quarks with effective masses
and interactions. One expects that the model dynamics is
governed by QCD. The perturbative effect of QCD is well
described by the OGE interaction, which is a standard color
Fermi-Breit interaction given by the Lagrangian

Loge ¼ i
ffiffiffiffiffiffi
4π

p
αsq̄γμGμλcq ð8Þ

whereGμ is the gluon field and q is the quark fields, both of
which carry the color charge. γμ is the Dirac matrix. From
the nonrelativistic reduction of the OGE diagram in QCD
for pointlike quarks one gets

Voge
ij ¼ αs

4
λci · λ

c
j

�
1

rij
−
2πδðrijÞσi · σj

3mimj

�
: ð9Þ

Dirac δðrijÞ function comes out in the deduction of the
interaction between pointlike quarks, when not treated
perturbatively, which leads to collapse [31]. Therefore,
the δðrijÞ function can be regularized in the form [32]

δðrijÞ →
1

4πrijr20ðμijÞ
e−rij=r0ðμijÞ; ð10Þ

where r0ðμijÞ ¼ r̂0=μij, r̂0 is an adjustable model param-
eter. This regularization is justified based on the finite size
of the constituent quarks and should be therefore flavor
dependent [33].
The quark-gluon coupling constant αs in the perturbative

QCD reads [34]

TABLE I. Parameters Cij for the ground heavy-meson states,
unit in MeV.

Cij Ccq̄ Ccs̄ Cc̄c Cb̄q Cb̄s Cb̄b Cb̄c

Value 6.6 6.7 5.3 2.1 2.3 2.9 3.3
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αsðμ2Þ ¼
1

β0 ln
μ2

Λ2

: ð11Þ

In the present work, we use an effective scale-dependent
form given by

αsðμ2ijÞ ¼
α0

ln
μ2ij
Λ2
0

; ð12Þ

where μij is the reduced mass of two interacting particles,
namely μij ¼ mimj

miþmj
. Λ0 and α0 are adjustable model

parameters.
Besides the OGE interaction, CQM model imitating

QCD should also incorporate nonperturbative effect, color
confinement, which takes into account the fact that the only
observed hadrons are color singlets. Color confinement
plays an essential role in the low energy hadron physics.
However, it is still impossible to derive color confinement
analytically from its QCD Lagrangian so far. From the
perspective of phenomenological models, quark confine-
ment potential should only emerge from a model in which
the interaction depends on color charges. In addition, the
coupling between color charges increases with increasing
separation in QCD. Quark confinement potential in the
CQM can be manmade based on the two ingredients, which
is defined as the sum of two-body interactions proportional
to the color charges and r2ij [35],

Vcon ¼ −ac
Xn
i<j

λci · λ
c
jr

2
ij; ð13Þ

where ac is an adjustable model parameter.
To sum up, the completely Hamiltonian of the CQM for

the heavy mesons and fully-heavy tetraquark states can be
presented as

Hn ¼
Xn
i¼1

�
mi þ

p2
i

2mi

�
− Tc þ

Xn
i<j

Voge
ij þ Vcon: ð14Þ

Tc is the center-of-mass kinetic energy of the states and
should be deducted; pi is the momentum of the ith quark or
antiquark.
The model can automatically prevent overall color

singlet multiquark states disintegrating into several color
subsystems by means of color confinement with an
appropriate SUcð3Þ Casimir constant [36]. The model also
allows a multiquark system disintegrating into color-singlet
clusters, and it leads to interacting potentials within
mesonlike qq̄ and baryonlike qqq subsystems in accord
with the empirically known potentials [36]. However,
the model is known to be flawed phenomenologically
because it leads to power law van der Waals forces between
color-singlet hadrons. In addition, it also leads to

anticonfinement for symmetrical color structure in the
multiquark system [37].
In order to avoid the misjudgement of the behavior of

model dynamics due to inaccurate numerical results, a high
precision computational method is therefore indispensable.
The Gaussian expansion method (GEM) [38], which has
been proven to be a rather powerful numerical method to
solve few-body problem in nuclear physics, is therefore
widely used to study multibody systems. According to the
GEM, the relative motion wave function between the quark
and antiquark in the heavy mesons can be written as

ϕG
lmðrÞ ¼

Xnmax

n¼1

cnNnlrle−νnr
2

Ylmðr̂Þ: ð15Þ

Gaussian size parameters are taken as geometric
progression

νn ¼
1

r2n
; rn ¼ r1an−1; a ¼

�
rnmax

r1

� 1
nmax−1 ð16Þ

Nnl is normalized coefficient and cn is a variation
coefficient determined by the model dynamics. More
details about the GEM can be found in Ref. [38]. With
r1 ¼ 0.2 fm, rnmax

¼ 2.0 fm and nmax ¼ 7, the converged
numerical results can be achieved in the present work.
The mass of ud quark is taken to be one third of that of

nucleon, other adjustable model parameters in Table II can
be determined by solving two-body Schrödinger equation
with the trial wave function Eq. (13) to fit the ground heavy
meson states, which is listed in Table III. At the same time,
we also give the average values of various parts of the CQM
Hamiltonian. hEki, hVconi, hVcmi, and hVclbi represent the
average values of kinetic energy, confinement potential,
color-magnetic interaction and Coulomb interaction,
respectively. It can been found from Table III that the
Coulomb interaction provides an extremely strong short-
range attraction, which is the main reason why a quark and
an antiquark can form a bound state in the CQM.
In the CMIM, the matrix elements hσi · σji ¼ −3 and 1

for spin S ¼ 0 and spin S ¼ 1, respectively. Under the
assumption of the same spatial configuration, the color-
magnetic interaction gives an energy ratio 3∶1 between
spin S ¼ 0 and S ¼ 1 mesons with the same quark content
in the CMIM, such as D and D�. In the dynamical
calculation of the CQM, the same flavor mesons with
different spin do not share the same spatial configuration

TABLE II. Model parameters, quark mass and Λ0 unit in MeV,
ac unit in MeV · fm−2, r0 unit in MeV · fm−2 and α0 is
dimensionless.

Para. mu;d ms mc mb ac α0 Λ0 r0

Valu. 313 494 1664 5006 −150 4.25 40.85 119.3
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because of their different dynamics, see the average
distance hr2i12 in Table III. The ratio in the dynamical
calculation is not strict 3∶1 because of the same reason,
which is between 3∶1 and 4∶1. It is therefore approx-
imately reasonable to describe the mass splitting of mesons
by the color magnetic interaction in the CMIM.

C. Multiquark color flux-tube model

Details of the multiquark color flux-tube model
(MCFTM) based on traditional constituent quark models
can be found in our previous paper [23]. Only prominent
characteristics of the model are presented here. Within
the framework of color flux-tube picture, the quark and
antiquark in a meson are linked with a three-dimensional
color flux tube, see Fig. 1. A two-body confinement
potential can be written as

Vcon
minð2Þ ¼ Kr2ij; ð17Þ

where rij is distance between the quark and antiquark. The
parameter K is the stiffnesses of a three-dimensional color
flux tube and determined by fitting the heavy-meson
spectra. Comparing with the confinement potential in the
CQM, one can obtain K ¼ −achλci · λcji ¼ 800 MeV fm−2.

The fully-heavy tetraquark states favor the compact
diquark-antiquark configuration rather than a loosely
molecular states because of the lack of the light mesons
exchange between two QQ̄ mesons. The color flux-tube
structure of the diquark-antiquark configuration is given in
Fig. 1. According to the double Y-shaped color flux-tube
structure, a four-body quadratic confinement potential can
be written as

Vconð4Þ ¼ K½ðr1 − y12Þ2 þ ðr2 − y12Þ2 þ ðr3 − y34Þ2
þ ðr4 − y34Þ2 þ κdðy12 − y34Þ2�; ð18Þ

in which r1, r2, r3 and r4 represent the position of the Q1,
Q2, Q̄3, and Q̄4, respectively. Two Y-shaped junctions y12
and y34 are variational parameters determined by taking the
minimum of the confinement potential. The relative stiff-
ness parameter κd is equal to Cd

C3
[39], where Cd is the

eigenvalue of the Casimir operator associated with the
SU(3) color representation d at either end of the color flux
tube, such as C3 ¼ 4

3
, C6 ¼ 10

3
, and C8 ¼ 3.

The minimum of the confinement potential Vcon
minð4Þ can

be obtained by taking the variation of Vconð4Þ with respect
to y12 and y34, and it can be expressed as

Vcon
minð4Þ ¼ K

�
R2

1 þR2
2 þ

κd
1þ κd

R2
3

�
: ð19Þ

The canonical coordinates Ri have the following forms,

R1 ¼
1ffiffiffi
2

p ðr1 − r2Þ; R2 ¼
1ffiffiffi
2

p ðr3 − r4Þ;

R3 ¼
1ffiffiffi
4

p ðr1 þ r2 − r3 − r4Þ;

R4 ¼
1ffiffiffi
4

p ðr1 þ r2 þ r3 þ r4Þ: ð20Þ

The use of Vcon
minð4Þ can be understood here as that the gluon

field readjusts immediately to its minimal configuration.
The OGE interaction is also involved in the MCFTM,

which is the same as that of the CQM. It is worth
mentioning that the MCFTM is not a completely new
model but the updated version of the traditional CQM
based on the color flux-tube picture of hadrons in the lattice
QCD. In fact, it merely modifies the two-body confinement
potential into the multibody one to describe multiquark
states with multibody interaction. The MCFTM reduces to
the CQM in the mesons while the MCFTM can obtain
different results from the CQM in the multiquark states.

III. WAVE FUNCTION

Numerical results of the states ½Q1Q2�½Q̄3Q̄4� can be
obtained by solving a four-body Schrödinger equation
with their complete wave functions including all possible

TABLE III. Ground state heavy-meson spectra and the average
values of various parts of the Hamiltonian in MeVand the average
distance in fm.

States PDG E2 hEki hVconi hVcmi hVclbi hr2i12
D� 1869 1886 737 200 −92 −937 0.50
D� 2007 2000 633 226 27 −862 0.53
D�

s 1969 1982 693 151 −105 −914 0.43
D�

s 2112 2109 560 179 29 −816 0.47
ηc 2980 2965 679 75 −123 −995 0.31
J=Ψ 3097 3103 488 97 29 −838 0.35
B0 5280 5261 664 197 −34 −885 0.50
B� 5325 5305 623 207 11 −855 0.51
B0
s 5366 5346 612 143 −42 −868 0.42

B�
s 5416 5399 555 155 13 −824 0.44

Bc 6277 6244 644 54 −79 −1044 0.26
B�
c � � � 6336 502 65 20 −921 0.29

ηb 9391 9376 740 24 −96 −1305 0.17
ϒð1SÞ 9460 9486 560 30 24 −1140 0.19

FIG. 1. Color flux-tube structures.
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flavor-spin-color-spatial channels that contribute to a given
well defined parity, isospin, and total angular momentum.
In the frame of center of mass, the wave functions of the
states ½Q1Q2�½Q̄3Q̄4� can be constructed as a sum of the
following direct products of color χc, isospin ηi, spin χs,
and spatial ϕG

lm terms

Φ½Q1Q2�½Q̄3Q̄4�
IMIJMJ

¼
X
α

ξα½½½ϕG
lama

ðrÞχsaMsa
�½Q1Q2�
JaMJa

×
h
ϕG
lbmb

ðRÞχsbMsb

i½Q̄3Q̄4�
JbMJb

i
JabMJab

ϕG
labmab

ðXÞ
i
JMJ

×
h
η½Q1Q2�
iaMia

η½Q̄3Q̄4�
ibMib

i
IMI

h
χ½Q1Q2�
½ca�Wca

χ½Q̄3Q̄4�
½cb�Wcb

i
½C�WC

: ð21Þ

The subscripts a and b in the intermediate quantum
numbers represent the ½Q1Q2� and ½Q̄3Q̄4�, respectively.
The summering index α stands for all possible flavor-spin-
color-spatial intermediate quantum numbers. [ ]s denote
Clebsh-Gordan coefficient coupling.
In the dynamical calculation, the relative spatial coor-

dinates r, R, and X and center-of-mass Rc in the states
½Q1Q2�½Q̄3Q̄4� can be defined as

r ¼ r1 − r2; R ¼ r3 − r4;

X ¼ m1r1 þm2r2
m1 þm2

−
m3r3 þm4r4
m3 þm4

;

Rc ¼
m1r1 þm2r2 þm3r3 þm4r4

m1 þm2 þm3 þm4

: ð22Þ

In the center-of-mass reference frame, the relative motion
wave functions ϕG

lama
ðrÞ, ϕG

lbmb
ðRÞ, and ϕG

labmab
ðXÞ can be

expressed as the superposition of many different size
Gaussian functions with well-defined quantum numbers,
which share the exactly same form with that of the heavy
mesons, to obtain accurate numerical results. For the sake
of saving space, their explicit expressions are not presented
here. The heavy quarks have isospin zero so they do not
contribute to the total isospin. The flavor wave function is
therefore symmetrical if Q1 and Q2 (Q̄3 and Q̄4) are
identical particles.
The color representation of the ½Q̄3Q̄4� (½Q1Q2�) may

be antisymmetrical 3c (3̄c) or symmetrical 6̄c (6c).
Coupling the colorful ½Q1Q2� and ½Q̄3Q̄4� into an overall
colorless state according to color coupling rule, we have
two different coupling ways: ½½Q1Q2�3̄c ⊗ ½Q̄3Q̄4�3c �1 and
½½Q1Q2�6c ⊗ ½Q̄3Q̄4�6̄c �1. The spin of the ½Q1Q2� is coupled
to sa and that of the ½Q̄3Q̄4� is coupled to sb. The total spin
wave function of the state ½Q1Q2�½Q̄3Q̄4� can be written
as S ¼ sa ⊕ sb. Then we have the following basis vectors
as a function of the total spin S, 0 ¼ 1 ⊕ 1 or 0 ⊕ 0, 1 ¼
1 ⊕ 1; 1 ⊕ 0 or 0 ⊕ 1, and 2 ¼ 1 ⊕ 1.

Taking all degrees of freedom of identical particles in the
½Q1Q2� (½Q̄3Q̄4�) into account, the Pauli principle must
be satisfied by imposing restrictions on their quantum
numbers to satisfy antisymmetry. The S-wave ½Q1Q2�
(½Q̄3Q̄4�) with two identical quarks (antiquarks) has two
possible configurations, ½Q1Q2�13̄c and ½Q1Q2�06c (½Q̄3Q̄4�13c
and ½Q̄3Q̄4�06̄c), where the superscript and subscript denote

the spin and color representation, respectively. The possible
color-flavor-spin functions of the states ½cc�½c̄c̄�, ½bb�½c̄c̄�,
and ½bb�½b̄b̄� states can be written as

0þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�13c �01c ; ½½Q1Q2�06c ½Q̄3Q̄4�06̄c �
0

1c
;

1þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�13c �11c ;
2þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�13c �21c ;

those of the states ½cc�½c̄b̄� and ½bb�½b̄c̄� read

0þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�13c �01c ; ½½Q1Q2�06c ½Q̄3Q̄4�06̄c �
0

1c
;

1þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�0;13c
�1
1c
; ½½Q1Q2�06c ½Q̄3Q̄4�16̄c �

0

1c
;

2þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�13c �21c ;

those of the state ½cb�½c̄b̄� read

0þ∶ ½½Q1Q2�0;13̄c
½Q̄3Q̄4�0;13c

�0
1c
; ½½Q1Q2�0;16c

½Q̄3Q̄4�0;16̄c
�0
1c
;

1þ∶ ½½Q1Q2�0;13̄c
½Q̄3Q̄4�0;13c

�1
1c
; ½½Q1Q2�06c ½Q̄3Q̄4�0;16̄c

�1
1c
;

2þ∶ ½½Q1Q2�13̄c ½Q̄3Q̄4�13c �21c ; ½½Q1Q2�16c ½Q̄3Q̄4�16̄c �
2

1c
:

In the following, we will extend the three models to
study the properties of the states ½Q1Q2�½Q̄3Q̄4� with the
well-defined wave function.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Fully-heavy tetraquark states

Recently, various versions of color-magnetic interaction
models were widely utilized to investigate the properties of
the states ½Q1Q2�½Q̄3Q̄4�. Berezhnoy et al. applied a color-
magnetic model, in which the tetraquark mass can be
determined by solving a two-particle Schrödinger equation
with the pointlike diquark (antidiquark) in color 3̄c (3c), to
research the states ½cc�½c̄c̄�, ½bb�½b̄b̄� and ½bc�½b̄c̄�. With the
exception of the tensor states ½cc�½c̄c̄� and ½bc�½b̄c̄�, the
lowest states with other quantum numbers are all below
relevant two meson thresholds [7]. Karliner et al. studied
the 0þþ states ½cc�½c̄c̄� and ½bb�½b̄b̄� with the color-
magnetic interaction model motivated by the QCD-string
junction picture [8]. Their masses are, respectively,
6192� 25 and 18826� 25 MeV. It was noted that an
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experimental search for these states in the predicted mass
range is highly desirable. Wu et al. systematically inves-
tigated the mass spectra of the states ½Q1Q2�½Q̄3Q̄4� with a
color-magnetic interaction model with a reference mass
scale [9]. It was found that the states ½bb�½b̄c̄� and ½bc�½b̄c̄�
are possible stable or narrow resonance states.
One should note that all color-magnetic interaction

models ignore the spatial degree of freedom so that
everything in the models depends only on the color-spin
algebra. The generalization of the color-magnetic interac-
tion models from the conventional hadrons to the multi-
quark states is implemented under the assumption that the
spatial configurations of each qq, qq̄; and q̄q̄ pairs are the
same in the multiquark states as in the ordinary hadrons.
The well-known H particle predicted in the color-magnetic
interaction model was below the ΛΛ threshold about
80 MeV [26]. However, the state was above the threshold
in the nonrelativistic quark model involving the color-
magnetic interaction with spatial degree of freedom and
other various dynamics once SU(3) flavor symmetry is
broken [40]. The state was once very fashionable and
searched for in many experiments. The high-sensitivity
search at Brookhaven gave no evidence for the production
of the state [41]. Recently, the theoretical case for the state
continues to be strong and has been strengthened by the
NPLQCD and HALQCD collaborations that both observed
the state [42,43]. The high-statistics search for the state
production shown that no indication of the state with a mass
near the ΛΛ threshold was seen [44].
In view of the inherent defects of the color-magnetic

models and the experience of the H particle, it is there-
fore necessary to make an systematically dynamical

investigation on the properties of the states ½Q1Q2�½Q̄3Q̄4�
in the quark models containing various QCD dynamical
effects. The MCFTM and CQM are therefore involved,
in which the masses of all possible states ½Q1Q2�½Q̄3Q̄4�
can be obtained by solving a four-body Schrödinger
equation with the well-defined trial wave functions and
presented in Table IV. The notations 3̄c ⊗ 3c and 6c ⊗ 6̄c
stand for the color configurations ½½Q1Q2�3̄c ½Q̄2Q̄4�3c �1 and
½½Q1Q2�6c ½Q̄3Q̄4�6̄c �1, respectively. C.C. represents the cou-
pling of the two color configurations. The masses of the
states ½Q1Q2�½Q̄3Q̄4� with two color configurations and
their individual proportion in the eigen states can be
achieved by the eigen wave function, which are listed in
Table IV. In order to facilitate the comparison, we also
reproduce the color-magnetic interaction energy of the
states in the CMIM with the approximation CQQ ¼ CQQ̄

[9]. The proportion of each color configuration and the
mass (right) obtained with the reference mass formula in
the C.C. results are given.
It can be found from Table IV that the masses predicted

by the CMIM are lower by 300–500 MeV than those
predicted by other two models involving QCD dynamic
effects. The masses predicted by the MCFTM are lower
30–120 MeV than those by the CQM. Comparing the
masses with the lowest two meson thresholds TM1M2

, the
binding energy ΔE in the MCFTM can be calculated and
are presented in Table V. One can find that none of states
can exist as a bound state because all states are hundreds of
MeV above the corresponding threshold in the MCFTM
while the masses of the states predicted by the CMIM are
close to the corresponding threshold. In order to unveil the

TABLE IV. The mass spectra of the ground states ½Q1Q2�½Q̄3Q̄4� in the three models, unit in MeV.

Model CMIM MCFTM CQM

Flavor JP 3̄c ⊗ 3c 6c ⊗ 6̄c C.C. 3̄c ⊗ 3c 6c ⊗ 6̄c C.C. 3̄c ⊗ 3c 6c ⊗ 6̄c C.C.

½cc�½c̄c̄� 0þ −28.27, 66% 42.40, 34% −102.64, 6035 6454, 56% 6467, 44% 6407 6573, 36% 6537, 64% 6491
1þ 0.00, 100% � � � 0.00, 6139 6463, 100% � � � 6463 6580, 100% � � � 6580
2þ 56.53, 100% � � � 56.53, 6194 6486, 100% � � � 6486 6607, 100% � � � 6607

½cc�½b̄b̄� 0þ −13.33, 66% 32.80, 34% −58.92, 12597 12940, 49% 12938, 51% 12906 13023, 29% 12986, 71% 12963
1þ 4.27, 100% � � � 4.27, 12660 12945, 100% � � � 12945 13024, 100% � � � 13024
2þ 39.47, 100% � � � 39.47, 12695 12960, 100% � � � 12960 13041, 100% � � � 13041

½bb�½b̄b̄� 0þ −15.47, 66% 23.20, 34% −56.16, 18834 19377, 38% 19351, 62% 19329 19417, 28% 19368, 72% 19357
1þ 0.00, 100% � � � 0.00, 18890 19373, 100% � � � 19373 19413, 100% � � � 19413
2þ 30.93, 100% � � � 30.93, 18921 19387, 100% � � � 19387 19429, 100% � � � 19429

½cc�½c̄b̄� 0þ −22.93, 66% 34.40, 34% −83.27, 9314 9705, 56% 9721, 44% 9670 9813, 41% 9780, 59% 9753
1þ −15.85, 65% 16.80, 35% −53.17, 9343 9705, 58% 9712, 42% 9683 9808, 31% 9785, 69% 9766
2þ 45.87, 100% � � � 45.87, 9442 9732, 100% � � � 9732 9839, 100% � � � 9839

½bb�½c̄b̄� 0þ −16.53, 66% 24.80, 34% −60.03, 15713 16158, 42% 16158, 58% 16126 16224, 31% 16201, 69% 16175
1þ −18.79, 67% 7.20, 33% −43.33, 15729 16151, 39% 16139, 61% 16130 16230, 23% 16187, 77% 16179
2þ 33.07, 100% � � � 33.07, 15806 16182, 100% � � � 16182 16274, 100% � � � 16274

½cb�½c̄b̄� 0þ −53.24, 33% −108.10, 67% −159.37, 12354 12955, 33% 12898, 67% 12829 13043, 29% 12968, 71% 12894
1þ −21.81, 28% −62.04, 72% −77.75, 12436 12955, 40% 12938, 60% 12881 13052, 33% 13006, 67% 12955
2þ 34.13, 33% 43.73, 67% 34.13, 12548 12984, 36% 12959, 64% 12925 13084, 27% 13032, 73% 13000
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underlying cause, the average values of various parts in the
Hamiltonian are given by using the eigen wave function in
Table V, in which hEki, hVconi, hVcmi and hVclbi represent
the average values of kinetic energy, confinement potential,
color-magnetic interaction and Coulomb interaction,
respectively. TheΔ stands for the corresponding interaction
difference between the state ½Q1Q2�½Q̄3Q̄4� and two-meson
thresholds. The average distances hr2iji12 between the par-

ticles i and j and hX2i12 between the ½Q1Q2� and ½Q̄3Q̄4� are
presented in Table VI.
The investigation on the spectrum of the heavy mesons

in Sec. II indicates that the Coulomb interaction is
significant in the formation of the heavy mesons. It can
be found from Table V that the interaction also plays a
decisive role in the states ½Q1Q2�½Q̄3Q̄4�. The Coulomb
interaction provides very strong attraction in the heavy
mesons and the states ½Q1Q2�½Q̄3Q̄4�. The interaction
depends on 1

r and the color factor hλci · λcji, the strength
of which is related to the color factor hλci · λcji. In the heavy

quark sector, the large quark mass allows two particles
to approach each other as a result of a small kinetic,
which helps to strengthen the Coulomb interaction. In the
heavy mesons, hλci · λcji ¼ − 16

3
, which is stronger than

those of the states ½Q1Q2�½Q̄3Q̄4�, see Table VII. The states
½Q1Q2�½Q̄3Q̄4� are therefore looser than heavy mesons ηc,
Ψ, Bc, ηb and ϒ, see the average distances in Tables III
and VI. In addition, the values of the Coulomb interaction
in the states ½Q1Q2�½Q̄3Q̄4� are higher by 500–1000 MeV
than those of their corresponding two-meson thresholds,
see the difference ΔhVclbi in Table V, which is the main
reason resulting in none of bound states in the quark models
with QCD dynamic effects. It is therefore difficult for the
CMIM to completely absorb the strong Coulomb inter-
action effect in the states ½Q1Q2�½Q̄3Q̄4� by the effective
constituent quark mass.
The long-range confinement interaction contributes a

little to the masses and binding energy of the ground states
½Q1Q2�½Q̄3Q̄4� because of the small distances, see the

TABLE V. The values of various parts of the Hamiltonian in the MCFTM, unit in MeV.

Flavor JP E4 hEki hVcon
minð4Þi hVcmi hVclbi TM1M2

ΔE ΔhEki ΔhVcon
minð4Þi ΔhVcmi ΔhVclbi

½cc�½c̄c̄� 0þ 6407 887 192 −51 −1279 ηcηc 477 −471 42 195 711
1þ 6463 800 203 4 −1202 ηcΨ 395 −367 32 98 632
2þ 6486 769 211 27 −1178 ΨΨ 280 −206 18 −31 499

½cc�½b̄b̄� 0þ 12906 853 131 −27 −1392 BcBc 418 −435 24 132 696
1þ 12945 787 135 6 −1324 B�

cBc 365 −359 17 65 642
2þ 12960 764 139 20 −1304 B�

cB�
c 288 −240 9 −20 538

½bb�½b̄b̄� 0þ 19329 865 69 −26 −1605 ηbηb 577 −615 21 166 1005
1þ 19373 826 68 3 −1550 ηbϒð1SÞ 511 −474 14 75 895
2þ 19387 799 70 17 −1525 ϒð1SÞϒð1SÞ 415 −321 10 −31 756

½cc�½c̄b̄� 0þ 9670 858 161 −38 −1309 ηcBc 461 −465 32 164 730
1þ 9683 838 165 −25 −1295 ηcB�

c 382 −343 25 78 621
2þ 9732 758 174 22 −1221 ΨB�

c 293 −232 12 −27 538
½bb�½c̄b̄� 0þ 16126 856 97 −27 −1483 Bcηb 506 −528 19 148 866

1þ 16130 905 94 −19 −1530 B�
cηb 418 −337 6 58 696

2þ 16182 771 102 17 −1392 B�
cϒð1SÞ 360 −291 8 −27 669

½cb�½c̄b̄� 0þ 12829 932 123 −84 −1483 ηbηc 344 −487 24 135 817
1þ 12881 816 134 −31 −1379 ηcϒð1SÞ 430 −423 29 68 756
2þ 12925 789 144 21 −1370 Ψϒð1SÞ 336 −259 18 −32 608

TABLE VI. The average distances hr2iji
1
2 and hX2i12 of the ground states ½Q1Q2�½Q̄3Q̄4� in the MCFTM, unit in fm.

State ½cc�½c̄c̄� ½cc�½b̄b̄� ½bb�½b̄b̄� ½cc�½c̄b̄� ½bb�½c̄b̄� ½bc�½b̄c̄�
JP 0þ 1þ 2þ 0þ 1þ 2þ 0þ 1þ 2þ 0þ 1þ 2þ 0þ 1þ 2þ 0þ 1þ 2þ

hr212i
1
2 0.44 0.44 0.44 0.42 0.42 0.42 0.27 0.25 0.26 0.43 0.43 0.43 0.28 0.28 0.27 0.37 0.38 0.40

hr234i
1
2 0.44 0.44 0.44 0.30 0.28 0.28 0.27 0.25 0.26 0.38 0.38 0.38 0.35 0.35 0.35 0.37 0.38 0.40

hr213i
1
2 0.44 0.47 0.48 0.36 0.39 0.39 0.26 0.27 0.28 0.45 0.46 0.48 0.36 0.36 0.38 0.24 0.26 0.26

hr224i
1
2 0.44 0.47 0.48 0.36 0.39 0.39 0.26 0.27 0.28 0.36 0.37 0.40 0.26 0.26 0.29 0.44 0.46 0.47

hr214i
1
2 0.44 0.47 0.48 0.36 0.39 0.39 0.26 0.27 0.28 0.36 0.37 0.40 0.26 0.26 0.29 0.35 0.37 0.38

hr223i
1
2 0.44 0.47 0.48 0.36 0.39 0.39 0.26 0.27 0.28 0.45 0.46 0.48 0.36 0.36 0.38 0.35 0.37 0.38

hX2i12 0.31 0.36 0.37 0.25 0.29 0.30 0.17 0.20 0.21 0.28 0.29 0.33 0.20 0.20 0.24 0.20 0.22 0.22
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average values Vcon
min and ΔVcon

min in Table V. The mass
difference, about 30–120 MeV, between the CQM and
MCFTM in Table IV originates from different types of
confinement potential. The multibody confinement poten-
tial based on the lattice color flux-tube picture is thought to
be closer to real physical images than two-body one related
to color charges, which plays significant roles in many
interesting places of hadron physics, such as the formation
and decay of the multiquark states via strong interaction,
quark pair creation and hadron structure. The multibody
confinement potential can reduce the mass of the multi-
quark states. Similar quark models with different type of
multibody confinement potential have been extensively
applied to study the properties of the multiquark states [45].
The CMIM does not explicitly involve the spatial degree

of freedom, which in fact implies that any two pairs of
interacting particles with the same quark content have the
same spatial configuration in despite of hadron environ-
ments, such as the QQ̄ in the conventional mesons and
multiquark states. The dynamical calculations on the heavy
mesons and the states ½Q1Q2�½Q̄3Q̄4� indicate that the
difference of their distances are apparent, see Tables III
and VI, which is in contradiction with the CMIM assump-
tion of the same spatial configuration. Furthermore, it can
be found from Tables IV and V that the color-magnetic
interactions of the states ½Q1Q2�½Q̄3Q̄4� in the CMIM are
overestimated relative to that in the dynamical models due
to the spatial assumption, which results in the appearance of
the bound states in the CMIM [9]. In addition, the differ-
ence of the confinement potential based on string and
junction ΔhVcon

minð4Þi is not a constant, which depends on
the specific state. However, the added constant term S may
be thought of as representing the contribution of two
additional QCD strings and one junction [8]. In this
way, the predictive power of the color-magnetic mechanism
needs to be checked on a large scale by more sophisticated
models with various QCD dynamic effects.
The ground states ½Q1Q2�½Q̄3Q̄4� prefer the color con-

figuration 3̄c ⊗ 3c in the color-magnetic mechanism [7,8].
However, the interactions between the ½Q1Q2�6c and
½Q̄3Q̄4�6̄ in the color configuration 6c ⊗ 6̄c are attractive
although the interactions in the ½Q1Q2�6c (½Q̄3Q̄4�6) are
repulsive. The attractive interactions are much stronger than
those of the 3̄c ⊗ 3c because the strength of the interaction
depends on the color factors listed in Table VII. Therefore,

the final result, which is mainly dominated by the Coulomb
interaction, of the 6c ⊗ 6̄c relies on the distance hX2i12
between the ½Q1Q2�6c and ½Q̄3Q̄4�6̄. The heavier the heavy
quark mass, the smaller the distance hX2i12, the stronger the
Coulomb interaction, the bigger the proportion of the
6c ⊗ 6̄c, which can be found from the group ½cc�½c̄c̄� −
½cc�½b̄b̄� − ½bb�½b̄b̄� with 0þ in Tables V and VI.
The 3̄c ⊗ 3c and 6c ⊗ 6̄c can couple each other through

mainly the color-magnetic interaction, the strength of
which is inversely proportional to the interacting quark
masses. The proportion of the 6c ⊗ 6̄c in the CQM is
bigger than that in the MCFTM because the confinement
potential involving the color factor hλci · λcji in the CQM
can strengthen the coupling in the two color configurations,
see Table IV. In the CMIM, the proportion in the group
½cc�½c̄c̄� − ½cc�½b̄b̄� − ½bb�½b̄b̄� with 0þ in Tables V does not
change because it only determined by spin-color struc-
ture due to the absence of the spatial degree of freedom. In a
word, the color configuration 6c ⊗ 6̄c can not be ignored
but should be taken seriously in the investigation on the
ground fully-heavy tetraquark states, which is supported by
the conclusions of other two models with QCD dynamical
effects [4].
The ½Q1Q2� and ½Q̄3Q̄4� are both considered as a

compound object with no internal orbital excitations,
namely la ¼ lb ¼ 0. In the case of the excited states
½Q1Q2�½Q̄3Q̄4�, the orbital angular excitations are assumed
to occur only between the ½Q1Q2� and ½Q̄3Q̄4� in the present
numerical calculations. Therefore, the total orbital angular
momentum of the states ½Q1Q2�½Q̄3Q̄4� L is equal to lab and
the parity is P ¼ ð−1ÞL. In Table VIII, we present the
numerical results of the states ½cc�½c̄c̄�, ½cc�½b̄b̄�, and
½bb�½b̄b̄� with L ¼ 0, 1, and 2 and S ¼ 0. It can be found
from Tables VI and VIII that the sizes of the ½Q1Q2� and
½Q̄3Q̄4�, hr212i

1
2 and hr234i

1
2, do not dramatically change with

the increase of L and S. However, the distance between the
½Q1Q2� and ½Q̄3Q̄4�hX2i12 rapidly increase with the increase
of L in the excited states. It can be concluded form the
average distances that the spatial configuration of the states
½Q1Q2�½Q̄3Q̄4� is a compact three-dimensional structure. In
the ground states (L ¼ 0), the shape looks like an ellipsoid
because the ½Q1Q2� and ½Q̄3Q̄4� overlap very strongly. In
the excited states, the ellipsoid gradually expands to be a
dumbbell-like shape with the increase of the distance hX2i12
because of the increase of L.
The Coulomb interaction between the ½Q1Q2� and

½Q̄3Q̄4� rapidly decrease with the increase of the distance
hX2i12. The 6c ⊗ 6̄c decreases faster than the 3̄c ⊗ 3c
because of the bigger interaction strength between the
½Q1Q2�6c and ½Q̄3Q̄4�6̄. The Coulomb interaction in the
3̄c ⊗ 3c is stronger than that in the 6c ⊗ 6̄c because
the Coulomb interaction in the ½Q1Q2�3̄ and ½Q̄3Q̄4�3 is

TABLE VII. Color matrix elements, Ôij ¼ λci · λ
c
j .

hÔiji hÔ12i hÔ34i hÔ13i hÔ24i hÔ14i hÔ23i
h3̄c ⊗ 3cjÔijj3̄c ⊗ 3ci − 8

3
− 8

3
− 4

3
− 4

3
− 4

3
− 4

3

h6c ⊗ 6̄cjÔijj6c ⊗ 6̄ci 4
3

4
3

− 10
3

− 10
3

− 10
3

− 10
3

h3̄c ⊗ 3cjÔijj6c ⊗ 6̄ci 0 0 −2
ffiffiffi
2

p
−2

ffiffiffi
2

p
2

ffiffiffi
2

p
2

ffiffiffi
2

p
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strongly attractive while that in the ½Q1Q2�6c and ½Q̄3Q̄4�6̄
is repulsive. In addition, the kinetic Ek of the 3̄c ⊗ 3c
is obviously lower, more than 100 MeV, than that of the
6c ⊗ 6̄c because of the big distance hX2i12 induced by the
relative weak Coulomb interaction between the ½Q1Q2�3̄
and ½Q̄3Q̄4�3, see Table VIII, which is the main reason
resulting in the mass difference between the 3̄c ⊗ 3c and
6c ⊗ 6̄c. The coupling effect between the 3̄c ⊗ 3c and
6c ⊗ 6̄c is very weak because of the weak color-magnetic
interaction in the excited states. In this way, the proportion
of the 6c ⊗ 6̄c is small in the excited states while the
3̄c ⊗ 3c is absolutely dominant.
Other different versions of nonrelativistic quark models

involving the OGE interaction and various type of color
confinement potential were also employed to investigate
the fully-heavy tetraquark states [3–5], which presented
similar mass spectra to our models. The masses of the
ground states in those quark models are much higher, about
300–500 MeV, than the corresponding thresholds, which
indicates that there does not exist a bound state in the
scheme of those quark models. However, the nonrelativistic
model with a Cornell-inspired potential, in which a

four-body problem is simplified into three two-body
problems, predicted that the lowest S-wave ½cc�½c̄c̄� might
be below their thresholds of spontaneous dissociation into
low-lying charmonium pairs [46].

B. J=Ψ-pair resonances observed by LHCb
and the fully-heavy state ½cc�½c̄c̄�

The central value of the broad structure ranging from 6.2
to 6.8 GeV locates at around 6490 MeV [18]. The mass and
width of the structure Xð6900Þ are

M ¼ 6905� 11� 7 MeV; Γ ¼ 80� 19� 33 MeV

assuming no interference with the nonresonant single-
parton scattering continuum [18]. The mass and width
are changed to

M ¼ 6886� 11� 11 MeV; Γ ¼ 168� 33� 69 MeV

when assuming the nonresonant single-parton scattering
continuum interferes with the broad structure [18]. The two
structures are obviously higher than the CMIM predictions

TABLE VIII. The average values of various parts of the Hamiltonian in MeV, the average distances in fm of the states ½cc�½c̄c̄�,
½cc�½b̄b̄�, and ½bb�½b̄b̄� in the MCFTM.

LS JP States Mass, prop. hEki hVcom
min ð4Þi hVcmi hVclbi hr212i

1
2 hr234i

1
2 hr213i

1
2 hr224i

1
2 hr214i

1
2 hr223i

1
2 hX2i12

½cc�½c̄c̄� 00 0þ 3̄c ⊗ 3c 6454, 56% 878 188 −11 −1258 0.42 0.42 0.45 0.45 0.45 0.45 0.33
6c ⊗ 6̄c 6467, 44% 899 199 17 −1306 0.46 0.46 0.43 0.43 0.43 0.43 0.28
C.C. 6407 887 192 −51 −1279 0.44 0.44 0.44 0.44 0.44 0.44 0.31

10 1− 3̄c ⊗ 3c 6730, 98% 783 283 4 −997 0.47 0.47 0.61 0.61 0.61 0.61 0.52
6c ⊗ 6̄c 6888, 2% 910 274 12 −966 0.51 0.51 0.54 0.54 0.54 0.54 0.40
C.C. 6727 785 283 −2 −997 0.47 0.47 0.61 0.61 0.61 0.61 0.51

20 2þ 3̄c ⊗ 3c 6995, > 99% 802 364 9 −888 0.48 0.48 0.75 0.75 0.75 0.75 0.66
6c ⊗ 6̄c 7213, < 1% 978 339 10 −772 0.55 0.55 0.63 0.63 0.63 0.63 0.50
C.C. 6944 802 364 8 −887 0.48 0.48 0.75 0.75 0.75 0.75 0.66

00 0þ 3̄c ⊗ 3c 12939, 41% 847 127 −3 −1372 0.27 0.41 0.37 0.37 0.37 0.37 0.29
½bb�½c̄c̄� 6c ⊗ 6̄c 12938, 51% 859 135 13 −1411 0.33 0.42 0.35 0.35 0.35 0.35 0.23

C.C. 12906 853 131 −27 −1392 0.30 0.42 0.36 0.36 0.36 0.36 0.25
10 1− 3̄c ⊗ 3c 13204, > 99% 727 201 6 −1071 0.30 0.46 0.52 0.52 0.52 0.52 0.45

6c ⊗ 6̄c 13370, < 1% 884 186 9 −1051 0.36 0.48 0.44 0.44 0.44 0.44 0.32
C.C. 13204 728 201 4 −1071 0.30 0.46 0.52 0.52 0.52 0.52 0.45

20 2þ 3̄c ⊗ 3c 13398, > 99% 727 267 8 −946 0.31 0.48 0.65 0.65 0.65 0.65 0.58
6c ⊗ 6̄c 13696, < 1% 954 235 7 −842 0.36 0.53 0.52 0.52 0.52 0.52 0.40
C.C. 13398 727 267 8 −946 0.31 0.48 0.65 0.65 0.65 0.65 0.58

½bb�½b̄b̄� 00 0þ 3̄c ⊗ 3c 19367, 38% 899 63 −6 −1615 0.24 0.24 0.26 0.26 0.26 0.26 0.19
6c ⊗ 6̄c 19352, 62% 884 72 9 −1638 0.28 0.28 0.25 0.25 0.25 0.25 0.16
C.C. 19329 865 69 −26 −1605 0.27 0.27 0.26 0.26 0.26 0.26 0.17

10 1− 3̄c ⊗ 3c 19636, > 99% 700 110 4 −1204 0.29 0.29 0.39 0.39 0.39 0.39 0.33
6c ⊗ 6̄c 19792, < 1% 854 104 6 −1198 0.32 0.32 0.32 0.32 0.32 0.32 0.23
C.C. 19635 701 110 2 −1204 0.29 0.29 0.39 0.39 0.39 0.39 0.33

20 2þ 3̄c ⊗ 3c 19812, > 99% 659 157 6 −1035 0.31 0.31 0.50 0.50 0.50 0.50 0.45
6c ⊗ 6̄c 20105, < 1% 898 136 4 −960 0.36 0.36 0.39 0.39 0.39 0.39 0.29
C.C. 19812 659 157 6 −1035 0.31 0.31 0.50 0.50 0.50 0.50 0.45
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on the state ½cc�½c̄c̄�, see Table IV. In this way, the two
structures are difficult to be accommodated in the CMIM.
The mass of the ground state ½cc�½c̄c̄� ranges from 6370

to 6600 MeV in the MCFTM, CQM and other non-
relativistic quark models with various dynamical effects
[3–5,20], see Table IX, which is supported by QCD sum
rule [47]. Matching the central value of the broad structure
ranging from 6.2 to 6.8 GeV with the model results, the
structure can be described as the ground state ½cc�½c̄c̄� in the
models. However, the models give different quantum
numbers. In the MCFTM and the model II in the literature
[4], the ground states ½cc�½c̄c̄� with 1þ and 2þ are both close
to the central value. The masses of the ground state ½cc�½c̄c̄�
with 0þ, 1þ, and 2þ are very close to each other, around
6500 MeV, in the model in the literature [5]. In the CQM,
the ground state ½cc�½c̄c̄� with 0þ has a mass of 6491 MeV,
which is very consistent with the value. In the model in the
literature [20], the mass of the ground tetraquark state
½cc�½c̄c̄� with 2þ is closest to the central value. The
matching inconsistence results from the slight difference
of the model dynamics.
The masses of the excited state ½cc�½c̄c̄� with L ¼ 1, 2

and S ¼ 0, 1, 2 are calculated in the MCFTM and CQM,
which are given in Table X. The spin-orbital interaction is
not taken into account in the present calculation because it
is very weak, about several MeV [23]. One can find that the
effect of the spin-dependent interaction on the masses of the
excited state with different total spin is small. The masses in
the CQM are apparent higher than those in the MCFTM,
about 175 MeV for the excited states with L ¼ 1 and about
240 MeV for the excited states with L ¼ 2, which
originates from the different forms of confinement poten-
tial. In the CQM, the masses of the excited state ½cc�½c̄c̄�
with L ¼ 1 are completely consistent with that of the
narrow structure Xð6900Þ. Therefore, the structure can be
described as the excited state ½cc�½c̄c̄� with L ¼ 1 in the
CQM, which is supported by the NRPQM [48]. However,

the masses of the excited states ½cc�½c̄c̄� with L ¼ 1 in the
MCFTM are obviously lower than that of the narrow
structure, while the excited states ½cc�½c̄c̄� with L ¼ 2
are very close to the narrow structure.

V. SUMMARY

In this work, we use the CMIM and two quark models
with the OGE interaction and color confinement potential,
CQM with two-body confinement and MCFTM with
multibody one based on the lattice color flux-tube picture,
to systematically investigate the properties of the states
½Q1Q2�½Q̄3Q̄4�. The difference between the two confine-
ment potentials in the ground states is 30–120 MeV. In the
excited states with L ≤ 2, the difference is around
200 MeV.
The masses of the ground states ½Q1Q2�½Q̄3Q̄4� predicted

by the CMIM are close to the corresponding two heavy-
meson threshold, which is much lower, about hundreds
of MeV, than the masses predicted by the models with
QCD dynamic effects mainly because of the strong
Coulomb interaction. Therefore, the CMIM can not com-
pletely absorb QCD dynamic effects. In addition, the
CMIM may overestimate the color-magnetic interaction
in the extension from heavy mesons to the states ½Q1Q2� ×
½Q̄3Q̄4� because of the assumption of the same spatial
configurations. Therefore, the reliability of the CMIM
extension from the conventional hadrons to multiquark
states needs further study.
The Coulomb interaction plays an important role in

the dynamical model calculation on the heavy mesons.
The interaction in the states ½Q1Q2�½Q̄3Q̄4� is weaker than
that of the corresponding threshold of two heavy meons,
which directly induces the fact that there does not exist a
bound state ½Q1Q2�½Q̄3Q̄4� in the dynamical models. The
color configuration ½½Q1Q2�6c ½Q̄3Q̄4�6̄c �1 can not be ignored
in the ground states owing to the strong Coulomb inter-
action between the ½Q1Q2�6c and ½Q̄3Q̄4�6̄c at the short
distance. The color configuration ½½Q1Q2�3̄c ½Q̄2Q̄4�3c �1 is
absolutely dominant in the excited states because the
Coulomb interaction in the ½Q1Q2�3̄ and ½Q̄3Q̄4�3 is
strongly attractive, while that in the ½Q1Q2�6c and
½Q̄3Q̄4�6̄ is repulsive.
The J=Ψ-pair resonances observed by LHCb are diffi-

cult to be accommodated in the CMIM because their
masses are much higher than the CMIM predictions on the
state ½cc�½c̄c̄�. The broad structure ranging from 6.2 to
6.8 GeV can be described as the ground tetraquark state
½cc�½c̄c̄� in the various quark models. However, it has
different quantum numbers because of the slight differ-
ence of the dynamics in the models. The narrow structure
Xð6900Þ can be described as the excited state ½cc�½c̄c̄�with
L ¼ 1 in the CQM. However, the masses of the states
½cc�½c̄c̄� with L ¼ 2 in the MCFTM are very close to
that of the narrow structure. Although many theoretical

TABLE IX. Masses of the ground state ½cc�½c̄c̄� in various
models, unit in MeV.

JP MCFTM CQM [3] I, II [4] [5] [20] [47]

0þ 6407 6491 6477 6377, 6371 6470 6350 6440� 0.15
1þ 6463 6580 6528 6425, 6450 6512 6440 6370� 0.18
2þ 6486 6607 6573 6432, 6479 6534 6470 6370� 0.19

TABLE X. Masses of the excited state ½cc�½c̄c̄� in the CQM and
MCFTM, unit in MeV.

L 1 2

S 0 1 2 0 1 2

CQM 6901 6912 6924 7182 7185 7191
MCFTM 6727 6735 6744 6944 6947 6951
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investigations have been devoted to those structures, the
interpretations on the natures of the two structure are
not completely consistent in the different theoretical
frames so far. Therefore, more data along with additional
measurements, including determination of the spin-parity
quantum numbers, are needed, which will contribute
immeasurably to an understanding of the properties of
these structures.
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