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We establish the nonperturbative validity of the gauge anomaly cancellation condition in an effective
electroweak theory of massless fermions with finite momentum cutoff and Fermi interaction. The
requirement that the current is conserved up to terms smaller than the energy divided by the cutoff scale,
which is the natural condition as gauge invariance is only emerging, produces the same constraint on
charges as in the Standard Model. The result holds at a nonperturbative level as the functional integrals are
expressed by convergent power series expansions and are analytic in a finite domain.
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I. INTRODUCTION

In a chiral theory, classical gauge invariance can be
broken at the quantum level by anomalies, a fact producing
a lack of renormalizability and of internal consistency.
Therefore, in the Standard Model, the anomalies need to
cancel out, and this produces an algebraic condition on
the hypercharges (and, therefore, on the charges); see,
e.g., [1,2], which gives a partial explanation to charge
quantization without reference to grand unification. The
values of hypercharges, that at a classical level can take any
value, are constrained by a purely quantum effect.

In order to see how this condition arises, the gauge fields
can be decomposed in classical background and quantum
parts; see, e.g., [3]. Neglecting the effect of the quantum
gauge fields (but keeping quantum fermions), the conser-
vation of current, following classically by the Noether
theorem, is broken by terms quadratic in the fields propor-
tional to the three current correlations. They are expressed by
the sum of a small number of terms (“triangle graphs”), and
the condition on the charges comes from the request that
such a sum is vanishing. When the effect of quantum gauge
fields is taken into account, the anomaly is instead the sum of
infinitely many graphs. Radiative corrections could produce
extra conditions, but the Adler-Bardeen theorem [4] is
invoked to say that this is not the case. Such a property,
which says that the anomaly is not renormalized by
interactions, is a perturbative statement relying on cancel-
lations valid assuming exact symmetries and removed
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cutoff. Nonperturbative versions of such a property in a
functional integral framework using the Jacobian method [5]
are indeed valid only at one loop; see, e.g., [6,7].

Natural questions are if the cancellation condition is
valid at a nonperturbative level and if it still holds in an
effective description when some symmetry is only approxi-
mate. The two questions are related; we can consider a
theory with a finite cutoff which can be possibly studied
nonperturbatively, but some symmetry is necessarily bro-
ken. Such problems have been extensively analyzed over
the years. Lattice gauge theory is a natural framework for a
nonperturbative construction, but the program of getting
an anomaly-free formulation of electroweak theory is still
incomplete; see, for instance, [8—12]. In Refs. [13,14],
the anomaly in a theory with a finite momentum cutoff
has been considered at a perturbative level. The role of
symmetry-breaking terms in the anomaly cancellation was
considered in Ref. [15], finding that at one loop they do not
break the cancellation condition.

In this paper, we follow a different point of view. We
keep a finite momentum ultraviolet cutoff, and we still
decompose the gauge field into a classical background and
a quantum field; this second field is integrated out to
produce an effective fermionic interaction. We consider,
therefore, an effective electroweak theory of massless
fermions with a finite momentum cutoff and quartic
Fermi interaction. It is not indeed restrictive to consider
only a quartic interaction, as, after the first renormalization
group (RG) integration step, monomials of all orders are
generated in the interaction. One can even look to such a
theory as the generic result of integrating out high-energy
degrees of freedom from some more fundamental theory;
see, e.g., [16—-18]. We prove that the fermionic functional
integrals defining such a theory are mathematically well
defined and the correlations are analytic in a finite domain
of couplings of the order of the cutoff divided by the gauge
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boson masses. Analyticity follows from determinant
bounds for fermionic expectations. The results hold in
the limit of a removed infrared cutoff, so that the functional
integrals are infinite dimensional.

The Ward identities in the effective theory have extra
terms which would be formally vanishing, removing the
cutoff. Keeping only classical gauge fields not taking into
account interactions, the quadratic response is again the
sum of regularized triangle graphs which cancel out
under the cancellation condition up to terms of the order
of the energy-cutoff ratio. The nonperfect cancellation is
expected, as a finite momentum cutoff breaks gauge
invariance already in the classical action. When the
interaction is taken into account, the response is the sum
of infinitely many graphs and the Adler-Bardeen argument
does not hold, as it relies on symmetries which are broken
by the cutoff. However, by our exact RG analysis, we show
that the response can be decomposed into two terms; one is
the sum of triangle graphs with dressed vertices and
propagators, which cancel out under the cancellation
condition, and the other is given by a complicate series
of renormalized graphs which again can be rigorously
bounded by a power of the energy-cutoff ratio. In con-
clusion, the requirement that the current is conserved up to
terms of the energy divided by the cutoff scale, which is the
natural condition in the effective quantum field theory as
gauge symmetry is emerging, provides the same constraint
on charges as is found in the Standard Model at a
perturbative level. It is, therefore, a robust condition
holding at a nonperturbative level in an effective theory
and even when gauge symmetry is classically not exact.

The results are obtained by constructive RG methods
(see, e.g., [19] for an introduction), which have been
previously used to construct chiral interacting theories
and the chiral anomaly in d =1 4+ 1 [20-22] in the limit
of the removed ultraviolet cutoff. In the present case of
effective electroweak in d =3 4+ 1, analyticity is found
only with a finite cutoff of the order of the gauge mass
and removed infrared cutoff, as Fermi interaction is not
renormalizable.

The rest of the paper is organized in the following way.
In Sec. II, we present the effective model, and we state
our main result. In Sec. III, we present the renormalization
group analysis, and the Appendixes contain the more
mathematical details.

II. EFFECTIVE ELECTROWEAK THEORY

A. Grassmann integration and currents

We consider a single family of particles with two
leptons (v,e) and two quarks (u,d); the quarks have
another color index which takes three values. We introduce,
therefore, Grassmann variables w3 . and y7% , with L and
R denoting chirality, x € [-L/2,L/2]* with antiperiodic
boundary conditions, and

{wlsx’wl's’x'} {l//lj*:s,x’l//ﬂs/x/} {l//lsx’ll/l/ y’x’}_o (1)

with s = L,R. One introduces the doublets
WL Vers) and Wo = (Wi vy )

The index labeling the two components of yE, ; and the
color index for wfu and y/d 5. are omitted. -

We define v, = 5> e’kxy/” , with k =2%n, with
l/A/ki,i,s another set of Grassmann variables. We 1ntr0duce a
smooth momentum cutoff yy(k), which is a infinitely
differentiable compact support function (this is useful to
get good decay properties in coordinate space) such that
xn(k)=0for |k| >y and yy(k) = 1 for [k| <yV, 7y > 1
a scaling parameter. Therefore, yV is the ultraviolet
cutoff, while the infrared cutoff is provided by L. The
“fermionic Gaussian measure” is defined as (i = v, e, u, d
and s = L, R)

+ __
lIIl.)c -

P(dy) = [H dl/,\/is.kdl/,\/i,s.k] LD 2y Wik i,
1,8,k

(2)

where [ [ is a product over k in the support of yy(k) and

ok = (0g.i0) and of = (6. —i0), 6 = 6y, 03, 03, With

n(00) wn (1) a0

The two-point function is given by

f P(d’//)w;s,xl//;s’,y

TV g o =
<l/]z,x,xu/z K ,y>0 f P(dl,U)
- 5i,i’5s,s’gs (x’ y) (4)
with
1 k(x—y) XN (K)
Ny _ ik(x—y) ANAZ/ 5
9is(x.¥) = 73 ;e —ic}k, )

The n-point function (y}'
Wick rule. The cutoff function plays a very important role,
as it makes the number of Grassmann variables finite;
hence, the Grassmann integral is well defined and, at the
end, the limit L — oo can be taken.

The currents relevant for electroweak interaction are the
W and B ones

it ) is given by the

WSEX Tt

jW,yx - (]IiSVlyx+]Wq;4x)

jB,,uxzz Z Jzyx+YRj§M.x)’ (6)
i= v

>—[\)|>—A
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where Y% and Y¥ are the hypercharges, Y- = Y5, YL = Y4
and

— st Sy~ -k _ k _Lay—
- l//i.s,xo-ﬂl//i,s,x’ ]W,y,lx qj Y LPlx’

= ‘P;xrkaﬁ‘{’;x (7)

-5
]i.ﬂ,x

-k
J W.p.q.x

with 7¥ Pauli matrices. If y are classical fields verifying
the Dirac equation, the currents j; , ., J'Iév.ﬂ, 1 and j]t%/,y, gx 1D
Eq. (7) are separately conserved.

The form of the interaction with classical fields is
dictated by the requirement of invariance with respect to
a gauge transformation; one gets that the average of the
observable O, a monomial in the Grassmann variables, is
given by

_ [ P(dy)e] H6Misdbn 4 Buaina) g
[ P(dy)el ©0

(8)

v/W# r+(] B;AxJE;x)»)

Note that such invariance is true at a classical level (that is
formally replacing the Grassmann variables with functions)
only in the limit of removed cutoff N — oo but s violated at
finite N. Moreover, even when N — oo, the symmetry may
be broken at a quantum level in the functional integral (39),
which is exactly the anomaly phenomenon.

In order to see this, we can consider the average of the
current with respect to Eq. (8). It is computed by expanding
in series in the gauge fields; if A = B, A' = W, and the
generating function is

eWOW.B — / P(dl//)efdx(gW)]:-XjW-ﬂ«"+g/BI4«XjB»)4»X)’ (9)

then, if the sum over the choices of A and the combinatorial
factor are understood, ¢° = ¢, ¢! = ¢, and e = 0, 1,

Z /dpl

£1 A€1
xXg ]Aﬂl,Pl ’

an-HWo
-d
PnoB, 043, A,

JBﬂp

0
AL, (p+2p) (10)

Note that the coefficients are simply the truncated corre-
lations of currents

8"+1W0
aB aAﬂl D1

e J P2 )0
(11)

so that the expansion can be represented as the sum of
simple Feynman graphs; see Fig. 1. We are, in particular,
interested in the conservation of the U(1) currents, which is
expressed by (J,,jp ,.x)-

8AM » <.]B.,u.p;JA‘1,/41,p1;"'
n'rn

s § ¢ P

FIG. 1. Graphs contributing to Eq. (10).
B. Ward identities

We introduce currents jﬂ Lp = jwp +jﬂep, jﬂzp
]ﬂ wp T+ ]”dp, and ],,3,, ]M ip and a generating function
WP(A, ¢) in which we add to the exponent of Eq. (9) a

fermionic source term Za:l 2 3fdx W;X¢t;x+u/z;x¢;x)’
where  y =wp.+yr, Wo=yr.twre and
w3 = . Conservation laws are encoded in Ward identities,
which can be derived performing in the generating function
Wo(A, @) the change of variables i = v, e, u, d:

+ tiay ot + Tiag oyt
Wity = €YWL Wigx = € P Wip

AL yx = AL exs AL ux = AL dx (12)

so obtaining, noting that the external currents are invariant,
Wo(A.9)
/P(dw fdxy/“) (e™six De™six —D )y~ Vi

Ax(gW jw e t0 Bucip )+ [ dx(yi e isx g i g e el )
Xéf uxJWopx p.xJ B.jx f i,5.x isx i5.x 8. s

(13)

where

Dy, = / dke= o (Kyakpeie (14)

The fermionic source term acquires a phase but not the
current source. The Jacobian of the transformation is
unitary as a straightforward consequence of the fact that
the number of Grassmann variables yr;, is finite; this is an
important difference with respect to what happens in (formal)
functional integrals with infinitely many variables [5].
The exponent of the fermionic “measure” gets an extra term
of the form

where

013009-3



VIERI MASTROPIETRO

PHYS. REV. D 103, 013009 (2021)

1 . o
5T‘s‘,i,x = er_lpxw:r,i,ka;l()( l(k)kﬂ
k.p

_Z_l(k—’_p)(kﬂ+pu))¢’s_,i,k+p' (16)
Replacing the cutoff function with 1, one gets that y ' (k)k,, —
2 ' (k+ p)(k, + p,) = p,sothattherhs of Eq. (15) reduces
oY f dxj; 0,0 .. Note that the expression ! does
not give any problem, as identities have to be understood
between correlations. By performing derivatives of Eq. (13)
with respect to a;; , and to the external fields, we get, see
Fig. 2

A e Ay
Pu <.]/4.a,p’l//a’,k+pl//a’.k>

=g (<‘/A’;’,k+p‘i’;,k+p> - <¢/;’,klf?/;,k>) - <5jaqp;¢,:’,k+pli/;_’,k>
(17
with 871, =8]L , +0j% s 8)0.p =08Jk p + 014 p» 813, =8 .
and

A 1 ; At e
5]?,17 :FZC‘ (k’p)l//:i,kl//s,i,ker’
k

C'(k.p) =" (k) = Dk, = (™" (k+ p) = 1) (k, + p,) oy
(18)
The above identity has been written in a form closer to the
formal WI writing = as (y~! — 1) + 1 in Eq. (16). With
respect to the formal WI, Eq. (17) has an extra term dependent
on the momentum cutoff. The origin of this term can be also

understood from the equality between propagators with a
momentum cutoff:

95(k) = g;(k+ p) = g,(k)o,,pg(k+ p)
+95(k)C(k.p)g,(k+p). (19)

which  replaces the identity g,(k) —g,(k+ p) =
g5(k)oy,p,g(k + p) in the presence of a cutoff.

We derive now the WI with respect to the currents; by
performing derivatives in Eq. (13) with respect to @ and
W, B, we get

Dy Gﬂ,a,p;}A” wopr s Jacn tino)
= <5.;p,a;}A”l ,yl,pl; e ;.,]\.A“'",ﬂ,z.pn>' (20)
= — +

7\ | L /N

FIG. 2. The WI for the vertex function of Eq. (17); the last term
is the vertex involving Jj,.

Again we get an extra term with respect to the formal WI
proportional to §j,,; if such a term would be vanishing,
then from Eq. (10) we get the current conservation
PuJsup)ws = 0. Even more, the WI (20) with the lhs
vanishing is equivalent to the separate conservation of
currents of different species. The lhs of Eq. (20) is,
however, in general, nonvanishing.

C. Cancellation condition

Let us consider now the rhs of Eq. (20) with n = 2,
which is given

pﬂGs.i.ﬂ.p;}s,i,v.pl;js,i,p,p2> (21)

- dk . x (k) x(k+p)

N / (27r)4t —ic’k, Clk.p) —io),(k, + py)
x(k+p?) (

—ioS(k, + p2)

x (—ic}) —io)) + [(v. p1) = (p. p2)]

(22)

and (see [23])

A A A 1 _
Pu <Js,p,/4;]s,p1.u;.]s,p2,p> = gsﬁgv.p,abp;p%} + 0(|p|3/yN)’
(23)

where |p| = max(|p;|,|p,|) and e, = —ep = 1. From
Eq. (23) we see that, in addition to terms proportional to
the inverse cutoff, there are N-independent contributions
which are the anomalies in the limit of the removed cutoff.

The average of the B current at second order [see
Eq. (10)] is given by

f‘p‘:‘./u,p(pl ’ pZ)’

<}B,y,p;}B,u,p1;}B,y,p,p2> i‘f,v,p(plvPZ)'

GB,y,p; }W.z/,pl > }W.u,p.pz >

(24)

The divergence follows by Eq. (23), and one finds
. 1
P,,L,?./y,p(l?] .P2) :ng,p.a,ﬂp(llp/z} [ZYIL} +Ryp(l71 .D2)-

" 1
pyLE,v,p(pl 9p2) :Tﬂz‘?u.p,a,ﬂp}lp% [Z(Y{‘P - (Yf?)3:|

1

+Rg,[)(p17p2)
with

P’

IRE,(p1.p2)| < CV—N' (26)

|Ryp(l’17p2)|’

If we require that the current is conserved up to terms to the
energy divided by the cutoff scale, we get
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D (EP-(fy =0 (7

ZY,.L =0,
1 ]
These are, of course, the same conditions found in the
standard electroweak theory with classical gauge fields;
indeed, the limit N — oo can be taken safely and exact
conservation is found. The condition is verified by elemen-
tary particles as Y% has value (—1,—1,%,%) and YR has
value (0,-2,3,—3) so that one gets —2+61=0 and
6(1/3)* +2(=1)*=3(4/3)> =3(=2/3)> = (=2)°> = 0. The
conservation of W current does not give further constraint.
We want to investigate if the condition (27) still ensures
the current conservation in the interacting case. In such a
case, the terms contributing to the divergence of the current
are a series of infinitely many Feynman graphs, and a direct
verification is impossible. In addition, in order to get
nonperturbative results, one needs to keep a finite ultra-
violet cutoff, as the Standard Model is not asymptotically
free. We ask therefore if also in the interacting case with a
finite cutoff the current is conserved up to terms propor-
tional to the energy divided by the cutoff scale provided
that the condition (27) is true.

D. Effective Fermi interaction

The standard electroweak theory is obtained replacing in
Eq. (9) the field B,,, W, with the sum of two fields B, + B,
and W, + Wu (see, e.g., [3]), where B,, W, are classical

background fields and B, W are quantum fields, with a
gauge invariant action. The Z and e.m. currents are define
D by

/ dx(gW3 1 jvy .+ 9 Byjs,) = / dx(eA, jm+7Z,.j%.),

(28)

where § = -4 tanh0 = ¢//g, gsin@ = ¢ cos O = ¢, and

cos 6’
the charges are

205 =I5, + 1} (29)

with I%,i =41 and If’i =0 [so that Q; is (0,—1,2/3,-1/3)]
and

]Z:’cl = eZQi(jiL.ﬂ,x + jfﬂ,x)’
i

Jzps = Y I3, —sin?00,)js .. (30)

From Eq. (29), we see that the proof of charge quantization
follows from the quantization of the hypercharges, as I3 ; is
quantized.

Because of the Higgs mechanism, the quantum Z , and W
gauge fields acquire a mass. The effective electroweak
theory is obtained integrating the boson fields generating an

effective quartic interaction; it is indeed not restrictive to
consider only quartic interactions, as monomials of any
order in the fields are generated during the RG integrations;
see Sec. III. Neglecting for the moment the external gauge
fields, the correlations of the effective theory are given by

[ P(dy)e"™ 0O

O TR

(31)
where P(dy) is the fermionic integration with renormal-
ized propagator

1
ZN,i.sL4 k

el’k(x_y) /YN(k) (32)

gi,s(xv y) —iU,S;ky

and

Viy) = / dxdyAwy (5. 3) Gy il + P nnFirs)
+ WZ(x’ y)jZ,y,ij,u,y} (33)

with 1 an effective coupling proportional to g> and

ik(x— )(N(k)
UW(x’y) :/dke K y>|k|2+M%V’
ik(x— )(N(k)
vy(x,y) = A / dke*0=y) L (34)
|k|* + M2

with M = M, > My, and A is a constant to take into
account the difference in the effective couplings and
masses.

At finite N, we can prove that this effective theory has a
well-defined nonperturbative meaning, even if in the L — oo
limit the functional integrals are infinite dimensional.
Indeed, in Sec. III, we prove the following result.

Theorem 1.—The correlations corresponding to Eq. (31)
are analytic in A for |4| < [CﬂyNP uniformly as L — oo.

Analyticity in the coupling around the origin is a
remarkable fact due to the purely fermionic nature of
Eq. (B4); indeed, in the presence of bosons, analyticity in
zero cannot be true due to the Dyson argument. The
estimated radius of convergence is proportional to the
gauge mass divided by the cutoff; this reflects the pertur-
bative nonrenormalizability of the theory and implies
that the cutoff must be chosen of the order of the
gauge mass.

E. Effective electroweak theory and main result

We include in the effective model the external gauge
fields associate to the B and W currents. Because of the
interaction, the charges are renormalized, and one needs to
introduce bare currents depending on parameters to be
fixed so that their values correspond to the physical
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values at low momenta. We introduce therefore the bare
background currents

“k _ E w k
]W,y,x - ZN,a,kJW,a,M,x’
a=l,q

.;B,M,x = Z

i= ueu— L.R

vz, (35)

A}
.i.s]i,u.x

with the parameters Z) ,, and Zy, ;  to be chosen in order

to fix the dressed parameters, which can be obtained by the
correlations. It is indeed an outcome of our RG analysis in
Sec. III that in the analyticity domain || < [2% ] the two-

point function is

1

i) = 1+ R(k 36
<l//k71,51//k,l’s> Z_oo.l"x _l-a;kﬂ ( + ( )) ( )
with Z_, ; ¢ a nontrivial analytic function of A representing
the wave function renormalization and |R(k)| < C|A||k|y~V.

Similarly the three-point functions are (k ~ k 4+ p ~ k)

GB,M,X; l/A/;:q,kl/A/Z‘v,k+p>
1 1

— S

— O -
ok, " ok, + py) | Z

Ysz!

1,8§,—00

Z;

R(k,k + p)

i,8,—00%i,5,—c0

(37)

with [R(k, k + p)| < C|A||x|y™ from which we see that the

YIZIT —0
——===_ A similar expression is

i,5,—00

dressed hypercharge is

found for G'W’M’XI/AIIS’ W esxrp) in Which the dominant term
ZW

is proportional to ——>=—.
v.L.—c0o%e.L.—c0
The bare normalization are chosen in order to ensure the

following conditions:

z Z_ =1 ZV._ =1 (38

is,—c0 — 1’ i.5,—00
The first condition ensures that the wave renormalization in
the low-energy limit is the same for all particles, the second
that the dressed hypercharge is equal to Y#, and the third
that the normalizations in the W currents do not depend on
the particle species in the low-energy limit. The nontrivial
renormalization of the charges is related to the extra terms
with §j in the WI for the three-point function (17). Such a
WI holds also in the interacting case, as V is invariant under
the transformation (12). However, the term depending on
0, which is proportional to the inverse of the cutoff in the
noninteracting case, is N independent up to small correc-
tions and O(4) in the presence of interaction; see [21,22]
for a similar phenomenon in the d = 1 + 1 case.

The effective electroweak theory replacing Eq. (9) is
therefore given by

[ P(dy)e" WS Wi T Bdsn) o

[ P(dy)e""

(39)

)+fdx(QWﬁJ;W‘y.x+dBy,xiB.y.x)

with V given by Eq. (33) and j”;‘,’%x given by Eq. (35) with
the normalization condition (37) and (38). The response of
the U(1) current in the effective theory is given by

Z /dpl

nglAlll 1’

d an+lW B
PnoB, oA - 0AL .

]B#P

0
ge,,A:::,,pna(zp,») (40)

with the derivative above given by (jg, i jact y p,s -3
Jaen g, p,) and

V) / Pdyr)e¥ AW Tt Buin)

= / P(dy)e" B4, (41)

There are now radiative corrections (see Fig. 3), which
could produce extra conditions in order to impose that the
current is conserved. This is, however, excluded by the
following result.

Theorem 2.—For || < [y o ¢ and choosing Z; ; v, Z{ v,
and ZY, as functions of 4 so that Eq. (38) holds, then the
three-point function can be written as

<jB,ﬂ,x; .;B,y,xl 5 jB,p,x2> Lu up(x’ X1, x2) + Rfltf.ﬂ(x7 X1, XZ)’
L

<.;B,/4,x;‘7W.1/,x] ;.;W./),x2> W u/)(xv X1, Xz) + Rllt:l‘:‘,/p(x» X1, )C2)

(42)
with L,lf vp and LM , verifying Eq. (25) and
LW 1 11/2
|Rizp(x,51.,5)), |R,4:y,p(x,x1,x2)|sc[y1v—5] Cs (43)

with § the minimal distance between x, x;, and x,.

We see from Eq. (42) that also in the interacting case the
current is conserved up to terms proportional to the inverse
of the cutoff scale, provided that the conditions >, Y% =0
and >, (YE)? — (YR)3 = 0 hold; even if the average of the
current is given by a complicate series of graphs, no new

S I S

FIG. 3. Graphs contributing to the expansion at n = 2.
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conditions arises. The crucial bound (43) is nonperturba-
tive; graph expansion is avoided and determinant bounds
are used to implement cancellations due to the Pauli
principle and ensuring analyticity.

III. RENORMALIZATION GROUP ANALYSIS

The proof of the above results is based on exact
renormalization group methods, based on the Wilson idea
of integrating out high-energy degrees of freedom,
obtaining a sequence of effective potentials describing
the theory at a fixed energy scale. The starting point is
the following decomposition of the cutoff function:

= > fulk)

h=-o00

Fu(k) = x(r"k) — x(y"+1k),

(44)

so that f,(k) is a smooth cutoff function selecting momenta
in Y"1 < k| <y we also call g, (k) = Y20 f;(k)
the cutoff function selecting momenta |k| < y". We can
write the propagator as the sum of two propagators:

N-1

9is(ey) = g ) 493y 49)
with gl(-,};]) (x,y) is the “single-scale” propagator, describing
fermions with momenta O(y"), while gng_l)(x, y) is
similar to the original propagator with lower ultraviolet
cutoff yV=1, that is,

( ) 1 ik(x—y) fN( )
) = e S
_ 1 1 . k

o) = e’“x—””—”.‘t( L
' ZyisL T —io,k,

Note that the single-scale propagator gg) (x,y) decays

faster than any power for large distances, as a consequence

of the fact that the propagator has no singularity in
(sN-1

momentum space; instead, g; >(x, y) as a slow power
law decay in the coordinate space and a singularity in
momentum space.

We use the addition property, saying that the sum of two
Gaussian Grassmann variables is a Gaussian Grassmann
variable with the propagator given by the sum of propa-
gators. Setting V) = V 4 BB, we can write the generating
function (41) as

eW(A):/P(dV/)gV(N)(AV)

= [ Pl D) PP )

where P(dy®™) and P(dy=SN-Y) are the Gaussian

with propagators giN)

[

Grassmann ‘“measures” (X , y) and

ggiN_l> (x,y), respectively. We can now integrate the single-

scale field y"), obtaining

/p(dl/,(l\’)) YO (4

where EI(V;n) are the truncated expectations or
cumulants:

(1/n))EL(VM:n)

) I Bl

= MV AyE) (48)

ELVN): ) = 9% log / Pldy™)e™™ |y, (49)

which can be represented as a sum of connected Feynman
graphs with propagator ¢'V) and external line associated to
w(=N=1) We obtain the following expression:

/ (dl//) Ay/) / (dl// (SN-1) ) V(N—l)(A’W(SN—l)) (50)
with
V(N_U(A,I/I(SN_U)

/del lm zjs]<)[c\/] Y HAﬂJ Xje (51)
[,m=0 =

The scaling dimension is D =4 —3/—m, and we can
separate the irrelevant terms D < 0 from the rest. The terms
wTy™ or Ay Ty~ are generally nonlocal (that is, the fields
have different coordinates), and we can split them into a
local plus an irrelevant part. In order to obtain this, we
define a localization operator £ such that £ gives a
vanishing result on the irrelevant terms and

Ly +.(EN=1) = (SN=1) _  +,(sN-1) —(<N-1)

Visx i'\s,y — Pisx i',s.x

+ =) S o 5,
LASy +.(N=1)  —(<N-1) _ — Ay +.(<N- 1)WI~(SN—1)‘ (52)

¥ 1,5, i'\sy l‘7 i,8,2 i85,z

By symmetry (see Appendix A), the local part of the quadratic
terms can be written as zy_; ; [ dkk, 7 o507 . which
can be included in the wave function renormalization:

Zn-tis =ZNis T In-1,is- (53)

In the same way, the contribution from the local part of Ay
can be included in the current renormalizations, defining
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J _ J
Iy tis =ZNis T In-1is

ZN vk = ZNak + N1 0k (54)

In conclusion, we get

V) / P(dy)e?" @)
(SN=1)) pLVND (A EN=D) L RVN=D (4 3 (<N=D)
P(dy'<N=1)e
(55)

with propagator

(<N-1) L gy -1 (K) ) 56
I xy) = g Z (59
where
RYWN- )( y(=V=1)

/ dx Wi Haf sy HAﬂ,x,, (57)

where > * has the constraint that if /=2, m =0, then
si+s,=2andif [ =2, m =1, then s; + s, = 1; that is,
the effect of the ‘R operation is to produce a series with
negative scaling dimension. Moreover,

% — ~k 1 ~ -1
LYW-D = / dx(gWh JoN) w gB, JENY)(58)
with
J(SN-1) J(SN-1)
Wyx ZZN Lak] Waﬂx ’
a=l.q
(1leN-1) J(EN-1)
B:x ZYZIJV lzslux . (59)
i=v,eu.d
=L.R

The generating function (41) can be exactly written as the
rhs of Eq. (55), with a momentum cutoff at a lower scale
(V! instead of yV), with modified wave function and charge
renormalizations, given by Egs. (53) and (54); moreover, the
interaction is not simply quartic in the fields, as it was in
Eq. (41), but is given, according to Eq. (57), by the sum over
monomials of any degree with negative scaling dimension.
The kernels appearing in the effective potentials and the
renormalizations are finite and analytic in A. They are indeed
expressed by sum Feynman graphs which are finite in the
infinite volume limit, as the single-scale propagators are
exponentially decreasing; this would be, of course, not true
for the Feynman graphs for YW(A), whose propagators has a
power law decay. The boundedness of Feynman graphs is,
however, not sufficient by itself to get nonperturbative

results, as their huge number produces apparently a factorial
growth with the order. In the case of fermions, however,
cancellations between graphs due to anticommutativity imply
convergence of the series; see Appendix B.

The RG analysis continues integrating out the fields

w1y in a similar way, obtaining

eW(A) _/P(dl//(Sh))eLV,I+th, (60)

where P(dy/(Sh)) is a Grassmann integration with propa-
gator

(<h) 1 )(h(k) 6
. p— 1
gl,x Zl 5. n— lkﬂ ( )

and £V and RV" are similar with N — 1 replaced by h. Of
course, the radius of convergence could decrease as —h

increases, but this is not the case, as proved in Appendix B,

and one gets that the kernels ngh,L are expressed by

convergent series in A:

Z Kn 1, mﬂn (62)

and
}/6N n
|Knlm| < Cl+n+my(4—(3/2)I—m)hy5,,(h—N) [W:| (63)
with &, = 0 and 5, = @ = 1/2 for n # 0. The factor y?("~N)

is a gain with respect to the “dimensional bound” in the
term with at least a 4 and is due to the dimensional
irrelevance of the quartic terms; such an extra factor plays
a crucial role in the following. Note that the estimated
convergence radius is proportional to the cutoff and mass
ratio, as a consequence of the perturbative nonrenormaliz-
ability of the theory.

The effective renormalizations verify recursive equa-

tions, if Z, = (Z; ;4. 2], ,. Z)):
2y =Zy+ P2, . 2y).
/5N
) < el ). (64)

where the rhs has an extra factor y?"~") by Eq. (63), noting
that there is no contribution to the # function of zero-th
order in A. The renormalizations are therefore finite:

N
Zpy =2y + > PE(hZp ... Zy). (65)
k=h
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We impose the renormalization conditions; we can look to
Eq. (65) as a self-consistence equation, and by contraction
methods we find Z;  y as a function of 4 so that

7/6N
Z,=1+0 <y9<h—NuW). (66)

Analyticity stated in Theorem 1 is an immediate conse-
quence of Eq. (63). Note that the denominator of the
correlations (the partition function) at finite L is analytic for
any A in the whole complex plane, as it is a finite-
dimensional Grassmann integral; on the other hand, the
RG analysis above provides an expansion which coincides
order by order and is analytic in a finite domain, so that it
fully reconstructs the partition function. The correlation is
also analytic, as the denominator is nonvanishing in a finite
disk for small 1 for any L and the numerator is a finite-
dimensional integral; moreover, it coincides order by order
with the expansion found by analyzing the generating
function by RG which is also analytic in the same domain
so that they coincide and analyticity as L — oo follows.

We use now the above RG analysis for the computation
of the three-point function appearing in Eq. (42):

S3 (.X, X1, .X'z) = <jB,y,x; .;A"l X ;jA"Z .ﬂz,x2>' (67)

We perform the derivatives of YWW(A) given by Eq. (41) with
respect to B, , A . and A; ., and we get

53(X,x1’x2) = SZ()@xlvxz) + Si@ﬁxlvxz), (68)

where Sz (x,x,x,) is obtained by contracting terms with at
least a A vertex (see Fig. 4) and S3 (x, x|, x,) is expressed by
a renormalized triangle graph of the form, in the case of
three B currents,

S 2] [ dk oK) ekt p)
Z {H }/(271')4Tr—i6‘;,k”(_w”)—iafl(kﬂ—l—pﬂ)

hy,hy,hy jzlzh,»,s.i
. b (k4p?)
X(_l5i>%(—loi)+[(U,p1>—)(g’p2)]’ (69)
: :
- +

SOy s R

FIG. 4. Graphical representation to S;. The first term in the rhs
represents S5 and is a sum of triangle graphs; the dots represent
the renormalization Z,V,V or Z{l. The other term represents 3,
which is the sum of terms with at least a 4 vertex.

]
//< 4
0 / /"< P
I
b .\'
hy N N+1
FIG. 5. A labeled tree.

and a similar expression holds for the BWW currents. The
main difference with respect to the triangle graphs seen in
the noninteracting case is that the wave and the vertex are
nontrivial functions of the momentum scale. We can use
now Eq. (66) to further decompose the triangle graph as a
sum of two terms, one in which Z; ., Z{, ., and Z}}, are
replaced by 1 and an extra term. The term in which 1
appears coincides with the noninteracting case using that

N f h — yn. We have now to consider the contribution
of Sf, and the contribution of the triangle graph with the
difference Z;, — 1. In both cases, there is an extra factor
y?"=N): in one case it is due to Eq. (66) and in the other due
to factor y%("~N) in Eq. (63) with 6, = 6, as it contains a
contribution from a A vertex. This factor, as proved in
Appendix C, produces the bound (43).

IV. CONCLUSIONS

We have considered a two-species Standard Model with
chiral fermions and a momentum cutoff, with the gauge
fields integrated out to produce a current-current interac-
tion. The functional integrals expressing the theory are well
defined at a nonperturbative level and analytic in a finite
disk in the infinite volume limit. The requirement that the
current is conserved up to terms smaller than the inverse of
the cutoff, which is the natural condition as gauge invari-
ance is only emerging, still produces the anomaly cancel-
lation condition, implying quantization of charges.

The validity of the analysis holds for a momentum cutoff
of the order of the mass of the gauge fields, where
fermionic renormalized series are convergent. It would,
of course, be interesting to get similar results for larger
values of the cutoff; this could be obtained by avoiding
integrating out the bosons and considering the standard
model electroweak theory with a momentum cutoff.
Going beyond perturbation theory is in this case much
more difficult, as perturbation theory is expected to
be nonconvergent and cluster expansions methods are
needed.
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Another interesting question is considering a lattice
regularization such that chiral symmetry is nonbroken at
a classical level. In the case of QED, the perfect validity of
the anomaly nonrenormalization has been recently rigor-
ously established [23,24] with a finite lattice (with emerg-
ing Lorentz symmetry), using the lattice regularization in
Ref. [25], and it would be interesting to extend such a
result, if possible, to chiral theories to get an exact current
conservation under the anomaly matching conditions with-
out corrections.
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APPENDIX A: SYMMETRIES

We prove some symmetry properties of the effective
potential (57). In momentum space, the localization oper-
ation can be written as

L: / deZO Wl sk )Wi_/,,.giN_l)

B /dk(Wzo( ) + k.0, W,0(0 ))W{s(IjN 1)1//[_/’,&1\7—1)’

c / dkdpWs 1 (k. p)AS i EN g (V-1
/dkdeZU,(O 0)As SNy SV (A

The fields y have the same chirality, as the propagators are
diagonal in the chiral index and the currents have the same

chirality. By parity of the propagator, VAVZ_O(O) = 0. Lorentz
symmetry, valid also in the presence of the cutoff, implies

that 0 Wz 0(0) and Wzl ﬂ(O 0) are proportional to o;,.

There are no contributions y; (91// with i # j. Indeed, if i
and j belong to different families, then such a term would
violate the invariance under a global phase transformation
Vi — eti%Wt with a = [, ¢. If i and j belong to the same
family, then if the field i has s = R, it is impossible by a
similar argument; if s =L, we call n; the number of
vertices containing only one field i (say, e) and n, or ny the
number of vertices containing two or four fields, respec-
tively; then (n; —1+4 2n, +4n4)/2 must be integer;
hence, n; is odd but then there is an odd number of
fields of the other family u or d, and this is impossible.
The marginal quadratic terms have therefore the form
an-1,iy | dkk,i oiwi . which can be included in the
wave function renormalization. In the same way, there are
no contributions to W, ; , with fields with different / index

if the source is diagonal in the index, and the nonvanishing
terms can be included in the current renormalizations.

APPENDIX B: CONVERGENCE
AND ANALYTICITY

We prove the bound (63). The kernels of the effective
potential generated in the renormalization group analysis
can be conveniently written as a sum of trees (see Fig. 5),
defined in the following way; see, e.g., [19].

Let us consider the family of all trees which can be
constructed by joining a point r, the root, with an ordered
set of n > 1 points, the end points of the unlabeled tree, so
that r is not a branching point. n will be called the order of
the unlabeled tree, and the branching points will be called
the nontrivial vertices. The unlabeled trees are partially
ordered from the root to the end points in the natural way;
we shall use the symbol < to denote the partial order. The
number of unlabeled trees is 4”. The set of labeled trees
T ., is defined associating a label # < N — 1 with the root;
moreover, we introduce a family of vertical lines, labeled
by an integer taking values in [k, N + 1] intersecting all the
nontrivial vertices, the end points, and other points called
trivial vertices. The set of the vertices v of 7 will be the
union of the end points, the trivial vertices, and the
nontrivial vertices. The scale label is &, and, if v; and
v, are two vertices and v; < v,, then h, < h,,. Moreover,
there is only one vertex immediately followmg the root,
which will be denoted v, and cannot be an end point; its
scale is 2 4 1. The end points are associated with V (y(<V)),
and in such a case the scale is N 4 1 and are named as 4 or
normal end points, or A or special end points B(u/(SN >,A)
or LY~ (y(<h=1) | A), In the case of special endpoints, the
scale is h,<N+1, and there is the constraint that
h, = h, + 1,if v/ is the first nontrivial vertex immediately
preceding v; in such a case, they are called special end
points.

The effective potential can be written as

VO (y(<h) A) = Z Z Yh) (B1)
n=1 €T,
where, if v, is the first vertex of rand 7y, ..., 7, (s = 5, ) are

the subtrees of 7 with root vy, V) is defined inductively by
the relation 7 < N —1:

( 1)s+1

V(7) = E VD () s VO ()],

where 7| is the truncated expectation and V"V (7) =
RV () if the subtree 7z; contains more then one end
point, while if z; contains only one end point, V1) (7) is
V(yS¥)) if it is a normal end point (and in such
case h=N-1) or if it is a special end point
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LV A yEF)Y < N =1, or B(ySY), A). We define
P, as the set of field labels of » representing the external
fields, and if vy,...,v, are the s, vertices immediately
following v, then we denote by Q, the intersection of P,
and P, ; this definition implies that P, =U; Q, . The union
of the subsets P,\Q, are the internal fields of v.
Therefore, if P, is the family of all such choices and P
an element, we can write

where ngf;) (x,,) is defined inductively by the equation

el 1[4 ot
w$w»ﬁﬂnm;mm

i=1

X EF (G (Py, Q) s Pe(P, /0,),

(B3)

_ (h)e(f)
= erP Vir)

associated to the vertex ». We use the following well-
known representation of the fermionic truncated expect-
ation, if P is a set of indices:

where i7" (P) and x, are the coordinates

EXM (P g (Py); ..o (Py))
=Y ILo" 6= [ dPr(©)derci (o). (84)
T IleT

where T is a set of lines forming an anchored tree graph
between the clusters of points x(f) ;cp —that is, T is a set
of lines—which becomes a tree graph if one identifies
all the points in the same -cluster. Moreover, t =
{t;# €10,1],1 <i,i" <s}, dPr(t) is a probability mea-
sure with support on a set of t such that #; ; = u; - uy for
some family of vectors u; € R* of unit norm. Finally,
G"T(t)isa (n—s+1) x (n— s+ 1) matrix, whose ele-
ments are given by Gf’j vy =i gt )( - Yiry)-

By inserting the above representation, we can write

h+1 — Sy W

T
trees T.

The determinants are bounded by the Gram-Hadamard
inequality, stating that, if M is a square matrix with
elements M;; of the form M;; = (A;, B;), where A; and
B; are vectors in a Hilbert space with scalar product -, -),
then

TPT, where T is the union of all the

|detM| < H”AiH' (BS)

where || - || is the norm induced by the scalar product.
Let H =R* ® Hy, where H, is the Hilbert space of
complex two-dimensional vectors with scalar product

(F,G) = [dkF;(k)G;(k). It is easy to verify that
hoT,
G,j v =1, 1’9< )(xij =Y ")
= (@Al uy @B ). (B6)

1//'

where u; € R*, i =1,...,s, are the vectors such that
t;y =u;-uy and A, B suitable functions. The integrals
over the coordinate are done integrating over the tree 7" and
the interactions, using that for any K

]/4N CN },4N
|v(x)| < WW’ /dx|v(x)| < W (B7)
and
< Crre @™ gl < et @8)

In conclusion, we get
1 Sy
4 0 (P, =Py~ (s,—1
/ x| W, p ()| <L IZIS—U!CZ,:J 1P =40 (5,-1)
AN
(S P 1P |:Hy—z1:| [_} ,

where z, = 1 if the external fields are yy or Ayy and zero
otherwise. By using that (h, —h, = 1)

Zm—m<—>
=2 (h

>ih —(Zyv|&0
= =

(mf +ndt = 1),

v - |PL| + 2"?})’ (B9)

where m? is the number of 4 end points following v and n’}
is the number of A end points, we get
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/ dxvg | WT.P,T(XUO ) |

< LAy~hA+ 1Py |/2)=2nni,

< 11

v not e.p.

{L, con P, (1P sl = (4GP 1/2)=2ma b +2,) }
,!

x [y 2NN Mo

and, finally,

- n n 1 —dz\(Ny—ny
[ Wenatx, )l < e | T Lo
{Hy-zN hy)ing ] N/M}

(B10)

where 7 € V are the vertices on the tree such that
SilPu|=|P,|#0, ¥ is the vertex in V immediately
preceding ¥ or the root; m, is the number of normal end
points following # and not any following vertex 7 € V; and
d,=—4+ % + n? + z,,. Finally, the number of addenda
in > ;e is bounded by [], s,)!CZZl Pul=IP:] In order to
bound the sums over the scale labels and P, we first use the
inequality

[Tttt < [Hy—rutha—hm} {Hy—emm)} . (BIN)

where 7 are the nontrivial vertices and #' is the nontrivial
vertex immediately preceding ? or the root. The factors
y~(/2h=hy) i the rhs allow one to bound the sums over
the scale labels by C”. Finally, if there if there is at least a

normal end point, the bound improves by a factor y?*~N) as
my > 1 for some 7 so that, if
Hy—dz(hp—h {H},—zz\/ hs) mL:| < yO(h=N) Hy 3 (ha=hy)
]
(B12)

with 211/. =d,—0 >0, the sum over scales can be still
done. This completes the proof of Eq. (63).

APPENDIX C: THE THREE-CURRENT
CORRELATION

We have now to bound S} (x, x1,x,) (68). We can write
83 (x, x1, %) = Y5 S.(x,x1,x;), with > 7 the sum over
trees with at least one normal end point. With respect to the
bound for the kernels of the effective potential (63)
obtained in Appendix B, we have to take into account
that there is no contribution from the integrals over the

coordinates. Given a tree 7, we can associate a tree 7,
which is the tree obtained by 7 by erasing all the vertices not
necessary to connect the special end points; given a
nontrivial vertex v € t*, we call x} the coordinates asso-
ciated to end points in 7* following v, and J,, is the length of
the shortest tree graph connecting the points xj. The
number of nontrivial vertices v € t* is < 3. The lack of
integration over the external coordinates gives an extra
factor [T, y*" i~V where S% is the number of branches
in 7*¥ followmg v (each integration contribute with a factor
y~ 4 (Si=1hy). moreover, we can write

e V7 |x<e 1/2\/ ‘XHe 77

k=—00
h
=(1/2)/7* 1| H e~V (C1)
k=—c0

The first factor is used to perform the integrations and from

the second we get a factor ¢~""1%:0"”*] for any nontrivial
vertex in v so that, if m = 3 and # is the number of normal

end points ([ [; y_al (ho=hyr) =TT, y~%),

O(h,«—N i
)},( . )[Hy d(,.:|
% { H 7,4;,1,(5;;—1 h

|S (x xl,x2)| < ann —h(—4+2m

e (2" 5,,I)”2] (C2)

n.t.ver*
with v the first nontrivial vertex in z*. The factor
y~(=4+2m) apparently forbids one to sum over A, and we

need to use the decay factors associated to the propagators.
In order to do that, we can write

—h(— _J —h s (—442m 7
yh(=4+2m) H i = 5 ) H s

v051)§1:3 1)0§175v(*]

where m, = n? for vy <v <wj and d, — (=4 + n) =
d,=3/2|P,| 4z, — 0 > 0. We call Sif» the branches con-
necting to special A end points. Using that S v = S LS + S%S

and n’! . = Sy ! s+ Z, 1’% , iy the number of special end

points 1n 77, we have
= (—4+2n5) +4(S,, - 1)
SZ*
=28}, - ZZn +48,. + 457,
52,
= 28], - ZO(—4 +ond), (C4)
i-1
Therefore, to the vertex v}, is associated yeh”Sy 53 We

can repeat the same argument on each of the subtrees

013009-12



ANOMALY CANCELLATION CONDITION IN AN EFFECTIVE ...

PHYS. REV. D 103, 013009 (2021)

1 _(nhy 1/2
T},....Tp 3 moreover, y2Sih e < €5 as S) <3
v

v -
0

so that
|S2(x, x5, x3)|

. 28! By Mok s/ p
< Cr Ay My e °'5>/1{Hy-dv} (C5)

where d, =d, if ve€7* and d, :EZU otherwise. The
sum over the scale difference is done using that d, > 0;
the remaining sum is done using that if d=y~ ",
if 1 <8'<3,

Z},(9+25' )116—(2”\5|)'/2
h

_ y(9+2S‘)h52},(6+2S')(h—h(;) o) <Cy
h

(Co)

uniformly in N. In conclusion, a bound |/1|(7LN)‘9C5 is
found. A similar bound is found for the corrections
coming from the first term, as they have an extra factor
y?"=N) from Eq. (66). This concludes the proof of the
bound (43).
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