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We establish the nonperturbative validity of the gauge anomaly cancellation condition in an effective
electroweak theory of massless fermions with finite momentum cutoff and Fermi interaction. The
requirement that the current is conserved up to terms smaller than the energy divided by the cutoff scale,
which is the natural condition as gauge invariance is only emerging, produces the same constraint on
charges as in the Standard Model. The result holds at a nonperturbative level as the functional integrals are
expressed by convergent power series expansions and are analytic in a finite domain.
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I. INTRODUCTION

In a chiral theory, classical gauge invariance can be
broken at the quantum level by anomalies, a fact producing
a lack of renormalizability and of internal consistency.
Therefore, in the Standard Model, the anomalies need to
cancel out, and this produces an algebraic condition on
the hypercharges (and, therefore, on the charges); see,
e.g., [1,2], which gives a partial explanation to charge
quantization without reference to grand unification. The
values of hypercharges, that at a classical level can take any
value, are constrained by a purely quantum effect.
In order to see how this condition arises, the gauge fields

can be decomposed in classical background and quantum
parts; see, e.g., [3]. Neglecting the effect of the quantum
gauge fields (but keeping quantum fermions), the conser-
vation of current, following classically by the Noether
theorem, is broken by terms quadratic in the fields propor-
tional to the three current correlations. They are expressed by
the sum of a small number of terms (“triangle graphs”), and
the condition on the charges comes from the request that
such a sum is vanishing. When the effect of quantum gauge
fields is taken into account, the anomaly is instead the sumof
infinitely many graphs. Radiative corrections could produce
extra conditions, but the Adler-Bardeen theorem [4] is
invoked to say that this is not the case. Such a property,
which says that the anomaly is not renormalized by
interactions, is a perturbative statement relying on cancel-
lations valid assuming exact symmetries and removed

cutoff. Nonperturbative versions of such a property in a
functional integral framework using the Jacobianmethod [5]
are indeed valid only at one loop; see, e.g., [6,7].
Natural questions are if the cancellation condition is

valid at a nonperturbative level and if it still holds in an
effective description when some symmetry is only approxi-
mate. The two questions are related; we can consider a
theory with a finite cutoff which can be possibly studied
nonperturbatively, but some symmetry is necessarily bro-
ken. Such problems have been extensively analyzed over
the years. Lattice gauge theory is a natural framework for a
nonperturbative construction, but the program of getting
an anomaly-free formulation of electroweak theory is still
incomplete; see, for instance, [8–12]. In Refs. [13,14],
the anomaly in a theory with a finite momentum cutoff
has been considered at a perturbative level. The role of
symmetry-breaking terms in the anomaly cancellation was
considered in Ref. [15], finding that at one loop they do not
break the cancellation condition.
In this paper, we follow a different point of view. We

keep a finite momentum ultraviolet cutoff, and we still
decompose the gauge field into a classical background and
a quantum field; this second field is integrated out to
produce an effective fermionic interaction. We consider,
therefore, an effective electroweak theory of massless
fermions with a finite momentum cutoff and quartic
Fermi interaction. It is not indeed restrictive to consider
only a quartic interaction, as, after the first renormalization
group (RG) integration step, monomials of all orders are
generated in the interaction. One can even look to such a
theory as the generic result of integrating out high-energy
degrees of freedom from some more fundamental theory;
see, e.g., [16–18]. We prove that the fermionic functional
integrals defining such a theory are mathematically well
defined and the correlations are analytic in a finite domain
of couplings of the order of the cutoff divided by the gauge
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boson masses. Analyticity follows from determinant
bounds for fermionic expectations. The results hold in
the limit of a removed infrared cutoff, so that the functional
integrals are infinite dimensional.
The Ward identities in the effective theory have extra

terms which would be formally vanishing, removing the
cutoff. Keeping only classical gauge fields not taking into
account interactions, the quadratic response is again the
sum of regularized triangle graphs which cancel out
under the cancellation condition up to terms of the order
of the energy-cutoff ratio. The nonperfect cancellation is
expected, as a finite momentum cutoff breaks gauge
invariance already in the classical action. When the
interaction is taken into account, the response is the sum
of infinitely many graphs and the Adler-Bardeen argument
does not hold, as it relies on symmetries which are broken
by the cutoff. However, by our exact RG analysis, we show
that the response can be decomposed into two terms; one is
the sum of triangle graphs with dressed vertices and
propagators, which cancel out under the cancellation
condition, and the other is given by a complicate series
of renormalized graphs which again can be rigorously
bounded by a power of the energy-cutoff ratio. In con-
clusion, the requirement that the current is conserved up to
terms of the energy divided by the cutoff scale, which is the
natural condition in the effective quantum field theory as
gauge symmetry is emerging, provides the same constraint
on charges as is found in the Standard Model at a
perturbative level. It is, therefore, a robust condition
holding at a nonperturbative level in an effective theory
and even when gauge symmetry is classically not exact.
The results are obtained by constructive RG methods

(see, e.g., [19] for an introduction), which have been
previously used to construct chiral interacting theories
and the chiral anomaly in d ¼ 1þ 1 [20–22] in the limit
of the removed ultraviolet cutoff. In the present case of
effective electroweak in d ¼ 3þ 1, analyticity is found
only with a finite cutoff of the order of the gauge mass
and removed infrared cutoff, as Fermi interaction is not
renormalizable.
The rest of the paper is organized in the following way.

In Sec. II, we present the effective model, and we state
our main result. In Sec. III, we present the renormalization
group analysis, and the Appendixes contain the more
mathematical details.

II. EFFECTIVE ELECTROWEAK THEORY

A. Grassmann integration and currents

We consider a single family of particles with two
leptons ðν; eÞ and two quarks ðu; dÞ; the quarks have
another color index which takes three values. We introduce,
therefore, Grassmann variables ψ�

i;L;x and ψ�
i;R;x with L and

R denoting chirality, x ∈ ½−L=2; L=2�4 with antiperiodic
boundary conditions, and

fψþ
i;s;x;ψ

þ
i0;s0;x0g¼fψþ

i;s;x;ψ
−
i0;s0;x0g¼fψ−

i;s;x;ψ
−
i0;s0;x0g¼0 ð1Þ

with s ¼ L;R. One introduces the doublets Ψ�
l;x ¼

ðψ�
ν;L;x;ψ

�
e;L;xÞ and Ψ�

q;x ¼ ðψ�
u;L;x;ψ

�
d;L;xÞ.

The index labeling the two components of ψ�
x;i;s and the

color index for ψ�
u;s;x and ψ�

d;s;x are omitted.
We define ψ�

i;s;x ¼ 1
L4

P
k e

ikxψ̂�
i;s;k with k ¼ 2π

L n, with
ψ̂�
k;i;s another set of Grassmann variables. We introduce a

smooth momentum cutoff χNðkÞ, which is a infinitely
differentiable compact support function (this is useful to
get good decay properties in coordinate space) such that
χNðkÞ¼0 for jkj ≥ γNþ1 and χNðkÞ ¼ 1 for jkj ≤ γN, γ > 1

a scaling parameter. Therefore, γN is the ultraviolet
cutoff, while the infrared cutoff is provided by L. The
“fermionic Gaussian measure” is defined as (i ¼ ν, e, u, d
and s ¼ L; R)

PðdψÞ ¼
�Y�
i;s;k

dψ̂þ
i;s;kdψ̂ i;s;k

�
e−ð1=L

4Þ
P�

k
ψ̂þ
i;s;kχ

−1
N ðkÞðiσiμkμÞψ̂−

i;s;k ;

ð2Þ

where
Q�

k is a product over k in the support of χNðkÞ and
σLμ ¼ ðσ0; iσ⃗Þ and σRμ ¼ ðσ0;−iσ⃗Þ, σ⃗ ¼ σ1, σ2, σ3, with

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
: ð3Þ

The two-point function is given by

hψ−
i;s;xψ

þ
i0;s0;yi0 ¼

R
PðdψÞψ−

i;s;xψ
þ
i0;s0;yR

PðdψÞ
¼ δi;i0δs;s0gsðx; yÞ ð4Þ

with

gi;sðx; yÞ ¼
1

L4

X
k

eikðx−yÞ
χNðkÞ
−iσsμkμ

: ð5Þ

The n-point function hψε1
l1;s1;x1

…ψεn
ln;sn;xn

i0 is given by the
Wick rule. The cutoff function plays a very important role,
as it makes the number of Grassmann variables finite;
hence, the Grassmann integral is well defined and, at the
end, the limit L → ∞ can be taken.
The currents relevant for electroweak interaction are the

W and B ones

jkW;μ;x ¼
1

2
ðjkW;l;μ;x þ jkW;q;μ;xÞ;

jB;μ;x ¼
1

2

X
i¼ν;e;u;d
s¼L;R

ðYL
i j

L
i;μ;x þ YR

i j
R
i;μ;xÞ; ð6Þ
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where YL
i and YR

i are the hypercharges, YL
ν ¼ YL

e , YL
u ¼ YL

d
and

jsi;μ;x ¼ ψþ
i;s;xσ

s
μψ

−
i;s;x; jkW;μ;l;x ¼ Ψþ

l;xτ
kσLμΨ−

l;x;

jkW;μ;q;x ¼ Ψþ
q;xτ

kσLμΨ−
q;x ð7Þ

with τk Pauli matrices. If ψ are classical fields verifying
the Dirac equation, the currents jsi;μ;x, j

k
W;μ;l;x, and j

k
W;μ;q;x in

Eq. (7) are separately conserved.
The form of the interaction with classical fields is

dictated by the requirement of invariance with respect to
a gauge transformation; one gets that the average of the
observable O, a monomial in the Grassmann variables, is
given by

hOiW;B ¼
R
PðdψÞe

R
dxðgWk

μ;xjkW;μ;xþg0Bμ;xjB;μ;xÞOR
PðdψÞe

R
dxðgWk

μ;xjkW;μ;xþg0Bμ;xjB;μ;xÞ
: ð8Þ

Note that such invariance is true at a classical level (that is
formally replacing the Grassmann variables with functions)
only in the limit of removed cutoffN → ∞ but is violated at
finite N. Moreover, even when N → ∞, the symmetry may
be broken at a quantum level in the functional integral (39),
which is exactly the anomaly phenomenon.
In order to see this, we can consider the average of the

current with respect to Eq. (8). It is computed by expanding
in series in the gauge fields; if A0 ¼ B, A1 ¼ W, and the
generating function is

eW
0
W;B ¼

Z
PðdψÞe

R
dxðgWk

μ;xjW;μ;xþg0Bμ;xjB;μ;xÞ; ð9Þ

then, if the sum over the choices of A and the combinatorial
factor are understood, g0 ¼ g, g1 ¼ g0, and ε ¼ 0; 1,

hĵB;μ;piW;B ¼
X
n

1

n!

Z
dp1 � � �dpn

∂nþ1W0
W;B

∂Bμ;p∂Aε1
μ1;p1

� � �∂Aεn
μn;pn

����
0

×gε1Aε1
μ1;p1

� � �gεnAεn
μn;pnδ

�
pþ

X
i

pi

�
: ð10Þ

Note that the coefficients are simply the truncated corre-
lations of currents

∂nþ1W0
W;B

∂Bμ;p∂Aε1
μ1;p1

� � �∂Aεn
μn;pn

����
0

¼ hĵB;μ;p; ĵAε1 ;μ1;p1
;…; ĵAεn ;μn;pn

i0
ð11Þ

so that the expansion can be represented as the sum of
simple Feynman graphs; see Fig. 1. We are, in particular,
interested in the conservation of theUð1Þ currents, which is
expressed by h∂μjB;μ;xi.

B. Ward identities

We introduce currents ĵμ;1;p ¼ ĵLμ;ν;p þ ĵLμ;e;p, ĵμ;2;p ¼
ĵLμ;u;p þ jLμ;d;p, and ĵp;3;μ ¼ ĵRμ;i;p and a generating function
W0ðA;ϕÞ in which we add to the exponent of Eq. (9) a
fermionic source term

P
α¼1;2;3

R
dxðψþ

α;xϕ
−
α;xþψ−

α;xϕ
þ
α;xÞ,

where ψ1 ¼ ψL;e þ ψL;ν, ψ2 ¼ ψL;u þ ψL;d, and
ψ3 ¼ ψR. Conservation laws are encoded in Ward identities,
which can be derived performing in the generating function
W0ðA;ϕÞ the change of variables i ¼ ν, e, u, d:

ψ�
i;L;x → e�iαL;i;xψ�

i;L;x; ψ�
i;R;x → e�iαR;i;xψ�

i;R;x;

αL;ν;x ¼ αL;e;x; αL;u;x ¼ αL;d;x ð12Þ

so obtaining, noting that the external currents are invariant,

eW0ðA;ϕÞ

¼
Z

PðdψÞe−
R
dxψþ

s;i;xðeiαs;i;xDe−iαs;i;x−DÞψ−
s;i;x

×e
R
dxðgWk

μ;xjW;μ;xþg0Bμ;xjB;μ;xÞþ
R
dxðψ i;s;xe

iαi;s;xϕi;s;xþψ i;s;xe
−iαi;s;xϕþ

i;s;xÞ;

ð13Þ

where

Dψ s;i;x ¼
Z

dke−ikxχ−1ðkÞσsμkμψ̂ s;i;k: ð14Þ

The fermionic source term acquires a phase but not the
current source. The Jacobian of the transformation is
unitary as a straightforward consequence of the fact that
the number of Grassmann variables ψ̂k is finite; this is an
important differencewith respect towhat happens in (formal)
functional integrals with infinitely many variables [5].
The exponent of the fermionic “measure” gets an extra term
of the form

Z
dxψþ

s;i;xðeiαs;i;xDe−iαs;i;x −DÞψ−
s;i;x

¼
X
i;s

Z
dxδTi;s;xαi;s;x þOðα2Þ; ð15Þ

where

FIG. 1. Graphs contributing to Eq. (10).
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δTs;i;x ¼
1

L8

X
k;p

e−ipxψ̂þ
s;i;kσ

s
μðχ−1ðkÞkμ

− χ−1ðkþ pÞðkμ þ pμÞÞψ̂−
s;i;kþp: ð16Þ

Replacing the cutoff functionwith 1, onegets that χ−1ðkÞkμ −
χ−1ðkþ pÞðkμ þ pμÞ ¼ pμ so that the rhs ofEq. (15) reduces
to

P
i;s

R
dxji;s;x∂μαi;s;x. Note that the expression χ−1 does

not give any problem, as identities have to be understood
between correlations. By performing derivatives of Eq. (13)
with respect to αs;i;x and to the external fields, we get, see
Fig. 2

pμhĵμ;α;p;ψ̂−
α0;kþpψ̂

þ
α0;ki

¼δα;α0 ðhψ̂−
α0;kþpψ̂

þ
α0;kþpi−hψ̂−

α0;kψ̂
þ
α0;kiÞ−hδĵα;p;ψ̂þ

α0;kþpψ̂
þ
α0;ki

ð17Þ

with δĵ1;p¼δĵLν;pþδĵLe;p, δĵ2;p¼δĵLu;pþδĵLd;p, δĵ3;p¼δjRi;p,
and

δĵsi;p¼
1

L4

X
k

Csðk;pÞψ̂þ
s;i;kψ̂

−
s;i;kþp;

Csðk;pÞ¼ ½ðχ−1ðkÞ−1Þkμ− ðχ−1ðkþpÞ−1ÞðkμþpμÞ�σsμ:
ð18Þ

The above identity has been written in a form closer to the
formal WI writing χ−1 as ðχ−1 − 1Þ þ 1 in Eq. (16). With
respect to the formalWI, Eq. (17) has an extra termdependent
on the momentum cutoff. The origin of this term can be also
understood from the equality between propagators with a
momentum cutoff:

gsðkÞ−gsðkþpÞ¼ gsðkÞσsμpμgðkþpÞ
þgsðkÞCðk;pÞgsðkþpÞ; ð19Þ

which replaces the identity gsðkÞ − gsðkþ pÞ ¼
gsðkÞσsμpμgðkþ pÞ in the presence of a cutoff.
We derive now the WI with respect to the currents; by

performing derivatives in Eq. (13) with respect to α and
W;B, we get

pμhĵμ;α;p; ĵAε1 ;μ1;p1
; � � � ; ĵAεn ;μn;pn

i
¼ hδĵp;α; ĵAε1 ;μ1;p1

; � � � ; ĵAεn ;μn;pn
i: ð20Þ

Again we get an extra term with respect to the formal WI
proportional to δjp;α; if such a term would be vanishing,
then from Eq. (10) we get the current conservation
pμhĵB;μ;piW;B ¼ 0. Even more, the WI (20) with the lhs
vanishing is equivalent to the separate conservation of
currents of different species. The lhs of Eq. (20) is,
however, in general, nonvanishing.

C. Cancellation condition

Let us consider now the rhs of Eq. (20) with n ¼ 2,
which is given

pμhĵs;i;μ:p; ĵs;i;ν;p1
; ĵs;i;ρ;p2

i ð21Þ

¼
Z

dk
ð2πÞ4 tr

χðkÞ
−iσskμ

Cðk; pÞ χðkþ pÞ
−iσsμðkμ þ pμÞ

× ð−iσsνÞ
χðkþ p2Þ

−iσsμðkμ þ p2
μÞ
ð−iσsρÞ þ ½ðν; p1Þ → ðρ; p2Þ�

ð22Þ

and (see [23])

pμhĵs;p;μ; ĵs;p1;ν; ĵs;p2;ρi¼ εs
1

12π2
εν;ρ;αbp1

ap2
βþOðjp̄j3=γNÞ;

ð23Þ

where jp̄j ¼ maxðjp1j; jp2jÞ and εL ¼ −εR ¼ 1. From
Eq. (23) we see that, in addition to terms proportional to
the inverse cutoff, there are N-independent contributions
which are the anomalies in the limit of the removed cutoff.
The average of the B current at second order [see

Eq. (10)] is given by

hĵB;μ;p; ĵW;ν;p1
; ĵW;μ;ρ;p2

i ¼ L̂W
μ;ν;ρðp1; p2Þ;

hĵB;μ;p; ĵB;ν;p1
; ĵB;μ;ρ;p2

i ¼ L̂B
μ;ν;ρðp1; p2Þ: ð24Þ

The divergence follows by Eq. (23), and one finds

pμL̂
W
μ;ν;ρðp1;p2Þ¼

1

12π2
εν;ρ;α;βp1

αp2
β

�X
i

YL
i

�
þRW

ν;ρðp1;p2Þ;

pμL̂
B
μ;ν;ρðp1;p2Þ¼

1

12π2
εν;ρ;α;βp1

αp2
β

�X
i

ðYL
i Þ3−ðYR

i Þ3
�

þRB
ν;ρðp1;p2Þ ð25Þ

with

jRW
ν;ρðp1; p2Þj; jRB

ν;ρðp1; p2Þj ≤ C
jp̄j3
γN

: ð26Þ

If we require that the current is conserved up to terms to the
energy divided by the cutoff scale, we get

FIG. 2. The WI for the vertex function of Eq. (17); the last term
is the vertex involving δjμ.
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X
i

YL
i ¼ 0;

X
i

ðYL
i Þ3 − ðYR

i Þ3 ¼ 0: ð27Þ

These are, of course, the same conditions found in the
standard electroweak theory with classical gauge fields;
indeed, the limit N → ∞ can be taken safely and exact
conservation is found. The condition is verified by elemen-
tary particles as YL

i has value ð−1;−1; 1
3
; 1
3
Þ and YR has

value ð0;−2; 4
3
;− 2

3
Þ so that one gets −2þ 6 1

3
¼ 0 and

6ð1=3Þ3 þ 2ð−1Þ3 − 3ð4=3Þ3 − 3ð−2=3Þ3 − ð−2Þ3 ¼ 0. The
conservation of W current does not give further constraint.
We want to investigate if the condition (27) still ensures

the current conservation in the interacting case. In such a
case, the terms contributing to the divergence of the current
are a series of infinitely many Feynman graphs, and a direct
verification is impossible. In addition, in order to get
nonperturbative results, one needs to keep a finite ultra-
violet cutoff, as the Standard Model is not asymptotically
free. We ask therefore if also in the interacting case with a
finite cutoff the current is conserved up to terms propor-
tional to the energy divided by the cutoff scale provided
that the condition (27) is true.

D. Effective Fermi interaction

The standard electroweak theory is obtained replacing in
Eq. (9) the field Bμ;Wμ with the sum of two fields Bμ þ B̃μ

and Wμ þ W̃μ (see, e.g., [3]), where Bμ;Wμ are classical
background fields and B̃; W̃ are quantum fields, with a
gauge invariant action. The Z and e:m. currents are define
D byZ

dxðgW̃3
x;Lj

3
W;μþg0B̃xjB;μÞ¼

Z
dxðeAμ;xjemμ;xþ ḡ0Zμ;xjZμ;xÞ;

ð28Þ

where ḡ0 ¼ g
cos θ, tanh θ ¼ g0=g, g sin θ ¼ g0 cos θ ¼ e, and

the charges are

2Qs
i ¼ Is3;i þ Ys

i ð29Þ

with IL3;i¼�1 and IR3;i¼0 [so thatQi is ð0;−1; 2=3;−1=3Þ]
and

je:m:
μ;x ¼ e

X
i

QiðjLi;μ;x þ jRi;μ;xÞ;

jZ;μ;x ¼
X
i;s

ðIs3;i − sin2θQiÞjsi;μ;x: ð30Þ

From Eq. (29), we see that the proof of charge quantization
follows from the quantization of the hypercharges, as Is3;i is
quantized.
Because of the Higgs mechanism, the quantum Z̃μ and W̃

gauge fields acquire a mass. The effective electroweak
theory is obtained integrating the boson fields generating an

effective quartic interaction; it is indeed not restrictive to
consider only quartic interactions, as monomials of any
order in the fields are generated during the RG integrations;
see Sec. III. Neglecting for the moment the external gauge
fields, the correlations of the effective theory are given by

hOi ¼
R
PðdψÞeVðψÞOR
PðdψÞeVðψÞ ; ð31Þ

where PðdψÞ is the fermionic integration with renormal-
ized propagator

gi;sðx; yÞ ¼
1

ZN;i;s

1

L4

X
k

eikðx−yÞ
χNðkÞ
−iσsμkμ

ð32Þ

and

VðψÞ ¼
Z

dxdyλ½wWðx; yÞðj1W;μ;xj
1
W;μ;y þ j2W;μ;xj

2
W;μ;yÞ

þ wZðx; yÞjZ;μ;xjZ;μ;y� ð33Þ

with λ an effective coupling proportional to g2 and

vWðx; yÞ ¼
Z

dkeikðx−yÞ
χNðkÞ

jkj2 þM2
W
;

vZðx; yÞ ¼ A
Z

dkeikðx−yÞ
χNðkÞ

jkj2 þM2
Z

ð34Þ

with M ¼ MZ > MW and A is a constant to take into
account the difference in the effective couplings and
masses.
At finite N, we can prove that this effective theory has a

well-defined nonperturbative meaning, even if in the L→∞
limit the functional integrals are infinite dimensional.
Indeed, in Sec. III, we prove the following result.
Theorem 1.—The correlations corresponding to Eq. (31)

are analytic in λ for jλj ≤ ½ MCγN�6 uniformly as L → ∞.

Analyticity in the coupling around the origin is a
remarkable fact due to the purely fermionic nature of
Eq. (B4); indeed, in the presence of bosons, analyticity in
zero cannot be true due to the Dyson argument. The
estimated radius of convergence is proportional to the
gauge mass divided by the cutoff; this reflects the pertur-
bative nonrenormalizability of the theory and implies
that the cutoff must be chosen of the order of the
gauge mass.

E. Effective electroweak theory and main result

We include in the effective model the external gauge
fields associate to the B and W currents. Because of the
interaction, the charges are renormalized, and one needs to
introduce bare currents depending on parameters to be
fixed so that their values correspond to the physical

ANOMALY CANCELLATION CONDITION IN AN EFFECTIVE … PHYS. REV. D 103, 013009 (2021)

013009-5



values at low momenta. We introduce therefore the bare
background currents

j̃kW;μ;x ¼
X
a¼l;q

ZW
N;a;kj

k
W;a;μ;x;

j̃B;μ;x ¼
X

i¼ν;e;u;ds¼L;R

Ys
iZ

J
N;i;sj

s
i;μ;x ð35Þ

with the parameters ZW
N;a;k and ZJ

N;i;s to be chosen in order
to fix the dressed parameters, which can be obtained by the
correlations. It is indeed an outcome of our RG analysis in
Sec. III that in the analyticity domain jλj ≤ ½ MCγN�6 the two-
point function is

hψ̂þ
k;i;sψ̂

−
k;i;si ¼

1

Z−∞;i;s

1

−iσsμkμ
ð1þ RðkÞÞ ð36Þ

with Z−∞;i;s a nontrivial analytic function of λ representing
the wave function renormalization and jRðkÞj ≤ Cjλkkjγ−N .
Similarly the three-point functions are (k ∼ kþ p ∼ κ)

hj̃B;μ;x; ψ̂þ
i;s;kψ̂

−
i;s;kþpi

¼ 1

σsμkμ
σsμ

1

σsμðkμ þ pμÞ
�

Ys
iZ

J
i;s;−∞

Zi;s;−∞Zi;s;−∞
þ Rðk; kþ pÞ

�
ð37Þ

with jRðk; kþ pÞj ≤ Cjλkκjγ−N from which we see that the

dressed hypercharge is
Ys
i Z

J
i;s;−∞

Zi;s;−∞
. A similar expression is

found for hj̃W;μ;xψ̂
þ
ν;s;kψ̂

−
e;s;kþpi in which the dominant term

is proportional to ZW
a;−∞

Zν;L;−∞Ze;L;−∞
.

The bare normalization are chosen in order to ensure the
following conditions:

Zi;s;−∞ ¼ 1; ZJ
i;s;−∞ ¼ 1; ZW

a;−∞ ¼ 1: ð38Þ

The first condition ensures that the wave renormalization in
the low-energy limit is the same for all particles, the second
that the dressed hypercharge is equal to Ys

i , and the third
that the normalizations in the W currents do not depend on
the particle species in the low-energy limit. The nontrivial
renormalization of the charges is related to the extra terms
with δj in the WI for the three-point function (17). Such a
WI holds also in the interacting case, as V is invariant under
the transformation (12). However, the term depending on
δj, which is proportional to the inverse of the cutoff in the
noninteracting case, is N independent up to small correc-
tions and OðλÞ in the presence of interaction; see [21,22]
for a similar phenomenon in the d ¼ 1þ 1 case.
The effective electroweak theory replacing Eq. (9) is

therefore given by

hOiW;B ¼
R
PðdψÞeVðψÞþ

R
dxðgWk

μ;xj̃kW;μ;xþg0Bμ;xj̃B;μ;xÞOR
PðdψÞeVðψÞþ

R
dxðgWk

μ;xj̃W;μ;xþg0Bμ;xj̃B;μ;xÞ
ð39Þ

with V given by Eq. (33) and j̃kW;μ;x given by Eq. (35) with
the normalization condition (37) and (38). The response of
the Uð1Þ current in the effective theory is given by

hĵB;μ;piW;B ¼
X
n

1

n!

Z
dp1 � � �dpn

∂nþ1WW;B

∂Bμ;p∂Aε1
μ1;p1

� � �∂Aεn
μn;pn

����
0

×gε1Aε1
μ1;p1

� � �gεnAεn
μn;pnδ

�X
i

pi

�
ð40Þ

with the derivative above given by hjB;μ;p; jAε1 ;μ1;p1
;…;

jAεn ;μn;pn
i and

eWðAÞ ¼
Z

PðdψÞeVþ
R

dxðgWk
μ;xj̃kW;μ;xþg0Bμ;xj̃B;μ;xÞ

≡
Z

PðdψÞeVþBðAÞ: ð41Þ

There are now radiative corrections (see Fig. 3), which
could produce extra conditions in order to impose that the
current is conserved. This is, however, excluded by the
following result.
Theorem 2.—For jλj ≤ ½ MCγN�6 and choosing Zi;s;N , ZJ

i;s;N ,
and ZW

a;N as functions of λ so that Eq. (38) holds, then the
three-point function can be written as

hj̃B;μ;x; j̃B;ν;x1 ; j̃B;ρ;x2i ¼ LB
μ;ν;ρðx; x1; x2Þ þ R1;B

μ;ν;ρðx; x1; x2Þ;
hj̃B;μ;x; j̃W;ν;x1 ; j̃W;ρ;x2i ¼ LW

μ;ν;ρðx; x1; x2Þ þ R1;W
μ;ν;ρðx; x1; x2Þ

ð42Þ

with L̂B
μ;ν;ρ and L̂W

μ;ν;ρ verifying Eq. (25) and

jR1;B
μ;ν;ρðx;x1;x2Þj; jR1;W

μ;ν;ρðx;x1;x2Þj≤C

�
1

γNδ

�
1=2

Cδ ð43Þ

with δ the minimal distance between x, x1, and x2.
We see from Eq. (42) that also in the interacting case the

current is conserved up to terms proportional to the inverse
of the cutoff scale, provided that the conditions

P
i Y

L
i ¼ 0

and
P

iðYL
i Þ3 − ðYR

i Þ3 ¼ 0 hold; even if the average of the
current is given by a complicate series of graphs, no new

FIG. 3. Graphs contributing to the expansion at n ¼ 2.
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conditions arises. The crucial bound (43) is nonperturba-
tive; graph expansion is avoided and determinant bounds
are used to implement cancellations due to the Pauli
principle and ensuring analyticity.

III. RENORMALIZATION GROUP ANALYSIS

The proof of the above results is based on exact
renormalization group methods, based on the Wilson idea
of integrating out high-energy degrees of freedom,
obtaining a sequence of effective potentials describing
the theory at a fixed energy scale. The starting point is
the following decomposition of the cutoff function:

χNðkÞ ¼
XN
h¼−∞

fhðkÞ; fhðkÞ ¼ χðγ−hkÞ − χðγ−hþ1kÞ;

ð44Þ

so that fhðkÞ is a smooth cutoff function selecting momenta
in γh−1 ≤ jkj ≤ γhþ1; we also call χhðkÞ ¼

P
h
j¼−∞ fjðkÞ

the cutoff function selecting momenta jkj ≤ γh. We can
write the propagator as the sum of two propagators:

gi;sðx; yÞ ¼ gðNÞ
i;s ðx; yÞ þ gð≤N−1Þ

i;s ðx; yÞ ð45Þ

with gðNÞ
i;s ðx; yÞ is the “single-scale” propagator, describing

fermions with momenta OðγNÞ, while gð≤N−1Þ
i;s ðx; yÞ is

similar to the original propagator with lower ultraviolet
cutoff γN−1, that is,

gðNÞ
i;s ðx; yÞ ¼

1

ZN;i;s

1

L4

X
k

eikðx−yÞ
fNðkÞ
−iσsμkμ

;

gð≤N−1Þ
i;s ðx; yÞ ¼ 1

ZN;i;s

1

L4

X
k

eikðx−yÞ
χN−1ðkÞ
−iσsμkμ

: ð46Þ

Note that the single-scale propagator gðNÞ
i;s ðx; yÞ decays

faster than any power for large distances, as a consequence
of the fact that the propagator has no singularity in

momentum space; instead, gð≤N−1Þ
i;s ðx; yÞ as a slow power

law decay in the coordinate space and a singularity in
momentum space.
We use the addition property, saying that the sum of two

Gaussian Grassmann variables is a Gaussian Grassmann
variable with the propagator given by the sum of propa-
gators. Setting VðNÞ ¼ V þ B, we can write the generating
function (41) as

eWðAÞ ¼
Z

PðdψÞeVðNÞðA;ψÞ

¼
Z

Pðdψ ð≤N−1ÞÞPðdψ ðNÞÞeVðNÞðA;ψ ðNÞþψ ð≤N−1ÞÞ; ð47Þ

where Pðdψ ðNÞÞ and Pðdψ ð≤N−1ÞÞ are the Gaussian

Grassmann “measures” with propagators gðNÞ
i;s ðx; yÞ and

gð≤N−1Þ
i;s ðx; yÞ, respectively. We can now integrate the single-
scale field ψ ðNÞ, obtaining

Z
Pðdψ ðNÞÞeVðNÞðA;ψ ðNÞþψ ð≤N−1ÞÞ ¼ e

P
∞
n¼0

ð1=n!ÞETNðVðNÞ;nÞ

≡ eV
ðN−1ÞðA;ψ ð≤N−1ÞÞ; ð48Þ

where ET
nðV; nÞ are the truncated expectations or

cumulants:

ET
NðVðNÞ; nÞ ¼ ∂n

λ log
Z

Pðdψ ðNÞÞeλVðNÞ jλ¼0; ð49Þ

which can be represented as a sum of connected Feynman
graphs with propagator gðNÞ and external line associated to
ψ ð≤N−1Þ. We obtain the following expression:

Z
PðdψÞeVðNÞðA;ψÞ ¼

Z
Pðdψ ð≤N−1ÞÞeVðN−1ÞðA;ψ ð≤N−1ÞÞ ð50Þ

with

VðN−1ÞðA;ψ ð≤N−1ÞÞ

¼
X∞
l;m¼0

Z
dxWðN−1Þ

i;s;l;mðxÞ
Yl
j¼1

ψ
εj;ð≤N−1Þ
ij;sj;xj

Ym
j¼1

A
εj
μj;xj : ð51Þ

The scaling dimension is D ¼ 4 − 3
2
l −m, and we can

separate the irrelevant termsD < 0 from the rest. The terms
ψþψ− or Aψþψ− are generally nonlocal (that is, the fields
have different coordinates), and we can split them into a
local plus an irrelevant part. In order to obtain this, we
define a localization operator L such that L gives a
vanishing result on the irrelevant terms and

Lψþ;ð≤N−1Þ
i;s;x ψ−;ð≤N−1Þ

i0;s;y ¼ ψþ;ð≤N−1Þ
i;s;x ψ−;ð≤N−1Þ

i0;s;x

þ ðx− yÞμψþ;ð≤N−1Þ
i;s;x ∂μψ

−;ð≤N−1Þ
i0;s;x ;

LAε
zψ

þ;ð≤N−1Þ
i;s;x ψ−;ð≤N−1Þ

i0;s;y ¼ Aε
μ;zψ

þ;ð≤N−1Þ
i;s;z ψ−;ð≤N−1Þ

i0;s;z : ð52Þ

By symmetry (seeAppendixA), the local part of the quadratic
terms can be written as zN−1;i;s

R
dkkμψ̂

þ
i;s;kσ

s
μψ̂

−
i;s;k, which

can be included in the wave function renormalization:

ZN−1;i;s ¼ ZN;i;s þ zN−1;i;s: ð53Þ

In the sameway, the contribution from the local part ofAψþψ
can be included in the current renormalizations, defining
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ZJ
N−1;i;s ¼ ZJ

N;i;s þ zJN−1;i;s;

ZW
N−1;a;k ¼ ZW

N;a;k þ zWN−1;a;k: ð54Þ

In conclusion, we get

eWðAÞ ¼
Z

PðdψÞeVðNÞðA;ψÞ

¼
Z

Pðdψ ð≤N−1ÞÞeLVðN−1ÞðA;ψ ð≤N−1ÞÞþRVðN−1ÞðA;ψ ð≤N−1ÞÞ

ð55Þ

with propagator

gð≤N−1Þðx; yÞ ¼ 1

ZN−1;i;s

1

L4

X
k

eikðx−yÞ
χN−1ðkÞ
−iσsμkμ

; ð56Þ

where

RVðN−1ÞðA;ψ ð≤N−1ÞÞ

¼
X�
l;m

Z
dxW̃ðN−1Þ

n;m ðxÞ
Yl
j¼1

∂siψ
εj;ð≤N−1Þ
ij;sj;xj

Ym
j¼1

A
εj
μj;xj ; ð57Þ

where
P� has the constraint that if l ¼ 2, m ¼ 0, then

s1 þ s2 ¼ 2 and if l ¼ 2, m ¼ 1, then s1 þ s2 ¼ 1; that is,
the effect of the R operation is to produce a series with
negative scaling dimension. Moreover,

L̃VðN−1Þ ¼
Z

dxðgWk
μ;xj̃

k;ð≤N−1Þ
W;μ;x þ g0Bμ;xj̃

ð≤N−1Þ
B;μ;x Þ ð58Þ

with

j̃k;ð≤N−1Þ
W;μ;x ¼

X
a¼l;q

ZW
N−1;a;kj

k;ð≤N−1Þ
W;a;μ;x ;

j̃ð1leN−1Þ
B;μ;x ¼

X
i¼ν;e;u;d
s¼L;R

Ys
iZ

J
N−1;i;sj

s;ð≤N−1Þ
i;μ;x : ð59Þ

The generating function (41) can be exactly written as the
rhs of Eq. (55), with a momentum cutoff at a lower scale
(γN−1 instead of γN), withmodifiedwave function and charge
renormalizations, given by Eqs. (53) and (54); moreover, the
interaction is not simply quartic in the fields, as it was in
Eq. (41), but is given, according to Eq. (57), by the sum over
monomials of any degree with negative scaling dimension.
The kernels appearing in the effective potentials and the
renormalizations are finite and analytic in λ. They are indeed
expressed by sum Feynman graphs which are finite in the
infinite volume limit, as the single-scale propagators are
exponentially decreasing; this would be, of course, not true
for the Feynman graphs forWðAÞ, whose propagators has a
power law decay. The boundedness of Feynman graphs is,
however, not sufficient by itself to get nonperturbative

results, as their huge number produces apparently a factorial
growth with the order. In the case of fermions, however,
cancellations between graphs due to anticommutativity imply
convergence of the series; see Appendix B.
The RG analysis continues integrating out the fields

ψ ðN−1Þ…ψ ðhþ1Þ in a similar way, obtaining

eWðAÞ ¼
Z

Pðdψ ð≤hÞÞeLVhþRVh
; ð60Þ

where Pðdψ ð≤hÞÞ is a Grassmann integration with propa-
gator

gð≤hÞi;s ¼ 1

Zi;s;h

χhðkÞ
−iσiμkμ

ð61Þ

and LVh andRVh are similar with N − 1 replaced by h. Of
course, the radius of convergence could decrease as −h
increases, but this is not the case, as proved in Appendix B,

and one gets that the kernels WðhÞ
n;m are expressed by

convergent series in λ:

Wh
l;m ¼

X∞
n¼1

Kh
n;l;mλ

n ð62Þ

and

jKh
n;l;mj ≤ Clþnþmγð4−ð3=2Þl−mÞhγδnðh−NÞ

�
γ6N

M6

�
n

ð63Þ

with δ0 ¼ 0 and δn ¼ θ ¼ 1=2 for n ≠ 0. The factor γθðh−NÞ
is a gain with respect to the “dimensional bound” in the
term with at least a λ and is due to the dimensional
irrelevance of the quartic terms; such an extra factor plays
a crucial role in the following. Note that the estimated
convergence radius is proportional to the cutoff and mass
ratio, as a consequence of the perturbative nonrenormaliz-
ability of the theory.
The effective renormalizations verify recursive equa-

tions, if Zh ¼ ðZi;s;h; ZJ
i;s;h; Z

W
a;hÞ:

Zh−1 ¼ Zh þ βhZðλ;Zh;…;ZNÞ;

jβhZj ≤ γθðh−NÞC
�
γ6N

M6
λ

�
; ð64Þ

where the rhs has an extra factor γθðh−NÞ by Eq. (63), noting
that there is no contribution to the β function of zero-th
order in λ. The renormalizations are therefore finite:

Zh−1 ¼ ZN þ
XN
k¼h

βkZðλ;Zk;…;ZNÞ: ð65Þ
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We impose the renormalization conditions; we can look to
Eq. (65) as a self-consistence equation, and by contraction
methods we find Zi;s;N as a function of λ so that

Zh ¼ 1þO

�
γθðh−NÞλ

γ6N

M6

�
: ð66Þ

Analyticity stated in Theorem 1 is an immediate conse-
quence of Eq. (63). Note that the denominator of the
correlations (the partition function) at finite L is analytic for
any λ in the whole complex plane, as it is a finite-
dimensional Grassmann integral; on the other hand, the
RG analysis above provides an expansion which coincides
order by order and is analytic in a finite domain, so that it
fully reconstructs the partition function. The correlation is
also analytic, as the denominator is nonvanishing in a finite
disk for small λ for any L and the numerator is a finite-
dimensional integral; moreover, it coincides order by order
with the expansion found by analyzing the generating
function by RG which is also analytic in the same domain
so that they coincide and analyticity as L → ∞ follows.
We use now the above RG analysis for the computation

of the three-point function appearing in Eq. (42):

S3ðx; x1; x2Þ ¼ hj̃B;μ;x; j̃Aε1 ;μ1;x1 ; j̃Aε2 ;μ2;x2i: ð67Þ

We perform the derivatives ofWðAÞ given by Eq. (41) with
respect to Bμ;x, A

ε1
μ1;x1 , and Aε2

μ2;x2 , and we get

S3ðx; x1; x2Þ ¼ S3aðx; x1; x2Þ þ S3bðx; x1; x2Þ; ð68Þ

where S3bðx; x1; x2Þ is obtained by contracting terms with at
least a λ vertex (see Fig. 4) and S3aðx; x1; x2Þ is expressed by
a renormalized triangle graph of the form, in the case of
three B currents,

X
h1;h2;h3

�Y3
j¼1

ZJ
hj;s;i

Zhi;s;i

�Z
dk

ð2πÞ4Tr
fh1ðkÞ
−iσsμkμ

ð−iσsμÞ
fh2ðkþpÞ

−iσsμðkμþpμÞ

×ð−iσsνÞ
fh3ðkþp2Þ

−iσsμðkμþp2
μÞ
ð−iσsρÞþ½ðν;p1Þ→ðσ;p2Þ�; ð69Þ

and a similar expression holds for the BWW currents. The
main difference with respect to the triangle graphs seen in
the noninteracting case is that the wave and the vertex are
nontrivial functions of the momentum scale. We can use
now Eq. (66) to further decompose the triangle graph as a
sum of two terms, one in which Zs;i;h, ZJ

s;i;h, and ZW
a;h are

replaced by 1 and an extra term. The term in which 1
appears coincides with the noninteracting case using thatP

N
h¼−∞ fh ¼ χN . We have now to consider the contribution

of S3b and the contribution of the triangle graph with the
difference Zh − 1. In both cases, there is an extra factor
γθðh−NÞ; in one case it is due to Eq. (66) and in the other due
to factor γδnðh−NÞ in Eq. (63) with δn ¼ θ, as it contains a
contribution from a λ vertex. This factor, as proved in
Appendix C, produces the bound (43).

IV. CONCLUSIONS

We have considered a two-species Standard Model with
chiral fermions and a momentum cutoff, with the gauge
fields integrated out to produce a current-current interac-
tion. The functional integrals expressing the theory are well
defined at a nonperturbative level and analytic in a finite
disk in the infinite volume limit. The requirement that the
current is conserved up to terms smaller than the inverse of
the cutoff, which is the natural condition as gauge invari-
ance is only emerging, still produces the anomaly cancel-
lation condition, implying quantization of charges.
The validity of the analysis holds for a momentum cutoff

of the order of the mass of the gauge fields, where
fermionic renormalized series are convergent. It would,
of course, be interesting to get similar results for larger
values of the cutoff; this could be obtained by avoiding
integrating out the bosons and considering the standard
model electroweak theory with a momentum cutoff.
Going beyond perturbation theory is in this case much
more difficult, as perturbation theory is expected to
be nonconvergent and cluster expansions methods are
needed.

FIG. 5. A labeled tree.

FIG. 4. Graphical representation to S3. The first term in the rhs
represents S3a and is a sum of triangle graphs; the dots represent
the renormalization ZW

h or ZJ
h. The other term represents S3b,

which is the sum of terms with at least a λ vertex.
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Another interesting question is considering a lattice
regularization such that chiral symmetry is nonbroken at
a classical level. In the case of QED, the perfect validity of
the anomaly nonrenormalization has been recently rigor-
ously established [23,24] with a finite lattice (with emerg-
ing Lorentz symmetry), using the lattice regularization in
Ref. [25], and it would be interesting to extend such a
result, if possible, to chiral theories to get an exact current
conservation under the anomaly matching conditions with-
out corrections.
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APPENDIX A: SYMMETRIES

We prove some symmetry properties of the effective
potential (57). In momentum space, the localization oper-
ation can be written as

L
Z

dkŴ2;0ðkÞψ̂þ;ð≤N−1Þ
i;s;k ψ̂−;ð≤N−1Þ

i0;s;k

¼
Z

dkðŴ2;0ð0Þ þ kμ∂μŴ2;0ð0ÞÞψþ;ð≤N−1Þ
i;s;k ψ−;ð≤N−1Þ

i0;s;k ;

L
Z

dkdpŴ2;1;μðk; pÞAε
μ;pψ̂

þ;ð≤N−1Þ
i;s;k ψ̂−;ð≤N−1Þ

i0;s;kþp

¼
Z

dkdpŴ2;1;μð0; 0ÞAε
μ;pψ̂

þ;ð≤N−1Þ
i;s;k ψ̂−;ð≤N−1Þ

i0;s;kþp : ðA1Þ

The fields ψ have the same chirality, as the propagators are
diagonal in the chiral index and the currents have the same
chirality. By parity of the propagator, bW2;0ð0Þ ¼ 0. Lorentz
symmetry, valid also in the presence of the cutoff, implies
that ∂μ

bW2;0ð0Þ and bW2;1;μð0; 0Þ are proportional to σsμ.
There are no contributions ψþ

i ∂ψ−
j with i ≠ j. Indeed, if i

and j belong to different families, then such a term would
violate the invariance under a global phase transformation
Ψ�

a → e�iαaΨ�
a with a ¼ l; q. If i and j belong to the same

family, then if the field i has s ¼ R, it is impossible by a
similar argument; if s ¼ L, we call n1 the number of
vertices containing only one field i (say, e) and n2 or n4 the
number of vertices containing two or four fields, respec-
tively; then ðn1 − 1þ 2n2 þ 4n4Þ=2 must be integer;
hence, n1 is odd but then there is an odd number of
fields of the other family u or d, and this is impossible.
The marginal quadratic terms have therefore the form
zN−1;i;s

R
dkkμψ

þ
i;s;kσ

s
μψ

þ
i;s;k, which can be included in the

wave function renormalization. In the same way, there are
no contributions to W2;1;μ with fields with different i index

if the source is diagonal in the index, and the nonvanishing
terms can be included in the current renormalizations.

APPENDIX B: CONVERGENCE
AND ANALYTICITY

We prove the bound (63). The kernels of the effective
potential generated in the renormalization group analysis
can be conveniently written as a sum of trees (see Fig. 5),
defined in the following way; see, e.g., [19].
Let us consider the family of all trees which can be

constructed by joining a point r, the root, with an ordered
set of n ≥ 1 points, the end points of the unlabeled tree, so
that r is not a branching point. n will be called the order of
the unlabeled tree, and the branching points will be called
the nontrivial vertices. The unlabeled trees are partially
ordered from the root to the end points in the natural way;
we shall use the symbol < to denote the partial order. The
number of unlabeled trees is 4n. The set of labeled trees
T h;n is defined associating a label h ≤ N − 1 with the root;
moreover, we introduce a family of vertical lines, labeled
by an integer taking values in ½h;N þ 1� intersecting all the
nontrivial vertices, the end points, and other points called
trivial vertices. The set of the vertices v of τ will be the
union of the end points, the trivial vertices, and the
nontrivial vertices. The scale label is hv and, if v1 and
v2 are two vertices and v1 < v2, then hv1 < hv2 . Moreover,
there is only one vertex immediately following the root,
which will be denoted v0 and cannot be an end point; its
scale is hþ 1. The end points are associated with Vðψ ð≤NÞÞ,
and in such a case the scale is N þ 1 and are named as λ or
normal end points, or A or special end points Bðψ ð≤NÞ; AÞ
or LVhv−1ðψ ð≤hv−1Þ; AÞ. In the case of special endpoints, the
scale is hv≤Nþ1, and there is the constraint that
hv ¼ hv0 þ 1, if v0 is the first nontrivial vertex immediately
preceding v; in such a case, they are called special end
points.
The effective potential can be written as

VðhÞðψ ð≤hÞ; AÞ ¼
X∞
n¼1

X
τ∈T h;n

VðhÞðτÞ; ðB1Þ

where, if v0 is the first vertex of τ and τ1;…; τs (s ¼ sv0) are
the subtrees of τ with root v0, VðhÞ is defined inductively by
the relation h ≤ N − 1:

VðhÞðτÞ ¼ ð−1Þsþ1

s!
ET
hþ1½V̄ðhþ1Þðτ1Þ;…; V̄ðhþ1ÞðτsÞ�;

where ET
hþ1 is the truncated expectation and V̄ðhþ1ÞðτÞ ¼

RVðhþ1ÞðτÞ if the subtree τi contains more then one end
point, while if τi contains only one end point, V̄ðhþ1ÞðτÞ is
Vðψ ð≤NÞÞ if it is a normal end point (and in such
case h ¼ N − 1) or if it is a special end point
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LVhþ1ðA;ψ ð≤hþ1ÞÞ, h < N − 1, or Bðψ ð≤NÞ; AÞ. We define
Pv as the set of field labels of v representing the external
fields, and if v1;…; vsv are the sv vertices immediately
following v, then we denote by Qvi the intersection of Pv

and Pvi ; this definition implies that Pv ¼∪i Qvi . The union
of the subsets PvinQvi are the internal fields of v.
Therefore, if Pτ is the family of all such choices and P
an element, we can write

VðhÞðτÞ ¼
X
P∈Pτ

Z
dxv0W

ðhþ1Þ
τ;P ðxv0Þ

×

� Y
f∈Pv0

ψεðfÞð≤hÞ
xðfÞ

��Y
f

AðxfÞ
�
; ðB2Þ

where WðhvÞ
τ;P ðxv0Þ is defined inductively by the equation

Wðhþ1Þ
τ;P ðxvÞ ¼

1

sv!

�Ysvi
i¼1

Wðhvþ1Þ
τ;P ðxviÞ

�

× ET
hv
ðψ̃ ðhvÞðPv1=Qv1Þ;…; ψ̃ ðhÞvðPvsv

=Qvsv
ÞÞ;

ðB3Þ

where ψ̃ ðhÞðPÞ ¼ Q
f∈P ψ

ðhÞεðfÞ
xðfÞ and xv are the coordinates

associated to the vertex v. We use the following well-
known representation of the fermionic truncated expect-
ation, if P is a set of indices:

ET
hðψ̃ ðhÞðP1Þ; ψ̃ ðhÞðP2Þ;…; ψ̃ ðhÞðPsÞÞ

¼
X
T

Y
l∈T

gðhÞðxl − ylÞ
Z

dPTðtÞ detGh;TðtÞ; ðB4Þ

where T is a set of lines forming an anchored tree graph
between the clusters of points xðfÞf∈Pi

—that is, T is a set
of lines—which becomes a tree graph if one identifies
all the points in the same cluster. Moreover, t ¼
fti;i0 ∈ ½0; 1�; 1 ≤ i; i0 ≤ sg, dPTðtÞ is a probability mea-
sure with support on a set of t such that ti;i0 ¼ ui · ui0 for
some family of vectors ui ∈ Rs of unit norm. Finally,
Gh;TðtÞ is a ðn − sþ 1Þ × ðn − sþ 1Þ matrix, whose ele-
ments are given by Gh;T

ij;i0j0 ¼ ti;i0gðhÞðxij − yi0j0 Þ.
By inserting the above representation, we can write

Wðhþ1Þ
τ;P ¼ P

T W
ðhþ1Þ
τ;P;T , where T is the union of all the

trees T.
The determinants are bounded by the Gram-Hadamard

inequality, stating that, if M is a square matrix with
elements Mij of the form Mij ¼ hAi; Bji, where Ai and
Bj are vectors in a Hilbert space with scalar product h·; ·i,
then

j detMj ≤
Y
i

kAik · kBik; ðB5Þ

where k · k is the norm induced by the scalar product.
Let H ¼ Rs ⊗ H0, where H0 is the Hilbert space of
complex two-dimensional vectors with scalar product
hF;Gi ¼ R

dkF�
i ðkÞGiðkÞ. It is easy to verify that

Ghv;Tv
ij;i0j0 ¼ ti;i0gðhvÞðxij − yi0j0 Þ

¼ hui ⊗ AðhvÞ
xðf−ijÞ;ui0 ⊗ BðhvÞ

xðfþ
i0j0 Þ

i; ðB6Þ

where ui ∈ Rs, i ¼ 1;…; s, are the vectors such that
ti;i0 ¼ ui · ui0 and A;B suitable functions. The integrals
over the coordinate are done integrating over the tree T and
the interactions, using that for any K

jvðxÞj ≤ γ4N

M2

CN

1þ ðMjxjÞK ;
Z

dxjvðxÞj ≤ γ4N

M6
ðB7Þ

and

jghðxÞj ≤ Cγ3he−ðγhjxjÞ1=2 ;
Z

dxjghðxÞj ≤ Cγ−h: ðB8Þ

In conclusion, we get

Z
dxv0 jWτ;P;Tðxv0Þj≤L4

Y
v

1

sv!
C
P

sv
i¼1

jPvi
j−jPvjγ−4hvðsv−1Þ

×γ3=2hvð
P

i
jPvi

j−jPvjÞ
�Y

v

γ−zv
��

γ4N

M6

�
n
;

where zv ¼ 1 if the external fields are ψψ or Aψψ and zero
otherwise. By using that (hv − hv0 ¼ 1)

X
v

ðhv − hÞðsv − 1Þ

¼
X
v

ðhv − hv0 Þðm4
v þ nAv − 1Þ;

X
v

ðhv − hÞ
�X

i

jPvi j − jPvj
�

¼
X
v

ðhv − hv0 Þð4m4
v − jPvj þ 2nAv Þ; ðB9Þ

where m4
v is the number of λ end points following v and nAv

is the number of A end points, we get
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Z
dxv0 jWτ;P;Tðxv0Þj

≤ L4γ−h½−4þð3jPv0
j=2Þ−2nþnAv0 �

×
Y

v not e:p:

�
1

sv!
C
P

sv
i¼1

jPvi
j−jPvjγ−ð−4þð3jPvj=2Þ−2m4;vþnAvþzvÞ

�

× ½γ−2Nn�½γN=M�6n

and, finally,Z
dxv0 jWτ;P;Tðxv0Þj ≤ L4γ−hdv0Cnjλjn

�Y
ṽ

1

sṽ!
γ−dṽðhṽ−hṽ0 Þ

�

×

�Y
ṽ

γ−2ðN−hṽÞm̄ṽÞ
�
½γN=M�6n;

ðB10Þ

where ṽ ∈ Ṽ are the vertices on the tree such thatP
i jPvi j − jPvj ≠ 0, ṽ0 is the vertex in Ṽ immediately

preceding ṽ or the root; m̄v is the number of normal end
points following ṽ and not any following vertex ṽ ∈ Ṽ; and
dv ¼ −4þ 3jPvj

2
þ nAv þ zv. Finally, the number of addenda

in
P

T∈T is bounded by
Q

v sv!C
P

sv
i¼1

jPvi
j−jPvj. In order to

bound the sums over the scale labels and P, we first use the
inequality

Y
ṽ

γ−dṽðhṽ−hṽ0 Þ≤
�Y

ṽ

γ−ð1=2Þðhṽ−hṽ0 Þ
��Y

ṽ

γ−ð3jPṽj=4Þ
�
; ðB11Þ

where ṽ are the nontrivial vertices and ṽ0 is the nontrivial
vertex immediately preceding ṽ or the root. The factors
γ−ð1=2Þðhṽ−hṽ0 Þ in the rhs allow one to bound the sums over
the scale labels by Cn. Finally, if there if there is at least a
normal end point, the bound improves by a factor γθðh−NÞ as
m̄ṽ ≥ 1 for some ṽ so that, if

Y
ṽ

γ−dṽðhṽ−hṽ0 Þ
�Y

ṽ

γ−2ðN−hṽÞm̄ṽÞ
�
≤ γθðh−NÞY

ṽ

γ−d̂ṽðhṽ−hṽ0 Þ

ðB12Þ

with d̂v ¼ dv − θ > 0, the sum over scales can be still
done. This completes the proof of Eq. (63).

APPENDIX C: THE THREE-CURRENT
CORRELATION

We have now to bound S3bðx; x1; x2Þ (68). We can write
S3bðx; x1; x2Þ ¼

P�
τ Sτðx; x1; x2Þ, with

P�
τ the sum over

trees with at least one normal end point. With respect to the
bound for the kernels of the effective potential (63)
obtained in Appendix B, we have to take into account
that there is no contribution from the integrals over the

coordinates. Given a tree τ, we can associate a tree τ�,
which is the tree obtained by τ by erasing all the vertices not
necessary to connect the special end points; given a
nontrivial vertex v ∈ τ�, we call x�v the coordinates asso-
ciated to end points in τ� following v, and δv is the length of
the shortest tree graph connecting the points x�v. The
number of nontrivial vertices v ∈ τ� is ≤ 3. The lack of
integration over the external coordinates gives an extra
factor

Q
v γ

4hvðS�v−1Þhv, where S�v is the number of branches
in τ� following v (each integration contribute with a factor
γ−4hvðS�v−1Þhv); moreover, we can write

e−
ffiffiffiffiffiffiffi
γhjxj

p
≤ e−ð1=2Þ

ffiffiffiffiffiffiffi
γhjxj

p Y0
k¼−∞

e−c
ffiffiffiffiffiffiffiffiffiffi
γhγkjxj

p

¼ e−ð1=2Þ
ffiffiffiffiffiffiffi
γhjxj

p Yh
k¼−∞

e−c
ffiffiffiffiffiffiffi
γkjxj

p
: ðC1Þ

The first factor is used to perform the integrations, and from
the second we get a factor e−ðγhv jδvjÞ1=2] for any nontrivial
vertex in v so that, if m ¼ 3 and n is the number of normal
end points (

Q
ṽ γ

−d̂ṽðhṽ−hṽ0 Þ ¼ Q
v γ

−d̄v),

jSτðx; x1; x2Þj ≤ Cnjλjnγ−hð−4þ2mÞγθðhv�0−NÞ
�Y

v

γ−d̂v
�

×

� Y
n:t:v∈τ�

γ4hvðS�v−1Þhve−ð2hv jδvjÞ1=2
�

ðC2Þ

with v�0 the first nontrivial vertex in τ�. The factor
γ−hð−4þ2mÞ apparently forbids one to sum over h, and we
need to use the decay factors associated to the propagators.
In order to do that, we can write

γ−hð−4þ2mÞ Y
v0≤v≤v�0

γ−d̂v ¼ γ
−hv�

0
ð−4þ2mÞ Y

v0≤v≤v�0

γ−d̃v ; ðC3Þ

where mv ¼ nAv for v0 ≤ v ≤ v�0 and d̂v − ð−4þ nAv Þ ¼
d̃v ¼ 3=2jPvj þ zv − θ > 0. We call S1v�

0
the branches con-

necting to special A end points. Using that Sv�
0
¼ S1v�

0
þ S2v�

0

and nAv�
0
¼ S1v�

0
þPS2

v�
0

i¼1 n
A
vi , n

A
vi the number of special end

points in τ�i , we have

− ð−4þ 2nAv�
0
Þ þ 4ðSv�

0
− 1Þ

¼ −2S1v�
0
−
XS2v�0
i¼1

2nAvi þ 4S1v�
0
þ 4S2v�

0

¼ 2S1v�
0
−
XS2v�0
i¼1

ð−4þ 2nAviÞ: ðC4Þ

Therefore, to the vertex v�0 is associated γ
θhv�

0 γ
2S1

v�
0

hv�
0 . We

can repeat the same argument on each of the subtrees
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τ�1;…; τ�S2
v�
0

; moreover, γ2S
1
vhve−ð2hv jδvjÞ1=2 ≤ Cδ as S1v ≤ 3

so that

jSτðx; x2; x3Þj

≤ Cnjλjnγ−θN ½γθhv�0 γ2S
1
v�
0

hv�
0e−ð2

hv�
0 jδjÞ1=2 �

�Y
v

γ−d̄v
�
; ðC5Þ

where d̄v ¼ d̃v if v ∈ τ� and d̄v ¼ d̂v otherwise. The
sum over the scale difference is done using that d̄v > 0;
the remaining sum is done using that if δ≡ γ−hδ ,
if 1 ≤ S1 ≤ 3,

X
h

γðθþ2S1Þhe−ð2hjδjÞ1=2

¼ γðθþ2S1Þhδ
X
h

γðθþ2S1Þðh−hδÞe−γðh−hδÞ=2 ≤ Cδ ðC6Þ

uniformly in N. In conclusion, a bound jλjð 1
γN
ÞθCδ is

found. A similar bound is found for the corrections
coming from the first term, as they have an extra factor
γθðh−NÞ from Eq. (66). This concludes the proof of the
bound (43).
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