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We calculate the rate of collisional decay of the axial charge in an ultrarelativistic electron-positron
plasma, also known as the chirality flipping rate. We find that contrary to the existing estimates, the
chirality flipping rate appears already in the first order in the fine-structure constant α and is therefore
orders of magnitude greater than previously believed. The main channels for the rapid relaxation of the
axial charge are the collinear emission of a weakly damped photon and the Compton scattering. The latter
contributes to theOðαÞ result because of the infrared divergence in its cross section, which is regularized on
the soft scale ∼eT due to the thermal corrections. Our results are important for the description of the early
Universe processes (such as leptogenesis or magnetogenesis) that affect differently left- and right-chiral
fermions of the Standard Model, as discussed in more details in the companion Letter.
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I. INTRODUCTION

An axially-charged electron-positron plasma coupled to
a large-scale magnetic field provides a remarkable example
of a system whose macroscopic collective motion evinces a
purely quantum phenomenon, the axial gauge anomaly.
Due to the presence of the anomaly, the hydrodynamics of
such a plasma contains an unusual collective degree of
freedom, which is not locally connected to the thermody-
namic variables characterizing the local equilibrium [1–5].
Such a deformation of the equations of hydrodynamics
gives rise to new types of macroscopic behavior such as the
chiral magnetic effect or the inverse magnetic cascade
[1,2,6–11]. These phenomena can play an important role in
the context of leptogenesis and cosmic magnetogenesis
[1,2,6,8,9,12–23], for magnetic field evolution in primor-
dial plasma [1,2,6,8–11], as well as in the heavy-ion
collisions and quark-gluon plasma [7,24,25] and in the
neutron stars [26–31]. Analogous effects are also known in
condensed matter theory; see Ref. [32] for a review.

Unlike the electric charge, the axial charge is not
fundamentally conserved. Typically, there exist scattering
events which lead to chirality flipping and equilibration of
the opposite chirality components. For this reason the
applicability conditions of chiral hydrodynamics depend
on the kinetic rate describing chirality flipping. In quantum
electrodynamics (QED) and other weakly coupled quantum
theories transport coefficients and kinetic rates are, in
principle, amenable to calculation by means of perturbation
theory. Computations of transport coefficients in high-
temperature QED (more generally, in Standard Model)
plasmas have been the subject of active research for many
years (see, e.g., Refs. [33–44]; see Refs. [42,43,45] for
review and discussion). Notwithstanding the broad scope of
this theoretical effort, rigorous methods have never been
applied to the calculation of the kinetic coefficient asso-
ciated with the collisional decay of the axial charge—the
chirality flipping rate, Γflip.
In our accompanying Letter [46], we use Boltzmann’s

kinetic theory to investigate the collisional decay of the
axial charge in an electron-positron plasma at temperatures
below the electroweak crossover and much greater than the
electron mass. We demonstrate the existence of scattering
channels which contribute to the chirality flipping rate in
the first order of the fine-structure constant α, despite their
nominal perturbative order being α2. This happens due to
the power law infrared divergence in the process’s matrix
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element, which gets regularized on the soft scale qIR ∼ eT.
We also provide qualitative arguments as to why apart from
the 2 ↔ 2 processes, there also might exist nearly collinear
1 ↔ 2 processes also contributing to the same order. In the
present paper, we perform a comprehensive investigation of
all scattering mechanisms contributing to the chirality
flipping rate to the first order in α. The main result of
our analysis is the leading-order (in α) asymptotic expres-
sion for the chirality flipping rate summarized in Eq. (47)
and the rate equation (48), where we used the numerical
value of the fine structure constant in all logarithmic terms.
The structure of the article is as follows. In Sec. II we

state the problem and qualitatively discuss the scattering
processes contributing to chirality flipping rate at leading
order. In Sec. III we introduce the diagrammatic formalism
which we then use for the perturbative calculation of the
chirality flipping rate. We investigate the structure of
infrared divergences in the leading-order terms of the
perturbative expansion and then perform partial resumma-
tion of the leading singularity in all orders of perturbation
theory. In Sec. IV we summarize all our results.
Appendixes A–E provide the details of the computations.

II. STATEMENT OF THE PROBLEM AND
PRELIMINARY DISCUSSION

We consider a hot QED plasma in which the typical
kinetic energy of an electron is ultrarelativistic. In this
regime, each electron can be characterized by an almost
conserved chirality quantum number, which is defined as
an eigenvalue of the operator γ5.

1 In purely massless QED
the conservation of the chirality of each individual particle
is reflected in the existence of the conserved gauge
invariant charge operator [12,13,47]

Q̂5 ¼
Z

d3xĵ05 þ
e2

4π2

Z
d3xÂ · B̂; ð1Þ

where the first term is constructed from the axial current

ĵμ5 ¼ ∶ψ̄γμγ5ψ∶; ð2Þ

while the second term arises from the axial gauge
anomaly [48].
For a nonvanishing fermion mass the charge Q̂5 is no

longer conserved and therefore its expectation value tends
to relax from any initial nonequilibrium state to its
equilibrium value Q5 ¼ 0. In a weakly nonequilibrium
situation it obeys the general near-equilibrium decay law

_Q5 ¼ −ΓflipQ5; ð3Þ

where Q5 ¼ ⟪Q̂5⟫ and ⟪…⟫ stands for the quantum
statistical ensemble average of the corresponding operator.
The kinetic rate Γflip which appears in Eq. (3) is the main
subject of the present work.
The chirality flipping rate has never been calculated from

first principles, however the following simple-minded
estimate has been used in a number of works (see, e.g.,
Refs. [2,21,22,49]). Consider an ultrarelativistic particle
moving with a certain momentum in a given helicity state.
Note, that the eigenstate of helicity coincides with the
eigenstate of chirality up to ðme=EÞ corrections. The
helicity can only change in an act of collision, which
changes the direction of the particle’s momentum, therefore

Γnaive
flip ∝

m2
e

hp2iΓscat ∝ α2
m2

e

9T
; ð4Þ

where Γscat ∝ α2T is the (chirality-preserving) electron
scattering rate in plasma with T ≫ me and α ¼ e2=ð4πÞ
is the fine structure constant. As we shall show momen-
tarily, this crude estimate neglects some crucial aspects of
the analytic structure of the scattering amplitudes and for
that reason falls orders of magnitude short of the correct
prediction.
Infrared singularity in 2 ↔ 2 chirality flipping proc-

esses.—The problem of the decay of the axial charge from
the perspective of elementary scattering processes was
addressed in our companion Letter [46]. Here we briefly
re-iterate its argument. Consider 2 ↔ 2 chirality changing
processes, starting from the massless QED and treating
mass as perturbation (see Fig. 1). Such processes have a
nonintegrable infrared singularity at small momentum
transfer [50,51]. This signals out that a partial resummation
of the perturbative series is required, which should result in
the answer

Γflip ∝ α2T
m2

e

q2IR
; ð5Þ

(a) (b)

FIG. 1. The t-channel Compton scattering (a) and electron-
positron annihilation (b) with the chirality flip in the intermediate
state contributing to the chirality equilibration rate. Although
naively they are of the second order in α, their amplitudes contain
infrared singularities. Regularization of these singularities leads
to the result which is of the first order in α.

1We define γ5 ¼ iγ0γ1γ2γ3 and γ0;…;3 are Dirac gamma-
matrices, see any QED textbook for details.

BOYARSKY, CHEIANOV, RUCHAYSKIY, and SOBOL PHYS. REV. D 103, 013003 (2021)

013003-2



where qIR is the infrared regulator scale. In vacuum, the
only possible resummation is the me series, cutting the
infrared divergence at qIR ∼me. This would cancel the m2

e
factor in the numerator and lead to a strange result that the
chirality flipping rate is mass-independent. However in a
hot medium we also have to take into account the thermal
corrections to the dispersion relations of (quasi)particles.
Performing hard thermal loops (HTL) resummation (see
Appendix D) we find that these corrections appear at the
order eT. If the temperature is high enough, T ≫ me=e,
their effect is much more significant than that of the zero-
temperature mass. With qIR ∼ eT we arrive to

Γflip ∝ α2T
m2

e

ðeTÞ2 ¼ C × α
m2

e

T
; ð6Þ

where the numerical coefficient C ≈ 0.24. Below, we will
see that the 2 ↔ 2 processes are not the only ones that can
lead to OðαÞ chirality flipping rate.
1 ↔ 1 processes with chirality flip.—The only process

of the orderOðα0Þ is the 1 ↔ 1 process shown in Fig. 2(a).
In order to better understand its contribution, we first recall
the properties of propagating states of a free massless chiral
fermion. For given chirality, a propagating state is
described by a 2-component spinor satisfying the Weyl
equation. The corresponding propagator is a 2 × 2 matrix
which can be decomposed into a sum of two helicity
projectors. For instance, the propagator of the right fermion
reads as

S0Rðk0;kÞ ¼
1þ σ · k̂

2

1

k0 − jkj þ
1 − σ · k̂

2

1

k0 þ jkj ; ð7Þ

while for the left fermion one must interchange the helical
projectors. Here k̂ ¼ k=jkj. As usual, the zeros of the
denominator give the dispersion relations (on-shell con-
ditions) for the real propagating particles. It is straightfor-
ward to see that for the propagating positive-energy states,

k0 ¼ jkj, the chirality of an electron is correlated with its
helicity, i.e., the right-handed electron has positive helicity
and the left-handed one has the negative helicity.
Furthermore, for the negative-energy states the helicity is
anticorrelated with chirality. In contrast, as is obvious from
Eq. (7), e.g., a right-handed electron having negative
helicity cannot propagate at positive energy. It can only
exist as a virtual state. We shall henceforth refer to such
virtual states obeying the k2 ¼ 0 condition as off-shell
states.
We now consider the mass vertex in Fig. 2. The mass

term imposes the following selection rules: (a) The momen-
tum of the in-state coincides with the momentum of the out-
state. (b) The chirality of the out-state is opposite to the
chirality of the in-state. (c) The helicity of the out-state is
the same as the helicity of the in-state. In view of the
explanations given above, the outgoing particle appears to
be off shell, because its energy is equal to k0 ¼ jkj while
the on-shell condition imposed by its spin state is
k0 ¼ −jkj. The only special case is the chirality flip of
the k ¼ 0 state. In this case, negative energy states are
degenerate with the positive energy states, therefore a
chirality flip is permitted as a real process. We conclude
that while the chirality flip process in the 1 → 1 channel is
possible, its contribution to the chirality relaxation rate
vanishes because the momentum space for such a process
has vanishing measure.
1 ↔ 2 processes contributing to the flipping rate.—The

situation gets more subtle for 1 ↔ 2 processes, one of
which is shown in Fig. 2(b). Naively, such processes are
forbidden in massive QED as they do not allow for
simultaneous energy and momentum conservation.
However as we discuss the relaxation of chiral asymmetry,
we use the massless QED as zero approximation and take
mass into account perturbatively. The QED interaction
vertex respects the chiral symmetry therefore the minimal
diagram has to include one mass vertex insertion in the
incoming or outgoing electron leg. At the tree level, the
conservation of the four-momentum imposes the constraint
that the momenta of the incoming and the outgoing
particles be perfectly collinear. At the same time, selection
rules impose two consecutive flips: chirality flip at the mass
vertex and helicity flip at the electron-photon vertex. This
results in a valid on-shell out state of an electron with
consistent signs of chirality and helicity, even though in the
intermediate virtual state between the vertices such a
consistency is absent. Of course, in vacuum, we would
have to take into account the corrections that are higher
order in mass. This would restore massive theory and make
1 ↔ 2 processes impossible again. The effects of medium
change the situation as the thermal contributions are larger
than mass.
Despite the very stringent constraint of perfect collinear-

ity of the momenta of all involved particles, the phase space
for such a process has a finite volume

(a) (b)

FIG. 2. Processes with the flip of chirality in the lowest orders
of the double asymptotic expansion in me=T and e (states with
different chiralities are shown in different colors): (a) 1 ↔ 1
process with chirality flip of a free electron which is forbidden by
the angular momentum conservation unless the particle’s mo-
mentum vanishes; (b) one of 1 ↔ 2 collinear processes with
chirality flip of the incoming electron. Although for massless
particles the process (b) has a finite phase space, it is very
sensitive to any modification of the particles’ dispersion relations.
This leads to an uncertainty in the probability of such a process
which will be resolved in Sec. III.

EQUILIBRATION OF THE CHIRAL ASYMMETRY DUE TO … PHYS. REV. D 103, 013003 (2021)

013003-3



Ω ∝
Z

d3qd3pδð3Þðk − q − pÞδðϵk − ϵq − ωpÞ ¼
πk2

3
;

ð8Þ

where ϵk ¼ jkj, and ωp ¼ jpj. This result, however, is
physically unstable. Even the slightest deformation of
the dispersion relations of the particles ϵ → ϵþ δϵ,
ω → ωþ δω, for example, due to the mean-field effects
of the environment, can completely wipe out the phase
space available for the process. It is worth noting that due to
the infrared divergence of the propagator describing the
intermediate virtual state, the probability of the process
shown at Fig. 2(b) diverges at small momentum of the
incoming particle. This infrared singularity is not integrable
therefore its resolution requires a unitarity-restoring resum-
mation of the perturbation theory series. Such a resumma-
tion cannot be done consistently without modifying the
dispersion relations of the particles and the resulting
suppression of the phase space. Thus, we arrive at an
uncertainty of the 0 ×∞ type which we shall resolve in the
following sections.
It is instructive to compare the 1 → 2 chirality flipping

process discussed here with the nearly collinear photon
emission in a QED plasma of massless fermions. The latter
process is an example of bremsstrahlung caused by the
accelerated motion of an electron due to its scattering off
the thermally fluctuating electromagnetic background. At
the tree level the rate of such processes is nominally on the
order α3 [see Fig. 3(a)], however due to a non-integrable
divergence of the matrix element at small scattering angles,
the actual order of this process is α2. The calculation of
the correct numerical value of the photon emission rate is a
complicated task due to the accumulation of divergent
contributions representing multiple low-angle scattering
events shown in Fig. 3(b) and due to the interference
between such contributions known as the Landau-
Pomeranchuk-Migdal effect Refs. [52–57]. In contrast to

bremsstrahlung, the 1 → 2 chirality flipping process dis-
cussed here is an example of resonant Cherenkov-like
emission from a particle moving at the speed of light.
Unlike the massless QED plasma, where the perfectly
collinear emission is prohibited by the combination of the
angular momentum conservation law and chirality con-
servation, in a theory which treats mass as a small
perturbation collinear emission has a nonvanishing tree-
level rate that has the nominal order m2

eα. Perturbative
corrections to the tree-level result contain two types of
effects: (a) Deformation of the dispersion relations of the
colliding particles due to the mean-field thermal back-
ground; (b) finite lifetime of each involved particle due to
real scattering events. While the effects of type (a) tend to
suppress the phase volume of collinear emission, the effects
of type (b) compensate for that suppression allowing for a
weak violation of energy conservation in Fermi’s golden
rule. It turns out that contrary to the bremsstrahlung case
both types of effects can be completely absorbed into the
self-energy corrections to the single-particle propagators, at
least to the leading order in α. The effects of the LPM
interference only emerge in the first subleading α order. On
a technical level, this difference between the nearly
collinear bremsstrahlung and the photon-assisted chirality
flip is due to the presence of a virtual intermediate state of
an electron in the latter case, while an electron always
remains near its classical trajectory in the former. A detailed
comparison of the perturbative computation of the photon
emission rate vs the chirality flipping rate with particular
attention to the multiple soft scatterings in plasma is given
in Appendix F.
To conclude, the tree-level kinetic approach to the

problem of chirality flipping is fraught with difficulties
arising from an assortment of light-cone and phase space
singularities. These singularities should presumably be
resolved by a partial resummation of the perturbation
theory series. We now proceed to the next section where
we introduce a formalism which gives Γflip in the form of a
diagrammatic perturbation theory series. We then use the
formalism to perform the required partial resummation.

III. CHIRALITY FLIPPING RATE FROM THE
LINEAR RESPONSE FORMALISM

In this section, we use first principle quantum mechani-
cal description to develop a perturbative expansion of the
chirality flipping rate and identify in it the contributions
from 1 ↔ 1, 1 ↔ 2, and 2 ↔ 2 processes described in the
Sec. II. We demonstrate again that these perturbative
contributions are IR-divergent. Then, in subsection III B
we perform a partial resummation of the perturbative
expansion, thus taking into account that fermion and
photon propagators are dressed with thermal corrections
and show that this results in resolution of IR-divergences.
We use massless electrodynamics as the zeroth-order

approximation. In the massless case, the chiral charge Q̂5,

(a) (b)

FIG. 3. (a) Process of collinear bremsstrahlung in massless
QED plasma at leading order in α. The blob denotes the virtual
photon with soft momentum q ∼ eT. This soft scattering is
essential for angular momentum conservation. (b) Multiple soft
scatterings accompanying the collinear bremsstrahlung. The
formation time of a hard nearly collinear photon is of the same
order as the characteristic soft scattering time τ ∝ ðe2TÞ−1. That
is why the calculation of the full photon emission amplitude
requires the coherent resummation of the infinite series of such
multiple-scattering graphs (the Landau-Pomeranchuk-Migdal
effect).
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Eq. (1), is conserved. This means that the expectation value
of its time derivative (treated as the quantum operator)
vanishes, hhdQ̂5=dtii0 ¼ 0. In the presence of a finite mass
the time evolution of the axial charge operator is described
by the Heisenberg equation:

i
dQ̂5

dt
¼ ½Q̂5; H� ¼ ½Q̂5; Hm�; ð9Þ

where Hm ¼ me

R
d3xψ̄ψ is the chiral symmetry breaking

term. Using the canonical anticommutation relations for
spinor field fψαðt;xÞ;ψ†

βðt; yÞg ¼ δαβδ
ð3Þðx − yÞ one can

see that

dQ̂5

dt
¼ 2ime

Z
d3xψ̄γ5ψ : ð10Þ

Thus, in the presence of mass, operator dQ̂5=dt acquires the
nonzero expectation value which can be calculated in the
lowest order in perturbation by means of the linear response
formalism (see, e.g., textbook in Ref. [58], Chap. 3). It
should be borne in mind, however, that massless electro-
dynamics does not contain an intrinsic length scale, there-
fore the actual dimensionless parameter containing the
electron mass is the ratio me=T, where T is the temperature
of the system. In the high-temperature regime considered
here, this parameter is small therefore its use as an asymp-
totic parameter of perturbative expansion is appropriate.
Another small parameter of electrodynamics is the electro-

magnetic coupling constant α ¼ e2=ð4πÞ. As discussed
above, the α → 0 limit of massive electrodynamics does
not admit for chirality flipping processes, even though the
axial charge is not formally conserved. For this reason, we
also need to consider the effects of QED interaction beyond
the zeroth-order perturbation theory. To summarize, in the
analysis of the relaxation of axial charge it is natural to make
use of the double asymptotic expansion in two small
parameters, the fine structure constant and in the dimension-
less parameter me=T. Following through the standard steps
described in detail in Appendix A, we arrive at the following
expression for the rate of change of the axial charge per unit
volume:

_q5 ≡ 1

V
_Q5 ¼ −4m2

eℑm½Gretðω ¼ −2μ5;q ¼ 0Þ�; ð11Þ
where Gretðω;qÞ is the momentum space retarded Green’s
function which is defined as follows:

Gretðω;qÞ ¼ −i
Z

d4xeiωt−iq·xθðtÞhh½Ψ̄Lðt;xÞΨRðt;xÞ;

Ψ̄Rð0; 0ÞΨLð0; 0Þ�ii: ð12Þ
Here ΨR;L ¼ PR;LΨ are the field operators of right- or left-
handed fermions in the Heisenberg representation of the
Hamiltonian (A2) of massless QED in the great canonical
ensemble, PR;L ¼ ð1� γ5Þ=2 are the right and left chiral

projectors. Note that the expectation value in Eq. (12) is taken
over the state of massless QED. Using the near-equilibrium
relation q5 ¼ μ5T2=3, we arrive to the rate equation for the
axial charge density, similar to Eq. (3) with the microscopic
expression for the kinetic coefficient Γflip given by

Γflip ¼
12m2

e

T2

� ∂
∂μ5 ℑmGretð−2μ5; 0Þ

�����
μ5¼0

: ð13Þ

We would like to note that here we consider the weakly
nonequilibrium situation,μ5 ≪ T, that iswhy it is appropriate
to set μ5 ¼ 0 after taking the derivative in Eq. (13).
The retarded Green’s function at a finite temperature

can be calculated by analytic continuation of the corre-
sponding Matsubara function GðiΩn;q ¼ 0Þ to the real axis
iΩn → ωþ iδ, with δ → 0þ. Therefore, in the next section
we will consider the perturbative expansion for the follow-
ing Matsubara correlation function:

GðiΩn;q ¼ 0Þ ¼ −
Z

β

0

dτ eiΩnτ

Z
d3xhhTτΨ̄Lðτ;xÞ

×ΨRðτ;xÞΨ̄Rð0; 0ÞΨLð0; 0Þii: ð14Þ

Here Ωn ¼ 2πnT with n ∈ Z is the bosonic Matsubara
frequency and Tτ denotes the chronological ordering in the
imaginary time.

A. Perturbative expansion for the chirality flipping rate

In this subsection we investigate the perturbative expan-
sion in α for the chirality flipping rate (13). In particular, in
Sec. III A 1 we show that in the absence of QED inter-
actions fast oscillations of the chirality of each given
electron are statistically averaged in the ensemble leading
to a constant chiral charge, i.e., the relaxation of the chiral
imbalance is absent. Then, in Sec. III A 2 we show that in
the first order in α there is a nontrivial contribution to the
chirality flipping rate while the result contains infrared and
collinear divergences. Further, in Sec. III A 3 we consider
all topologically nontrivial graphs for the chirality flipping
rate at the second order in α and determine the classes of
diagrams which contain accumulating infrared divergences
and, thus, require resummation. In Sec. III A 4 we use the
power counting to find out how rapidly do these diver-
gences accumulate in higher perturbative orders. We also
show that all of them can be absorbed into the self-energy
renormalization of the fermion propagator which is finally
performed in Sec. III A 5. We would like to emphasize that
the diagrams corresponding to vertex corrections do not
accumulate divergences and do not have to be resummed
(see also Appendix F for the analysis of this class of
diagrams). Nevertheless, there is a finite contribution from
the vertex correction diagram appearing at the first pertur-
bative order which must be included in the final result for
the chirality flipping rate which is done in Sec. III B.
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1. Zeroth order

As was discussed in Sec. II, chirality relaxation does not
occur in the α ¼ 0 limit even though the mass term does not
formally conserve the chirality quantum number. This can
be understood on the basis of kinetic considerations, see
our discussion of Fig. 2(a). Alternatively, one can notice
that if a thermal electron is prepared in a given chirality
state, the mass term will only lead to rapid low-amplitude
oscillations of the expectation value of chirality around a
mean value, which is close to the initial value of chirality.
Due to the frequency of the oscillations being a function of
an electron’s energy, thermal averaging over the momen-
tum states of all particles wipes the oscillations out
resulting in a time-independent mean value of the axial
charge. This implies that the right-hand side of Eq. (11)
should vanish in the zeroth order in α and so should
Γflip, Eq. (13).
It is instructive to see how this result follows directly

from a diagrammatic calculation. In the α ¼ 0 limit the
correlation function (14) decomposes into a product of two
electron Green’s functions, one for a left-handed and one
for a right-handed particle

hhTτΨ̄ðτ;xÞPRΨðτ;xÞΨ̄ð0; 0ÞPLΨð0; 0Þii0
¼ −hhTτΨσð0; 0ÞΨ̄αðτ;xÞii0
× hhTτΨβðτ;xÞΨ̄ρð0; 0Þii0ðPRÞαβðPLÞρσ

¼ −tr½PLS0ð−τ;−xÞPRS0ðτ;xÞ�: ð15Þ

In Fourier space, this corresponds to the Feynman
diagram shown in Fig. 4, and the final result reads as

GðiΩn;q ¼ 0Þ ¼ −
1

2

Z
d3k
ð2πÞ3

X
λ¼�

tanh λk−μL
2T − tanh −λk−μR

2T

iΩn þ 2λkþ 2μ5
;

ð16Þ

where we used the expression for the free fermion propa-
gator (B2) and performed the summation over the
Matsubara frequencies by means of the formulas listed
in Appendix B. Here μR;L are the chemical potentials for the
right and left chiral fermions, respectively. In order to
calculate the rate of change of the chiral charge (11), we
perform the analytic continuation iΩn → −2μ5 þ i0 in
Eq. (16) and take the imaginary part using the Sokhotski
formula. We end up with

_q5;ð0Þ ¼ −
m2

e

π

Z þ∞

0

k2dk
X
λ¼�

�
tanh

λk − μL
2T

þ tanh
λkþ μR

2T

�

× δð2λkÞ ¼ 0; ð17Þ

because of the identity k2δðkÞ≡ 0. This result is a math-
ematical expression of the fact discussed in Sec. II that
angular momentum conservation dictates that the mass
term as such can only induce chirality flips at zero
momentum, therefore the phase volume for such processes
vanishes.

2. First order

In the first order in α one gets three diagrams depicted in
Fig. 5. We will see that the first two of them give the
logarithmically divergent contribution to the chirality flip-
ping rate. In Appendix C it is shown that this divergence
occurs when all three lines in diagrams (a) and (b) are on
shell. Cutting these lines, we immediately get the matrix
elements of collinear 1 ↔ 2 scattering processes qualita-
tively discussed in Sec. II. The subtlety with the first-order
diagrams is that their divergence resulting from the col-
linear processes is extremely sensitive to the dispersion
relations of the involved particles. After performing resum-
mation of leading divergences in higher order perturbation
theory we will find that the dressing of the particles’
dispersion relations leads to a collapse of the phase volume
of the collinear processes, however this effect is counter-
acted by a finite lifetime of the quasiparticles resulting in a
finite contribution to Γ.
Coming back to the diagrams in Fig. 5, we now calculate

their contributions to the chirality flipping rate. The
corresponding expressions are rather cumbersome and
for the sake of convenience we list them in Appendix C
together with the details of further manipulations.
When we try to perform the analytic continuation of the

final expression for the Matsubara Green’s function to the
desired point on the real axis, iΩn → −2μ5 þ i0, the result
appears to be logarithmically divergent. In order to extract
the divergent part, we perform the continuation into the
point shifted along the real axis, iΩn þ 2μ5 → iδþ ϵ, and
take the symmetric limit ϵ → 0. Using Eq. (13), we obtain
the result

FIG. 4. Feynman diagram for the chirality flipping rate in
zeroth order in α. Its imaginary part is expressed as an overlap of
the free electron spectral densities with the same momentum and
different chiralities. For nonzero momenta they never overlap so
that the diagram vanishes. Cutting this diagram we get the
amplitude of 1 ↔ 1 process with the chirality flip discussed in
Sec. II.
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Γ1 order
flip ¼ 3

4

m2
e

T
α

�
ln
2T
ϵ

þ ðfiniteÞ
�
: ð18Þ

It is worth noting that there are in fact two different
logarithmic divergences arriving from two different regions
of the phase space. The first one, which is associated with
the zero photon momentum in the loop, appears in all three
diagrams of Fig. 5, however it exactly cancels in their sum
due to the gauge invariance of the theory. One can eliminate
such a divergence by an appropriate gauge choice for the
photon propagator, however, it is more convenient for us to
work in the Feynman gauge. The second logarithmic
divergence is caused by the fact that the particles in the
loop are massless and there is a possibility for real collinear
1 ↔ 2 processes to take place. Remarkably, this divergence
is present only in the first two diagrams in Fig. 5. More
precisely, it comes from the phase space region where the
momentum of lower electron line in diagram (a) [upper
electron line in diagram (b)] as well as the momenta of both
particles in the self-energy blobs are on shell and collinear.
The remaining electron propagators are off shell because
they have different chirality; however, they approach the
shell when the loop momentum k → 0 and this is where this
divergence appears.
Let us look more precisely at the reason why this

divergence comes about. The first two diagrams correspond
to the self-energy insertion into one of the fermionic lines in
the diagram in Fig. 4. In fact, they can be represented as
shown in Fig. 6.

In terms of the general self-energy correction Σ, the
imaginary part of the retarded Green’s function for the first
two diagrams has the form

ℑmGret
1;2 ¼

1

2

Z
d3k
ð2πÞ3

X
λ¼�

�
tanh

λk − μR
2T

− tanh
λk − μL
2T

�

×
ℑmΣ�λ

R;Lðλkþ i0;kÞ
ð2λkÞ2 ; ð19Þ

where

Σλ
L;Rðk0;kÞ ¼ tr

�
ΣL;Rðk0;kÞ

1 − λσ · k=k
2

�
ð20Þ

and ΣL;Rðk0 þ i0;kÞ is the retarded self-energy of the chiral
fermion which is given by one-loop diagram shown
in Fig. 11.
It is important to note that k2 in the denominator comes

from the fact that we have two identical fermion propa-
gators surrounding the self-energy insertion in Fig. 6. The
momentum k is on shell for the fermion running in the
undressed line. Because of the chirality flip in mass
vertices, this momentum is off shell for the dressed line,
however, for k → 0 it approaches the shell and the
divergence occurs. Moreover, the imaginary part of the
fermion self-energy in HTL approximation (D3), is also
singular for k → 0:

(a) (b) (c)

FIG. 5. Feynman diagrams for chirality flipping rate in the first order in α. Diagrams (a) and (b) contain logarithmic infrared
divergence for the loop momentum k → 0. It comes from the singular behavior of the self-energy insertions in these two diagrams as
well as from multiple nearly-on-shell propagators. The divergence appears when all three particles in the loop are on shell and collinear.
Cutting these diagrams, we get the matrix elements of the 1 ↔ 2 scattering processes discussed in Sec. II, Fig. 2. In addition, all three
diagrams contain the unphysical divergence associated with vanishing photon momentum; however, it is canceled in the final result due
to the gauge invariance.

(a) (b)

FIG. 6. First-order diagrams in Fig. 5(a) and 5(b) represented in an equivalent form by introducing the self-energy insertions (grey
blobs). For convenience, the self-energy operator is discussed in Appendix D. Its singular behavior for small k as well as the presence of
two identical propagators in each diagram lead to the logarithmic divergence in the result.
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ℑmΣ�λ
R;Lðλkþ i0;kÞ ¼ −

πe2T2

16k
∝
1

k
: ð21Þ

Finally, substituting Eq. (19) into Eq. (13), we obtain

Γ4a;4b
flip ¼ 3

4
α
m2

e

T

Z
dk
k

1

cosh2 k
2T

; ð22Þ

which is indeed logarithmically divergent and after the
regularization leads to Eq. (18). Thus, multiple propagators
with the same momentum and singular behavior of the self-
energy for k → 0 are two features which lead to the
logarithmically divergent result.
Let us now discuss the diagram in Fig. 5(c) which

corresponds to dressing of a vertex (not a QED inter-
action vertex but simply the mass insertion). This dia-
gram contains two propagators with one momentum and
two other propagators with the different momentum (any

two of them cannot be simultaneously on shell because
of the different chiralities). Combining this with the fact
that the singular self-energy does not appear in this
diagram, we conclude that this diagram does not contain
the divergence at k → 0. Nevertheless, as we mentioned
earlier, it contains the fictitious infrared divergence at
small photon momenta which is also contained in the
diagrams (a) and (b) in Fig. 5. That is why we have to
keep all three diagrams together and, moreover, regular-
ize them in the similar way so that not to violate the
cancellation of this unphysical divergence.
Before dealing with these divergences, let us check

whether they appear also in higher perturbative orders.

3. Second order

In this subsection, we consider the diagrams of the
second order in α. We have many more diagrams than in the

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

FIG. 7. Ten topologically different classes of Feynman diagrams for chirality flipping rate in the second order in α. Diagrams (a), (b),
and (c) represent two-loop self-energy corrections to one of the propagators and thus are of the same type as shown in Fig. 6. Diagrams
(d), (e), and (f) contain one singular self-energy or QED vertex correction and at most two identical propagators; thus, their singularity is
of the same type as for diagrams in Fig. 5(a) and (b). Because of the higher order in α, they can be neglected. Diagrams (g) and (h) do not
contain nontrivial singularities just as that in Fig. 5(c). Diagram (i) is more singular than the first-order graphs because it accumulates the
singularity of two self-energy corrections and three identical propagators. This divergence is associated with on-shell loop momentum k
and quickly grows in higher orders. Diagram (j) additionally contains the singularity coming from off-shell (spacelike) loop momenta.
Such a divergence appears for the first time in diagram (j) and it is also accumulated in higher orders. The behavior of the diagrams (i)
and (j) show the necessity for the resummation.
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previous case which can be classified into 10 topologically
different classes shown in Fig. 7. Analyzing their singu-
larities, we will show that there are two types of divergen-
ces: the first one is of the same origin as discussed in the
previous subsection, however, it is more severe at this
order; the second one is new and it is associated with the
off-shell loop momentum.
Let us discuss the singularity of each class. Diagrams of

the first line, (a), (b), and (c) represent the higher order
corrections to electron’s self-energy operator inserted into
one of the lines. In other words, these diagrams can be
combined together with the diagram in Fig. 5(a) resulting in
a diagram in Fig. 6(a). It is worth noting that the two-loop
self-energy correction which is present in the diagram (c) is
important because it provides the finite electron damping
rate which is crucial for the calculation of the chirality
flipping rate.
The diagrams (d), (e), and (f) contain at most two similar

propagators and one singular self-energy blob (or vertex
correction). So that they cannot be more singular as the
diagram in Fig. 5(a), but they are of higher order in α and
thus can be neglected.
The diagrams (g) and (h) are just finite for the same

reason as the diagram in Fig. 5(c) is. There are no multiple
nearly-on-shell propagators and no singular self-energy
blobs.
Finally, we are left with two types of diagrams, (i) and

(j), which need special attention. Obviously, they contain
two singular self-energy insertions and more identical
propagators in the loop. This leads to the accumulation

of divergences which will be discussed for a general order
in the next subsection.

4. Higher orders in perturbation theory

Here we concentrate our attention on the two classes of
diagrams which accumulate divergences with the increase
of the perturbative order. These classes were detected in
previous subsections.
The first one is represented by a diagram in Fig. 8(a). In

such a case, one of the fermion lines remains undressed and
the contribution comes from the on-shell loop momentum
k. Performing the power counting of the previous sub-
sections, we would have nþ 1 identical propagators giving
1=k factor each and n divergent self-energy blobs. As a
result the divergence of the integral would be powerlike in
the infrared,

R
dk=k2n−1.

Another possibility arises when we dress both fermion
lines as shown in Fig. 7(j), or in the general case in
Fig. 8(b). As we will see explicitly below, the sought
ℑmGret is expressed as the overlap of the imaginary parts of
the upper and lower lines in the loop. If we have both
dressed lines, the imaginary part arises not only for on-shell
loop momentum [as for diagram in Fig. 8(a)], but also for
off-shell (spacelike) momentum k, where the incoherent
part of the self-energy operator is nontrivial. The power
counting is very similar to the previous one, because for
any spacelike momentum k20 − k2 < 0 the behavior
ℑmΣðk0;kÞ ∼ e2T2=k is valid. The propagators linking
the self-energy blobs all behave ∼1=k for k → 0. As a

(a) (b)

(c)

FIG. 8. (a) General case of multiple self-energy insertions into one fermion line which illustrates the accumulation of the divergences
associated with on-shell loop momentum. The lowest order diagram of this type is shown in Fig. 5(a) and is logarithmically divergent.
The resummation of this class of diagrams would lead to dressing of only one fermion propagator in the loop. (b) General representative
of the diagrams with self-energy insertions in both lines. The lowest order diagram is shown in Fig. 7(j) and is quadratically infrared
divergent; this divergence quickly increases in higher orders. This singularity comes from the incoherent part of the self-energy
associated with on-shell particles inside the self-energy loops. The resummation of these diagrams would lead to dressing of both lines in
the loop, which is shown by the diagram (c). Obviously, such a resummation absorbs also diagrams of the type (a). Since the vertex
corrections do not lead to the accumulation of the divergences, the vertices in diagram (c) remain undressed.
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result, for the diagram shown in Fig. 8(b) we would have
the powerlike divergence of the form ∼

R
dk=k2nþ2m−1. As

we see, this divergence is accumulated if we go to higher
perturbative orders.
The two divergences described above have different

physical meaning. The “on-shell” contribution whose low-
est order diagrams are given by the first two graphs in
Fig. 5, can be identified with the effective 1 ↔ 2 processes
in plasma. Indeed, such processes appear if we cut the on-
shell lines of these diagrams. The lowest order diagram
containing the “off-shell” divergence is shown in Fig. 7(j).
Here, the imaginary parts of the self-energy insertions for
the off-shell momentum k appear when the particles inside
the blobs are on shell. Cutting these lines we arrive at the
2 ↔ 2 Compton or annihilation diagrams shown in Fig. 1.
Thus, we see the one-to-one correspondence of the different
regions of the phase space with the elementary processes
discussed in Sec. II.
As we saw above, when we add more self-energy

insertions, the singularities are accumulated. Thus, in order
to obtain the physically meaningful result, we need to
perform the resummation of the self-energy corrections to
the fermion propagators in the loop. This will be done in the
next subsection. We would like to note that at leading order
there is no need for resummation of the vertex corrections
[diagrams like in Fig. 5(c) and of higher orders]. That is
because the divergences in those are much weaker and do
not accumulate as quickly as in self-energy.

5. Resummation of leading divergences in the
perturbative expansion

The divergences arising in our naive perturbative expan-
sion signal out that the free fermions and photons are not the
correct physical degrees of freedom in such a situation andwe
have to think of some other choice. The self-energy resum-
mation gives us a correct choice replacing the free particles
with the quasiparticles withmodified dispersion relations due
to thermal effects in plasma. In fact, in the kinetic approach
considered in Ref. [46] we used the resummed fermion
propagator and this helped to regularize the divergence. We
will use the same strategy in this subsection.
At a technical level, the resummation of the self-energy

corrections is performed by considering the full fermion pro-
pagators instead of bold ones. Since there is no need for the
vertex resummation,weobtain the diagram shown inFig. 8(c).
The full propagator of the chiral fermion is the solution of the
Schwinger-Dyson equation (D7) and in general can be
decomposed into two helicity components as follows:

SR;Lðk0;kÞ ¼
X
λ¼�

1

Δλðk0;kÞ
1� λσ · k̂

2
: ð23Þ

Here Δ�ðk0;kÞ is the denominator whose zeros give the dis-
persion relations for the quasiparticles with positive(negative)
ratio of chirality to helicity.
Then, the expression for the diagram in Fig. 8(c) takes

the form

GðiΩnÞ ¼ T
X
m

Z
d3k
ð2πÞ3 tr½SLðiωm − iΩn;kÞSRðiωm;kÞ�

¼ T
X
m

Z
d3k
ð2πÞ3

X
λ¼�

1

Δλðiωm − iΩn þ μL;kÞΔ−λðiωm þ μR;kÞ
; ð24Þ

It is natural that the functions with opposite signs λ appear in our result.
The sum over the Matsubara frequencies can be rewritten as the integral in a complex plane z along the contour spanning

on the branch cuts at z ¼ k0 and z ¼ k0 þ iΩn, k0 ∈ R. Further, we perform the analytic continuation iΩn → −2μ5 þ i0
and take the imaginary part to get the following expression for the rate of change of the chiral charge per unit volume:

_q5 ¼ −4m2
e

Z
d4k
ð2πÞ4 tanh

k0

2T

X
λ¼�

�
ℑm

1

Δλðk0 þ μR − i0;kÞℑm
1

Δ−λðk0 þ μR þ i0;kÞ

þ ℑm
1

Δλðk0 þ μL þ i0;kÞℑm
1

Δ−λðk0 þ μL þ i0;kÞ
�
: ð25Þ

Then, shifting the variable k0 þ μR → k0 in the first term and k0 þ μL → k0 in the second one and noting that two values of
λ give equal contributions, we have the final expression

_q5 ¼ 2m2
e

Z
d4k
ð2πÞ4

�
tanh

k0 − μR
2T

− tanh
k0 − μL
2T

�
ρþðk0;kÞρ−ðk0;kÞ; ð26Þ

where
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ρ�ðk0;kÞ ¼ −2ℑm
1

Δ�ðk0 þ i0;kÞ ð27Þ

is the spectral density of the fermions with positive-
negative ratio between chirality and helicity.
Expanding the hyperbolic tangent in Eq. (26) and using

Eq. (13), we obtain the part of the chirality flipping rate
coming from the self-energy corrected diagram in Fig. 8(c)
in the following form:

Γ7c
flip ¼

6m2
e

T3

Z
d4k
ð2πÞ4

1

cosh2 k0
2T

ρþðk0;kÞρ−ðk0;kÞ: ð28Þ

This equation is well known in the literature. It arises, for
example, in condensed matter theory in the context of
particle exchange between two reservoirs across a tunnel-
ing barrier [see, e.g., Eq. (9.3.11) and the corresponding
diagram 9.9 in Ref. [58] ].
In the following subsection we will use Eq. (28) in order

to calculate the chirality flipping rate in the leading order
in α.

B. Calculation of the chirality flipping rate
at leading order

Here, we calculate the chirality flip at leading order in α.
As we discovered in the previous subsection, there are two
diagrams which must be taken into account. First of all, this
is the dressed loop diagram in Fig. 8(c) which is a result of
resummation of an infinite number of divergent graphs from
all orders in perturbation theory containing only the self-
energy corrections. The second one is the vertex correction
diagram in Fig. 5(c) which is of the first order in α.

1. Diagram in Fig. 8(c)

The part of the chirality flipping rate coming from the
diagram in Fig. 8(c) is given by Eq. (28). In order to calculate
this integral, we need to know the spectral densities of
electrons with different chiralities (27). For free fermions,

the spectral density is simply ρð0Þ� ¼ 2πδðk0 ∓ kÞ, and
expression (26) coincides with Eq. (17) derived in the zeroth
order inα. Since the spectral densitieswith opposite chiralities
do not overlap in this case, the chirality flipping rate vanishes.
This is the manifestation of the fact that the free fermion
cannot spontaneously flip its chirality because of the angular
momentum conservation.
In the medium, however, the spectral function acquires a

more complicated form

ρ�ðk0;kÞ¼2π½Z�ðkÞδγeðk0−ϵ�ðkÞÞ
þZ∓ðkÞδγeðk0þϵ∓ðkÞÞ�þρðLDÞ� ðk0;kÞ: ð29Þ

Here, the first two terms in brackets correspond to the
quasiparticle poles with the energies ϵ�ðkÞ, residues Z�ðkÞ,
and decay width γe. The function δγeðk0 � ϵÞ is the Lorentz
contour

δγeðk0 � ϵÞ≡ γe
π

1

ðk0 � ϵÞ2 þ γ2e
: ð30Þ

The last term in Eq. (29) is the continuous (or incoherent)
contribution to the spectral density.
At leading order in α, the thermal corrections can be

described in the HTL approximation (see, e.g., the textbook
[59]). It accounts for the 1-loop self-energy correction in
which the loop momentum is hard p ∼ T and much greater
than the external momentum. In this approximation, the
dispersion relations ϵ�ðkÞ and the residues Z�ðkÞ are well
known and for convenience they are listed in Appendix D.
The incoherent contribution is nontrivial in the region of
spacelike momenta and corresponds to the Landau damp-
ing of the corresponding modes. Its explicit expression is
given by Eq. (D18).
It is important to note that the HTL approximation does

not predict the finite lifetime for the quasiparticles in plasma.
Indeed, in the region of timelike momenta, the imaginary
part of theHTL self-energy (D6) is absent and, therefore, the
dispersion relations are real. The finite lifetime comes from
higher-order scattering processes, which correspond to two
and higher loop orders in the self-energy diagram. A certain
class of such higher order processes is known to contain
accumulating infrared divergences arising from the emission
of soft photons. Such accumulating divergences are known
to reduce the perturbative order of a decay rate as compared
to the nominal order of the corresponding tree-level process
and generally require a partial resummation of the pertur-
bation theory series [55–57]. The analysis of an electron’s
lifetime was performed in Refs. [60–62]; see also Eq. (5.15)
of Ref. [55]. It was, in particular, found that for hard
momenta k ∼ T which give rise to the dominant contribution
to the integral (28) thewidth of an electron’s on-shell peak is
given by

γe ≃
1

2
Tα ln α−1 þOðαÞ: ð31Þ

Now, let us apply Eq. (28) in order to calculate the part of
the chirality flipping rate coming from the self-energy
corrected diagram in Fig. 8(c). There are several contri-
butions from different terms in the spectral function. We
consider them separately in Appendix E in detail and here
we list only the main results.
Contribution from the plasmino branch.—First of all, we

show that the contribution of the plasmino branch in the
quasiparticle spectrum is of higher order in α and can be
neglected. In fact, this branch only exists in the soft
momentum region, k≲ eT, and for hardmomenta the residue
of the corresponding pole is exponentially suppressed, see
Appendix D. In this region, however, the energy of the
plasmino is displaced from the incoherent part as well as from
the normal branch by energy Δϵ ∼ eT, which is much larger
than the characteristic width (31) of the pole. That is why, the
integral (28) is suppressed by higher power of α if at least one
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of the spectral densities ρ� corresponds to the plasmino
branch, see the estimates in Appendix E 1.
Overlap of the incoherent parts.—If we take only the

incoherent parts in both spectral functions in Eq. (28), we
will get the following result:

Γ7c;ðLDÞ
flip

¼ 3m2
em4

th

4πT3

Z
∞

0

dk
Z

k

0

dk0

cosh2 k0
2T

×
1 − k0

k

½ðk0 − kÞð1þ m2
th

4k2 ln j kþk0

k−k0 jÞ −
m2

th
2k �

2 þ ½πm2
th

4k ð1 − k0
k Þ�

2

×
1þ k0

k

½ðk0 þ kÞð1 − m2
th

4k2 ln j kþk0

k−k0 jÞ þ
m2

th
2k �

2 þ ½πm2
th

4k ð1þ k0
k Þ�

2
;

ð32Þ

where the expression (D18) was used. Again, the main
contribution comes from the soft momentum region,
k ∼ eT, but now it is a smooth function that accumulates
nonperturbatively large spectral weight, i.e., the incoherent
part in this region contributes to the sum rules the amounts

of order unity. Since ρðLDÞ� ∼ 1=ðeTÞ in the soft momentum
region, the naive estimate gives for the chirality flipping
rate the following result:

Γ7c;ðLDÞ
flip ¼ C̃

m2
e

T3
× ðeTÞ4 × 1

ðeTÞ2 ¼ C × α
m2

e

T
: ð33Þ

In Appendix E 2 we explicitly calculate the integral (32)
and show that the estimate (33) indeed holds with the
constant C equal to

C ¼ 3

8

Z
1

0

dy
1 − y2

Z
∞

0

ξ2dξ

½ðξþ 1
4
ln 1þy

1−y þ 1
2ð1−yÞÞ2 þ π2

16
�½ðξ − 1

4
ln 1þy

1−y þ 1
2ð1þyÞÞ2 þ π2

16
� ≈ 0.24: ð34Þ

The rate given by Eqs. (33) and (34) exactly coincides
with the result coming from the Compton diagram calcu-
lated in the kinetic approach [46]. Let us discuss what is the
connection between these two approaches. At finite tem-
perature, the imaginary part of the particle’s self-energy
emerges in the situations when the particle can take part in
any process involving the real particles, because there is a
thermal bath of such particles (in vacuum at T ¼ 0, only in
decay processes). In particular, even for soft electron with
momentum k ∼ eT, the imaginary part of the its self-energy
is nonzero for spacelike momenta, because this virtual
electron can take part in the processes e� þ γ → e,
e� þ ē → γ, where eðēÞ and γ are real (on-shell) particles.
Thus, the incoherent part of the self-energy appears when
the on-shell particles run inside the loop.
The lowest order diagram in which the two incoherent

parts appear simultaneously is the three-loop diagram

shown in Fig. 9(a). In both self-energy loops the particles
are on shell. Cutting the corresponding lines, we reveal the
matrix elements of the Compton or annihilation processes
shown in Fig. 9(b). This qualitatively explains the relation
between the two approaches.
Thus, we recovered the result of Ref. [46] in the linear

response formalism. However, we will see below that there
is also another contribution to the leading order in α which
is calculated in the following subsections.
Overlap of the quasiparticle pole with the incoherent

part.—Finally, we have to calculate the contribution com-
ing from the overlap of the quasiparticle pole in ρþ with the
spectral density of the fermion of the negative helicity ρ−
and vice versa. In the HTL effective theory such an overlap
vanishes because the width of the pole is infinitely small
and it is always located in the region k0 > k, where ρ− is
identically zero. However, the HTL spectral density is

(a) (b)

FIG. 9. (a) The lowest order diagram in which the incoherent parts for both fermion lines arise. In this diagram, the loop momentum is
off shell while all particles inside the self-energy blobs are on shell. Cutting this diagram, one gets the matrix elements of the Compton
scattering and annihilation processes shown in panel (b). The contribution of such processes was calculated in the kinetic
framework [46].

BOYARSKY, CHEIANOV, RUCHAYSKIY, and SOBOL PHYS. REV. D 103, 013003 (2021)

013003-12



modified by collisions in plasma which cause the finite
width γe of the pole and also wash out the region where ρ−
vanishes.
For soft momenta k ∼ eT, the quasiparticle pole is

displaced from the “old shell” k0 ¼ k by the value of
order eT. However, for hard momenta, this displacement
becomes smaller and asymptotically vanishes, ϵþðkÞ − k≈
m2

th=ð2kÞ → 0. Since the decay width parametrically
behaves like γe ∝ e2 ln e−1T, the above mentioned overlap
will be more significant in the region of hard momenta. In
fact, the contribution from the soft momentum region can
be estimated in a similar way as we did for the plasmino
branch and it is of higher order in α. Thus, in what follows
we consider only the hard electron momenta. The corre-
sponding contribution to the chirality flipping rate reads as

Γ7c;ðpoleÞ
flip ¼ 6m2

e

π2T3

Z
∞

0

k2dk
cosh2 k

2T

Z
∞

−∞
dxδγeðxÞρ−ðϵþðkÞþx;kÞ;

ð35Þ

where we used the fact that the hyperbolic cosine is the
smooth function and neglected x as well as the thermal
corrections to the energy dispersion in its argument. The
only thing we need is to calculate the spectral density ρ− far
from its shell.

ρ−ðϵþðkÞ þ x; kÞ

¼ −2ℑm
1

Δ−ðϵþðkÞ þ xþ i0; kÞ
≈ −

2

½Δð0Þ
− ðϵþðkÞ þ x; kÞ�2 ℑmΣ−ðϵþðkÞ þ xþ i0; kÞ

≈ −
1

2k2
ℑmΣ−ðϵþðkÞ þ xþ i0; kÞ; ð36Þ

where 1=Δð0Þ
− ðk0; kÞ ¼ 1=ðk0 þ kÞ is the negative helicity

component of the free electron propagator and Σ− is the
corresponding component of the retarded electron self-
energy. The details of the calculation are given in
Appendix E 3 and the general expression for the chirality
flipping rate is given by Eq. (E12). It is important to note
that there are two regions in the phase space which give the
main contributions to the final result.
The first one comes from the region of small momenta of

the photon running in the loop in the self-energy diagram. It
is given by

Γ7c;ðpole;softγÞ
flip ¼ 3m2

eα

2π3T2

Z
∞

0

dk

cosh2 k
2T

Z
Λ

0

Q2dQ
Z

π

0

d cos θ

×
Z

dQ0
�ρμνðQ0;QÞ

Q0
Pμν
t ðkÞ

× δ2γeðQ0 −Q cos θÞ; ð37Þ

where Λ ∼ eT is the upper momentum cutoff which
separates the soft photon momenta, and �ρμνðQ0;QÞ is
the spectral density of the photon in HTL approximation.
Using the approximate formula (E18) valid for small
momenta of the photon, we finally obtain the parametric
dependence of this part

Γ7c;ðpole;softγÞ
flip ≈

3

π2
m2

e

T
α log α−1: ð38Þ

It is worth noting that this logarithmic enhancement is the
regularized version of the old (fictitious) logarithmic
divergence on the zero photon momentum. We will see
further that it will be canceled by the corresponding
contribution from the diagram in Fig. 5(c) (the “vertex
correction” diagram).
There is also another important contribution which

comes from the region when the electron quasiparticle
as well as photon and electron running in the loop in the
self-energy diagram all are hard and nearly collinear. The
corresponding expression for the chirality flipping rate is
given by

Γ7c;ðpole;collinearÞ
flip ¼ 3m2

eα

T3

Z
∞

0

dk

cosh2 k
2T

Z
d3Q
ð2πÞ3

X
λ0;λ00¼�

λ00

Q

×

�
coth

λ00Q
2T

þ tanh
k − λ00Q

2T

�
× δ2γeðϵþðkÞ − λ0ϵþðk −QÞ − λ00ωtðQÞÞ

×

�
1þ λ0

k · ðk −QÞ
kjk −Qj

�
: ð39Þ

The combination in the argument of the Lorentz-function
shows that for different choices of the signs λ0; λ00 we would
get different 1 ↔ 2 processes contributing to the chirality
flip. Three of them are shown in Fig. 10, the forth one,
λ0 ¼ λ00 ¼ −1 is not realized.
The Lorentz function takes into account the approximate

energy conservation law in the collision event. The amount
for which this conservation law can be violated is deter-
mined by the decay width of the electrons. But since the
decay width γe ∼ Tα log α−1 is much less than the energies
of the quasiparticles, the process has to be very close to
collinear so that the difference of the energies was small. In
Appendix E 3 we consider in detail the processes of nearly
collinear bremsstrahlung eL;RðkÞ → eR;Lðk −QÞ þ γðQÞ,
absorption of the photon eL;RðkÞ þ γðQÞ → eR;LðkþQÞ,
and annihilation eL;RðkÞ þ ēL;RðQ − kÞ → γðQÞ. The final
result reads as
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Γ7c;ðpole;collinearÞ
flip ¼ 3m2

eα

π2T

Z
∞

0

xdx
sinh2x

Z
∞

−1=2
dy

1þ 2yðyþ 1Þ
yðyþ 1Þ

× ½tanh xðyþ 1Þ − tanh xy�

×
2

π
arctan

8γeTx
m2

γ þm2
th=ðyðyþ 1ÞÞ : ð40Þ

Here mγ ¼ eT=
ffiffiffi
6

p
is the photon thermal mass.

2. Diagram in Fig. 5(c)

So far we calculated only the contribution of the diagram
in Fig. 8(c) which is a result of resummation of an infinite
number of diagrams starting from Figs. 5(a) and 5(b). Now,
we are going to compute the diagram in Fig. 5(c) since it
also gives the contribution of the same order. The corre-
sponding expression is given by Eq. (C3) where we must
replace the free fermion and photon propagators with the
full renormalized ones containing the thermal corrections.
Using the spectral representations for the electron and
photon propagators, we obtain Eq. (E34) and the expres-
sion for the imaginary part of the retarded Green’s function
is given by Eq. (E36).
Like in the previous case of the self-energy corrected

diagram, here we also have two interesting regions in the
phase space. For the details of calculation we refer the
reader to Appendix E 4 and here only report the results.
The first nontrivial result comes from the region of small

photon momenta. The corresponding contribution to the
chirality flipping rate equals to

Γ4c;ðsoftγÞ
flip ¼ −

3m2
eα

2π3T2

Z
∞

0

dk

cosh2 k
2T

×
Z

Λ

0

Q2dQ
Z

π

0

d cos θ
Z

dQ0
�ρμνðQ0;QÞ

Q0

× Pμν
t ðkÞδ2γeðQ0 −Q cos θÞ: ð41Þ

This expression has exactly the same form and an opposite
sign compared to Eq. (37) emerging from the first two
diagrams in the case of the soft photon momenta. Therefore,
in the final answer they exactly cancel each other.
The second important result emerges when the momenta

of all three particles are hard. The corresponding expression
for the retarded Green’s function reads as

ℑmGret
3 ¼ −

πe2

32

Z
d3k
ð2πÞ3

Z
d3Q
ð2πÞ3

X
λ;λ0;λ00¼�

λλ0λ00

kqQ

×

�
1 − λλ0

k · ðk −QÞ
kjk −Qj

�
Bðλϵk þ λ0ϵq; λ00ωQÞ

× F ðλϵk; λ0ϵqÞδ2γeðλϵk þ λ0ϵq − λ00ωQÞ; ð42Þ

where the functions F and B are defined in Eqs. (C8) and
(C9), respectively. The expression in the argument of the
Lorentz function can be approximately zero if themomenta of
colliding particles are almost collinear. Each of three possible
choices of the relative signs corresponds to one of the three
collinear processes considered in the previous subsection. In
fact, the case λ0 ¼ −λ; λ00 ¼ λ corresponds to the nearly
collinear bremsstrahlung eL;RðkÞ→eR;Lðk−QÞþγðQÞ, the
case λ0 ¼ λ00 ¼ −λ corresponds to the process of nearly
collinear absorption of the photon eL;RðkÞ þ γðQÞ →
eR;LðkþQÞ, and the case λ0 ¼ λ00 ¼ λ corresponds to
the process of nearly collinear annihilation eL;RðkÞþ
ēL;RðQ − kÞ → γðQÞ. These processes with the chirality flip
are schematically depicted in Fig. 10.
The contributions from all three processes can be

combined together in the following expression:

Γ4c;ðcollinearÞ
flip ¼ −

6m2
eα

π2T

Z
∞

0

xdx
sinh2x

Z
∞

−1=2
dy½tanh xðyþ 1Þ

− tanh xy� 2
π
arctan

8γeTx
m2

γ þm2
th=ðyðyþ 1ÞÞ ;

ð43Þ

3. Chirality flipping rate from nearly
collinear 1 ↔ 2 processes

Picking up all the results of the previous subsections, we
obtain two main contributions to the chirality flipping rate:
from the incoherent part of the electron spectral function
which encodes the 2 ↔ 2 processes allowed even with zero
decay width [see Eq. (33)] and from the nearly collinear
1 ↔ 2 processes in plasma which are possible due to the
finite lifetime of the quasiparticles. Here we summarize the
second contribution.

FIG. 10. Nearly collinear 1 ↔ 2 processes in plasma with the chirality flip of the incoming electron (different colors show different
chirality of quasiparticles). In these processes, quasiparticles have modified dispersion relations and finite width due to the thermal
corrections. The latter shift the energies from free-particle shells and simultaneously allow for a slight violation of the energy
conservation. The interplay of these two factors gives rise to the finite contribution of 1 ↔ 2 processes to the chirality flipping rate.
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Taking together Eqs. (40) and (43), we get

ΓðcollinearÞ
flip ¼ 3m2

eα

π2T

Z
∞

0

xdx
sinh2x

Z
∞

−1=2
dy

×
tanh xðyþ 1Þ − tanh xy

yðyþ 1Þ
×
2

π
arctan

8γeTx
m2

γ þm2
th=ðyðyþ 1ÞÞ : ð44Þ

Let us extract the leading parametric behavior of this
expression. The arctangent can be replaced by
ðπ=2ÞsignðyÞ if jxyj≳ ð8γeT=m2

thÞ−1 ∼ 1= ln e−1. In this
case, the y integral is dominated by the lowest possible
value of jyj, because it is logarithmically divergent on the
lower bound. Therefore, we have

ΓðcollinearÞ
flip ≈

3m2
eα

π2T

Z
∞

0

x tanhxdx
sinh2 x

2 ln
8γeT
m2

thx

≈
3

4

m2
e

T
α ln

8γeT
m2

th

þOðαÞ: ð45Þ

Comparing this result with Eq. (18), we conclude that this
is the same logarithmic contribution where the divergence
is now regularized due to the thermal corrections. Indeed,
Eq. (18) contains lnðkmax=kminÞ, where kmax and kmin are the
characteristic maximal and minimal possible values of the
electron’s momentum for which the collinear processes can
occur. Naturally, the maximal value is cut by the temper-
ature because the number of electrons with higher momen-
tum is exponentially suppressed. The minimal value can be
determined by the condition that the energy of the electron
deviates from the old shell by the value not greater than the
decay width, Δϵ ¼ ϵþðkÞ − k≲ γe. This immediately gives
kmin ∼m2

th=γe ∼ T= ln e−1. Now, we can see that this lower
bound cannot be deduced by some heuristic arguments and
only by consistent taking into account of thermal effects. It
is important to note that this contribution hardly can be
derived in the kinetic approach because of the uncertainty
of the type 0 ×∞ which was discussed in Sec. II.
Assuming that the electron damping rate is given by

Eq. (31), we numerically integrate Eq. (44) and determine
few first terms in the asymptotic decomposition over the
inverse logarithm of the coupling constant

ΓðcollinearÞ
flip ¼ m2

e

T
α

�
3

4
ln ln α−1 − 0.49þ 1.12

ln α−1

þOð1=ðln α−1Þ2Þ
�
: ð46Þ

Combining Eqs. (33) and (46), we get the chirality flipping
rate in the leading order in the coupling constant

Γflip¼
m2

e

T
α

�
3

4
lnlnα−1−0.25þ 1.12

lnα−1
þOð1=ðlnα−1Þ2Þ

�
:

ð47Þ

IV. CONCLUSION

In this work we calculated the rate of chirality flipping
processes in hot QED plasma with the chiral imbalance
μ5 ≠ 0. The final expression is given by Eq. (47).
Numerically, this gives the following equation for the
dissipation of the axial charge

_q5 ≈ −1.17α
m2

e

T
× q5: ð48Þ

This rate is ≈1440 times larger than the naive estimate (4),
cf. Refs. [2,21,22,49].
The reasons for this striking difference are as follows.

First, in plasma the nearly collinear 1 ↔ 2 processes with a
slight violation of the energy conservation can take place
because of the finite lifetime of the quasiparticles, which
counteracts the suppression of the phase volume due to the
modified dispersion relations of quasiparticles. Unlike the
previously considered Compton processes, the collinear
process is even nominally first order in α. Second, the tree-
level matrix elements of some 2 ↔ 2 scattering processes
have severe infrared divergences which are regularized in
plasma by thermal corrections on the soft scale q ∼ eT. In
both cases, result in contributions to the chirality flipping
rate which are of the order OðαÞ.
The interest to the exact value of the chirality flipping

rate has increased with the emergence of the chiral
magnetohydrodynamics (chiral MHD) [1–3], see also
Refs. [4,5]. Hydrodynamical description of magnetized
systems of relativistic fermions in weakly coupled mag-
netized plasmas [1–4,47]; dynamics of quasiparticles in
new materials such as graphene (see, e.g., Ref. [32]); and
behavior of quark-gluon plasma formed in heavy-ion
collisions (see, e.g., Ref. [63]), cannot be formulated solely
in terms of the usual magnetohydrodynamic variables (flow
velocity, magnetic field, density and pressure) appearing in
the Navier-Stokes and the Maxwell equations. The hydro-
dynamics of ultrarelativistic particles necessarily contains
an additional degree of freedom corresponding to the
space- and time-dependent axial chemical potential
[2,3,64] that can be expressed via an axionlike dynamical
degree of freedom [3,12,13,64], see also Ref. [65]. The
dynamics of this degree of freedom is coupled to the
magnetic helicity [via Eq. (1)] and to the Maxwell
equations via the chiral magnetic effect (see review in
Ref. [66] and references therein). Chiral MHD is the subject
of active research [3,5–11,16–24,49,67–87]. However, its
effects are operational only while the chirality flipping
processes are slower than other relevant rates. In particular,
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chiral cascade [1,2,6–11] that may be responsible for the
survival of the primordial magnetic fields, stops being
operational once chirality flipping rate is faster than the rate
ΓB of chirality transfer between fermionic (N5) and
magnetic (H) components of the axial charge (1).
Recent microscopic studies of the axial charge dynamics
[88–90] suggest that the rate ΓB may be much faster than
one can estimate from the classical (MHD-based) descrip-
tion (see, e.g., Ref. [1,2,91,92]). Therefore, the range of
applicability of chiral MHD in the hot plasmas, and, in
particular, the evolution of primordial magnetic fields [46]
remains an open research question.
In particular, when MHD admits a transfer of magnetic

energy from short- to long-wavelength modes of helical
magnetic fields, increasing their chance to survive dissipation
in the early Universe and survive until today [1,2,6–11].
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APPENDIX A: APPLICATION OF THE LINEAR
RESPONSE FORMALISM

The operator dQ̂5=dt has vanishing expectation value in
massless QED and satisfies the Heisenberg equation (10) in
the case of nonzero mass. Since in this Appendix only the
operator Q̂5 appears, we will omit the hat in its notation.
Therefore, its expectation value in the perturbed state can
be calculated using the linear response formalism [58]��
dQ5

dt

		
¼−i

Z
t

−∞
dt0
���

dQ5ðtÞ
dt

;Hmðt0Þ
�		

0

¼ 2m2
e

Z
d3xd3y

Z
t

−∞
dt0

× hh½ψ̄ðt;xÞγ5ψðt;xÞ; ψ̄ðt0;yÞψðt0;yÞ�ii0; ðA1Þ

where all field operators are considered in the Heisenberg
representation with respect to massless QED Hamiltonian
H0 and the averaging is over the states of massless theory.
This is marked by the index 0, which will be omitted in
what follows.
We consider the process of chirality flip in the hot

chirally asymmetric electron-positron plasma at high tem-
perature me ≪ T ≲ TEW, where TEW is the temperature
when the electroweak crossover takes place. Therefore, the
averaging should be performed at finite temperature and

chemical potentials for left- and right-handed particles in
the grand canonical ensemble with the Hamiltonian

K ¼ H0 − μN − μ5Q5 ¼ H0 − μRQR − μLQL; ðA2Þ

where the last two terms correspond to the conservation of
left- and right-handed particle numbers separately. Here,
μ ¼ ðμR þ μLÞ=2, μ5 ¼ ðμR − μLÞ=2, and μR;L are the
chemical potentials for the right and left chiral fermions,
respectively. There is some subtlety in the calculation of
this correlator which complicates the averaging procedure.
In fact, the time evolution of the system is governed by the
quantum Hamiltonian of massless QED H0, and the
thermodynamic averaging in the grand canonical ensemble
has to be performed with extended Hamiltonian (A2). In
order to overcome this inconsistency, we represent the
quantum Hamiltonian in the form H0 ¼ K þ μN þ μ5Q5

and, taking into account that it commutes with the number
operators, we separate the corresponding exponents:

ψðt;xÞ ¼ eiH0tψSðxÞe−iH0t

¼ eiKteitðμNþμ5Q5ÞψSðxÞe−itðμNþμ5Q5Þe−iKt: ðA3Þ

Then, we substitute this into Eq. (A1). Further simplifica-
tions could be done using the well-known formula

eACe−A ¼ Cþ ½A;C� þ 1

2!
½A; ½A;C�� þ 1

3!
½A; ½A; ½A;C���

þ…; ðA4Þ

where A ¼ itðμN þ μ5Q5Þ and there are two choices
for the C operator, C1ðxÞ ¼ ψ̄ðxÞγ5ψðxÞ and C2ðxÞ ¼
ψ̄ðxÞψðxÞ. Using the canonical anticommutation relations
it is easy to obtain

½C1;2; N� ¼ 0; ½C1;2; Q5� ¼ 2C2;1: ðA5Þ

Therefore, all the commutators are calculated in a chain

½A;C1;2� ¼ −2iμ5tC2;1;

½A; ½A;C1;2�� ¼ ð−2iμ5tÞ2C1;2;…: ðA6Þ

Performing the summation of all series we obtain

eAC1;2e−A ¼ cosð2μ5tÞC1;2 − i sinð2μ5tÞC2;1: ðA7Þ

In each case we have

eAψ̄ðxÞγ5ψðxÞe−A
¼ cosð2μ5tÞψ̄ðxÞγ5ψðxÞ − i sinð2μ5tÞψ̄ðxÞψðxÞ
¼ e−2iμ5tψ̄ðxÞPRψðxÞ − e2iμ5tψ̄ðxÞPLψðxÞ; ðA8Þ
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eAψ̄ðyÞψðyÞe−A
¼ cosð2μ5t0Þψ̄ðyÞψðyÞ − i sinð2μ5t0Þψ̄ðyÞγ5ψðyÞ
¼ e−2iμ5t

0
ψ̄ðyÞPRψðyÞ þ e2iμ5t

0
ψ̄ðyÞPLψðyÞ: ðA9Þ

Now we can move into the Heisenberg representation
with respect to the full Hamiltonian K:

Ψðt;xÞ ¼ eiKtψSðxÞe−iKt: ðA10Þ

Introducing the notations

Wðt;xÞ ¼ Ψ̄ðt;xÞPRΨðt;xÞ ¼ Ψ̄Lðt;xÞΨRðt;xÞ; ðA11Þ

W†ðt;xÞ ¼ Ψ̄ðt;xÞPLΨðt;xÞ ¼ Ψ̄Rðt;xÞΨLðt;xÞ; ðA12Þ

we rewrite our linear response result in the following form:

��
dQ5

dt

		
¼ 2m2

e

Z
d3xd3y

Z
t

−∞
dt0hh½e−2iμ5tWðt;xÞ

− e2iμ5tW†ðt;xÞ; e−2iμ5t0Wðt0; yÞ
þ e2iμ5t

0
W†ðt0; yÞ�ii ¼ I1 þ I2; ðA13Þ

where

I1 ¼ 2m2
e

Z
d3xd3y

Z
∞

−∞
dt0θðt − t0Þ

× fe−2iμ5ðt−t0Þhh½Wðt;xÞ;W†ðt0; yÞ�ii
− e2iμ5ðt−t0Þhh½W†ðt;xÞ;Wðt0; yÞ�iig; ðA14Þ

I2 ¼ 2m2
e

Z
d3x d3y

Z
∞

−∞
dt0θðt − t0Þ

× fe−2iμ5ðtþt0Þhh½Wðt;xÞ;Wðt0; yÞ�ii
− e2iμ5ðtþt0Þhh½W†ðt;xÞ;W†ðt0; yÞ�iig: ðA15Þ

The latter one contains operators which do not conserve the
numbers of left- and right-handed particles. Therefore, the
corresponding average equals to zero. The first term I1 can
be expressed through the following retarded Green’s
function:

Gretðt − t0;x − yÞ ¼ −iθðt − t0Þhh½Wðt;xÞ;W†ðt0; yÞ�ii;
ðA16Þ

Gretðω;x − yÞ ¼
Z

∞

−∞
dt eiωtGretðt;x − yÞ: ðA17Þ

I1¼2im2
e

Z
d3xd3yfGretð−2μ5;x−yÞ−G†

retð−2μ5;x−yÞg

¼−4m2
eV
Z

d3xℑm½Gretð−2μ5;xÞ�: ðA18Þ

Finally, in terms of the retarded Green’s function intro-
duced here, the rate of change of the chiral charge per unit
volume is given by Eq. (11).

APPENDIX B: FREE PROPAGATORS AND
SUMMATION OVER MATSUBARA

FREQUENCIES

The propagator of the free fermion in the imaginary time
formalism is given by

S0ðτ;xÞ ¼
Z

d3k
ð2πÞ3 e

ik·xT
X
m

e−iωmτS0ðiωm;kÞ; ðB1Þ

where ωm ¼ ð2mþ 1ÞπT, m ∈ Z is the fermionic
Matsubara frequency and the propagator in frequency-
momentum representation reads as

S0ðiωn;kÞ ¼
 

0̂ S0Lðiωn;kÞ
S0Rðiωn;kÞ 0̂

!

¼
 

0̂ iωnþμL−k·σ
ðiωnþμLÞ2−k2

iωnþμRþk·σ
ðiωnþμRÞ2−k2 0̂

!
; ðB2Þ

where σi are the Pauli matrices. The left and right
components of the propagator are decoupled because we
consider the massless case.
We use the chiral representation for the Dirac matrices

γμ ¼
�

0 σμ

σ̃μ 0

�
; γ5 ¼

�−1 0

0 1

�
;

σμ ¼ σ̃μ ¼ ð1; σÞ: ðB3Þ

For further convenience, it is also useful to decompose
the chiral components of the propagator into two helicity
components

S0R;Lðiωn;kÞ ¼
X
λ¼�

1

iωn þ μR;L − λk
1� λσ · k̂

2
: ðB4Þ

The free photon propagator in the Feynman gauge has
the following form:

D0;μνðτ;xÞ ¼
Z

d3Q
ð2πÞ3 e

iQ·xT
X
p

e−iΩpτ
−gμν

ðiΩpÞ2 −Q2
;

ðB5Þ

where Ωp ¼ 2πpT, p ∈ Z are the bosonic Matsubara
frequencies.
The summation over the Matsubara frequencies can be

performed by means of the following formulas:
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T
Xþ∞

m¼−∞

1

iωm − a
1

iωm − b
¼ −

1

2

tanh a
2T − tanh b

2T

a − b
; T

Xþ∞

m¼−∞

1

ðiωm − aÞ2 ¼ −
1

4Tcosh2 a
2T

; ðB6Þ

T
Xþ∞

p¼−∞

1

ðiΩpÞ2 −Q2

1

iΩp − a
¼ coth a

2T −
a
Q coth

Q
2T

2ðQ2 − a2Þ ; ðB7Þ

T
Xþ∞

p¼−∞

1

ðiΩpÞ2 −Q2

1

ðiΩp − aÞ2 ¼
1

4Tða2 −Q2Þ sinh2 a
2T

þ a coth a
2T

ða2 −Q2Þ2 −
ðQ2 þ a2Þ coth Q

2T

2Qða2 −Q2Þ2 : ðB8Þ

APPENDIX C: DIAGRAMS IN THE FIRST ORDER IN α

In this Appendix we calculate the first-order contribution to the chirality flipping rate from three diagrams shown in
Fig. 5. Using the Feynman rules we write down the corresponding analytical expressions:

Ga ¼ −e2
Z

d3k
ð2πÞ3

d3q
ð2πÞ3 T

X
m

T
X
p

DμνðiΩp;QÞ

× tr½S0Lðiωm − iΩn;kÞS0Rðiωm;kÞσμS0Rðiωm − iΩp;qÞσνS0Rðiωm;kÞ�; ðC1Þ

Gb ¼ −e2
Z

d3k
ð2πÞ3

d3q
ð2πÞ3 T

X
m

T
X
p

DμνðiΩp;QÞ

× tr½S0Lðiωm;kÞσ̃νS0Lðiωm − iΩp;qÞσ̃μS0Lðiωm;kÞS0Rðiωm þ iΩn;kÞ�; ðC2Þ

Gc ¼ −e2
Z

d3k
ð2πÞ3

d3q
ð2πÞ3 T

X
m

T
X
p

DμνðiΩp;QÞ

× tr½S0Lðiωm − iΩp − iΩn;qÞσ̃νS0Lðiωm − iΩn;kÞS0Rðiωm;kÞσμS0Rðiωm − iΩp;qÞ�; ðC3Þ

where Q ¼ k − q is the photon momentum and we used the shorthand notations σμ ¼ ð1; σÞ, σ̃μ ¼ ð1;−σÞ for the four-
vectors of the Pauli matrices.
Calculating traces in Eqs. (C1)–(C3) and performing the summation over the Matsubara frequencies we obtain

Ga ¼
e2

8

Z
d3k
ð2πÞ3

d3q
ð2πÞ3

X
λ;λ0¼�


ðcoth λk−λ0q
2T − λk−λ0q

Q coth Q
2TÞ

λλ0kqðiΩn þ 2μ5 þ 2λkÞ
�ðtanh λkþμR

2T − tanh λ0qþμR
2T Þ

ðiΩn þ 2μ5 þ 2λkÞ −
1

2Tcosh2½λkþμR
2T �

�

−
ðtanh λkþμR

2T − tanh λ0qþμR
2T Þ

kqðiΩn þ 2μ5 þ 2λkÞ
�ðλk − λ0qÞ coth λk−λ0q

2T − k2þq2−kqðλλ0þcos θÞ
Q coth Q

2T

ð1 − λλ0 cos θÞkq −
1

2Tλλ0sinh2½λk−λ0q
2T �

�

þð1 − λλ0 cos θÞðtanh λk−μL
2T þ tanh λ0qþμR

2T Þ
QðiΩn þ 2μ5 þ 2λkÞ2

�
coth 2μ5þλkþλ0q

2T − coth Q
2T

iΩn þ 2μ5 þ λkþ λ0q −Q
−

coth 2μ5þλkþλ0q
2T þ coth Q

2T

iΩn þ 2μ5 þ λkþ λ0qþQ

��
: ðC4Þ

Gb ¼
e2

8

Z
d3k
ð2πÞ3

d3q
ð2πÞ3

X
λ;λ0¼�


ðcoth λk−λ0q
2T − λk−λ0q

Q coth Q
2TÞ

λλ0kqðiΩn þ 2μ5 þ 2λkÞ
�ðtanh λk−μL

2T − tanh λ0q−μL
2T Þ

ðiΩn þ 2μ5 þ 2λkÞ −
1

2Tcosh2½λk−μL
2T �

�

−
ðtanh λk−μL

2T − tanh λ0q−μL
2T Þ

kqðiΩn þ 2μ5 þ 2λkÞ
�ðλk − λ0qÞ coth λk−λ0q

2T − k2þq2−kqðλλ0þcos θÞ
Q coth Q

2T

ð1 − λλ0 cos θÞkq −
1

2Tλλ0sinh2½λk−λ0q
2T �

�

þ ð1 − λλ0 cos θÞðtanh λkþμR
2T þ tanh λ0q−μL

2T Þ
QðiΩn þ 2μ5 þ 2λkÞ2

�
coth 2μ5þλkþλ0q

2T − coth Q
2T

iΩn þ 2μ5 þ λkþ λ0q −Q
−

coth 2μ5þλkþλ0q
2T þ coth Q

2T

iΩn þ 2μ5 þ λkþ λ0qþQ

��
: ðC5Þ
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Gc ¼
e2

4

Z
d3k
ð2πÞ3

d3q
ð2πÞ3

X
λ;λ0¼�

1

ðiΩn þ 2μ5 þ 2λkÞðiΩn þ 2μ5 þ 2λ0qÞ

×


ðtanh λk−μL
2T − tanh λ0q−μL

2T þ tanh λkþμR
2T − tanh λ0qþμR

2T Þ
λλ0kqð1 − λλ0 cos θÞ

�
coth

λk − λ0q
2T

−
λk − λ0q

Q
coth

Q
2T

�

þðtanh λk−μL
2T þ tanh λ0qþμR

2T þ tanh λkþμR
2T þ tanh λ0q−μL

2T Þ
Q

�
coth 2μ5þλkþλ0q

2T − coth Q
2T

iΩn þ 2μ5 þ λkþ λ0q −Q
−

coth 2μ5þλkþλ0q
2T þ coth Q

2T

iΩn þ 2μ5 þ λkþ λ0qþQ

��
:

ðC6Þ

Further, we have to perform the analytic continuation iΩn þ 2μ5 → iδ, δ → 0þ and to take the imaginary part after that.
In the majority of terms, the external frequency iΩn enters the expressions in the combinations 1=ðiΩn þ 2μ5 þ 2λkÞ,
1=ðiΩn þ 2μ5 þ 2λkÞ2, and ðiΩn þ 2μ5 þ 2λ0qÞ. After analytic continuation and taking of the imaginary part they will
contribute −πδð2λkÞ, πδ0ð2λkÞ and −πδð2λ0qÞ, correspondingly. It should be noted that in a spherical coordinate system the
measure has the form d3k ¼ k2 sin θdθdφ. It is easy to see that in all expressions the fraction 1=ðiΩn þ 2μ5 þ 2λkÞ is
multiplied by the regular function which behaves like ∼k, when k → 0, the fraction 1=ðiΩn þ 2μ5 þ 2λkÞ2 is multiplied by
function ∼k2 when k → 0, and the fraction 1=ðiΩn þ 2μ5 þ 2λ0qÞ is multiplied by function ∼q2 when q → 0. Therefore, by
virtue of the identity knδðkÞ≡ 0, n ≥ 1, all such terms can be discarded and not considered in what follows. Then in each of
the expressions (C4)–(C6) only the last terms remain and they have a similar structure of the integrand and can be
combined. Finally, we get the following expression for the sum of all three diagrams in Matsubara representation:

Ga þ Gb þ Gc ¼
α

16π3

Z þ∞

0

k2dk
Z þ∞

0

q2dq
Z

π

0

sin θdθ

×
X

λ;λ0;λ00¼�

λ00F ðλk; λ0qÞBðλkþ λ0q; λ00QÞ
QðiΩn þ 2μ5 þ λkþ λ0q − λ00QÞ

×

�
1 − λλ0 cos θ

ðiΩn þ 2μ5 þ 2λkÞ2 þ
2

ðiΩn þ 2μ5 þ 2λkÞðiΩn þ 2μ5 þ 2λ0qÞ
�
; ðC7Þ

where we introduced the following notations for the thermal factors:

F ðk; qÞ ¼ tanh
k − μL
2T

þ tanh
q − μL
2T

þ tanh
kþ μR
2T

þ tanh
qþ μR
2T

; ðC8Þ

Bðk;QÞ ¼ coth
2μ5 þ k
2T

− coth
Q
2T

: ðC9Þ

There are four different ways to choose signs in Eq. (C7), λ0 ¼ �λ and λ00 ¼ �λ. Below we consider each of them
separately.

1. Case λ0 = λ00 = λ

Feynman parametrization allows us to combine two denominators into one:

1

AB
¼
Z

1

0

dx
½Axþ Bð1 − xÞ�2 ;

1

A2B
¼ 2

Z
1

0

xdx
½Axþ Bð1 − xÞ�3 : ðC10Þ

The contribution of the first two diagrams could be calculated using the second formula in (C10):

Gð1Þ
a þ Gð1Þ

b ¼ α

8π3

Z þ∞

0

k2dk
Z þ∞

0

q2dq
Z

π

0

sin θdθ
X
λ¼�

λF ðλk; λqÞBðλðkþ qÞ; λQÞð1 − cos θÞ
Q

×
Z

1

0

xdx
½iΩn þ 2μ5 þ λkð1þ xÞ þ λqð1 − xÞ − λQð1 − xÞ�3 : ðC11Þ
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In elliptic coordinates

ξ ¼ kþ q
Q

; η ¼ k − q
Q

; cos θ ¼ ξ2 þ η2 − 2

ξ2 − η2
; k2q2 sin θdkdqdθ ¼ Q5

8
ðξ2 − η2ÞdQdξdη ðC12Þ

the expression takes the form

Gð1Þ
a þ Gð1Þ

b ¼ α

32π3

Z þ∞

0

Q4dQ
Z þ∞

1

dξ
Z

1

−1
dηð1 − η2Þ

×
X
λ¼�

λF ðλQðξþ ηÞ=2; λQðξ − ηÞ=2ÞBðλξQ; λQÞ
Z

1

0

xdx
fiΩn þ 2μ5 þ λQ½ξ − 1þ xðηþ 1Þ�g3 : ðC13Þ

Then, in order to reduce the power in the denominator we integrate by parts twice with respect to Q. Factor Q4 provides
the zero value on the lower boundary and BðλξQ; λQÞ is exponentially decreasing on the upper boundary. After integration
we obtain the following expression:

Gð1Þ
a þ Gð1Þ

b ¼ α

64π3

Z þ∞

0

dQ
Z þ∞

1

dξ
Z

1

−1
dη
Z

1

0

xdx
X
λ¼�

λ

iΩn þ 2μ5 þ λQ½ξ − 1þ xðηþ 1Þ�

×
ð1 − η2Þ

½ξ − 1þ xðηþ 1Þ�2
d2

dQ2
½Q4F ðλQðξþ ηÞ=2; λQðξ − ηÞ=2ÞBðλξQ; λQÞ�: ðC14Þ

Now, we can perform the analytic continuation and take the imaginary part of the expression. In order to avoid the
divergence, we move to the shifted point on the real axis, namely, iΩn → −2μ5 þ ϵþ iδ, δ → 0þ.

ℑm½Gð1Þ
ret;a þ Gð1Þ

ret;b� ¼ −
α

64π2

Z þ∞

0

dQ
Z þ∞

1

dξ
Z

1

−1
dη
Z

1

0

xdx
ð1 − η2Þ

½ξ − 1þ xðηþ 1Þ�2
X
λ¼�

λ

×
d2

dQ2
½Q4F ðλQðξþ ηÞ=2; λQðξ − ηÞ=2ÞBðλξQ; λQÞ�δðϵþ λQ½ξ − 1þ xðηþ 1Þ�Þ: ðC15Þ

Integration over x could be done with the help of the delta function. We consider the case of ϵ > 0 (the opposite sign will
be discussed later), then, the nonzero contribution gives only the term with λ ¼ −1. The delta function gives the Jacobian
J ¼ 1

Qðηþ1Þ and the integration variable acquires the value x ¼ ϵ=Qþ1−ξ
ηþ1

. Taking into account that 0 ≤ x ≤ 1, we obtain the

integration region for the remaining variables: 1 ≤ ξ ≤ 1þ ϵ=Q and ξþ η ≥ ϵ=Q.

ℑm½Gð1Þ
ret;a þGð1Þ

ret;b� ¼
α

64π2ϵ2

Z
ϵ=2

0

QdQ
Z

1

−1

1 − η

1þ η
dη
Z

1þϵ=Q

ϵ=Q−η

�
ϵ

Q
þ 1 − ξ

�
dξ

d2

dQ2
½Q4FB�

þ α

64π2ϵ2

Z þ∞

ϵ=2
QdQ

Z
1þϵ=Q

1

�
ϵ

Q
þ 1 − ξ

�
dξ
Z

1

ϵ=Q−ξ

1 − η

1þ η
dη

d2

dQ2
½Q4FB�: ðC16Þ

Let us estimate the behavior of each term as ϵ → 0. In the first integralQ < ϵ=2, therefore the functions could be replaced
by their asymptotics B ∼ 1=Q, F ∼ const, and d2

dQ2 ½Q4F · B� ∼Q. Integral over ξ and η gives the number of order unity and

integral over Q is proportional to ∼ϵ3. Finally, the first term in (C16) vanishes as ∼ϵ.
In the second term the main contribution is made by the region ξ ∼ 1, η ∼ −1. Therefore, we put in functions B and F

exactly ξ ¼ 1, η ¼ −1. The remaining integration over ξ and η is straightforward:

Z
1þϵ=Q

1

�
ϵ

Q
þ 1 − ξ

�
dξ
Z

1

ϵ=Q−ξ

1 − η

1þ η
dη ¼ ϵ2

2Q2

�
−2 ln

ϵ

Q
þ 2 ln 2 − 1þ 2ϵ

3Q

�
≃ −

ϵ2

Q2
ln

ϵ

Q
: ðC17Þ

After that in the leading order in ϵ the integration by parts over Q could be done:
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Z þ∞

0

dQ
Q

d2

dQ2
½Q4F ð0;−QÞ · Bð−Q;−QÞ� ¼ 2

Z þ∞

0

dQQF ð0;−QÞ · Bð−Q;−QÞ: ðC18Þ

Summarizing, the leading contribution is logarithmically divergent for ϵ → 0:

ℑm½Gð1Þ
ret;a þ Gð1Þ

ret;b� ≃ −
α

32π2
ln

ϵ

T

Z þ∞

0

dQQF ð0;−QÞBð−Q;−QÞ þ finite: ðC19Þ

Now, let us consider the contribution of the third diagram. There are three different denominators in Eq. (C7). It could be
rewritten in the following form (z ¼ iΩn þ 2μ5):

1

ðzþ 2λkÞðzþ 2λqÞðzþ λðkþ q −QÞÞ ¼
1

2ðk − qÞðk − qþQÞ
1

zþ 2λk

þ 1

2ðk − qÞðk − q −QÞ
1

zþ 2λq
þ 1

Q2 − ðk − qÞ2
1

zþ λðkþ q −QÞ : ðC20Þ

The first two terms after the analytic continuation and taking of the imaginary part would be proportional to δðkÞ and
δðqÞ, correspondingly. They are multiplied by the function which behaves like ∼1=k (or ∼1=q) and the integration measure
gives k2q2. Therefore, these terms vanish. The third term reads as

ℑmGð1Þ
ret;c ¼ −

α

8π2

Z þ∞

0

k2dk
Z þ∞

0

q2dq
Z

π

0

sin θdθ
X
λ¼�

λF ðλk; λqÞBðλðkþ qÞ; λQÞ
Q½Q2 − ðk − qÞ2� δðϵþ λðkþ q −QÞÞ: ðC21Þ

In the elliptic coordinates (C12) it could be rewritten as

ℑmGð1Þ
ret;c ¼ −

α

64π2

Z þ∞

0

Q2dQ
Z þ∞

1

dξ
Z

1

−1
dη

ξ2 − η2

1 − η2
X
λ¼�

λF
�
λQðξþ ηÞ

2
;
λQðξ − ηÞ

2

�
BðλξQ; λQÞδðϵþ λQðξ − 1ÞÞ:

ðC22Þ

The result is finite at ϵ → 0 and equals to

ℑmGð1Þ
ret;3 ¼

α

64π2

Z þ∞

0

QdQ
Z

1

−1
dηF

�
−
Qð1þ ηÞ

2
;−

Qð1 − ηÞ
2

�
Bð−Q;−QÞ: ðC23Þ

The finite contributions from the first two diagrams also could be calculated. Then, the corresponding expression reads as

ℑmGð1Þ
ret ¼ −

α

32π2

�
ln

ϵ

2T
þ 2

� Z þ∞

0

dQQF ð0;−QÞBð−Q;−QÞ

þ α

32π2

Z þ∞

0

dQQ ln
Q
T
F ð0;−QÞBð−Q;−QÞ

þ α

64π2

Z
1

−1

dη
ηþ 1

Z þ∞

0

dQQ
�
2F
�
−
Qð1þ ηÞ

2
;−

Qð1 − ηÞ
2

�
− ð1 − ηÞF ð0;−QÞ

�
Bð−Q;−QÞ: ðC24Þ

If we take ϵ < 0 the contribution would be made by the terms with λ ¼ þ1. In ideal case ϵ ¼ 0 the delta function would
work for both λ but only at the boundary of integration. As a result, the additional factor of 1=2 is required. Therefore, we
will take the half of the sum of the expressions for both λ. In summary, the final expression is the following:
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ℑmGð1Þ
ret ¼

α

64π2

�
ln

ϵ

2T
þ 2

� Z þ∞

0

dQQ
X
λ¼�

λF ð0; λQÞBðλQ; λQÞ

−
α

64π2

Z þ∞

0

dQQ ln
Q
T

X
λ¼�

λF ð0; λQÞBðλQ; λQÞ

−
α

128π2

Z
1

−1

dη
ηþ 1

Z þ∞

0

dQQ
X
λ¼�

λ

�
2F
�
λQð1þ ηÞ

2
;
λQð1 − ηÞ

2

�
− ð1 − ηÞF ð0; λQÞ

�
BðλQ; λQÞ: ðC25Þ

2. Case λ0 = λ00 = − λ
Using the Feynman parametrization (C10) we rewrite the expression of the first two diagrams in the following form:

Gð2Þ
a þ Gð2Þ

b ¼ α

8π3

Z þ∞

0

k2dk
Z þ∞

0

q2dq
Z

π

0

sin θdθ
X
λ¼�

ð−λÞF ðλk;−λqÞBðλðk − qÞ;−λQÞ
Q

×
Z

1

0

ð1þ cos θÞxdx
½iΩn þ 2μ5 þ λkð1þ xÞ − λqð1 − xÞ þ λQð1 − xÞ�3 : ðC26Þ

In elliptic coordinates

ξ ¼ kþQ
q

; η ¼ k −Q
q

; cos θ ¼ ξηþ 1

ξþ η
; k2q2 sin θdkdqdθ ¼ q5

8
ðξ2 − η2Þdqdξdη ðC27Þ

the expression takes the form

Gð2Þ
a þ Gð2Þ

b ¼ −
α

32π3

Z þ∞

0

q4dq
Z þ∞

1

dξ
Z

1

−1
dηðξþ 1Þðηþ 1Þ

X
λ¼�

λF ðλqðξþ ηÞ=2;−λqÞ

× Bðλqðξþ η − 2Þ=2;−λqðξ − ηÞ=2Þ
Z

1

0

xdx
fiΩn þ 2μ5 þ λq½ξ − 1þ xðηþ 1Þ�g3 : ðC28Þ

Then, we integrate by parts twice with respect to q and obtain the following expression:

Gð2Þ
a þ Gð2Þ

b ¼ −
α

64π3

Z þ∞

0

dq
Z þ∞

1

dξ
Z

1

−1
dη
Z

1

0

xdx
X
λ¼�

λ

iΩn þ 2μ5 þ λq½ξ − 1þ xðηþ 1Þ�

×
ðξþ 1Þðηþ 1Þ

½ξ − 1þ xðηþ 1Þ�2
d2

dq2
½q4F ðλqðξþ ηÞ=2;−λqÞBðλqðξþ η − 2Þ=2;−λqðξ − ηÞ=2Þ�: ðC29Þ

Expression for the third diagram could be rewritten in the similar form. In order to do this we use the identity
(z ¼ iΩn þ 2μ5)

1

ðzþ 2λkÞðz − 2λqÞðzþ λðk − qþQÞÞ ¼
1

2ðkþ qþQÞðkþ qÞ
1

z − 2λq

−
1

2ðkþ qþQÞðkþ qÞ
1

zþ 2λk
−

1

λðkþ qþQÞ
1

ðzþ 2λkÞðzþ λðk − qþQÞÞ :

ðC30Þ

First two terms would be proportional to δðqÞ and δðkÞ, correspondingly, and finally vanish. The third term could be
rewritten with the help of (C10):
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Gð2Þ
c ¼ α

8π3

Z þ∞

0

k2dk
Z þ∞

0

q2dq
Z

π

0

sin θdθ
X
λ¼�

F ðλk;−λqÞBðλðk − qÞ;−λQÞ
Qðkþ qþQÞ

×
Z

1

0

dx
½iΩn þ 2μ5 þ λkð1þ xÞ − λqð1 − xÞ þ λQð1 − xÞ�2 : ðC31Þ

In elliptic coordinates (C27) we integrate by parts in order to reduce the power of the denominator. After that we obtain

Gð2Þ
c ¼ α

32π3

Z þ∞

0

dq
Z þ∞

1

dξ
Z

1

−1
dη
Z

1

0

dx
X
λ¼�

λ

iΩn þ 2μ5 þ λq½ξ − 1þ xðηþ 1Þ�

×
ðξþ ηÞ

½ξ − 1þ xðηþ 1Þ�ðξþ 1Þ
d
dq

½q3F ðλqðξþ ηÞ=2;−λqÞBðλqðξþ η − 2Þ=2;−λqðξ − ηÞ=2Þ�: ðC32Þ

Then, we do the analytic continuation and take the imaginary part of Eqs. (C29) and (C32). After integrating over x with
the help of the delta function the region of integration over the remaining variables is constrained by the conditions
1 ≤ ξ ≤ 1þ ϵ=q and ξþ η ≥ ϵ=q. It could be shown like in the previous subsection that the integral over the region
q < ϵ=2 vanishes as ∼ϵ for ϵ → 0. Therefore, we consider only the integral over the region q > ϵ=2.

ℑm½Gð2Þ
ret;a þ Gð2Þ

ret;b� ¼ −
α

64π2ϵ2

Z þ∞

ϵ=2
qdq

Z
1þϵ=q

1

dξ
Z

1

ϵ=q−ξ
dη

ðξþ 1Þðϵ=qþ 1 − ξÞ
ηþ 1

d2

dq2
½q4F · B�; ðC33Þ

ℑmGð2Þ
ret;c ¼

α

32π2ϵ

Z þ∞

ϵ=2
dq
Z

1þϵ=q

1

dξ
Z

1

ϵ=q−ξ
dη

ðξþ ηÞ
ðηþ 1Þðξþ 1Þ

d
dq

½q3F · B�: ðC34Þ

These expressions contain the divergences of two types.
The first corresponds to electron momentum k ¼ 0 and
occurs at ξ ∼ 1, η ∼ −1. The second is connected with the
photon momentum Q ¼ 0 at ξ ∼ η ∼ 1. We consider them
separately.
In the first case, we put ξ ¼ 1, η ¼ −1 in the arguments

of B and F . Then, the integrals over ξ and η could be easily
taken:

Z
1þϵ=q

1

�
ϵ

q
þ 1 − ξ

�
ðξþ 1Þdξ

Z
1

ϵ=q−ξ

1

1þ η
dη

¼ ϵ2

2q2

�
−2 ln

ϵ

q
þ 2 ln 2 − 1

�
þOðϵ3Þ ≃ −

ϵ2

q2
ln
ϵ

q
:

ðC35Þ
Z

1þϵ=Q

1

dξ
Z

1

ϵ=Q−ξ

ξþ η

ðξþ 1Þðηþ 1Þ dη ¼
ϵ

q
þOðϵ2Þ: ðC36Þ

It is obvious that the first two diagrams give the divergent
contribution while the third diagram is finite.

ℑmGð2Þ
ret ¼

α

64π2
ln
ϵ

T

Z þ∞

0

dq
q

d2

dq2
½q4F ð0;qÞBðq;qÞ�þ finite:

ðC37Þ

Integrating by parts we obtain the final expression with
infrared logarithmic divergence:

ℑmGð2Þ
ret ¼

α

32π2
ln

ϵ

T

Z þ∞

0

dq qF ð0; qÞBðq; qÞ þ finite:

ðC38Þ

In the second case, when Q → 0, we cannot put ξ ¼
η ¼ 1 directly in the argument of B, because it is singular:
B ∼ − 4T

qðξ−ηÞ. However, we can use its asymptotic in the

region ξ − η ≪ T=q. In all other nonsingular expressions
we put ξ ¼ η ¼ 1.

Z
1þϵ=q

1

dξ
Z

1

1−β
dη

ϵ=qþ 1 − ξ

ξ − η
≃ −

ϵ2

2q2
ln
ϵ

q
þOðϵ2Þ;Z

1þϵ=q

1

dξ
Z

1

1−β
dη

1

ξ − η
≃ −

ϵ

q
ln
ϵ

q
þOðϵÞ: ðC39Þ

And the corresponding expressions for the diagrams read

ℑm½Gð2Þ
ret;a þGð2Þ

ret;b�

¼ −
αT
32π2

ln
ϵ

T

Z þ∞

0

dq
q

d2

dq2
½q3F ð−q; qÞ� þ finite;

ðC40Þ

ℑmGð2Þ
ret;c ¼

αT
16π2

ln
ϵ

T

Z þ∞

0

dq
q

d
dq

½q2F ð−q; qÞ� þ finite:

ðC41Þ
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Integrating by parts we see that the leading divergent parts cancel each other. Therefore, the infrared divergence connected
with the zero photon momentum cancels out. After calculating the finite contributions the final expression reads as

ℑmGð2Þ
ret ¼

α

64π2

�
ln

ϵ

2T
þ 1

� Z þ∞

0

dq q
X
λ¼�

λF ð0; λqÞBðλq; λqÞ

−
α

64π2

Z þ∞

0

dq q ln
q
T

X
λ¼�

λF ð0; λqÞBðλq; λqÞ − α

128π2

Z
1

−1

dη
ηþ 1

Z þ∞

0

dq q
X
λ¼�

λ

×

�
ð1 − ηÞF

�
−
λqð1þ ηÞ

2
; λq

�
B
�
λqð1 − ηÞ

2
;
λqð1 − ηÞ

2

�
− 2F ð0; λqÞBðλq; λqÞ

�
: ðC42Þ

3. Cases λ0 = − λ00 = � λ

In this case it could be shown that the expression is finite even without the Feynman parametrization. We expand the
expression (C7) into the sum of simple fractions (z ¼ iΩn þ 2μ5):

1

ðzþ 2λkÞ2ðzþ λkþ λ0ðqþQÞÞ

¼ −
1

λk − λ0ðqþQÞ
1

ðzþ 2λkÞ2 −
1

ðλk − λ0ðqþQÞÞ2
�

1

zþ 2λk
−

1

zþ λkþ λ0ðqþQÞ
�
; ðC43Þ

1

ðzþ 2λkÞðzþ 2λ0qÞðzþ λkþ λ0ðqþQÞÞ
¼ 1

2ðλk− λ0qÞðλk− λ0ðqþQÞÞ
1

zþ 2λk
þ 1

2ðλk− λ0qÞðλk− λ0ðq−QÞÞ
1

zþ 2λ0q
þ 1

Q2 − ðλk− λ0qÞ2
1

zþ λkþ λ0ðqþQÞ :

ðC44Þ

After analytic continuation and taking the imaginary part the only terms which would give the nonzero contributions are
proportional to 1=ðiΩn þ 2μ5 þ λkþ λ0ðqþQÞÞ.

Gð3Þ
a þ Gð3Þ

b þ Gð3Þ
c ¼ α

16π3

Z þ∞

0

k2dk
Z þ∞

0

q2dq
Z

π

0

sin θdθ
X
λ;λ0¼�

ð−λ0ÞF ðλk; λ0qÞBðλkþ λ0q;−λ0QÞ
QðiΩn þ 2μ5 þ λkþ λ0ðqþQÞ

×

�
1 − λλ0 cos θ

ðλk − λ0ðqþQÞÞ2 þ
2

Q2 − ðλk − λ0qÞ2
�
: ðC45Þ

In elliptic coordinates

ξ ¼ qþQ
k

; η ¼ q −Q
k

; cos θ ¼ ξηþ 1

ξþ η
; k2q2 sin θdkdqdθ ¼ k5

8
ðξ2 − η2Þdkdξdη ðC46Þ

the expression has the following form:

Gð3Þ ¼ α

64π3

Z þ∞

0

k2dk
Z þ∞

1

dξ
Z

1

−1
dη
X
λ;λ0¼�

�ð1 − λλ0ηÞ
ðξ − λλ0Þ þ 2λλ0ðξþ ηÞ

ðξ − λλ0Þð1 − λλ0ηÞ
�

×
ð−λ0ÞF ðλk; λ0kðξþ ηÞ=2ÞBðλkþ λ0kðξþ ηÞ=2;−λ0kðξ − ηÞ=2Þ

ðiΩn þ 2μ5 þ λkð1þ λλ0ξÞÞ : ðC47Þ

The nonzero contribution is only in the case λ0 ¼ −λ and it is finite:

ℑmGð3Þ
ret ¼

α

256π2

Z þ∞

0

kdk
Z

1

−1
dηð1 − ηÞ

X
λ¼�

λF ðλk;−λkð1þ ηÞ=2ÞBðλkð1 − ηÞ=2; λkð1 − ηÞ=2Þ: ðC48Þ

Taking all results together, we get
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ℑmGret ¼ −
α

16π2

�
ln

ϵ

2T
þ 3

2

��
tanh

μR
2T

− tanh
μL
2T

��
π2T2 þ μ2R þ μ2L

2

�

−
α

32π2

Z þ∞

0

dqq ln
q
T

X
λ¼�

λF ð0; λqÞBðλq; λqÞ − α

64π2

Z
1

−1

dη
ηþ 1

Z þ∞

0

dqq
X
λ¼�

λ

×

�
F
�
λqð1þ ηÞ

2
;
λqð1 − ηÞ

2

�
þ F

�
−
λqð1þ ηÞ
1 − η

;
2λq
1 − η

�
−
ð3 − ηÞ

2
F ð0; λqÞ

�
Bðλq; λqÞ: ðC49Þ

The corresponding value of the chirality flipping rate is
given by Eq. (18).

APPENDIX D: FERMION SELF-ENERGY AND
FULL PROPAGATOR IN HTL APPROXIMATION

The leading order fermion self-energy is given by the
one-loop diagram shown in Fig. 11.
The analytical expression in the momentum space is the

following:

Σðiωm;kÞ ¼ e2T
X
p

Z
d3Q
ð2πÞ3

γμS0ðiωm−p;k −QÞγμ
ðiΩpÞ2 −Q2

;

ðD1Þ

where S0 is the free electron propagator in Matsubara
representation given by Eq. (B2). Taking into account the
block structure of the propagator and Dirac gamma-
matrices, we conclude that the self-energy also has the
block structure and does not mix the left and right
components. This is a consequence of the fact that the
EM interaction respects the chiral symmetry. Therefore,
one can consider the left and right components of the self-
energy separately.
The leading contribution to the self-energy is captured by

the HTL approximation when the external momentum is
considered to be much less than the loop momentum and
the former is neglected everywhere except the denominator.
The final result has the following form [59]:

ΣL;Rðiωm;kÞ ¼
m2

th

2

Z
dΩv

4π

1� σ · v
iωm þ μL;R − k · v

; ðD2Þ

where the integration is performed over all possible
directions of the unit vector v and m2

th ¼ e2T2=4 is the
electron asymptotic thermal mass (meaning that, for hard

momenta, the energy dispersion of the electron quasipar-
ticle takes the usual form ϵ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

th

p
). One of the

advantages of the HTL self-energy is its gauge invariance
with respect to the Lorentz covariant gauges.
Spatial isotropy leads to the simple matrix structure of

the self-energy

ΣL;Rðiωm;kÞ ¼ Σ0
L;Rðiωm;kÞ þ

σ · k
k

Σ1
L;Rðiωm;kÞ; ðD3Þ

where

Σ0
L;Rðiωm;kÞ ¼

1

2
trΣL;Rðiωm;kÞ

¼ m2
th

2

Z
dΩv

4π

1

iωm þ μL;R − k · v
; ðD4Þ

Σ1
L;Rðiωm;kÞ ¼ � 1

2k
tr½ðσ · kÞΣL;Rðiωm;kÞ�

¼ −
m2

th

2k
þ iωm þ μL;R

k
Σ0
L;Rðiωm;kÞ: ðD5Þ

Thus, the fermion self-energy in HTL approximation is
determined by the single scalar function Σ0

L;R ¼ Σ0ðiωmþ
μL;R;kÞ. Let us consider it as a function of the complex
variable k0 in a complex plane with the branch cut along the
real axis from k0 ¼ −k to k0 ¼ k. Then, the integration can
be performed explicitly and we obtain

Σ0ðk0;kÞ ¼ m2
th

2

Z
dΩv

4π

1

k0 − k · v
¼ m2

th

4k
ln
k0 þ k
k0 − k

: ðD6Þ

The full fermion propagator is determined by the
Schwinger-Dyson equation

SL;R ¼ S0L;R þ S0L;RΣL;RSL;R ðD7Þ

whose solution reads as usual

SL;R ¼ ðS−1
0L;R − ΣL;RÞ−1: ðD8Þ

Substituting the HTL self-energy (D3), we obtain the full
propagator in the following form:FIG. 11. One-loop fermion self-energy.
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SL;Rðiωm;kÞ

¼ iωm þ μL;R − Σ0
L;R ∓ ðσ · kÞ½1þ m2

th
2k2 −

iωmþμL;R
k2 Σ0

L;R�
ðiωm þ μL;R − Σ0

L;RÞ2 − k2ð1þ m2
th

2k2 −
iωmþμL;R

k2 Σ0
L;RÞ

2
:

ðD9Þ

It can be represented as a decomposition into the
components with positive and negative helicity

SL;Rðiωm;kÞ ¼
X
λ¼�

1

Δλðiωm þ μL;R;kÞ
1 ∓ λσ · k̂

2
;

ðD10Þ

where k̂ ¼ k=k,

Δλðk0;kÞ ¼ k0 − Σ0ðk0;kÞ − λk

�
1þ m2

th

2k2
−
k0

k2
Σ0ðk0;kÞ

�
ðD11Þ

is the denominator whose zeros determine the quasiparticle
spectrum, and the function Σ0 is given by Eq. (D6). The
quasiparticle dispersion relations can be found from the
requirement Δ�ðk0;kÞ ¼ 0. This gives

ϵ�ðkÞ ¼ �k
A�ðkÞ − 1

A�ðkÞ þ 1
; ðD12Þ

where AþðkÞ ¼ W−1ðzÞ, A−ðkÞ ¼ W0ðzÞ, z ¼
− exp ð−4 k2

m2
th
− 1Þ, and W0;−1 are the upper and lower

branches of the Lambert W-function. Since W−1ðzÞ ≤ −1
for z ∈ ½−e−1; 0Þ and W0ðzÞ ∈ ½−1; 0Þ for z ∈ ½−e−1; 0Þ,
the values of ϵ� are always positive. They are shown
in Fig. 12.

It is possible to find the asymptotic expressions for the
dispersion relations for small and large momenta [59]:

ϵ�ðk ≪ mthÞ ≈
mthffiffiffi
2

p � k
3
; ðD13Þ

ϵþðk ≫ mthÞ ≈ kþm2
th

2k
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

th

q
;

ϵ−ðk ≫ mthÞ ≈ k

�
1þ 2 exp

�
−4

k2

m2
th

− 1

��
: ðD14Þ

The spectral function ρ� ¼ −2ℑmΔ−1
� is given by

Eq. (29), where the residues Z�ðkÞ of the quasiparticle
poles are given by

Z�ðkÞ ¼
ϵ2� − k2

m2
th

: ðD15Þ

For small momenta the spectral density is almost equally
distributed between both poles,

Z�ðk ≪ mthÞ ≈
1

2
� k

ffiffiffi
2

p

3mth
; ðD16Þ

however, for large momenta the ordinary branch survives
and the plasmino branch is exponentially suppressed,

Zþðk ≫ mthÞ ≈ 1þ m2
th

4k2

�
1 − ln

4k2

m2
th

�
;

Z−ðk ≫ mthÞ ≈
4k2

m2
th

exp

�
−
4k2

m2
th

− 1

�
: ðD17Þ

Finally, the incoherent part of the spectral density has the
form

ρLD� ðk0;kÞ

¼
πm2

th
2k ð1 ∓ k0

k Þθðk2 − k20Þ
½ðk0 ∓ kÞð1� m2

th
4k2 ln j kþk0

k−k0 jÞ ∓ m2
th

2k �
2 þ ½πm2

th
4k ð1 ∓ k0

k Þ�
2
:

ðD18Þ

APPENDIX E: DETAILS OF CALCULATION OF
THE CHIRALITY FLIPPING RATE

1. Contribution from the plasmino branch

The plasmino branch ϵ−ðkÞ exists only in the soft
momentum region k ∼ eT. For larger momenta, the corre-
sponding residue is exponentially suppressed. If the plas-
mino pole is multiplied by any other pole contribution, the
following power counting takes place:

FIG. 12. Energy dispersion for the electron quasiparticles:
normal branch ϵþðkÞ (blue solid line) and plasmino branch
ϵ−ðkÞ (red dashed line). The black dotted line shows the free
massless electron dispersion in vacuum.
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Γ7c;ð−;�Þ
flip ∼

m2
e

T3

Z
soft

d3k
Z

dk0δγeðk0 − ϵ1Þδγeðk0 − ϵ2Þ

∼
m2

e

T3

Z
soft

d3kδ2γeðΔϵÞ ∼
m2

e

T3
ðeTÞ3 γe

ðΔϵÞ2 ∼ α3=2 ln α−1
m2

e

T
; ðE1Þ

where ϵ1;2 are the energies of the poles at least one of which is of the plasmino branch, Δϵ ¼ jϵ1 − ϵ2j ∼ eT for soft
momenta. Similar contribution comes from the interference term between the plasmino pole and the Landau damping part

Γ7c;ð−;LDÞ
flip ∼

m2
e

T3

Z
soft

d3k
Z

k

−k
dk0δγeðk0 − ϵ−ÞρLDþ ðk0;kÞ

∼
m2

e

T3

Z
soft

d3k
γe=π

ðϵ− − kÞ
1

eT
∼
m2

e

T3
ðeTÞ3 γe

eT
1

eT
∼ α3=2 ln α−1

m2
e

T
: ðE2Þ

Therefore, in what follows we will omit the plasmino contribution in the spectral function ρ�.

2. Contribution of the incoherent part

Further, let us calculate the contribution coming from the overlap between the incoherent parts of the spectral functions.
Using expression (D18), we have Eq. (32). Introducing new dimensionless integration variables x and y by the relations

k0 ¼ mthxy; k ¼ mthx; ðE3Þ

we rewrite Eq. (32) as

Γ7c;ðLDÞ
flip ¼ 3m2

em2
th

4πT3

Z
1

0

dy
1 − y2

Z
∞

0

x5dx
cosh2ðmth

2T xyÞ

×
1

½ðx2 þ 1
4
ln 1þy

1−y þ 1
2ð1−yÞÞ2 þ π2

16
�½ðx2 − 1

4
ln 1þy

1−y þ 1
2ð1þyÞÞ2 þ π2

16
� : ðE4Þ

It is obvious that the integrand is peaked in the region of
x ∼ 1 (i.e., the soft momentum region k ∼ eT). In fact, for
x ≪ 1 we have the suppression of the integrand ∼x5. On
the contrary, for x ≫ 1 we have ∼ ln x

x3 . Since that, we can
safely replace the hyperbolic cosine with the unity. It starts
to be important for x ∼ T=mth ∝ e−1 ≫ 1. That is why
neglecting it, we would bring the relative error of order

Z
∞

e−1

ln x
x3

∼ e2 ln e−1; ðE5Þ

i.e., of higher order in α. Then, the result for the chirality
flipping rate is given by Eq. (33) with the constant C given
by Eq. (34).

3. Contribution of the quasiparticle pole

The overlap between the quasiparticle pole and the
incoherent part of the spectral function is determined by
Eq. (35) where the spectral function far from the quasi-
particle shell is needed. According to Eq. (36), it is fully
determined by the corresponding retarded fermion self-
energy. As usual, we calculate the Matsubara self-energy

and after that perform its analytic continuation to the real
axis. The one-loop electron self-energy is shown in Fig. 11.
Its component with the certain helicity λ is given by

Σλðiωm;kÞ

¼ −e2
Z

d3Q
ð2πÞ3 T

X
p

X
λ0¼�

× Aμν
λλ0 ðk;k −QÞ�DμνðiΩp;QÞΔ−1

λ0 ðiωm−p;k −QÞ;
ðE6Þ

where �Dμν is the full photon propagator and

Aμν
λλ0 ðk;qÞ ¼ tr

�
1þ λσ · k̂

2
σμ

1þ λ0σ · q̂
2

σν
�
: ðE7Þ

Here, k̂ ¼ k=k. For further convenience, we list here the
expressions for the components of Aμν
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A00
λλ0 ðk;qÞ ¼

1

2

�
1þ λλ0

k · q
kq

�
;

A0i
λλ0 ðk;qÞ ¼ Ai0

λλ0 ðk;qÞ ¼
1

2

�
λ
ki

k
þ λ0

qi

q

�
;

Aij
λλ0 ðk;qÞ ¼

1

2

�
δij
�
1 − λλ0

k · q
kq

�
þ λλ0

kiqj þ kjqi

kq

�
:

ðE8Þ

Using the spectral representation for the propagators

�DμνðiΩp;QÞ ¼
Z

dQ0

2π

�ρμνðQ0;QÞ
iΩp −Q0

;

Δ−1
λ0 ðiωm−p;k −QÞ ¼

Z
dq0

2π

ρλ0 ðq0;k −QÞ
iωm−p − q0

; ðE9Þ

we can perform the summation over the Matsubara
frequencies

Σλðiωm;kÞ ¼
e2

2

Z
d4Q
ð2πÞ4

Z
dq0

2π

X
λ0¼�

coth Q0

2T þ tanh q0

2T

iωm − q0 −Q0

× �ρμνðQ0;QÞρλ0 ðq0;k −QÞAμν
λλ0 ðk;k −QÞ:

ðE10Þ

Then, performing the analytic continuation to the real axis,
we get the spectral density in the form

ρ−ðϵþðkÞþx;kÞ

≈
e2

8k2

Z
d4Q
ð2πÞ4

�
coth

Q0

2T
þ tanh

ϵþðkÞ−Q0

2T

�
�ρμνðQ0;QÞ

×
X
λ0¼�

ρλ0 ðϵþðkÞþx−Q0;k−QÞAμν
−;λ0 ðk;k−QÞ;

ðE11Þ

which leads to the chirality flipping rate

Γ7c;ðpoleÞ
flip ¼ 3m2

eα

πT3

Z
∞

0

dk
cosh2 k

2T

Z
d4Q
ð2πÞ4

×

�
coth

Q0

2T
þ tanh

ϵþðkÞ −Q0

2T

�
�ρμνðQ0;QÞ

×
X
λ0¼�

Aμν
−;λ0 ðk;k −QÞ

×
Z

∞

−∞
dx δγeðxÞρλ0 ðϵþðkÞ þ x −Q0;k −QÞ:

ðE12Þ

This expression contains three different contributions
which must be considered separately.

Soft electron in the loop.—For soft electrons, their
spectral density ρλ0 is distributed in comparable amounts
among the quasiparticle poles and incoherent part. On the
other hand, the photon is obviously hard and we can
substitute its spectral density in the form

�ρμνðQ0;QÞ ¼ Pt
μνðQÞ

X
λ00¼�

λ00
π

Q
δðQ0 − λ00ωtðQÞÞ; ðE13Þ

where ωtðQÞ is the energy dispersion of hard transverse
photon and

Pt
μνðQÞ ¼ δiμδ

j
ν

�
δij −

QiQj

Q2

�
ðE14Þ

is the transverse projector. We take only the part corre-
sponding to the transverse photon, because it contains
almost all the spectral weight at hard momenta [59]. It is
convenient to use the electron momentum q ¼ k −Q as
the integration variable. The nonzero contribution comes
from λ00 ¼ þ1, because in this case ϵþðkÞ −Q0 ≈ q cos θ is
small. Then, we obtain the following result:

Γ7c;ðpole;softeÞ
flip ¼ 3m2

eα

4π3T3

Z
∞

Λ

dk

k sinh k
T

Z
Λ

0

q2dq

×
Z

π

0

d cos θð1þ λ0 cos θÞ

×
Z

∞

−∞
dxδγeðxÞρλ0 ðq cos θ þ x;qÞ; ðE15Þ

where Λ≳ eT is the separation scale between soft and hard
momenta. We can roughly estimate this expression taking
into account that in the soft momentum region the electron
spectral function is not singular and is always of order
∼1=ðeTÞ. We get

Γ7c;ðpole;softeÞ
flip ∝

m2
e

T3
α ×

T
Λ
×
ðeTÞ3
ðeTÞ ≲m2

e

T3
α3=2; ðE16Þ

meaning that this contribution can be neglected.
Soft photon in the loop.—If we restrict the Q integration

in Eq. (E12) to the soft region, i.e., Q0; Q≲ eT, further
simplifications can be done. First of all, the electron’s
momentum in the loop is hard and almost equal to the
external one. Therefore, we can use the spectral density of
the hard electron which leads to the following chirality
flipping rate
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Γ7c;ðpoleÞ
flip ¼ 6m2

eα

T3

Z
∞

0

dk

cosh2 k
2T

Z
d4Q
ð2πÞ4

×

�
coth

Q0

2T
þ tanh

ϵþðkÞ −Q0

2T

�

× �ρμνðQ0;QÞ
X
λ0¼�

δ2γeðϵþðkÞ −Q0

− λ0ϵþðk −QÞÞAμν
−;λ0 ðk;k −QÞ: ðE17Þ

The Lorentz function (ensuring the approximate energy
conservation) works only for λ0 ¼ þ1 and the tensor
Aμν
−þðk;k −QÞ ≈ Pμν

t ðkÞ. Finally, expanding the hyper-
bolic cotangent, we obtain Eq. (37). In order to estimate
that expression, we can use the following approximate
formula

ρμνðQ0;QÞ
Q0

≈ Pμν
t ðQÞ 2π

Q2
δðQ0Þ; Q ≪ eT: ðE18Þ

It becomes more and more exact as the momentum Q
decreases. Then, we get

Γ7c;ðpole;softγÞ
flip ¼ 6m2

eα

π2T

Z
Λ

0

dQ

×
Z

π

0

d cos θð1þ cos2 θÞδ2γeðQ cos θÞ

≈
6m2

eα

π2T
ln

Λ
2γe

≈
3

π2
m2

e

T
α ln α−1: ðE19Þ

Nearly collinear processes.—If both, the electron and the
photon running in the loop, are hard, we can use Eq. (E17)
and the photon spectral density (E13). This leads to
Eq. (39). There are four ways of choosing the signs of
λ0 and λ00 which correspond to different nearly collinear
processes in plasma (one of them is forbidden though).
The case λ0¼λ00¼þ1 corresponds to the process of nearly

collinear bremsstrahlung eL;RðkÞ→eR;Lðk−QÞþγðQÞ,

schematically shown by the first diagram in Fig. 10. This
process is possible if Q < k. We decompose

Q ¼ Qkk̂þQ⊥; k −Q ¼ ðk −QkÞk̂ −Q⊥; ðE20Þ

and use the asymptotic expressions for the electron’s and
photon’s dispersion relations

ϵþðkÞ ≈ kþm2
th

2k
; ωtðQÞ ≈Qþ m2

γ

2Q
; ðE21Þ

wheremth ¼ eT=2 and mγ ¼ eT=
ffiffiffi
6

p
are the corresponding

thermal masses. Then, we obtain

Γ7c;ðpole;bremÞ
flip ¼ 3m2

eα

2π2T3

Z
∞

0

dk

cosh2 k
2T

Z
k

0

dQk
Qk

×

�
coth

Qk
2T

þ tanh
k −Qk
2T

�

×
Z

∞

0

Q⊥dQ⊥δ2γe
�
Q2⊥
2

k
Qkðk −QkÞ

þ m2
γ

2Qk
þ m2

thQk
2kðk −QkÞ

�
: ðE22Þ

In this expression, the integration overQ⊥ can be easily done.
Finally, introducing the new variables

Qk ¼ 2Tx; k ¼ 2Txðyþ 1Þ; ðE23Þ

and using the identity

cothaþ tanh b
cosh2ðaþ bÞ ¼ tanhðaþ bÞ − tanhb

sinh2 a
; ðE24Þ

with a ¼ x and b ¼ xy, we obtain the following result for the
chirality flipping rate:

Γ7c;ðpole;bremÞ
flip ¼ 3m2

eα

π2T

Z
∞

0

xdx
sinh2x

Z
∞

0

dy
y

yþ 1
½tanh xðyþ 1Þ − tanh xy� 2

π
arctan

8γeTx
m2

γ þm2
th=ðyðyþ 1ÞÞ : ðE25Þ

The case λ0 ¼ þ1, λ00 ¼ −1 corresponds to the process of nearly collinear absorption of the photon eL;RðkÞþ
γðQÞ → eR;LðkþQÞ, schematically shown by the second diagram in Fig. 10. This process is possible for any Q and k.
Decomposing

Q ¼ Qkk̂þQ⊥; kþQ ¼ ðQk þ kÞk̂þQ⊥; ðE26Þ

we obtain
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Γ7c;ðpole;absÞ
flip ¼ 3m2

eα

2π2T3

Z
∞

0

dk

cosh2 k
2T

Z
∞

0

dQk
Qk

�
coth

Qk
2T

− tanh
kþQk
2T

�

×
Z

∞

0

Q⊥dQ⊥δ2γe
�
Q2⊥
2

k
QkðQk þ kÞ þ

m2
γ

2Qk
þ m2

thQk
2kðQk þ kÞ

�
: ðE27Þ

Again, we integrate over Q⊥, introduce the new variables

Qk ¼ 2Tx; k ¼ 2Txy; ðE28Þ
and use identity (E24) with a ¼ x and b ¼ −xðyþ 1Þ to get

Γ7c;ðpole;absÞ
flip ¼ 3m2

eα

π2T

Z
∞

0

xdx
sinh2 x

Z
∞

0

dy
yþ 1

y
½tanh xðyþ 1Þ − tanh xy� 2

π
arctan

8γeTx
m2

γ þm2
th=ðyðyþ 1ÞÞ : ðE29Þ

The case λ0 ¼ −1, λ00 ¼ þ1 corresponds to the process of nearly collinear annihilation eL;RðkÞ þ ēL;RðQ − kÞ → γðQÞ,
schematically shown by the second diagram in Fig. 10. This process is possible if Q > k. Decomposing

Q ¼ Qkk̂þQ⊥; k −Q ¼ −ðQk − kÞk̂ −Q⊥; ðE30Þ
we obtain

Γ7c;ðpole;annihÞ
flip ¼ 3m2

eα

2π2T3

Z
∞

0

dk

cosh2 k
2T

Z
∞

k

dQk
Qk

�
coth

Qk
2T

− tanh
Qk − k

2T

�

×
Z

∞

0

Q⊥dQ⊥δ2γe
�
Q2⊥
2

k
QkðQk − kÞ −

m2
γ

2Qk
þ m2

thQk
2kðQk − kÞ

�
: ðE31Þ

Again, we integrate over Q⊥, introduce the new variables

Qk ¼ 2Tx; k ¼ 2Txy; ðE32Þ
and use identity (E24) with a ¼ x and b ¼ −xð1 − yÞ to get

Γ7c;ðpole;annihÞ
flip ¼ 3m2

eα

π2T

Z
∞

0

xdx
sinh2 x

Z
1

0

dy
1 − y
y

½tanh xyþ tanh xð1 − yÞ� 2
π
arctan

8γeTx
−m2

γ þm2
th=ðyð1 − yÞÞ : ðE33Þ

Finally, all three cases can be combined and the chirality flipping rate coming from the collinear processes is given
by Eq. (40).

4. Contribution from the vertex correction diagram

Here, we calculate the diagram from Fig. 5(c) corresponding to the vertex renormalization. Its general expression is given
by Eq. (C3). Using the spectral representation (E9) for the propagators, we substitute them into Eq. (C3), perform the
summation over the Matsubara frequencies and get

G4c ¼ −
e2

4

Z
d3k
ð2πÞ3

Z
d3Q
ð2πÞ3

Z
dQ0

2π

Z
dx01dx

0
2dx

0
3dx

0
4δγeðx01Þδγeðx02Þδγeðx03Þδγeðx04Þ

X
λ;λ0¼�

× �ρμνðQ0;QÞÃμν
λλ0 ðk;qÞ

1

iΩn þ 2μ5 þ λð2ϵk þ x02 þ x03Þ
1

iΩn þ 2μ5 þ λ0ð2ϵq þ x01 þ x04Þ

×

�ðcoth λϵk−λ0ϵq
2T − cothQ0

2TÞðtanh λϵk−μL
2T − tanh λ0ϵq−μL

2T þ tanh λϵkþμR
2T − tanh λ0ϵqþμR

2T Þ
Q0 − λðϵk þ x02Þ þ λ0ðϵq þ x01Þ

þ ðcoth λϵkþλ0ϵqþ2μ5
2T − coth Q0

2TÞðtanh λϵk−μL
2T þ tanh λ0ϵq−μL

2T þ tanh λϵkþμR
2T þ tanh λ0ϵqþμR

2T Þ
iΩn þ 2μ5 þ λðϵk þ x02Þ þ λ0ðϵq þ x04Þ −Q0

�
; ðE34Þ

where q ¼ k −Q and
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Ãμν
λλ0 ðk;qÞ ¼ tr

�
1 − λσ · k̂

2
σμ

1 − λ0σ · q̂
2

σ̃ν
�
: ðE35Þ

In Eq. (E34), we took into account only the normal branch of
the fermionic spectrum with the dispersion ϵþðkÞ. Also we
neglected x0i in the arguments of hyperbolic tangents and
cotangents because these are smooth functions and
x0i ∼ e2T ≪ T. Thus, we derived the analog of Eq. (C6)
which takes into account the modified dispersion of the ele-
ctrons and their finite width. Further, in order to find the
retarded function, we must perform the analytic continuation

iΩn → −2μ5 þ i0. After that we will take the imaginary part
of it. First of all, we should mention that the imaginary part
cannot emerge from the combinations like ½λð2ϵk þ x02 þ
x03Þ þ i0�−1 or ½λ0ð2ϵq þ x01 þ x04Þ þ i0�−1, because in con-
trast to the case of free fermions, the real parts of these
expressions never equal to zero. Indeed, the energy is always
ϵk;q ≳ eT and is of order T for hard fermions while
x0i ∼ e2T ≪ eT. Thus, the first term in the square brackets
will not contribute to the final answer. That iswhywehave the
following result:

ℑmGret
4c ¼

πe2

16

Z
d3k
ð2πÞ3

Z
d3Q
ð2πÞ3

Z
dQ0

2π

Z
dx01dx

0
2δγeðx01Þδγeðx02Þ

X
λ;λ0¼�

λλ0

ϵkϵq
Ãμν
λλ0 ðk;qÞ

× �ρμνðQ0;QÞBðλϵk þ λ0ϵq; Q0ÞF ðλϵk; λ0ϵqÞδðλðϵk þ x01Þ þ λ0ðϵq þ x02Þ −Q0Þ; ðE36Þ

where the functions F and B are defined in Eqs. (C8) and (C9), respectively. For further convenience, we calculate the
components of Ãμν

λλ0 :

Ã00
λλ0 ðk;qÞ ¼

1

2

�
1þ λλ0

k · q
kq

�
;

Ã0i
λλ0 ðk;qÞ ¼ −Ãi0

λλ0 ðk;qÞ ¼
1

2

�
λ
ki

k
þ λ0

qi

q

�
;

Ãij
λλ0 ðk;qÞ ¼ −

1

2

�
δij
�
1 − λλ0

k · q
kq

�
þ λλ0

kiqj þ kjqi

kq

�
: ðE37Þ

Like in the previous subsection, we consider the contributions from the soft photon spectral density and from the nearly
collinear processes separately.
Soft photon.—In the case when the photon momentum is softQ; Q0 ≲ eT, ϵq ≈ ϵk −Q cos θ and the delta function works

only for λ0 ¼ −λ. Expanding the hyperbolic cotangent, we get

ℑmGret;softγ
4c ¼ −

πe2T
8

Z
d3k
ð2πÞ3

Z
d3Q
ð2πÞ3

Z
dQ0

2π

�ρμνðQ0;QÞ
Q0

Pμν
t ðkÞ

X
λ¼�

F ðλϵk;−λϵkÞ
ϵ2k

δ2γeðλQ cos θ −Q0Þ: ðE38Þ

In order to extract the chirality flipping rate, we expand
the integrand for small chemical potential

F ðλϵk;−λϵkÞ ≈
1

cosh2 ϵk
2T

2μ5
T

: ðE39Þ

Taking into account that the photon spectral density
�ρμνðQ0;QÞ is the odd function of frequency Q0, we finally
obtain Eq. (41).
Nearly collinear processes.—For the hard photon

momenta, we use the spectral density given by Eq. (E13)

and Eq. (E36) takes the form of Eq. (42). This corresponds to
the nearly collinear 1 ↔ 2 processes in plasma, the same as
we considered in the previous subsection.
There are three independent ways to choose the signs of

λ; λ0; λ00 in Eq. (42). In each of these cases, we decompose
the vector Q into two components: parallel to the vector k
and perpendicular to it. The latter must be soft Q⊥ ≲ eT in
order to satisfy the approximate energy conservation in the
collision. Then, the integration over Q⊥ can be performed
and we obtain the following expressions:

ℑmGret;brem
4c ¼ α

64π2

Z
∞

0

dk
Z

k

0

dQk
X
λ¼�

λBðλQk; λQkÞF ðλk;−λðk −QkÞÞ
2

π
arctan

4γe
m2

γ

Qk
þ m2

thQk
kðk−QkÞ

: ðE40Þ
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ℑmGret;abs
4c ¼ −

α

64π2

Z
∞

0

dk
Z

∞

0

dQk
X
λ¼�

λBð−λQk;−λQkÞF ðλk;−λðkþQkÞÞ
2

π
arctan

4γe
m2

γ

Qk
þ m2

thQk
kðkþQkÞ

: ðE41Þ

ℑmGret;annih
4c ¼ −

α

64π2

Z
∞

0

dk
Z

∞

k
dQk

X
λ¼�

λBðλQk; λQkÞF ðλk; λðQk − kÞÞ 2
π
arctan

4γe

− m2
γ

Qk
þ m2

thQk
kðQk−kÞ

: ðE42Þ

In order to extract from these expressions the chirality flipping rate, we expand the integrand for small μ5. The only
quantities containing chemical potentials are the thermal distribution functions B and F . Therefore, we have

X
λ¼�

λBðλQk; λQkÞF ðλa; λbÞ ≈
X
λ¼�

λ

�
−

1

sinh2
Qk
2T

μ5
T

�
ð2 tanh λaþ 2 tanh λbþOðμ5=TÞÞ ≈ −

4μ5
T

tanhaþ tanh b

sinh2
Qk
2T

: ðE43Þ

The chirality flipping rate can be found using Eq. (13). Choosing the integration variables in the same way as we did in
Sec. E 3, we get the following results:

Γ4c;ðbremÞ
flip ¼ Γ4c;ðabsÞ

flip ¼ −
3m2

eα

π2T

Z
∞

0

xdx
sinh2 x

Z
∞

0

dy½tanh xðyþ 1Þ − tanh xy� 2
π
arctan

8γeTx
m2

γ þm2
th=ðyðyþ 1ÞÞ ; ðE44Þ

Γ4c;ðannihÞ
flip ¼ 3m2

eα

π2T

Z
∞

0

xdx
sinh2 x

Z
1

0

dy½tanh xyþ tanh xð1 − yÞ� 2
π
arctan

8γeTx
−m2

γ þm2
th=ðyð1 − yÞÞ : ðE45Þ

Combining all three expressions together, we end up with
Eq. (43).

APPENDIX F: IMPACT OF THE LANDAU-
POMERANCHUK-MIGDAL EFFECT OF THE

PHOTON PRODUCTION RATE AND CHIRALITY
FLIPPING RATE

In this Appendix we compare the calculations of the
photon production rate and the chirality flipping rate in hot
Abelian plasma. The former was exhaustively studied in
Refs. [55–57] while the latter is the subject of the present
study.
At first sight, the computation of these rates are very

similar. The photon production rate is given by the
following expression [see Eqs. (2.1), (2.2), and (2.4) in
Ref. [55] ]:

dΓγ ¼
d3k

ð2πÞ3jkj ðnBðk
0Þ þ 1Þ

X
a¼1;2

ϵμðaÞðkÞϵνðaÞðkÞℑmDret
μνðKÞ;

ðF1Þ

i.e., it is proportional to the imaginary part of the retarded
correlator of two electromagnetic currents

Dret
μνðKÞ ¼ i

Z
d4Xe−iK·Xθðx0Þhh½jμðXÞ; jνð0Þ�ii: ðF2Þ

The latter object can be calculated perturbatively in the
electromagnetic coupling e and the general diagram

contributing to it is just a fermionic loop with some 4-
point function inserted into it. It is shown in Fig. 13(a).
In the similar manner, the chirality flipping rate is given

by Eq. (13) which also contain the imaginary part of the
retarder correlation function (12). Diagrammatically, this
object can be depicted as shown in Fig. 13(b). Although
diagrams (a) and (b) look similar, they have three main
differences. First of all, the external legs of diagram
(b) correspond to the flip of chirality due to the finite
electron mass me and therefore bring 0 momentum. As for
diagram (a), its incoming momentum is just the photon
momentum K which is hard and on shell. Correspondingly,
the vertices are also different. Whereas diagram (a) contains
the usual QED vertex, diagram (b) has mass insertions
with the chiral projectors PR;L inside. This implies the third
difference: the fermions running in the loop (a) have the
same chiralities, while in the loop (b) the chiralities in the
upper and lower branches are opposite (this is shown by
different colors).
Let us now analyze the perturbative calculation of the

diagrams in Fig. 13. The lowest order contribution is just an
empty loop. This is shown in Fig. 14. Imaginary parts of
both diagrams vanish and the reasons are the following.
The imaginary part of diagram (a) is connected by the
optical theorem to the matrix element of the bremsstrahlung
process e → eþ γ. In massless case it is allowed only for
the strictly collinear momenta, however, such a process is
forbidden by the angular momentum conservation. In the
same way, the imaginary part of the diagram (b) corre-
sponds to the spontaneous flip of the chirality by a free
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electron [shown in Fig. 2(a)] which is also forbidden by the
angular momentum conservation.
First nontrivial contributions appear only in the next

perturbative order. Here we must add one photon line to the
diagrams in Fig. 14. This photon line can be inserted into
one of the fermion arcs or connect the two arcs with each
other. “Dressing” of only one fermion leg can be absorbed
into the self-energy correction which is indeed done in
Ref. [55] as well as in the present paper. But here we would
like to focus on the “vertex correction” diagrams shown in
Figs. 15(a) and 15(b). The imaginary part of the diagram
(a) has a support from the region where the intermediate
momentum Q is hard and on shell. This corresponds to
2 → 2 Compton scattering process in plasma resulting in a
photon with momentum K. As it is shown in Ref. [55], the
parametric dependence of this contribution corresponds to
the naive perturbative order and is ∝ α2. As for the chirality
flipping rate diagram (b), it is also nontrivial for the on-
shell hard momentum Q and corresponds to 1 → 2 collin-
ear processes of bremsstrahlung (or cross-channels) with
the chirality flip of a fermion, shown in Fig. 2(b). As we
have shown in Appendix C, this diagram also has a
fictitious IR divergence for Q → 0 which is canceled by
another two first-order diagrams with the “dressing” of one
fermion leg. This cancellation is a consequence of the
gauge invariance, since the photon with zero momentum
corresponds to a pure gauge. Apart from this divergence,
the diagram in Fig. 15 is finite and gives OðαÞ contribution
to the chirality flipping rate.

It is important to note that in the calculation of the photon
production rate some processes of the higher (naive)
perturbative order due to accumulated IR divergences
can also contribute to the leading Oðα2Þ order result. An
example of such a diagram is shown in Fig. 16(a). As is
discussed in Ref. [55], physically this corresponds to the
processes shown in Fig. 16(b), and the phase space region
giving the dominant contribution to this diagram is Q ∼ eT
(soft intermediate photon), P ∼ T (hard fermions), K · P ¼
Oðe2T2Þ, Q · P ¼ Oðe2T2Þ (nearly collinear bremsstrah-
lung). Figure 16(b) also shows that the contribution to the
photon production rate from diagram (a) is caused by the
interference of the two processes where the soft scattering
occurs before and after the photon emission. We would like
to note that each of these processes separately is present in
another diagram of the same order as (a), but with the soft
photon line “dressing” only one of the fermion legs.
Obviously, such processes would automatically be taken
into account by using the full fermion propagators with the
self-energy corrections. However, their interference is not
included in the self-energy. That is why keeping the
diagram in Fig. 16(a) is extremely important. Moreover,
as we will see below, diagrams with more soft photon
insertions must be included since they contain the accu-
mulating IR divergences and all contribute to the leading
order result for the photon production rate. Such a
resummation takes into account the interference effects

(a) (b)

FIG. 13. General form of the loop diagrams contributing to the photon production rate (a) and chirality flipping rate (b). The gray
rectangle denotes the 4-point function which must be calculated perturbatively. There are three main differences between them: (i) the
incoming momentum in diagram (a) is hard K ∼ T and on shell (corresponds to a real photon), while in diagram (b) it is equal to zero;
(ii) the vertices in diagram (a) are usual QED vertices containing the coupling constant e while in diagram (b) these are just the mass
insertion vertices with chiral projectors PR;L inside; (iii) fermions running in the loop in diagram (a) have the same chiralities on upper
and lower branches, while in diagram (b) they always have opposite chiralities (shown by different colors).

(a) (b)

FIG. 14. Lowest order diagrams in the perturbative series for
the photon production rate (a) and chirality flipping rate (b). Both
diagrams are real and thus do not contribute to the corresponding
rates.

(a) (b)

FIG. 15. Lowest order nonvanishing diagrams in the perturba-
tive series for the photon production rate (a) and chirality flipping
rate (b). Both diagrams have finite imaginary parts for hard on-
shell momentum Q and their parametric behavior corresponds to
their naive perturbative order.
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in the multiple soft photon scatterings, which is the essence
of the Landau-Pomeranchuk-Migdal effect.
It is easy to understand that the fermion loop inside the

photon line in Fig. 16(a) can be absorbed into the photon
self-energy. In other words, in order to take into account
this diagram (as well as an infinite number of higher order
diagrams with multiple fermion loops in the same photon
line) one should consider the diagram in Fig. 15(a) in which
the intermediate photon line corresponds to the full
propagator including the self-energy corrections. This is
the right place to note that we do take into account the
analogous diagram for the chirality flipping rate, i.e.,
the diagram in Fig. 15(b) with the dressed photon line,
the corresponding calculation is shown in Appendix E 4.
Thus, we include the diagram depicted in Fig. 17(a), which
contains the interference of the physical processes in which
the soft scattering occurs before and after the flip of
chirality, see Fig. 17(b). However, as we will see below,
the higher order diagrams with multiple soft photon lines
accumulate the divergences much slower than in the case of
photon production and the ladder resummation of Ref. [55]
is not needed for the computation of the chirality flip-
ping rate.
Let us consider the general case of multiple soft photon

scatterings. In Ref. [55] it was shown that the dominating
contribution is made by the ladder diagrams shown in
Fig. 18(a).
Let us try to understand why all these diagrams con-

tribute to the photon production rate in the same parametric
order. For this, we now take into account that all inter-
mediate photon momenta are soft, Qi ∼ eT, the fermion
momenta P and Pn − K are hard and on shell (these lines

are cut when we take the imaginary part), other fermion
lines P1;…; Pn are hard, nearly on shell (because of small
Q) and nearly collinear to the external photon Pi · K ¼
Oðe2T2Þ. This implies also that Pi ·Qj ¼ Oðe2T2Þ. Now
let us see how the parametric dependence is changed if we
add one additional soft photon line into the ladder. We get

(i) e2 from two additional vertices;
(ii) ∼ðeTÞ4 from the phase space of one additional Q;
(iii) 1=Q2 ∼ 1=ðeTÞ2 from the additional soft photon

propagator;
(iv) γμPi;μ=P2

i ∼ T=ðP ·QÞ ∼ T=ðeTÞ2 from each of the
two additional fermion propagators.

In total, all powers of e cancel and we conclude that adding
one soft photon line does not change the parametric
dependence and the resummation of all ladder diagrams
is required. This is the main result of Ref. [55].
We would like to emphasize that we got such a result only

due to the fact that both additional fermion propagators
which appear in the diagram are nearly on shell. Indeed, they
bring the momentum Pi ¼ P −Q1 −Q2 − � � � −Qi and
Pi − K. We know that P and Pn − K are on shell (this is
where we cut our diagram). That is why P2

i ¼ 2P · ðQ1þ
Q2 þ � � � þ QiÞ þ ðQ1 þ Q2 þ � � � þ QiÞ2 ∼ ðeTÞ2, the
same for ðPi − KÞ2.
Now, let us see what happens in the case of the chirality

flipping rate, whose ladder diagram is shown in Fig. 18.
Here we have an important difference: the incoming
momentum is 0 so that we always have pairs of fermion
propagators with the same momenta but opposite chiral-
ities. As a result, if one propagator is nearly on shell, the
other one as always is very far off shell, because the
fermions of different chiralities have different dispersion

(a) (b)

FIG. 16. (a) Diagram for the photon production rate which is naively of order α3, however, for soft intermediate momenta Q ∼ eT
satisfying P ·Q ¼ Oðe2T2Þ it is IR divergent and after regularization appears to be of order α2. (b) Physical process of collinear
bremsstrahlung accompanied by the soft scattering in plasma which causes the imaginary part of the diagram (a). Importantly, this
diagram contains the interference of two processes in which the scattering occurs before and after the photon emission.

(a) (b)

FIG. 17. (a) Diagram for the chirality flipping rate with a soft photon line connecting the fermion arcs with opposite chiralities.
(b) Physical process of chirality flip accompanied by the soft scattering in plasma which causes the imaginary part of the diagram (a).
This diagram contains the interference of two processes in which the scattering occurs before and after the flip of chirality.
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relations, namely, in vacuum p0 ¼ �jpj [see the discussion
around Eq. (7)]. Then, for the nearly on-shell fermion of
one chirality we have

S1∼
1

p0−q0− jp−qj≃
2p0

ðP−QÞ2¼
2p0

−2P ·QþQ2
∼

T
ðeTÞ2 :

ðF3Þ

Then, for the opposite chirality we would get

S2 ∼
1

p0 − q0 þ jp − qj ∼
1

T
: ðF4Þ

Repeating the similar power counting as previously, we get
that each new soft photon gives additional power of e2.
That is why for the leading order result the ladder
resummation is not needed.
Also we should pay attention to the diagrams with

one additional hard photon. Three topologically nontrivial
classes of such diagrams are shown in Fig. 19. Obviously,

the diagram (a) has exactly the same properties as pre-
viously discussed diagram in Fig. 18(b). Indeed, it contains
all fermionic propagators in pairs. Each pair consists of
propagators with identical momenta and opposite chiral-
ities. That is why only one of them can be nearly on shell
and adding more soft lines makes the result higher order
in α.
However, the diagrams shown in Fig. 19(b) and 19(c)

may be potentially more singular. In fact, if the hard photon
momentum is on shell and nearly collinear to P, it is
possible to get all fermion propagators on shell, except two.
These on-shell propagators are shown by double lines in
Fig. 19. Then, repeating the same power counting as
previously, we conclude that the parametric behavior of
such diagrams does not change of we add more soft lines.
In other words, if the diagram with one soft photon line
were important for us, then all the ladder would have to
be resummed. Fortunately, this is not the case as we will
see below.
Let us first consider the diagram of type (b). The first

term in the ladder series contains one soft photon line

(a) (b)

FIG. 18. General diagrams with the ladder of soft photons contributing to the photon production rate (a) and chirality flipping rate (b).
Each of the intermediate momenta is soft Qi ∼ eT and satisfies Qi · P ¼ Oðe2T2Þ.

(a) (b)

(c)

FIG. 19. General diagrams with the ladder of soft photons and one hard photon K (shown by the green wavy line) in three
topologically different situations: (a) the hard photon line is a part of the ladder; (b) it crosses all soft photon lines in the ladder; (c) it
embraces the soft photon lines. Special attention should be paid to the case when the hard momentum K is nearly on shell and almost
collinear to P, K · P ¼ Oðe2T2Þ, while each of the intermediate momenta is soft Qi ∼ eT and satisfies Qi · P ¼ Oðe2T2Þ. Nearly on-
shell fermion propagators are shown by the double lines.
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crossed by one hard line and is shown in Fig. 20(a). This
diagram involves three summations over the Matsubara
frequencies (of P, K, and Q) and 8 propagators. In each
summation the Matsubara contour catches the quasiparticle
pole of one of the propagators. In other words, upon
summation we get three propagators on shell. Among
different ways to choose these three propagators one leads
to the most singular infrared behavior. Indeed, let us
consider the photon K, the left fermion P − K, and the
right fermion P −Q to be on shell. Then, k0 ¼ jkj,
p0 − k0 ¼ −jp − kj, p0 − q0 ¼ jp − qj. Note that we are
left with the soft photon Q, the pair of left and right
fermions with momentum P, and the pair of left and right
fermions with momentum ðP − K −QÞ. Then, the para-
metric dependence of the diagram in Fig. 20(a) can be
estimated as follows:

GðaÞ ∝ e4
Z

d3p d3k d3qDðQÞ × 1

P2
×

1

ðP − K −QÞ2 ;

ðF5Þ

where DðQÞ is the full propagator of the soft photon with
momentum Q ∼ eT which behaves like DðQÞ ∼ 1=ðe2T2Þ
[59]. Especially interesting is the case when the momenta p
and k are nearly collinear with the opening angle θ ∼ e (the
phase space for k is then ∼e2T3. It is easy to see that in this

case the momentum P satisfies P2 ≃ − p2k
k−p θ

2 ∼ e2T2 and

P ·Q ¼ Oðq2; θ2Þ ∼ e2T2. From this immediately follows
ðP − K −QÞ2 ∼ e2T2. To say, this is exactly the same
region of the phase space which was considered in Ref. [55]
and the corresponding physical processes are shown in

Fig. 20(c). Finally, the parametric behavior of the diagram
in Fig. 20(a) is given by2

GðaÞ ∝ e4 × T3 × e2T3 × ðeTÞ3 × 1

ðeTÞ2 ×
1

e2T2

×
1

e2T2
∝ e3 ∝ α3=2: ðF6Þ

Therefore, this diagram, as well as the whole ladder is of
higher parametric order in α than our leading order result
for the chirality flipping rate.
Let us now consider the ladder shown in Fig. 19(c). The

first diagram from this series is given by Fig. 20(b). Its
parametric behavior can be estimated in the similar way as
written above. In fact, this diagram differs from the diagram
(a) by the absence of the off-shell right fermion propagator
ðP − K −QÞ and by the presence of the off-shell left fermion
propagator (P −Q). Thus, we get the following estimate:

GðbÞ ∝ e4
Z

d3p d3k d3qDðQÞ × 1

P2

×
1

p0 − k0 − q0 þ jp − k − qj ×
1

p0 − q0 þ jp − qj :

ðF7Þ
In the same phase space region as described before Eq. (F5),
the denominator ðp0 − k0 − q0 þ jp − k − qjÞ ¼ Oðe2TÞ
while ðp0 − q0 þ jp − qjÞ ∼ 2jpj ¼ OðTÞ. Then, the same
calculation as (F6) gives

(a) (b)

(c)

FIG. 20. Panels (a) and (b) show first diagrams in the ladder series depicted in Figs. 19(b) and 19(c), correspondingly. Their
contributions to the chirality flipping rate have the parametric behavior Oðe3Þ which is the subleading order compared to our result.
(c) The interference of two processes of hard photon bremsstrahlung with the chirality flip and soft scattering in plasma which
contributes to the diagram (a).

2This estimate neglects the logarithmic dependence on the
coupling constant.
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GðbÞ ∝ e4 × T3 × e2T3 × ðeTÞ3 × 1

ðeTÞ2 ×
1

e2T2

×
1

e2T
×
1

T
∝ e3 ∝ α3=2: ðF8Þ

Thus, the first term in the ladder series, aswell as the full series
of Fig. 19(c) gives a subleading contribution to the chirality
flipping rate.
General conclusion would be the following. Contrary to

the case of the hard photon production rate, for the chirality

flipping diagrams adding more photon lines connecting the
fermion arcs with opposite chirality results in corrections
which are subleading in the small coupling constant α. On
the other hand, if the photon lines start and finish at the
same (upper or lower) fermion arc with a fixed chirality,
this results in accumulating divergences which contribute
to the leading-order result. The resummation of such
divergences can be completely absorbed into the electron
self-energy, which has been systematically investigated to
the leading order in α elsewhere.
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