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We evaluate the electric dipole moment of charged leptons in the standard model, where the complex
phase of the Cabibbo-Kobayashi-Maskawa matrix is the only source of CP violation. We first prove that, at

the quark-gluon level, it is suppressed by a factor of m?m?m? at all orders of perturbation due to the
Glashow-Iliopoulos-Maiani mechanism. We then calculate the hadronic long distance contribution
generated by vector mesons at one-loop level. The |AS| = 1 weak hadronic interaction is derived using
the factorization, and the strong interaction is modeled by the hidden local symmetry framework. We find
that the electric dipole moments of charged leptons obtained from this hadronic mechanism are much larger
than the perturbative four-loop level quark-gluon process, by several orders of magnitude.
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I. INTRODUCTION

The electric dipole moment (EDM) [1-21] is a very
sensitive observable for the detection of the CP violation in
many candidate models of new physics beyond the stan-
dard model (SM) such as the supersymmetry [22-50],
extended Higgs model [51-79], Majorana fermion [80-83],
and other interesting models [66,84-92]. Among systems
in which the EDM may be measured, the charged leptons
are the most frequently studied experimentally. The elec-
tron EDM is known to be enhanced by relativistic effect of
heavy atomic and molecular systems [93—125], and it is
currently the object of a massive experimental competition
[126-141]. The EDM of the muon is directly measureable
in experiments using storage rings [142]. That of the
7 lepton can be extracted by analyzing collider experimen-
tal data [143-147].

In the SM, the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [148] has a CP violating complex phase, so it may
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generate the EDM. In the search for new physics beyond
the SM, this contribution must be assessed as the leading
background. It is known that, in most cases, it is unob-
servably much smaller than the experimental sensitivity
[149-164]. However, the hadronic contribution to the EDM
of charged leptons has never been evaluated in the past.
This is just the aim of this paper to quantify it.

In this paper, we first prove that the contribution at the
quark-gluon level is suppressed by a factor of mim2m? at
all orders of perturbation due to the Glashow-Iliopoulos-
Maiani (GIM) mechanism. Next, we calculate the hadronic
long distance contribution to the charged lepton EDM
generated by vector mesons at one-loop level. The |AS|=1
weak hadronic interaction is derived using the factorization,
while the strong interaction is given by the hidden local
symmetry framework. Part of the results have been briefly
reported in [165]. A complete report of our study is given in
this article.

This paper is organized as follows. In the next section,
we review the quark-gluon level calculation of the CKM
contribution to the EDM of charged leptons and prove that
it is actually suppressed by factors of quark masses at all
orders of perturbation. We then describe in Sec. III the
setup of the evaluation of the hadronic contribution to
the EDMs of charged leptons in the hidden local
symmetry framework, with the weak interaction derived
with the factorization. In Sec. IV, we show the result of
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our calculation and analyze the theoretical uncertainty.
The final section gives the summary of this work.

II. QUARK LEVEL ESTIMATION OF THE EDM
OF CHARGED LEPTONS AND THE
GIM MECHANISM

Let us first review the previous works on the calculation
of the short distance (quark-gluon level) effect to the
EDM of charged leptons in the SM. Since we are supposing
that the CP violation is generated by the physical
complex phase of the CKM matrix, the Feynman diagrams
contributing to the lepton EDM must have at least
a quark loop, with sufficient flavor changes so as to fulfill
the Jarlskog combination [166]. The Jarlskog invariant is
given by the product of four CKM matrix elements
(J =Im[V,,V,,V:,Vi] = (3.18 £0.15) x 107 [167]),
so the quark loop must have four W boson-quark vertices.
By noting that the W boson must also be connected to the
electron, the two-loop level diagram which has only two
vertices in the quark loop does not contribute to the EDM
due to the cancellation of the complex phase.

The first plausible contribution appears then at the three-
loop order [168] (two-loop level diagrams of the EDM of
W boson as shown in Fig. 1, which is attached to the lepton
line). However, extensive three-loop level analyses revealed

|

v

FIG. 1. Two-loop level diagram contributing to the EDM of W
boson in the SM at the quark level. The external photon field is
attached to all possible propagators. The sum of all diagrams
vanishes, so the EDM of charged leptons at the three-loop level,
which is generated by attaching the two external W boson lines to
the lepton line, also cancels.

us that it exactly cancels due to the antisymmetry of the
Jarlskog invariant under the flavor exchange (also called
the GIM mechanism, a consequence of the CKM unitarity)
[155-157]. The cancellation works as follows. If we can
find two quark propagators of the same type (up type or
down type) in the diagram with identical momenta and
sandwiched by W boson vertices, the sum of the direct
product of these two parts over the d-type quark flavors
reads

ZIm[VU’DV%DVU’D’V?/D/}PLSD?’”PL ® PLSpr'PL
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from the W boson-quark vertices. The mass insertions of Sp
cancel since odd number of chirality flips is not allowed when
Sp is sandwiched by W boson-quark vertices. It turns out that
the pair of propagators with the same (u- or d-) type quarks
can always be found in the two-loop level contribution to the
EDM of W boson, and consequently in the three-loop level
diagrams of the EDM of charged leptons. The most trivial
ones are the symmetric diagrams with two quark propagators
of the same type, but there are also diagrams which have

where S, = . The projection P = (1 —ys) comes
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nonsymmetric insertions of the external photon. The latter
ones can actually be recast into the symmetric form of quark
propagators by using the Ward-Takahashi identity [155,156].
Similar cancellation also occurs in the case of the quark
EDM/chromo EDM [149-154] or the Weinberg operator
(gluon chromo EDM) [158].

The first nonvanishing contribution which avoids the
above symmetric cancellation appears at the four-loop level
(see Fig. 2). Although the four-loop level contribution has
never completely been calculated, it is possible to estimate
its size by symmetry consideration. It is indeed possible to
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FIG. 2. Example of four-loop level diagram contributing to the
lepton EDM in the SM at the quark level.

prove that the GIM mechanism [169,170] always brings
additional suppression of quark mass factors mq, inde-
pendently of the order of perturbation. Let us first consider
the quark loop with several insertions of vertices of flavor
unchanging (neutral) bosons, i.e., gluons, photons, or
Higgs bosons (see Fig. 3). We focus on the direct product
of the U and U’ quark lines with vertex insertions of Fig. 3,
which may be expressed by the Taylor expansion in terms
of the quark masses, as follows:

> ImVypVipVuo Vi) Zan 7 ® Za m,
U#U'

2)
where aﬁll) and ag) are polynomials of the electric charge of
up-type quarks, the strong coupling, the inverse of the
Higgs vacuum expectation value (appearing from the
Yukawa coupling of the Higgs boson after factoring out
quark masses), and all momenta carried by the bosons
attached to U and U’, respectively, which depend on the
diagram considered. Here we took the direct product @ to

show that the above Taylor expansion also works for the
case where Dirac matrices are involved.

Zlm VU/DVUDVU'D/VUD’ Zan ® aE)Z)

U#U' n=0

FIG. 3. Boson emissions/absorptions of the quark loop with
four flavor changing vertices respecting the Jarlskog combina-
tion. The gluon, photon, and the neutral Higgs boson are denoted
by the wiggly, wavy, and dashed lines, respectively, and the
ellipses means that they each may be of arbitrary number. The
sum of the quark flavors removes the contribution without flip of
chirality due to the GIM mechanism. The emitted bosons have
O(my) = O(m,) momenta, and they may also form loops, or be
connected to other fermion loops, which are not interfering with
the flavor structure of the one considered in this figure.

We can actually prove that the terms involving a(()1> and a(()z)

always vanish due to the GIM mechanism. The case of aél) ®

af)z) is easy to show, since the sum is just proportional to the

sum of Jarlskog invariants, which cancel due to the anti-
symmetry in the ﬂavor exchange The remaining possibilities

are ., _ lan ) a ) and a '® Zn/,l a mU, which
are also not dlfﬁcult to treat. For the former case, we have

= m[V,DVZDV,D/V:;D,]Zag,l)mﬁ” ® a(()z) + Im[V,DViDV,DIV’;D,]Zasll)m%” ® a(()Z)
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We may repeat the same calculation to show the cancella-
tion for the case of a V& > e a(2>m%]'5 as well. We thus
proved that the leading order CP violation of the quark loop
is accompanied by two factors of squared mass of two
different up-type quarks to all orders of perturbation in
QED, QCD, and Higgs corrections. We may also exactly
repeat the above procedure for the down-type quark
contribution which is independent of the up-type ones.
The CP violating part of the quark loop is then at least
having a suppression factor of m; mimzms, which of course
persists even if some of the neutral or W bosons are
contracted each other or with other quark loops. The
appearance of this factor has actually been already dis-
cussed in the general case of the CP violation of the CKM
matrix [171], and it also appeared in the result of the
calculation of the Weinberg operator which is also gen-
erated by a quark loop [158].

The presence of the suppression due to quark mass
factors, i.e., the cancellation of the zeroth order terms of the
Taylor expansion of the quark lines with neutral boson
insertions, may also more elegantly be shown using the
unitarity of the CKM matrix. At the order of four W boson-
quark vertices, the general flavor structure of the quark
loop, with the sum over the flavor taken, is expressed by the
following trace

Tr[ViQ) VR Vi VR, (4

~—

where V is the 3x3 CKM matrix, and Qg‘) =
Sl B =X, w11, 2) are
the down-type and up-type quark lines with arbitrary
number of neutral boson insertions, respectively. We note
that Qgc) and Rg) are 3 x 3 matrices that only have diagonal

components. By taking the zeroth order term of QEJU,
we have

Tr[VTa“)VR(l)VTQg)VR(Z)]
— a(()l)Tr[R( >R< VTQ( )V]

—ao§3&>i Vi), (5)

Here we used the unitarity of the CKM matrix VIV = 1,
the fact that Rg), R(Dl), and Qg) are diagonal, and that a(()l) is
flavor blind, i.e., proportional to the unit matrix. The above
trace is therefore purely real and the zeroth order terms of
the Taylor expansion of the quark lines with neutral boson
insertions does not contribute to the EDM. This expression
is exactly equivalent with Eq. (3), and at this order O(V*#)
the imaginary part only survives when the flavors of all

quarks are different, to avoid the appearance of the squared
absolute values of the CKM matrix elements.

Next, we have to see higher order corrections with W
boson-quark vertices which may be treated in a similar
manner. Here again the unitarity of the CKM matrix plays a
crucial role. Let us consider the case with six W boson-
quark vertices. The general flavor structure of this quark
loop, with the flavor summed, looks like

Te[Vi QY VR VIO VRS VIO VRY).  (6)

We now show that the correction at this order (V) is not
larger than that of O(V*) which has the quark mass factors
m?mim2m?2. A potentially large contribution may arise
from the zeroth order terms of the Taylor expansion a(()k)

and bg). For example, by considering one such insertion,
Te[Viay VR VIO VR VIO VRS
a\"Te[VIVRY V0P VR Vi QP VR
5Viopv (7)

where we again used the unitarity of the CKM matrix. By
noting that RS)RS) is also a diagonal matrix with each
component depending only on the mass of one quark
flavor, we see that the flavor structure of this contribution is
exactly the same as that of the O(V*) process with neutral
boson insertions discussed previously in this section
[Fig. 3, Egs. (3) and (4)]. This means that the O(V®)
quark loop having one zeroth order term of the Taylor
expansion is also having the quark mass factor m?m3m?2m?.
We also note that the contribution with the three up-type
quarks being all top quarks, which may potentially be
larger than the O(V*) terms, has no effect to the EDM,
since it will be proportional to three factors of the absolute
values of squared CKM matrix elements |V,p|?; i.e., at least
a factor of m? or m2 is needed. This analysis may be
extended to arbitrary higher orders recursively, since the
zeroth order terms a(()k) or b(()l), proportional to the unit
matrix, contract two CKM matrix elements V and V' to
form another unit matrix, reducing the flavor trace of
O(V*) to O(V?N=2). Since the O(V*) contribution is
having a factor of m?m3m2m?, this is also so at O(V®) and
at all other higher orders of W boson-quark vertices (V).

We can also show with the above approach the cancel-
lation of the quark loop at O(V?) and at the two-loop level

in a more elegant manner. At O(V?), we have

= a'Tr[RY RY VIO VR

3
Tr[VTQS)VRg)] = ZHii(Rg))w (8)

i=1

where H = VTQS)V is an Hermitian matrix. Since Rg) is

diagonal and real, its trace with H is taking only the
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diagonal elements, which are also real. There is no room for
the imaginary part, so CP is conserved at O(V?), even
accounting for all order corrections of neutral bosons.

At the two-loop level (of the quark loop), we previously
saw that we can always find a symmetric set of either up
or down-type propagators with the same momentum
argument [155-157]. We may then write the trace as

3
TVSVI0) VSV el = S (04, H (o)
=1

3
= |H},2(00);(07));.
i,j=1
9)

where we used the Hermiticity of H' = VS, V. Due to the
absolute value, there is no CP violation, and there is thus no
contribution to the EDM of charged leptons at the three-
loop level. We also see that, if the symmetry between the
two Sp is destroyed, the two H' will no longer be complex
conjugates, and the imaginary part will be generated.

Let us now estimate the EDM of charged leptons
according to the above discussion. The correct dimensional
analysis of the four-loop level contribution according to the
above proof therefore yields

eJ axa%EDm ,mim%m%

d; ~ , 10
! sin®@ymb (4x)* (10)
which is transcribed to
d, = 0(10‘50) ecm, (11)
d, = 0(10‘48) ecm, (12)
d, = 0(10_47) ecm. (13)

Here we did not consider the logarithmic enhancement
which may enlarge the above values by one or two orders of
magnitude. Nevertheless, these results are actually telling
us that the short distance contribution is extremely small.
From this analysis, we see that the enormous suppression of
the EDM of charged leptons is not due to the fact that it
appears at the four-loop level, but rather due to the
cancellation by the GIM mechanism.

We stress that this suppression mechanism does apply
only when all momenta involved are of O(my ~ m,). In the
case where nonperturbative physics is relevant in the
infrared region, the coefficients a,, b,y of Eq. (2) may
be enhanced by O(1/Agcp) = O(GeV~?) factors. In the
next section, we recast the soft momentum physics into
phenomenological hadron physics where the weak inter-
acting hard part is given by low energy constants, which are
also calculated with phenomenological models.

Y
T
’f—--N
4 \
K¢ ST
Y \
1 \
l O > O [
v

FIG. 4. Example of a one-loop level contribution to the EDM of
the charged lepton / generated by pseudoscalar mesons (7, K).
The grey and black blobs denote the weak interaction. This
naively leading diagram is suppressed by the chirality flips of the
pseudoscalar meson-lepton vertices (grey blobs).

III. SETUP OF THE CALCULATION

A. The long distance effect

The leading order contribution of the CKM matrix to the
lepton EDM is constructed with at least two W boson
exchanges. To avoid severe GIM cancellation as we saw in
the previous section, we have to split the short distance
flavor changing process at least into two parts at the hadron
level (the long distance effect), while keeping the Jarlskog
combination of the CKM matrix elements. The largest long
distance contribution should involve unflavored and
|S| = 1 mesons rather than the heavy flavored (c, b) ones.
Another important condition is that the charged lepton
EDM is generated by one-loop level diagrams involving
vector mesons, because the interaction of pseudoscalar
mesons with the lepton will change the chirality, sup-
pressing the EDM by at least by a factor of m? (I = e, y, 7)
(for an example of a one-loop level diagram with pseudo-
scalar mesons suppressed by chirality flips, see Fig. 4). The
charged lepton EDM is then generated by diagrams
involving a K* meson. The one-loop level diagrams must
not have a neutrino in the intermediate state of the long
distance process, since the small neutrino mass will not
provide sufficient chirality flip required in the generation
of the EDM. Moreover, if the process contains two weak
K*-charged lepton vertices, the chirality selection will not
allow an EDM. The K* meson must therefore change to an
unflavored meson which in turn becomes a photon which
will be absorbed by the charged lepton. Under such
restrictions, we may draw diagrams shown in Fig. 5. We
note that diagrams with external photons attached to
internal lepton propagator cancel when transposed dia-
grams are summed.

B. Hidden local symmetry

Let us now give the interactions to calculate the diagrams
of Fig. 5. It is convenient to describe the |AS| = 0 vector
meson interactions with the hidden local symmetry (HLS)
[172—-182]. The HLS is a framework introduced to
extend the domain of applicability of chiral perturbation
to include vector meson resonances, and it is successful in
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FIG. 5. Long distance contribution to the EDM of charged lepton / (= e, u, 7) in the SM. The diagrams (a) and (a’) [(b) and (b')] are
the contribution with the weak (strong) three vector meson interactions. There are also diagrams with the K* propagator, which are not
displayed. The grey blob denotes the |AS| = 1 semileptonic effective interaction, while the black one is the [AS| = 1 (two- and three-
point) vector meson interactions which combine each other to form the Jarlskog invariant.

phenomenology [182]. The effective Lagrangian for three
vector mesons is given by

Lyy = igtr[(0,V, = 0,V,)V*V*], (14)
where the vector meson matrix V¥ is given by
2w + =\ #
ity P K
Vi = - _2 e 0 |, 15
P 7 + 2 K ( )
K ]‘(*0 ¢

where g =m,/(2f,) with the pion decay constant
fr =93 MeV.

The effective Lagrangian for vector meson and photon is
given by [180]

2
Ly = —fzegﬂAMtr(Qw)
14
V2

2
em; 0 1
=——"A H+ —wht —— " ), 16
5 ,,<p +3 3¢> (16)

where g, = 5.7 and

0=

S O Wi
|

C. K*-lepton interaction

Let us now model the weak interaction at the hadron level.
From Fig. 5, the |AS| = 1 weak interaction appears in the
K*-lepton interaction and in the interacting vertices between
K* and other vector mesons. Since the neutrino cannot
appear in Fig. 5, the interaction between K* and the charged
lepton must be at least a one-loop level process at the
quark level. Then the best solution is to attribute the CKM
matrix elements V V7, or V,V;, to the K*-lepton inter-
action, and V ,; V' to the K*-vector meson interactions. The
latter attribution will maximize the |AS| = 1 vector meson

interactions, since V,,Vi. is given from the tree level
|AS| = 1 four-quark interaction.

The parity violating effective interaction between K* and
the charged lepton is given by

Lin = gieuKly'ysl + (Hee.), (18)

where K, is the field operators of the K* meson. In the
zero momentum exchange limit, the coupling constant is
given by
Im(gx)ef = Im(ViVig) 0[5y, d|K*) g, (19)
where we fixed the complex phases of V Vi to be real.
The K* meson matrix element is given by
<0|§7;4d|K*> = mK*fK*E;IE*’ (20)
where eX', myg. =890MeV and fx =204 MeV [183-186]
are the polarization vector, the mass, and the decay constant
of K*, respectively. The quark level amplitude /,; can be
obtained by calculating the one-loop level diagrams of
Fig. 6. By neglecting all external momenta [which are
O(Aqcp)] and imposing m,, my > m,, the amplitude of
the diagrams of Fig. 6 is given by

_azQEDIm(VIS Vi) m}

Im(ME )
m( <a)) 16sin*@y, m? — m3,

1 1 m?
x{—z—l—i2 5 ln<—2/>}
my,  my —my o

X dgytysug - gy, (1 —vs)u;,

(1)

N —aéEDIm( VisVi)

~ uyytysu;it 1—ys5)uy
16sin49Wcos29Wm% wrsug dYﬂ( yS) K

2 2
my 1 2, miy
(o) o)
1 2, mi, m3,
Sl el

(22)

Im(ME )
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FIG. 6. Short distance contribution to the AS = —1 semileptonic (K*-charged lepton) interaction. Here we have [ = e, y, 7.

30‘%2EDIm(Vm Via) m;

KUY A,
m(M{") ~

16sin*Oym%  (m3, — m?)?

Aot on(GH)]}

X dgytysuy - gy, (1 —vs)ug, (23)

where sin” @y, = 0.23122 [167]. The diagram (c) is the
largest, but all of them are of the same order. The numerical
value of the total 1, is

IdSll =32x 10_8 GCV_2, (24)

which is quite consistent in absolute value with that

2

Q,

. . . . 2D

of the naive dimensional analysis Iy ~ o5 Oyt~

43 x 1078 GeV™2. We note that Egs. (21), (22), and

(23) all contain a factor of ﬁ which is due to the
w

t

GIM cancellation. This shows that if we invert the up-type
and down-type quarks, the resulting meson-charged lepton
couplings will be suppressed by a factor of m3/m3
(D =d, s, b).

D. |AS|=1 vector meson transition and three-vector

meson interaction

We now model the |AS| = 1 vector meson transition and
three-vector meson interaction using the factorization. For
that, we have to determine the Wilson coefficients of the
quark level |AS| =1 processes. We chose the |AS| =1
case because it is the only allowed flavor change at low
energy scale. At the scale just below the W boson mass
(my = 80.4 GeV), we have the following |AS| = 1 effec-
tive Hamiltonian

Heir(u = my)
_G .
— {ZC WVisVia Qi + ViV ea 5]
i=1,2
- Z Cilu = mW>V;<thde} +Hec., (25)
j=3

with the Fermi constant Gp = 1.16637 x 107> GeV ™2
[167]. Here Qf, Qf, 03, 05, and Q; (j =3 ~6) are
defined as [187,188]

Q1 = 57" (1 = vs)ugitgy, (1 — vs5)dq, (26)

0f =5, (1 = v5)cpCpr,(1 = v5)dq, (27)

0y = 51" (1 = vs)ugityy, (1 — vs5)dp, (28)

05 =5, (1 = vs)calpr,(1 — v5)dp, (29)
Ny

Qs = 5" (1= ys)dy Y Ggr,(1—7s)qs.  (30)
q

Ny

Q4 = anﬂ(l - yS)dﬂZqﬁyﬂ(l - yS)qaa (31)
q

Ny

Qs =57 (1 —y5)d, Z qpry(1 +vs)qs.  (32)
q

Ny

Qs =5 (1 =75)ds Y @pru(1 +75)q0r  (33)
q

where a and f are the fundamental color indices, and the
summation over Ny goes up to the allowed flavors at the
given scale. The Hamiltonian of Eq. (25) keeps the same
form down to 4 = m,, but the Wilson coefficients run in the
change of the scale.

The running is calculated in the next-to-leading order
logarithmic approximation [162,187,188]. Below y = m,,
the charm quark is integrated out. The resulting |AS| = 1
effective Hamiltonian becomes

Hege (1) = u) +He. (34)

V:;x ud E Zl

Here we quote the values of Refs. [162,163]:
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—0.107
1.02
1.76 x 1073
-1.39 x 1072
6.37 x 1073
—3.45x 1073

z(y =1 GeV) =

We see that the Wilson coefficient of Q, is the largest. This is
because Q, is the sole tree level operator at 4 = myy,, and the
others were radiatively generated. Here we point that the
coefficient of Q, is also important since the contribution of
0, obtains a factor of 1/N,. after the Fierz rearrangement of
the color (see below). The operators Q; (i = 3, - - - 6) cannot
be neglected either, because they generate the ¢) meson which
is impossible with @ and Q,. We also note that Q5 and Qy,
after Fierz transformation, couple to the chiral condensate
which may enhance the overall effect (see below).

For the calculation of the crossing symmetric contribu-
tion, it is convenient to Fierz transform the |AS| = 1 four-
quark operators Q; (i =1,---6). The Fierz transform of
Eqgs. (26), (28), (30), (31), (32), and (33) are

1_ _
0, = 557”(1 —ys)uuy”(l —Vs)d

+2 51— ys)tauity, (1 = ys)t,d

= 57,(1 —ys)day" (1 —ys)u, (36)
1_ _
0, = gs}’ﬂ(l —ys)duy (1 —ys)u
8
+23 57,(1 = 75)tadgr* (1 = ys)taq. (37)
a=1
1 _ _
Q=3 Z 57.(1=75)qqr(1 —ys)d
q=u,d,s
+2>° Zsy,, 1= 75)taqqr" (1 = 7s)tad,  (38)
q=u,d,s a=
1 t
Q4 :—SJ" 1=ys5)d > qr,(1
q=u.,d,s
+22w" L=ys)tad > qra(l =7s5)tag
q=u,d,s
= > sr(1-75)qar' (1 -vs)d, (39)
q=u,d,s
=-3 Z 1+75)qq(1 —ys)d
q u,d,s
=430 > 51+ 75)taqa(1 —ys)t.d, (40)
qg=u,d,s a

1
Os :—SJ/” 1—ys)d

Z qyﬂ +75

q=u,d,s
+2Zw L=ys)ted > @r,(1+75)taq

q=u,d,s
=253

q=u.d,s

(1+75)qq(1 —ys)d, (41)

where 1, is the generator of the color SU(3), group. The
summation over the fundamental color indices runs inside
each Dirac bilinear, so the indices (¢ and ) have been
omitted. As for Egs. (36), (39), and (41), we also displayed
in the first equalities the Fierz rearrangement of the
fundamental color indices to form color singlet Dirac
bilinears. We note that an additional minus sign contributes
due to the anticommutation of fermion operators. This sign
change is important since there may be interference with
crossing symmetric graphs.

We use the standard factorization to derive the |AS| = 1
vector meson interaction from the |AS| =1 four-quark
interaction of Eq. (34). We first construct the |AS| =1
meson transition in the factorization with vacuum satura-
tion approximation [189,190]. It works as
(0[sy*d|K*){p|qr,4|0).

(p|sr*dqy,q|K*) =~ (42)

(plsddd|K*) ~ (p|5d|K*)(0]dd]|0), (43)
where ¢ = u, d. We note that the vacuum saturation
approximation gives the leading contribution in the large
N. expansion in the mesonic sector. The |AS| =1 four-
quark interaction has two distinct contributions, as shown
in Figs. 7(a) and 7(b). The first contribution (a) is the
factorization into two meson tadpoles [see Eq. (42)]. It

requires the decay constants of vector mesons, as

(Olaay,ulp) = f &M, f,, (44)
(Oldy,d|p) = \f umyf s (45)
(0|g7,.q|@) _\f WMofo (@ =u,d), (46)
<O|§yﬂs|¢> = 8/4m¢f¢’ (47)

where ¢, is the polarization of the vector meson,
and m, =770 MeV, f, =216 MeV, m, =783 MeV,
fo =197 MeV, m, = 1020 MeV, and f, =233 MeV
[183-186,191,192]. The second contribution [Fig. 7(b)]
is the factorization into scalar matrix elements [see
Eq. (43)]. It appears from the Fierz transformation of Qs
and Q¢. The chiral condensates relevant in this regard
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(b)

FIG. 7. Factorization of the |[AS| = 1 vector meson vertices (|AS| = 1 meson transition), with (a) the two-quark process, (b) the one-
quark process, and (c) three-meson interaction. The double crosses with “(gg)” denote the chiral condensate (0|g¢|0) (¢ = d, s). The
black blob denotes the |AS| = 1 four-quark interaction. There are similar diagrams with the p meson replaced by @ and ¢ mesons.

are (0[3s]0) ~ (0]dd|0) ~ — 2L ~ —(269 MeV)? [193].
They are obtained at the appropriate renormalization scale
u =1 GeV with m, ~ 2.7 MeV and m; ~ 5.9 MeV [167],
calculated in the two-loop level renormalization group
evolution [194,195]. The scalar matrix element of the
vector meson is derived by using the result of the
calculation of the chiral extrapolation of the vector
meson mass in lattice QCD [196-200]. As derived in
the Appendix A, we obtain

B,k = (0°[5d|K™®) = —1.14 GeV, (48)
|

B,k = (w|5d|K**) = 1.88 GeV, (49)
Bk = (¢lds|K*0) = 2.14 GeV. (50)

By using the above parameters, the lagrangian of the
weak vector meson transition is given by

Lyk = ViuaVis Z gvg- V'K, +He.,  (51)
V=p.0.¢

where p?, @ and ¢* are the field operators of the p°, @, and ¢
mesons, respectively. The coupling constants are given by

Gr [ 11 f 2 o
9ok = E _<Z] +§Zz —§Z3 - Z4> m,(*f,(*mpﬁ— <§Z5 + 2ZG>BpK* <0|SS + dd|0>:|

=44 x 1078 GeV?,

3 3 3 3

(52)

3

Gr | 1 7 5 2 > fo <2 ) B - }
wk* == || 21t 322+ 323+ 524+ 225 + 526 | Mg frm,—=— | 325 + 226 | Buk+(0[5s + dd|0
9wk \/i(l 2 3 4 5 6 xSk \/i 5 6 K<| |>

=3.4x 1078 GeV?,

3 3 3

(53)

Gr /4 4 1 2 -
9pk* = 7;: <—Z3 +=-24+25+ _Z6> mK*fK*md,f[ﬁ - (-Zs + 2Z6> B¢K* <0|§S + dd|0>:|

= —6.6 x 107 GeV?2.

Let us also construct the weak three-meson interactions.
Again by using the vacuum saturation approximation, we
have

(play.qsr"d|K*p) = (0|qy.qlp){p|sy*d|K*), (55)

with ¢ = u, d. The weak three-vector meson interaction is
then

u
Ly =ViVis Y. GhyV,V¥i0 Kj+He.,  (56)

V.V'=p,w.p

3
(54)

where A0’ B = A(0"B) — (0"A)B. The coupling constants
are given by

Gr 1 1 /
g’\’,,K* = 75 [Z1 + gZz - §Z3 - 24] mp7%CV’K*
= (24 x 1077) X cyrges (57)

G 1 7 5 2
g9 =k U=+ =23+524+225+526 | My —=Cyige
VKT 37373 3 V2

:(2.0X10_7)XCV/K*, (58)
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Gr [4 4 1 we used the approximate relation (p(p’)|sy*d|K*(p))~
s _ Gr , PP p(p')ls7"d|K* (p
G \/5 333 + 3% +z5+ 3% myfpCvik —(p + p/,l)g(p)u&(j( )
= (=2.6 x 1078) x cprg, (59)

E. One-loop level calculation of the EDM
of charged leptons

where V' = p,w, ¢. The coefficients ¢y are obtained In this subsection, we perform the one-loop level
as the relative strength of the meson transition  calculation of the lepton EDM, which is given by the

Te[VATTV, + V¥ TVZ], where T is the SU(3) ladder amplitudes shown in Fig. 5. The diagrams in Figs. 5(a) and
" 5(a’) are the contribution with the weak interaction of three

vector mesons, while the diagrams in Figs. 5(b) and 5(b")
are that with the strong interaction.
o =1/ V2, Ccox- =-1/V2, and cpx- = —1. For the The scattering amplitudes with the weak three-meson
amplitudes of the weak three-vector meson interaction, interaction in Figs. 5(a) and 5(a") are given by

|

2\ 2
em CyCy
A AKF s 14 vev
lM(a) = —leJmK*fK*Ids” <—> > 3 _ m2
4 V.V'=p.w.¢p q 14

operator given by the Gell-Mann matrices 1, (a =
. 8) as TZZ]W(/16+M7). As a result, we obtain

/ d*k w(p = Q)r,[(7 =) + mlg) 2k = q) - ey + gy (k + @)*Arsu(p) (60)
(27)* (k=q)*[(p = k)* = m}][(k = q)* — m,|[k* — m.] ’
emg 2 cyCyr
i./\/l( N = +l€JWl[(*fK*Idvll( ) > e qzv_ Zq%,
/ d*k w(p— @)y, (7= K) — m][gy . (2k - Q) ey’ + gy (k = 2q)" ﬂrsuz(p) (61)
(2x)* K[(p = k)* = mi][k* = m3,)[(k = q)* — m.]

The masses of leptons (I = e, u, 7) are given by m, = 0.510998950 MeV, m, = 0.105658 GeV, and m, = 1.77686 GeV
[167]. The coefficients cy,cy are ¢, =1, ¢, =1/3, ¢y = —/2/3. In the soft photon limit (¢*> ~0, p-q ~0), the
denominators of the integrands in Eqgs. (60)—(61) are rewritten as

1

d d d , 62
(k= q)?[(p = k> = m[(k = q)” = m, k> = m%] / ! / Zz/ S fz A ©2)

1
b k _m kz—m, — q /le/ de/ dZ3 l/ﬂz s (63)

[( 1 V
where

Co =k —z3p" — (21 — 23) 4", (64)
=k —z3ph = (1=21)q", (65)
A, =mi. + (m}, —my.)zy — my, 2o + miz3. (66)

The numerators of the integrands in Egs. (60)—(61) are reduced to

i(p = Q7,7 = K) + m)gh g 2k — q) - er* + gV (k + ), HArsui(p)
=i(p—q)[4gy - mz3(3 -2z +23)p - e+ 9%(*”1123(217 e+ gf)ysu(p) + -, (67)

i(p = q)r (7= K) —mgy - 2k — q) - er* + gyg-(k = 2q)"dlysu,(p)
= —i)(p — q)[4g} . miz3(3 —22) + 23)p - € + gYemy (323 — 221 — 2)giflysu(p) + - - - (68)
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where the terms which do not contribute to the EDM are suppressed. By performing the integrals with respect to £, and £,
for Egs. (60)—(61), the amplitudes for Egs. (60)—-(61) are reduced to

i em?\? cycyr
) emlJmK Srdasu| — E 5 u
V.V'=p,w,p

2 (p—q)

2gV/K*Z3 (322 +23) + 2972

iME =~
(a) (47r y
|:/ le/ de/
2\ 2
. i em
MK = ————emidmg fred g | —2
M) (4ﬂ)2€m1 mg-fg dll(gy)

V.V'=p,w.p

A2 :| ﬂuqvgyyﬁ M](p), (69)

CyCyr _
E 2 ul(p_q)
m

14

29V, 73(3 =221 + 23) + gV x (323 =22, = 2
{/ dzl/ ng/ dzs Gy ( 1 +23) gVK( 3 =27 )]0'””61,,6,475”1(17), (70)

respectively, where we use the Gordon identity

w(p = q)(2p —q) —ic*qlysu(p) = 0. (71)

The integrals in Egs. (69) and (70),

3(3 -2z +
/ dZ]/ de/ dZ3 Z] Z%), (72)
/ dz,/ dZQ/ dZ3A2, (73)
323 —2z1 -2
/ le/ de/ ng o Zl s (74)

are performed numerically, with the results summarized in
Table I. For 1(2‘1), the analytic form is obtained as shown in
Appendix B.

The amplitudes iMIf) and ng:,) are for the contribu-
tions with the K* propagator. In addition, the amplitudes
|

. K* _ I_(*
M) = iMg,)

2\ 2
. em
= —leJmK*fK*IdS”< ﬂ) Z

4 V.V'=p" 0. q

A;

[

with the K* propagator, denoted by iM{i;) and i./\/l{i;), also
contribute to Ehe EDM. If we restr%ct to the CP violation,
we have i/\/lg) = i/\/lfa*) and i./\/lf(;g = i/\/lg;). Thus the

total scattering amplitude with the weak three-vector meson
interactions is given by

l./\/lSM ZM + iM(a/), (75)
where
iMg = iM) +iME) = 2iME), (76)

In a similar manner, the charged lepton EDM contribu-
tions with the strong three-vector meson interactions shown
in Figs. 5(b) and 5(b’) are also calculated. The scattering
amplitudes of the diagrams (b) and (b’) are obtained as

CyCy
> 5 9v9vk*
-m

14

er' + &' (2q — ) — (k + q)'dlysu,(p)

X/ d*k w(p - @)r,[(F = §) + mi][(2k — q) -
(2m)* (k—q)*[(p - k)* _ml][(k_qy—m%//][(k—q)z—mi*][k2_m%(*] ’

TABLE 1.
units of GeV~*.

(78)

Numerical values of the integrals in Eqs. (72)—(74) for the leptons [ = e, u, 7 and the vector mesons V' = p°, w, ¢, given in

I (]a) p° ® ¢ Iga> p° ® ¢ I;“,) p° ® ¢

e 23.3 22.6 13.6 e 14.1 13.6 8.20 e —82.1 —79.6 —47.6
u 4.82 4.70 3.03 u 2.97 2.89 1.85 u -25.9 -25.2 —15.5
T 0.209 0.206 0.153 T 0.137 0.134 0.0972 T —4.68 —4.56 -2.96
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. K* _ - K*

. €m2 2 CyCy
= ieJmg-f gl (g—p> Z — Py Gvavk

4 V. V'=p" a)(/)q
" / d*k w(p—q)r (7= K) —m][(2k = q) - ey* + " (2= k) — (k + q)*Aysu(p) (79)
(27)* K [(p = k)* = mf][k* = m3,][(k = q)* — mg.][k* — m§.] '

The coupling constant g, (V = p°, w, ¢) is defined as \/fgp =—\2g, = gy = g In the soft photon limit, the denominators
of the integrands in Eqs. (78)—(79) are rewritten as

1 1 21 2 23 1

=I(5 / dz / dz / dz / dzy———, (80
(=) [(p =R == gV = (k=g i) ) fy %1 Jy H2 fy 2 J dsiaa—x s )
! F(S)/ld /Z‘d /ZQd /Z3d ! (81)

= Z Z Z 24T 1%

Rllp=k == Jik=aV =i —mi] O Jy Ffy 2y @5 fy A Ay

where

Oy =k —zupt — (21 — 24)q", (82)
f’,j, =k —z4p" — (21 — 22)4", (83)
Ay = mi. + (m}, — my.)zp — my, 23 + mizj. (84)

Performing the integrals with respect to £, and ¢}, Eqs. (78)—(79) are reduced to

. * 4i em2 2 CvCuyr
’M@) - —WeJm,mK*fK*IdS,, <—p) Z v V gvgvk-u(p —q)
4 v vV= g my
(I—z)(1=2z4)+1-z2
| [l [" e [ [ an BE20E ] o guerst(p) (85)
b

o 4i em?\? chV/
iMEyy = ———eJmm fr-Lau | —F Z ———gvgvk(p — q)
(4r)? g
4 V.V'=p" 0. V

(z (1 =2z4) +1—22
|:/ le / de/ dZ% / dz 24 L A3 4> 4:| lequgﬂySMI(p)' (86)
b
The numerical results of the integrals
1 3 1- 1-2 1-22

_ / dz; /21 dzs /zz dz; /Z dzs ( Zl)( %Z4) + 7y ’ (87)

0 0 0 0 A;

) 1 - 1-2 1-

I _/ dz, /Zl dz, /Zz dzs /Z3 dz, =2 3Z4) tlog (88)

0 0 0 0 A;

are summarized in Table II.
Finally, the total scattering amplitude with the strong three-vector meson interactions is obtained as

iMp) = iME +iME = 2iME (90)
iMyy = iME, +iME =2iME,. (91)
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TABLE II. Numerical values of the integrals in Eqs. (87)—(88)
for the leptons [ = e, u, T and the vector mesons V' = pO, , P,
given in units of GeV~°,

1(®) pO @ @ 1) pO W ¢

e 13.7 13.3 7.93 e 137 133 7.93
4.32 419  2.56 u 4.32 4.19  2.56
T 0.714 0.697 0447 = 0.714  0.697 0.447

IV. RESULTS AND ANALYSIS

A. Numerical results

From the scattering amplitudes derived in the previous
section, we obtain the hadronic long distance contributions
to the EDMs of charged leptons. From the amplitudes
iM, and iM,) of Egs. (76) and (77), we obtain the
EDMs generated by the weak three-vector meson inter-
actions as

M, = dge + digy, = 3.67x 100 ccm,  (92)

gy = Ay + d@yy = =1.04x 1070 ecm, - (93)

d(sxf = d(a)r + d(al)f =—-1.12x 10737 ecm. (94)
Similarly, the amplitudes iM ;) and iM ;) of Egs. (76)
and (77) give the contribution from the strong three-vector
meson interaction:

AN, =2.13x 107 ecm, (95)
d?%[” =139 x 107 ecm, (96)
df};glr =3.89 x 107 ecm. (97)

We finally obtain the EDMs of e, y, and 7 generated by
the hadronic long distance contributions as

dM = dM, + d%N, = 5.80 x 107 ¢ cm, (98)
dM = 3y +d5y, =138 x 107 ecm, (99)

&M = dN +d = -732x 107 eem. (100)

These values are much larger than the estimation at the
four-loop level (11), (12), and (13). The most important
reason of this enhancement is due to the relevance of the
typical hadronic momenta in the loop. We recall that the
elementary (quark) level contribution only had a typical
momentum of O(my) ~ O(m,), and this feature, together
with the GIM mechanism, forced the EDM of charged
leptons to have a suppression factor m2m2m? due to the

cancellation between terms with very close values. We note

that the GIM mechanism is also working at the hadron
level. However, the cancellation among contributions with
different flavors becomes much milder thanks to the fact
that the typical momentum is replaced by the mass of the
heaviest hadrons of each diagram. This is probably a
general property of the hadronic CP violation in the
SM, as similar enhancement is also relevant for the case
of the EDM of neutron [154,157,160,161] or nuclei [162].
In this sense, the fact that the elementary contribution to the
EDM appears only at the four-loop level is not truly
essential in this strong suppression, but rather the GIM
mechanism (or the antisymmetry of the Jarlskog invariant)
is the main cause [157].

We should also comment on the observable effect of the
electron EDM in experiments. The EDM of the electron is
usually measured through the paramagnetic atomic or
molecular systems, since the relativistic effect enhances
its effect [93—121,123,124]. However, these systems also
receive contribution from other CP violating mechanisms
such as the CP-odd electron-nucleon interaction or the
nuclear Schiff moment. Previously, the EDM of charged
lepton was believed to be extremely small and the CP-odd
electron-nucleon interaction was thought to be the domi-
nant effect, with a benchmark value equivalent to the

electron EDM as d") ~ (107-10737) e cm for paramag-
netic systems [16,157,162,201]. By considering the strong
enhancement at the hadronic level, we just obtained a value
of the electron EDM which lies in this range. It is then an
interesting question to quantify which one, between the
electron EDM and the CP-odd electron-nucleon interac-
tion, gives the leading contribution at the atomic level.

B. Error bar analysis

We now assess the uncertainty of our calculation. The
first important source of systematics is the nonperturbative
effect of the renormalization of the |AS| =1 four-quark
operators. This was quantified to be about 10%, by looking
at the variation of the Wilson coefficient of Q, in the
next-to-leading order logarithmic approximation in the
range of the scale y = 0.6 GeV to u =m, = 1.27 GeV
[162,187,188]. Another major systematics comes from the
factorization of the vector meson matrix elements.
According to the large N analysis, the vacuum saturation
approximation should work up to O(N;!) correction. To be
conservative, we set the error bar associated to it to 40%.

Let us now see the uncertainty related to the use of the
HLS. The important point is that the one-loop level
diagrams we evaluated are not divergent, so that the
uncertainty due to the counterterms is absent and the
stability of the coupling constants is guaranteed.
However, we have to comment on the contribution from
higher order terms. The first process to be noted is the
two-loop level diagram with pseudoscalar mesons [see
Fig. 8(a)]. This contribution is the most straightforward
higher order effect of the HLS. The second type of higher
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FIG. 8.
s is the would-be Nambu-Goldstone boson of the HLS.

order process is the mixing of vector mesons with photons
[see Fig. 8(b)]. In the mass eigenstate basis, it is possible to
take into account this mixing to all orders, but if we restrict
the analysis to the leading order, as done in this work, our
particle basis and the mass one coincide. The third
contribution is the would-be Nambu-Goldstone mode
which may appear as scalar propagator insertions in
between vector meson propagations due to the choice of
Feynman gauge [see Fig. 8(c)]. This is again a higher order
effect in the HLS, just like the mixing between photons and
vector mesons. We also note that the explicit flavor SU(3)
breaking effect is a higher order of the HLS, which has
already partially been included in our calculations by
introducing the physical meson masses and decay con-
stants. We also have to comment on the contribution from
the other heavier hadrons which were overlooked in this
paper. Here we consider the axial vector meson K; (1270)
which, in the viewpoint of the mass difference, should be
the most important hadron among the neglected ones, and
show that its contribution is likely to be subleading. First,
the decay constant of K is not particularly enhanced, fx, ~
170 MeV [202]. Regarding the other hadron matrix ele-
ments, the values do not exist in the literature, but it is
possible to show that they are not enhanced either. The
axial vector matrix element (p|dy,yss|K,) corresponds to
the quark spin, so there should be a suppression due to the
destructive interference generated by successive gluon
emissions/absorptions [203,204]. The pseudoscalar matrix
element (p|dyss|K ) has also no reasons to be enhanced,
since this receives contribution from the Nambu-Goldstone
boson pole, which is suppressed by the K meson mass in
the present case. We can consider that the effect of K,
(1270) and other heavier hadrons is part of the higher order
contribution of the HLS. We associate the theoretical
uncertainty coming from the entire higher order process
mentioned above with the expansion parameter, estimated
to be ~50% [179]. In all, we conclude that the theoretical
uncertainty is 70%.

A potentially interesting way to quantify the hadronic
contribution to the electron EDM is to calculate the
hadronic three-point correlator on lattice and then attach

(b)

Higher order contributions to the EDM of charged leptons within the HLS. Here V = po, , ¢ is the neutral vector meson, and

(c)

it to a lepton line to form the EDM amplitude. This
approach is actually used to quantify the hadronic light-
by-light scattering contribution to the muon anomalous
magnetic moment [205]. Of course the calculation will not
be easy since the three-point correlator must have a |AS| =
1 four-quark operator in the intermediate state, but this kind
of analysis was already done in the context of K — 7z
decay [206], so it should not be impossible.

V. CONCLUSION

In conclusion, we evaluated for the first time the hadron
level contribution to the EDM of charged leptons in the
SM, where the CP violation is generated by the physical
complex phase of the CKM matrix. As a result, we found
that this long distance effect is much larger than the
previously known one, which was estimated at the elemen-
tary level. We could also rigorously show that, in the
perturbative elementary level calculation at all orders, the
EDM of charged leptons is always suppressed by quark
mass factors due to the GIM mechanism. The main reason
of the enhancement at the hadronic level is because we
could avoid additional factors of m3 . . /m7, , by embedding
the heavy W boson or top quark contribution into the
|AS| =1 low energy constants while keeping loop
momenta of O(Agcp) ~1 GeV. In Fig. 9, we plot the
EDM of the electron in the SM compared with the progress
of the experimental accuracy. The electron EDM obtained
in this work is d, ~ 1073 e cm, which is still well below
the current sensitivity of molecular beam experiments. The
EDM experiments are however improving very fast, and
we have to be very sensitive to their progress and to
proposals with new ideas, with some of them claiming to be
able to go beyond the level of O(107) e cm in statistical
sensitivity [207].

Our next object would be to extend this analysis to the
flavor violation disagreeing with the SM, recently sug-
gested by the measurements of the decay of B mesons at
several B factory experiments [208-224], and that of K
meson decay of KOTO experiment [225,226]. In the
analysis of the conjunction of the EDM with the B meson
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FIG. 9. Plot of the SM predictions of the electron EDM
compared with the history of the records of the experimental
upper limits [126,127,129-132,134,135,138,141]. The pink band
is denoting the uncertainty of the hadronic contribution.

decay, we also have to include the effect of heavy quarks,
which has been omitted in this work.
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APPENDIX A: SCALAR MATRIX ELEMENT
OF VECTOR MESONS

In this Appendix, the scalar matrix element of vector
mesons, By, are derived. Up to the tree-level contribution,
the scalar matrix elements of vector mesons are obtained
from the vector-meson masses expanded in terms of the
light quark mass as

m> = M?*+ B,(m, +my) + -

= M?* + bM?By(m, +my) + -+, (A1)
m(%) :M2+Bm(mu+md)+'”

= M? + (by +2b3)M*By(m, + my) + -+, (A2)
my = M* 4 B,(2my) + - -

= M? + (by + b3)M*By(2my) + - - -, (A3)

TABLE III. The low-energy parameters in Eqs. (A1)—(A3)
obtained in Ref. [199].

Fit 1 Fit 2 Fit 3
M [MeV] 759.3 758.8 757.0
b, [GeV~2?] 1.2224 1.3420 1.4009
bs [GeV~?] 0.5131 0.3469 0.4151
2Bgm/m? 1.141 1.077 1.106
(p°|3d|K*) [GeV] -1.09 -1.13 -1.21
(w|5d|K*) [GeV] 2.01 1.72 1.92
(¢|ds|K*0) [GeV] 2.19 2.01 221

where M, by, and b5 are the low-energy parameters of the
effective Lagrangians [198, 199]'

b b
ﬁ = éMztr[FﬂyF;w)(+] + ?MZU[F#D}H[FMDXJJ' (A4)
By is given by
(0|mu|0) (269 MeV)?
By = - f? - (93 MeV)? OV (A

The scalar matrix elements for the vector-meson transitions
such as (p|sd|K*) are related to B, ~ 1 (p|iu + dd|p) by
replacing y., ~ 2Bgdiag(m,, mg, my) in (A4) with y,T,
where T is the SU(3) ladder operator. In the flavor SU(3)
limit, we obtain

1 1

(p"[5d|K*C) ~ =3B, = =3 (biM?By), (A6)

(w[5d|K*) N%Bw :%{(bl +2b3)M* By}, (A7)
] 1 1

(p|ds|K*0) ~ 5B = ﬁ{(bl +b3)M*By}.  (AS8)

The low-energy parameters b;, b, By;, and M were
determined by fitting the lattice QCD data in Ref. [199],
where three fitting results denoted by fit 1, fit 2, and fit 3
were obtained as summarized in Table III. The scalar matrix
elements obtained by using these parameters are also
summarized in Table III. In this study, we employ the
averaged values obtained as (p°|3d|K*°) = —1.14 GeV,
(|35d|K*%) = 1.88 GeV, and (¢|ds|K**) = 2.14 GeV.

'We omit the term being proportional to the parameter b, in
[198,199], which does not contribute to the scalar matrix element
for the vector-meson transition because tr[y 7] = 0.
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APPENDIX B: ANALYTIC FORM OF THE INTEGRAL Iga)

The analytic forms of the integral 1 ga)

in Eq. (73) are summarized in this Appendix. For m; = m,,m,, I,

(@) is obtained as

myy

(a) 1 / (mv/ 2ml)
12 = m my mV, - 4ml log

l

My + \/m%. —4m? m2
+mg\/my. —4m? log< + (m%. —2ml)10g(ml

My — \/m. —4m?
which can be expanded in terms of a small m; as
1 My ms.
= |log 3
(mygmyr) m M. — my,

oo (v

On the other hand, I<2”>

1

I(“) —
4m? (mK*

2

m
[2(2m$ —m?,)log (m

m%,,)

+ 24/4mi,m? — m?, (arctan(

\d

Mg+

log
myy
mK*

ml ) m%(* - m%//

K*> + 2(m}, — m%.)log <+X/>

m, 2
—————— | + arctan | —————
2 2 4 [ 4702 172 4
dmy,mz — my, dmy,mz — my,
2 4

2’"12

i, — 4ml>
) - - 2m,>log(mj)], B1)

X*

I
4
e (o)
log -
mV!

26mYy. — Smé,}
12(111%(* - m%//)

for m; = m, is given by the different form as

2 4

dm%.m2 —m

dmy,mz; — my,

2m? —m?,

2 2 2 2
) My — ms, dmy,m; — m3, 4m? — m>.
+ (m2 —m3. + imge\/dm2 —m3. ) log (25 Y [1-2 YV V¥ K
% K T K 2 Am.m2z —m*
K" ke 14
2 2 2 2 4
) My — ns, 4mz,mz — my, _\/m—m*
+ (m3, —m%. —imgr/4m2 —m2. log (2—K——V (12— —V K
v K K ) Az —mt
K" ke %
2 2 2 A2 2 4 2
) My — M, mz 4dmz.mz; — my, 4m? — m.
—(m%,,—m%(*+th*\/4m$—m%(*)log KV 5 Vi-1+42 5 12< 5 X ‘ L
M. my. 4my,m; — my, Mg+
2 2 2 A2 o2 4 2 2
M. —m m> dmy.mz; — m5, 4mz — m%.
2 2 2 2 K % v My 1% T K
—(mv,—mK*—lqu/4mT—mK*)log 2———(-1+2— IR " . (B3)
my. my. dmy,m; — my, My~
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