
 

Primordial scalar power spectrum from the hybrid approach
in loop cosmologies

Bao-Fei Li,1,* Javier Olmedo,1,† Parampreet Singh ,1,‡ and Anzhong Wang 2,§

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2GCAP-CASPER, Department of Physics, Baylor University, Waco, Texas 76798-7316, USA

(Received 14 September 2020; accepted 7 December 2020; published 24 December 2020)

We compare the primordial scalar power spectra in the loop cosmological models using the effective
dynamics of the hybrid approach to cosmological perturbations in which the background is loop quantized,
but the perturbations are Fock quantized. The three loop cosmological models under consideration are the
standard loop quantum cosmology (LQC), the modified LQC-I (mLQC-I) and the modified LQC-II
(mLQC-II) in the spatially flat Friedmann-Lemaître-Robertson-Walker universe with a Starobinsky
potential. These models arise from different regularizations of the classical Hamiltonian constraint in
the symmetry reduced spacetimes and aim to capture certain features of quantization in loop quantum
gravity. When applying the techniques in the hybrid approach to mLQC-I/II, we find the effective
Mukhanov-Sasaki equations take the same form as in LQC. The difference among the three models is
encoded in the unique expressions of the effective masses in each model. We find that the relative difference
in the amplitude of power spectrum between LQC and mLQC-II is approximately 50% in the infrared
and the oscillatory regimes, whereas this difference can be as large as 100% between mLQC-I and LQC/
mLQC-II. Interestingly, in the infrared and the oscillatory regimes of mLQC-I, we obtain a suppressed
power spectrum from the hybrid approach which is far below the Planck scale. This result is in a striking
contrast to the one obtained from the dressed metric approach to perturbations where the corresponding
amplitude in this regime is extremely large. Our analysis shows that while the phenomenological
predictions are in agreement between the two approaches for LQC and mLQC-II, for mLQC-I the
differences between the dressed and hybrid approaches can be quite significant. Our result provides the first
robust evidence of difference in predictions between the dressed and hybrid approaches due to respective
underlying constructions.
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I. INTRODUCTION

The inflationary paradigm not only resolves several
long-standing puzzles in the standard big bang cosmology
[1] but also explains the origin of the large scale structure in
the cosmos [2]. However, the classical inflationary space-
times are past incomplete, and the big bang singularity is
inevitable if the solutions are evolved backward to the
regime where the energy density of the universe gets close
to the Planck scale [3]. In order to extend the inflationary
paradigm to the Planckian regime, quantum geometrical
effects have to be taken into consideration. One of the
successful attempts to achieve this goal is the loop quantum
cosmology (LQC) which results from applying the tech-
niques of loop quantum gravity (LQG) to the cosmological

settings where a symmetry reduction is first performed
before the quantization [4]. The evolution of the quantum
spacetime in LQC is governed by a nonsingular quantum
difference equation which results in a resolution of the big
bang singularity replacing it with a quantum bounce when
spacetime curvature becomes Planckian [5–8]. The robust-
ness of this result has been shown for a variety of isotropic
and anisotropic spacetimes in the presence of a massless
scalar field and constant potentials [4]. Recently, there is
even some progress on quantizing the inflationary space-
times by using the reduced phase space quantization of
LQC where the role of the physical clocks is played by the
dust and Klein-Gordon fields [9] which indicates singu-
larity resolution as in other models of LQC. The phenom-
enological implications for inflationary background and
perturbations in LQC have been studied using the so-called
effective spacetime description (see [10] for a review)
whose validity has been verified for isotropic and aniso-
tropic spacetimes [11–14].
In addition to the standard LQC in which the Lorentzian

term of the classical Hamiltonian constraint is treated in the
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same way as the Euclidean term in the Friedmann-
Lemaître-Robertson-Walker (FLRW) universe, robustness
of the singularity resolution has also been studied with
respect to the different quantizations of the classical
Hamiltonian constraint in modified LQC. Two notable
examples are the so-called modified LQC-I (mLQC-I)
[15–18] and modified LQC-II (mLQC-II) models
[15,18]. These two models differ from the standard LQC
by different regularizations of the Lorentzian term which
result in fourth-order nonsingular quantum difference
equations [19]. It has been shown that in these models,
there is a generic resolution of singularity as in LQC [20].
The big bang singularity is resolved in the Planck regime
and replaced by a quantum bounce, and the inflationary
phase can naturally take place with a high likelihood when
the inflaton field is coupled to the gravitational sector with
an inflationary potential [18,21,22]. Although the dynamics
in LQC and mLQC-II is qualitatively similar, the difference
between LQC and mLQC-I become manifest in the
contracting phase where an emergent quasi-de Sitter space
is present in mLQC-I with Planckian values implying that
the contracting phase in mLQC-I is purely a quantum
regime without the classical limit.1 Given these different
regularizations of the Hamiltonian constraint in LQC, an
important question is whether the physical predictions
resulting from different quantum spacetimes are robust
for cosmological perturbations. To answer these questions
one needs to carefully understand the way modifications in
the Hamiltonian constraint result in modifications to the
primordial power spectrum.
In the literature, there currently exist four primary

approaches which address the impacts of the quantum
geometry on the primordial power spectra in isotropic LQC
(for earlier works see for e.g., [24]). These are the deformed
algebra approach [25–27], the separate universe approach
[28], the dressed metric approach [29–31] and the hybrid
approach [32–36] (for a recent discussion about similar
ideas in anisotropic Bianchi I LQC spacetimes see
Refs. [37,38]). Among these, the latter two approaches
are most widely studied in recent years [39–47]. The
dressed metric approach is based on the work by
Langlois on the gauge-invariant perturbations in the
Arnowitt-Deser-Misner (ADM) phase space [48] where
lapse and shift are treated as Lagrange multipliers.2,3 In this
approach, after expanding the scalar constraint up to the
second order in the perturbations, the zeroth-order scalar

constraint is loop quantized and the second-order scalar
constraint becomes the physical Hamiltonian that prescribes
the dynamics of the inhomogeneous linear perturbations.
After quantization, the inhomogeneous gauge invariant
degrees of freedom can be interpreted as propagating on a
quantum background spacetime which is described by a
dressed metric. Furthermore, when the test-field approxi-
mation is employed, in which the background quantum
states are sharply peaked around the classical trajectories at
late times, the quantum corrected Mukhanov-Sasaki equa-
tion takes same form as its classical counterpart as long as
the relevant background quantities in the equation follow the
effective dynamics of LQC. Recently, the dressed metric
approach has also been extended to mLQC-I/II with special
emphasis on the physical consequences of the regularization
ambiguities of the conjugate momentum of the scale factor
[52]. Other relevant work on applying the dressed metric
approach to mLQC-I can be found in [53].
Though the hybrid approach shares a common feature

with the dressed metric approach in the sense that perturba-
tions are Fock quantized while the background is loop
quantized, it has some important differences. Based on the
work by Halliwell and Hawking [54], in this approach, one
usually assumes the spatial geometry to be a three torus and
then expands the spacetime metric and the scalar field on the
bases formed by the eigenfunctions of the Laplace-Beltrami
operator compatible with the auxiliary three metric. After
truncating the total Hamiltonian to the second-order in the
perturbations, a canonical transformation which concerns
both the background variables and the inhomogeneous
degrees of freedom is implemented to express the
Hamiltonian in terms of the gauge invariant observables,
including the Mukhanov-Sasaki variable, the Abelianized
linear perturbative constraints and their respective conjugate
variables, while keeping the full canonical structure of the
system. The conjugate momentum of the Mukhanov-Sasaki
variable is also carefully chosen so that a unitary imple-
mentation of the quantum dynamics can be fulfilled [35,55].
Afterwards, the hybrid quantization ansatz is employed: the
background geometry is loop quantized, the zero-mode of
the scalar field is quantized in the standard Schrödinger
representation while the inhomogeneous perturbations are
Fock quantized. The solution to the resulting quantum
dynamical equation is then solved by using the Born-
Oppenheimer ansatz which approximates the physical state
by a direct product of the quantum background state and the
states only depending on the gauge invariant modes. Similar
to the dressed metric approach, for the sharply peaked
semiclassical background states, there also exists an effective
description of the quantum dynamics in the hybrid approach
which greatly simplifies the dynamical equations [41].
Recently, the hybrid approach is also applied to the modified
loop cosmological models, such as mLQC-I [56,57] for
which the time-dependent mass of the perturbations is
analyzed and discussed in [58].

1Existence of such a phase is not confined to FLRW models
but also exists even with standard loop quantization in certain
anisotropic spacetimes [23].

2This restriction can be lifted in the extended phase space where
a generalization of Langlois’ treatment has been recently found
which allows construction of gauge-invariant variables other than
the Mukhanov-Sasaki variable in canonical theory [49,50].

3A treatment similar to Langlois’ analysis for Bianchi-I
spacetimes has been carried out in [51].
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The goal of this paper is to study the imprints of the
different quantizations of the background geometry on the
scalar power spectrum in the framework of the hybrid
approach. In order to achieve this goal, we apply the effective
dynamics of the hybrid approach in mLQC-I/II to obtain the
numerical results of the scalar power spectra from these two
models and then compare them with the results from LQC.
We assume the gravitational sector of LQC andmLQC-I/II is
minimally coupled to the inflaton field with a Starobinsky
inflationary potential whose mass is fixed via the recent
Planck 2018 data. After specifying the initial conditions of
the background at the bounce and the initial states of the
linear perturbations at some time in the contracting phase,
the scalar power spectra are obtained by numerically
integrating the effective equations of the background and
perturbations using the Mathematica internal solver. The
results from LQC and mLQC-I/II are then compared from
the infrared regime to the ultraviolet regime of the power
spectra. In particular, we find the predictions on the power
spectrum of mLQC-I from the hybrid approach is in
remarkable contrast with the results of the same model
from the dressed metric approach in the infrared and
oscillatory regimes. Our results show that for LQC and
mLQC-II the situation is similar to that in the dressed metric
approach, but for mLQC-I there are significant differences in
predictions between the two approaches.
This manuscript is organized as follows. In Sec. II,

starting from the classical Hamiltonian constraint, we will
briefly review the effective dynamics of the hybrid
approach in LQC. The Hamilton’s equations of the back-
ground dynamics and the Mukhanov-Sasaki equation in
LQC will be given as the basis for the numerical simu-
lations in the following section. In Sec. III, we first review
the effective dynamics of the background in mLQC-I/II and
then discuss the effective dynamics of the hybrid approach
in these two models. We will focus on the Mukhanov-
Sasaki equations from the hybrid approach. In Sec. IV,
based on the results from the previous two sections, we will
present the numerical results of the primordial scalar power
spectra from the hybrid approach in LQC, mLQC-I and
mLQC-II for some representative initial conditions.
A comparison among the effective masses and the resulting
power spectra from different models and their relative
difference will also be given. Finally, in Sec. V, the main
results obtained in this paper are summarized.
In our paper, wewill use the Planck units with ℏ ¼ c ¼ 1

while keeping Newton’s constant G explicitly. Also, the
greek letters are used to denote the four-dimensional
spacetime indices while the latin letters are for the indices
of the tensors on the three-dimensional hypersurface.

II. A BRIEF REVIEW OF THE HYBRID
APPROACH IN LQC

In this section, we give a brief review of the hybrid
approach in LQC. Since the content has been widely

discussed in various articles [33–36,41,42,46,59], we only
outline the basic ideas, and quote the results that are
relevant to the purpose of this paper. In the following,
we will consider a flat FLRW universe with a T 3 topology
in which the four-dimensional globally hyperbolic space-
time is ADM decomposed into M ¼ R × T3 and the four-
metric of the manifold is parametrized in terms of the lapse
N, shift Ni and the three-metric qij in the ADM decom-
positions. Without the inhomogeneities, the homogeneous
background in the spatially flat universe with a T3 topology
is described by

ds2 ¼ −N2
0ðtÞdt2 þ a2ðtÞ0hijdθiθj; ð2:1Þ

where N0ðtÞ is the lapse function, aðtÞ the scale factor and
0hij the comoving three-metric. The value of each angular
coordinate θi ranges between 0 and l0, and thus the
comoving (physical) volume of the three torus is l30
(a3l30). Any functions defined on the spatial manifold T 3

can be expanded in terms of the eigenfunctions of the
Laplace-Beltrami operator compatible with the metric 0hij.

These eigenfunctions are usually denoted by Q̃n⃗;�ðθ⃗Þ with
eigenvalues −ω2

n ¼ −4π2n⃗ · n⃗=l20, where � stands for the
cosine and sine modes respectively, and n⃗ ¼ ðn1; n2; n3Þ ∈
Z3 is any tuple of integers with its first component being a
strictly positive integer.
In order to incorporate the inflationary phase driven by a

single scalar field, we consider a massive scalar field ϕwith
the scalar potential UðϕÞ minimally coupled to the gravity
sector. Following the analysis in [35], one can proceed to
consider the scalar perturbations around the homogeneous
FLRW universe described by the metric (2.1). The inho-
mogeneities in the lapse, shift and the three-metric can be
expanded in the basis of the cosine and sine mode functions
Q̃n⃗;� on the three-torus. The perturbative expansion of the
total action of the system which consists of the Einstein-
Hilbert action together with the action for a massive scalar
field minimally coupled to the gravity is then truncated to
the second order in the perturbations, yielding a total
Hamiltonian that is a linear combination of three terms:
the first term proportional to the homogeneous mode of the
scalar constraint which also includes the quadratic con-
tributions from the linear perturbations, the second term
proportional to the perturbed scalar constraint to the first
order in perturbations and the third term proportional to
the perturbed momentum constraint to the first order in
perturbations. However, this total Hamiltonian is a func-
tional of the gauge variant perturbations, i.e., inhomo-
geneous degrees of freedom that are not left invariant by the
gauge transformation generated by the linear scalar and
momentum constraints. In order to extract the physical
implications from the theory, it is more convenient to work
with the gauge-invariant variables, i.e., the Dirac observ-
ables. In general, this can be achieved by a suitable
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canonical transformation. In the current context, the appro-
priate canonical transformations are introduced in [35] in
the whole phase space including both homogeneous and
inhomogeneous degrees of freedom, which separate the
gauge-invariant variable, namely the Mukhanov-Sasaki
variable denoted in the following by νn⃗;ϵ and its momentum

πνn⃗;ϵ , from the other variables νðiÞn⃗;ϵ and their respective
momenta π

νðiÞ
n⃗;ϵ

with i ¼ 1, 2. In terms of these new

canonical variables, the total Hamiltonian up to the second
order in perturbations can be explicitly written as [35]

HT ¼
N0

16πG

�
C0þ

X
n⃗;ϵ

Cn⃗;ϵ
2

�
þ
X
n⃗;ϵ

Gn⃗;ϵπνð1Þ
n⃗;ϵ
þ
X
n⃗;ϵ

Kn⃗;ϵπνð2Þ
n⃗;ϵ
;

ð2:2Þ

where Gn⃗;ϵ and Kn⃗;ϵ are the coefficients of the Fourier
modes of the linear perturbations of the lapse and shift.
Besides, π

νð1Þ
n⃗;ϵ
and π

νð2Þ
n⃗;ϵ
are equivalent to the perturbed scalar

and momentum constraints which are linear in perturba-
tions. When the theory is quantized by following the Dirac
quantization approach, the physical states will be indepen-

dent of νð1Þn⃗;ϵ and νð2Þn⃗;ϵ. As a result, the sector ðνðiÞn⃗;ϵ; πνðiÞ
n⃗;ϵ
Þ is

decoupled from the physical one. The first term in the total
Hamiltonian only concerns the homogeneous background
and the Mukhanov-Sasaki variable and its momentum,
which is explicitly given by

HMS ¼
N0

16πG

�
C0 þ

X
n⃗;ϵ

Cn⃗;ϵ
2

�
; ð2:3Þ

where the subscript “MS” implies that the Hamiltonian
HMS generates the dynamics of the Mukhanov-Sasaki
variable and its momentum. The unperturbed scalar con-
straint is given by

C0 ¼ −
6

γ2
Ω2

v
þ 8πG

�
p2
ϕ

v
þ 2vUðϕÞ

�
; ð2:4Þ

where γ is the Barbero-Immirzi parameter which is usually
set to 0.2375 from the black hole thermodynamics in LQG,
pϕ is the conjugate momentum of the scalar field and UðϕÞ
represents the potential of the scalar field. For the geo-
metrical degrees of freedom, instead of the scale factor and
its momentum, we use the variables ðv; bÞ which will be
more convenient for our later discussion of the effective
dynamics in the loop cosmological models. In the classical
theory, Ω ¼ vb with v representing the physical volume
of the three-torus and b ¼ γH where H is the Hubble
parameter. Meanwhile, Cn⃗;ϵ

2 denotes the quadratic correc-
tions from the modes labeled by ðn⃗; ϵÞ, which takes the
form [34,41],

Cn⃗;ϵ
2 ¼ 8πG

v1=3
ðπ2νn⃗;ϵ þ Enν2n⃗;ϵÞ; ð2:5Þ

with

En ¼ ω2
n þ s; ð2:6Þ

s ¼ 4πGp2
ϕ

3v4=3

�
19 − 24πGγ2

p2
ϕ

Ω2

�

þ v2=3
�
U;ϕϕ þ

16πGγpϕ

Ω
U;ϕ −

16πG
3

U

�
; ð2:7Þ

where U;ϕ ≡ ∂U=∂ϕ and so on. With the Poisson brackets
given by

fb; vg ¼ 4πGγ; fϕ; pϕg ¼ 1; fνn⃗;ϵ; πνn⃗;ϵg ¼ δn⃗n⃗0δϵϵ0 ;

ð2:8Þ

it is straightforward to find the Hamilton equations for
the canonical variables and their respective momenta.
However, different quantizations of the geometric sector
in LQC can result in different forms of Ω in the effective
description of the quantum dynamics. In order to cast the
Hamilton equations into the most general form which will
also be valid in the modified LQC models, we will keep Ω,
as a function of v and b, explicit in the equations. Hence,
when ignoring the backreaction of the perturbations on the
homogeneous and isotropic background, the evolution of
the background dynamics obeys the following equations:

_v ¼ N0

3Ω
vγ

∂Ω
∂b ; ð2:9Þ

_b ¼ 3N0Ω2

2v2γ
−
3N0Ω
γv

∂Ω
∂v − 4πGγN0P; ð2:10Þ

_ϕ ¼ N0

pϕ

v
; ð2:11Þ

_pϕ ¼ −N0vU;ϕ; ð2:12Þ

where P denotes the pressure of the scalar field which is
given by

P ¼ p2
ϕ

2v2
−U: ð2:13Þ

Meanwhile, the time evolution of the scalar modes νn⃗;ϵ is
governed by

_νn⃗;ϵ ¼
N0

v1=3
πνn⃗;ϵ ; _πνn⃗;ϵ ¼ −

N0Enνn⃗;ϵ
v1=3

: ð2:14Þ

In the above formulas, if the lapse N0 is taken to be v1=3,
then the overdots represent the differentiations with respect
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to the conformal time, in which the equation of motion of
each scalar mode takes the form,

ν00n⃗;ϵ þ ðω2
n þ sÞνn⃗;ϵ ¼ 0; ð2:15Þ

where a prime denotes the differentiation with respect to
the conformal time and s is given in (2.7). In terms of the
Mukhanov-Sasaki variable Qk ¼ νk=a, the above equation
is equivalent to

Q̈k þ 3H _Qk þ
�
ω2
n þ s
a2

þH2 þ ä
a

�
Qk ¼ 0; ð2:16Þ

where H is the Hubble rate, as mentioned above, and the
derivatives of the relevant quantities are with respect to
the cosmic timewhen the lapseN0 is set to unity. The above
equations (2.16) and (2.9)–(2.12) constitute a fundamental
set of the equations which describe the dynamics of both
background and linear perturbations in the hybrid approach
at the classical level. For the pragmatic purpose, in the
following, the discrete spectra ω2

n is set equal to the
continuous comoving wave number k which is equivalent
to taking the limit l0 → ∞.

A. The hybrid quantization

In the hybrid approach, the quantization of the
Hamiltonian constraint (2.3) is implemented in two suc-
cessive steps which involves certain assumptions. First, the
homogeneous gravitational sector is loop quantized in the μ̄
scheme in LQC, and the matter sector is quantized in the
usual Schrödinger representation. Note that in the Dirac
quantization in LQC, the quantization of background is not
yet available in the presence of a potential. As a result one
generally assumes, as in the dressed metric approach, an
existence of background quantization with a physical inner
product generally taken to be the same as in absence of
potentials. In the following we work with same assumption
as being made in previous works but note that this limitation
can be overcome given recent developments to include a
potential in the reduced phase space quantization [9].
Second, as in the dressed metric approach, the inhomo-
geneous degrees of freedom are not loop but Fock quantized.
As a result, the kinematic Hilbert space is a tensor product
of the individual Hilbert space for each sector, that is,
Hkin ¼ Hgrav

kin ⊗ Hmatt
kin ⊗ F . More specifically, the kin-

ematic Hilbert space of the homogeneous gravitational
sector is Hgrav

kin ¼ L2ðRBohr; dμBohrÞ where RBohr is the
Bohr compactification of the real line and dμBohr its Haar
measure. Hgrav

kin is spanned by the eigenstates of the volume
operator which are usually denoted by fjvi; v ∈ Rg with the
discrete norm hv1jv2i ¼ δv1;v2 . The fundamental operators
in in the μ̄ scheme in LQC [7] are the volume operator v̂

and the holonomy operator N̂μ̄ ¼ de−iλb=2 with λ ¼ ffiffiffiffi
Δ

p
and

Δð¼ 4
ffiffiffi
3

p
πγl2PlÞ is the minimum area eigenvalue in LQG.

In the hybrid approach, one usually considers the Martin-
Benito-Mena Marugan-Olmedo prescription [60] for the
factor ordering in the Hamiltonian constraint operator. With
this prescription, the zero mode of the homogeneous sector
is represented by

Ĉ0 ¼
�
1̂

v

�1=2�
−

6

γ2
Ω̂2 þ 8πGp̂2

ϕ þ 2v̂2Uðϕ̂Þ
��

1̂

v

�1=2

;

ð2:17Þ

here ϕ̂ and p̂ϕ (¼ −iℏ ∂
∂ϕ) are the operators in the kinematic

Hilbert space of the matter sector which is Hmatt
kin ¼

L2ðR; dϕÞ. The operator Ω̂ is given by

Ω̂ ¼ 1

4i
ffiffiffiffi
Δ

p v̂1=2ð dsgnðvÞðN̂2μ̄ − N̂−2μ̄Þ

þ ðN̂2μ̄ − N̂−2μ̄Þ dsgnðvÞÞv̂1=2: ð2:18Þ

The operator Ω̂2 annihilates the zero volume state jv ¼ 0i
and selects a group of separable subspaces H�

ϵ which are
formed by the states with support on the lattices L�ϵ ¼
fv ¼ �ð4nþ ϵÞg with n ∈ N and ϵ ∈ ð0; 4�. The action of
Ω̂2, as well as Ĉ0, leaves these subspaces invariant and do
not mix states with support on the opposite signs of the
volume.
On the other hand, the inhomogeneous sector is quan-

tized in the Fock representation by choosing the annihila-
tionlike variable,

avn⃗;ϵ ¼
1ffiffiffiffiffiffiffiffi
2ωn

p ðωnvn⃗;ϵ þ iπvn⃗;ϵÞ; ð2:19Þ

and its complex conjugate a�vn⃗;ϵ as the creationlike variable.
The quantization is then implemented by promoting these
variables to the annihilation and creation operators. The
resulting Fock space is spanned by the direct products
of the eigenstates of the occupation number operator N n⃗;ϵ

for each mode ðn⃗; ϵÞ. Finally, the physical states described
by Ψðv;ϕ;N Þ should be annihilated by the quantum
Hamiltonian constraint,

ĤMS ¼
1

16πG

�
Ĉ0 þ

X
n⃗;ϵ

Ĉn⃗;ϵ
2

�
; ð2:20Þ

where we take N0 ¼ 1 at the classical level and Ĉ0 is given
in (2.17). Here the operator Ĉn⃗;ϵ

2 is promoted from its
classical counterpart (2.5) whose explicit form can be found
in [35]. Here, we want to emphasize that to obtain Ĉn⃗;ϵ

2 , the
Ω2 term in the effective mass (2.7) is promoted to Ω̂2 given
by the square of (2.18). However, the 1=Ω term in the
effective mass can not be directly promoted to the desired
operator as Ω̂ is a difference operator which only translates
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eigenstates jvi by two units. In order to make 1=Ω not mix
the states from different superselection subspaces, the
following prescription is used in hybrid approach:

1

Ω
→ Ω̂−1Λ̂Ω̂−1; ð2:21Þ

with Λ̂ given by

Λ̂ ¼ 1

8i
ffiffiffiffi
Δ

p v̂1=2ð dsgnðvÞðN̂4μ̄ − N̂−4μ̄Þ

þ ðN̂4μ̄ − N̂−4μ̄Þ dsgnðvÞÞv̂1=2: ð2:22Þ

As compared with Ω̂, Λ̂ is defined with holonomies of
double fiducial length and hence preserves the superselec-
tion sectors. For the other homogeneous factors in the
effective mass, a symmetric factor ordering is employed.
Finally, the physical quantum states is governed by

ĤMSΨðv;ϕ;N Þ ¼ 0: ð2:23Þ

In general, it is very difficult to solve this equation for
physical quantum states (see [33] for a specific algorithm
though). Approximated solutions where one adopts a
Born-Oppenheimer ansatz have been studied [34–36].
Here, under some reasonable approximations, one can
derive a dressed metric formulation for both scalar and
tensor perturbations. But, in practice, one usually focuses
on sharply peaked states and hence turns into the effective
description of the quantum dynamics to extract the
physical implications of the theory.

B. Effective dynamics in the hybrid approach

In LQC, although the Schrödinger equation for the
physical quantum states is a nonsingular quantum differ-
ence equation, the effective description of the quantum
spacetime for the semiclassical states which are sharply
peaked around the classical solutions at late times have
proved to accurately capture the properties of the quantum
evolution in LQC for a variety of isotropic and anisotropic
models [6,12–14,61]. For the spatially flat model, it turns
out that the effective description of the background dynam-
ics is based on an effective Hamiltonian which can be
obtained by replacing the momentum variable b with
sinðλbÞ=λ in the classical Hamiltonian (2.3). This substi-
tution can be obtained from the operator (2.18) for the
semiclassical states in which the expectation values of
products of operators are replaced with the products of
expectation values of the same operators. As a result, in
LQC, the equations of motion for the effective background
dynamics are given in (2.9)–(2.12) with Ω given by

ΩLQC ¼ v
sinðλbÞ

λ
: ð2:24Þ

In the classical limit, λb ≪ 1 which reduces ΩLQC to its
classical expression Ω ¼ vb. Therefore, the equations of
motion for the background dynamics in LQC take the form,

_v ¼ 3v
2λγ

sinð2λbÞ; ð2:25Þ

_b ¼ −
3 sin2 ðλbÞ

2γλ2
− 4πGγP; ð2:26Þ

where N0 is set to unity and overdots represent differ-
entiation with respect to the cosmic time. Note that the
equations of motion in matter sector are still given by
(2.11)–(2.12).
Similarly, the effective dynamics of the scalar perturba-

tions is prescribed by the Mukhanov-Sasaki equations (2.15)
and (2.16) under the conditions that: (i) the evolution of all
the relevant background quantities agrees with their effective
dynamics described in (2.11)–(2.12) and (2.25)–(2.26); (ii) as
in the quantum theory, in the effective mass s given in (2.7),
the 1=Ω2 and 1=Ω is given by their effective expressions
which in the semiclassical limit take the form [41],

1

Ω2
→

1

Ω2
LQC

;
1

Ω
¼ ΛLQC

Ω2
LQC

; ð2:27Þ

with

ΛLQC ¼ v
sinð2λbÞ

2λ
: ð2:28Þ

Here ΛLQC is the semiclassical limit of the operator (2.22)
for the highly peaked semiclassical states. As a result, the
effective mass in the Mukhanov-Sasaki equation in LQC is
explicitly given by

s ¼ 4πGp2
ϕ

3v4=3

�
19 − 24πGγ2

p2
ϕ

Ω2
LQC

�

þ v2=3
�
U;ϕϕ þ

16πGγpϕΛLQC

Ω2
LQC

U;ϕ −
16πG
3

U

�
:

ð2:29Þ

As now we are equipped with a complete set of dynamical
equations for both background and scalar perturbations, the
scalar power spectrum can be obtained through numerical
simulations as long as the initial conditions and initial states
are specified.
To summarize, we have discussed the basic ideas in the

hybrid approach in LQC and gave the fundamental Hamilton
equations for the background and the Mukhanov-Sasaki
equation of the scalar perturbations in the effective descrip-
tion of the quantum theory. This effective dynamics is based
on the Born-Oppenheimer ansatz and the assumption that
there exist some semiclassical states in which the effective
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equations of motion of the expectation values of the
fundamental observables are consistent with the effective
dynamics in LQC. We will employ the same ansatz and the
assumption in the next section to obtain the effective
equations of motion for both of the background and the
scalar perturbations in the modified LQC models.

III. THE MODIFIED LOOP QUANTUM
COSMOLOGY AND THE HYBRID APPROACH

In this section, we briefly review two modified LQC
models, namely mLQC-I and mLQC-II. We will focus on
their effective dynamics and give their respective Hamilton’s
equations for the background evolution and the relevant
equations for the scalar perturbations in the hybrid approach.
We follow the conventions in Refs. [18,21,22] which can be
referred to for further discussion.

A. mLQC-I

The mLQC-I model was first proposed as an alter-
native quantization of the Hamiltonian constraint in a
spatially flat FLRW universe [15]. It was later redi-
scovered in [16] by computing the expectation values of
the Hamiltonian constraint with the complexifier coherent
states. Phenomenologically, this model is characterized by
an asymmetric bounce with its contracting phase quickly
tending to a quasi de Sitter phase with an effective Planck-
scale cosmological constant [17] and a rescaled Newton’s
constant [18]. Similar to the standard LQC, we assume the
validity of the effective description of the quantum space-
time. The effective dynamics in mLQC-I can be obtained
from an effective Hamiltonian which can be arrived at by
the prescription,

Ω2
I ¼ −

v2γ2

λ2

�
sin2ðλbÞ − γ2 þ 1

4γ2
sin2ð2λbÞ

�
: ð3:1Þ

Substituting the above expression of Ω2
I into (2.9) and

(2.10), one finds the Hamilton’s equations for the effective
dynamics in mLQC-I,

_v ¼ 3v sinð2λbÞ
2γλ

fðγ2 þ 1Þ cosð2λbÞ − γ2g; ð3:2Þ

_b ¼ 3 sin2ðλbÞ
2γλ2

fγ2 sin2ðλbÞ − cos2ðλbÞg − 4πGγP; ð3:3Þ

where N0 is set to unity, and the overdots in the evolution
equations represent the differentiation with respect to the
cosmic time. Besides, the equations of motion of the matter
sector still take the form of (2.11) and (2.12) as long as the
lapse in those equations is set to unity. From the Hamilton
equations, it is straightforward to derive the Friedmann
equation in mLQC-I. The Friedmann equation develops
two distinctive expressions in the contracting and the

expanding phases resulting in an asymmetric bounce (for
their exact forms and details see [18]). In mLQC-I, the
bounce takes place when the energy density reaches its
maximum value at

ρ ¼ ρIc ≡ ρc
4ðγ2 þ 1Þ : ð3:4Þ

Similar to LQC, the momentum b in mLQC-I is also a
monotonically decreasing function in the forward evolution
which ranges between ½0; 1λ arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðγ2 þ 1Þ

p
Þ� and

equals 1
λ arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2γ2 þ 2Þ

p
Þ at the bounce.

For mLQC-I the hybrid approach for the primordial
power spectrum has been studied earlier in [56,57]. Similar
to LQC, the kinematic Hilbert space is a direct product of
the three subspaces, namely, Hkin ¼ Hgrav

kin ⊗ Hmatt
kin ⊗ F .

However, in mLQC-I, the gravitational sector of the
quantum Hamiltonian constraint changes. In particular,
the operator Ω̂2 now becomes [56,57]

Ω̂2
I ¼ −γ2

�
Ω̂2

2μ̄ −
γ2 þ 1

4γ2
Ω̂2

4μ̄

�
; ð3:5Þ

where the subscript of Ω̂2
I indicates it is the Ω̂2 operator in

mLQC-I. In the above formula, we defined for an arbitrary
integer n,

Ω̂nμ̄ ¼
1

4i
ffiffiffiffi
Δ

p v̂1=2ð dsgnðvÞðN̂nμ̄ − N̂−nμ̄Þ

þ ðN̂nμ̄ − N̂−nμ̄Þ dsgnðvÞÞv̂1=2; ð3:6Þ

with N̂nμ̄ ¼ de−inλb=2. The operator Ω̂2
I is also compatible

with the same superselection subspaceH�
ϵ with support on

the lattices with step four. As a result, the operator Λ̂ can be
chosen in the same form as in LQC which turns out to be

Λ̂I ¼ Ω̂4μ̄=2: ð3:7Þ

In the effective description of quantum dynamics, the
evolution of the scalar perturbations in mLQC-I is pre-
scribed by the same form of the Mukhanov-Sasaki equation
in (2.15) and (2.16) under the following conditions: (i) the
evolution of the homogeneous background quantities are
now governed by the effective equations (2.11)–(2.12)
and (3.2)–(3.3); (ii) in the effective mass s, the following
substitutions are employed:

1

Ω2
→

1

Ω2
I
;

1

Ω
→

ΛI

Ω2
I
; ð3:8Þ

where ΛI is the expectation value of the operator Λ̂I for the
sharply peaked semiclassical states. It takes the same form
as ΛLQC given by (2.28). As a result, the effective mass of
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the Mukhanov-Sasaki equation (2.15) and (2.16) in
mLQC-I is explicitly given by

s ¼ 4πGp2
ϕ

3v4=3

�
19 − 24πGγ2

p2
ϕ

Ω2
I

�

þ v2=3
�
U;ϕϕ þ

16πGγpϕΛI

Ω2
I

U;ϕ −
16πG
3

U

�
; ð3:9Þ

with Ω2
I given in (3.1).

B. mLQC-II

The mLQC-II model was also first proposed in [15] as a
different quantization of the classical Hamiltonian in the
spatially flat FLRW universe. Its effective dynamics and
implications on the inflationary paradigm were later studied
in detail in [21,22]. Similar to the standard LQC, the
evolution of the universe in mLQC-II is symmetric with
respect to the bounce when only a massless scalar field is
coupled to the gravitational sector. Its effective dynamics
can be described by an effective Hamiltonian constraint
which leads to the Hamilton equations in the same form as
(2.9) and (2.10) as long as Ω2 is replaced by its corre-
sponding form in mLQC-II given by

Ω2
II ¼

4v2

λ2
sin2

�
λb
2

��
1þ γ2sin2

�
λb
2

��
: ð3:10Þ

Correspondingly, the Hamilton equations in mLQC-II read

_v ¼ 3v sinðλbÞ
γλ

f1þ γ2 − γ2 cos ðλbÞg; ð3:11Þ

_b ¼ −
6sin2ðλb

2
Þ

γλ2

�
1þ γ2sin2

�
λb
2

��
− 4πGγP; ð3:12Þ

where the lapse is set to unity and the overdots represent the
differentiation with respect to the cosmic time. In mLQC-II,
the bounce takes place when the energy density reaches its
maximum value at

ρ ¼ ρIIc ≡ 4ðγ2 þ 1Þρc: ð3:13Þ

The momentum b in mLQC-II monotonically decreases in
the forward evolution of the universe from 2π=λ to 0 and
equals π=λ at the bounce. The quantization of the homo-
geneous and inhomogeneous sectors can be carried out in a
similar way as in LQC, and the only difference lies in the
gravitational sector which due to a difference in quantiza-
tion corresponds to a different operator in the kinematic
Hilbert space. More specifically, the Ω̂2 operator in
mLQC-II takes the form,

Ω̂2
II ¼ 4Ω̂2

μ̄ þ 4γ2λ2
�
1̂

v

�
Ω̂4

μ̄

�
1̂

v

�
; ð3:14Þ

which is compatible with the superselection subspaces with
support on the semilattices with step two. As a result, in
order for the total Hamiltonian constraint ĤMS to be well-
defined in the same subspaces, the Λ̂ operator can be
chosen as a quantum difference operator that translates the
eigenstates jvi with a displacement of any multiples of two.
The simplest choice in this case would be

Λ̂II ¼ Ω̂2μ̄; ð3:15Þ

which in the effective dynamics corresponds to

ΛII ¼ v
sin ðλbÞ

λ
: ð3:16Þ

Together with Ω2
II in (3.10), it determines the exact form of

the effective mass in the Mukhanov-Sasaki equation (2.16)
in mLQC-II, which reads

s¼ 4πGp2
ϕ

3v4=3

�
19− 24πGγ2

p2
ϕ

Ω2
II

�

þ v2=3
�
U;ϕϕ þ

16πGγpϕΛII

Ω2
II

U;ϕ −
16πG
3

U

�
: ð3:17Þ

Thus, focusing on the effective description of the hybrid
approach in LQC, both the Hamilton equations of the
background dynamics and the Mukhanov-Sasaki equations
of the scalar perturbations can be obtained in mLQC-I and
mLQC-II. In particular, we have specified the exact forms
of the operators Ω̂ and Λ̂, as well as their counterparts in the
effective dynamics in each model. These equations will be
used in the numerical simulations of the primordial scalar
power spectrum in mLQC-I/II in the next section.

IV. PRIMORDIAL POWER SPECTRUM FROM
THE HYBRID APPROACH IN MODIFIED

LOOP QUANTUM COSMOLOGY

In this section, based on the effective dynamics of the
background and the perturbations introduced in the previous
sections, we proceed with the numerical simulations and
compare the scalar power spectra between LQC and mLQC-
I/II in the hybrid approach. Moreover, we will also compare
the difference between the dressed metric approach and the
hybrid approach in the context of mLQC-I where the de
Sitter phase differentiates these two approaches by allowing
for different types of the initial conditions in the contracting
phase. Herewewould use the results in our previous paper in
the dressed metric approach [52].
We will start with the fixation of the free parameter in the

inflationary model. Based on the Planck 2018 data which
favors an inflationary potential with a plateau, we choose
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the scalar potential UðϕÞ to be the Starobinsky potential
which is explicitly given by

U ¼ 3m2

32πG
ð1 − e−

ffiffiffiffiffiffi
16πG
3

p
ϕÞ2: ð4:1Þ

Due to the almost flat right wing of the potential, the tensor-
to-scalar ratio predicted in the inflationary models with the
Starobinsky potential fits the observational data very well.
The pivot mode is chosen at k0� ¼ 0.05 ðMpcÞ−1 where the
superscript “0” refers to the value at present. With the scalar
power spectrum As and the scalar spectral index ns given
respectively by [62]

lnð1010AsÞ ¼ 3.044� 0.014 ð68%CLÞ;
ns ¼ 0.9649� 0.0042 ð68%CLÞ; ð4:2Þ

one can fix the mass of the scalar field to be m ¼
2.44 × 10−6. Some of the relevant observables at the
horizon crossing during inflation can also be computed,
which are

ϕ� ¼ 1.07; _ϕ� ¼ −5.02 × 10−9; H� ¼ 1.20 × 10−6:

ð4:3Þ

Since the Hubble rate decreases during the slow-roll
inflation, the moment for the horizon exit of the pivot
mode denoted by t� is then determined when the Hubble
rate decreases to the value of H� in the slow-roll phase of
our numerical solutions.
In addition, all our simulations were performed

using a combination of the StiffnessSwitching and
ExplicitRungeKutta numerical methods in Mathematica.
The background solutions were obtained from numerical
integrations of the modified Friedmann equations in LQC
and mLQC-I/II, while the primordial power spectrum
for the linear perturbations was found from numerically
integrating (2.14) with the respective effective mass in
each model.

A. The initial conditions of the background and the
initial states of the scalar perturbations

In our simulations, the initial conditions of the back-
ground dynamics are chosen at the bounce where the
energy density reaches its maximum value. Due to the
rescaling freedom in volume, we choose v0 ¼ 1 for our
numerical solutions. The canonical variable b is fixed
at the bounce. More specifically, as discussed in the
last section, at the bounce, b0 ¼ π

2λ in LQC; b0¼
arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2γ2þ2Þ

p
Þ=λ in mLQC-I; b0 ¼ π

λ in mLQC-II.
The degrees of freedom in the matter sector consists of ϕ
and pϕ. When the energy density reaches its maximum
value,

ρ ¼ p2
ϕ0

2v20
þ Uðϕ0Þ ¼ ρic; ð4:4Þ

here the subscript “0” indicates the values of the relevant
quantities are set at the bounce and ρic stands for the
maximum energy density in LQC and mLQC-I/II.
With regard to the initial states of the scalar perturba-

tions, they are chosen at some finite time in the contracting
phase. In general, the choice of the initial states is based on
their equation of motion,

ν00k þ ðk2 þ sÞνk ¼ 0; ð4:5Þ

where s is the effective mass and the mode function
satisfies the Wronskian condition,

νkðν0kÞ� − ðνkÞ�ν0k ¼ i; ð4:6Þ

with the asterisk standing for the complex conjugate. As
discussed in [52], the initial states in the contracting phase
can be chosen as the adiabatic states, given explicitly by the
Wentzel-Kramers-Brillouin solutions of (4.5),

νk ¼
1ffiffiffiffiffiffiffiffiffi
2Wk

p e−i
R

η Wkðη̄Þdη̄: ð4:7Þ

Substituting the above solution back into (4.5), one can
find an iterative equation for Wk. Then, starting from the

zeroth order solution, Wð0Þ
k ¼ k, the adiabatic solutions at

the second and fourth orders can be obtained as

Wð2Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ s

p
; Wð4Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðs; kÞp

4jk2 þ sj : ð4:8Þ

Here fðs; kÞ ¼ 5s02 þ 16k4ðk2 þ 3sÞ þ 16s2ð3k2 þ sÞ−
4s00ðsþ k2Þ. For any two sets of the initial states, say
fνkg and fμkg, they are related via the Bogoliubov trans-
formation, which is

νk ¼ αkμk þ βkμ
�
k; ð4:9Þ

with jαkj2 − jβkj2 ¼ 1 for any k. Since (3.5) is a linear
equation and the Bogoliubov coefficients are time-
independent, the power spectra resulting from these two
sets of initial states can be shown as

Pνk ¼ ð1þ 2jβkj2 þ 2Reðαkβ�kμ2k=jμkj2ÞÞPμk : ð4:10Þ

As is common in the literature, for a comparison with
observations it is more convenient to provide the power
spectrum of the comoving curvature perturbation Rk,
which is related to the Mukhanov-Sasaki variable by means
of Rk ¼ νk=z, with z ¼ a _ϕ=H. Its power spectrum then
reads
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PRk
¼ Pνk

z2
¼ k3

2π2
jνkj2
z2

: ð4:11Þ

As usual, the power spectrum is evaluated at the end of
inflation when all the relevant modes are well outside the
Hubble horizon. It should be noted that although the above
formula can be used to generate the new power spectra
from the already-existing ones, it is only applicable to the

regimes where Wð2Þ
k or Wð4Þ

k remains a real number at the
initial time, which equivalently requires k2 þ s ≥ 0 for

Wð2Þ
k and fðs; kÞ ≥ 0 for Wð4Þ

k . As the effective mass s is
generally a function of time, the validity regime of (4.10)
changes when the initial states are imposed at different
initial times.

B. Comparison of the power spectra among loop
cosmological models in the hybrid approach

In this subsection, we compare the scalar power spectra
in the three loop cosmological models from the effective
dynamics of the hybrid approach. The difference among
the three models mainly originates from the different
quantizations of the gravitational sector of the classical
Hamiltonian constraint in the spatially flat universe. As a
result, although the Mukhanov-Sasaki equations in these
models take the same form given in (2.16), the explicit
form of the time-dependent mass s and the evolution of the
background quantities, such as the scale factor and the
Hubble rate, satisfy their respective Hamilton’s equations
in each model. In order to obtain the primordial scalar
power spectrum in each model from numerical simula-
tions, one needs to first fix the background dynamics. As
discussed in the last subsection, the initial conditions for
the background dynamics are chosen at the bounce.
The parameter space is one dimensional which is deter-
mined by the value of the scalar field and the sign of its
velocity. In order to facilitate comparison of the three
models, the initial conditions for the background are
chosen so that the number of the inflationary e-foldings
are the same which is fixed to be 66.8 in all three models.
Moreover, the initial values of the inflaton field are chosen
at the left wing of the Starobinsky potential with a positive
velocity. Under these conditions, the initial values of the
inflaton field in LQC, mLQC-I and mLQC-II are given
respectively by

ϕLQC ¼ −1.44; ϕI ¼ −1.32; ϕII ¼ −1.55: ð4:12Þ

Under these initial conditions, we find the number of
the preinflationary e-foldings which is counted from the
bounce to the onset of inflation, in each model, turns out to
be, respectively,

NLQC
pre ¼ 4.86; NI

pre ¼ 4.62; NII
pre ¼ 5.10: ð4:13Þ

In addition, when the pivot mode crosses the horizon
during the slow-roll phase, its comoving wave number in
three models are found to be

kLQC� ¼ 5.15; kI� ¼ 4.05; kII� ¼ 6.56: ð4:14Þ

Therefore, the observable window which is about k=k� ∈
ð0.1; 1000Þ in the three models is slightly shifted when
they have the same inflationary e-foldings. Of course, one
can fine-tune the initial conditions so that the observable
window is the same but inflationary e-foldings are differ-
ent in the three models.
After fixing the background, one can then proceed to

choose the initial states for the scalar perturbations. These
initial states are set in the contracting phase. For LQC
and mLQC-II, we set the initial states at t ¼ −104tPl while
for mLQC-I, the initial states are set at t ¼ −2 where
the spacetime is well approximated as being sourced
by a positive cosmological constant. Different models
are mainly differentiated by the effective masses in the
Mukhanov-Sasaki equation, and we compare these masses
in the three models in Fig. 1. In the right panel of Fig. 1, the
absolute values of the effective masses in LQC, mLQC-I/II
are depicted in the expanding phase until t ¼ 107tPl. Right
after the bounce, the effective masses in all three models
take positive values. During inflationary phase, the effec-
tive masses change their signs and thus produce the spikes
in the figure. As can be seen from the figure, the behavior of
the effective masses is qualitatively similar in these three
models in the expanding phase while in the contracting
phase, only LQC and mLQC-II have the qualitatively
similar behavior of effective masses. The behavior of the
effective mass in mLQC-I is quite different from LQC and
mLQC-II in the prebounce phase and is shown separately
in the left panel of Fig. 2 where it is compared with the
effective mass in the dressed metric approach in the
right panel.
Note that in the dressed metric approach, the Mukhanov-

Sasaki equation in the quasi de Sitter contracting phase of
mLQC-I takes the form,

ν00k þ
�
k2 −

2

η2

�
νk ¼ 0; ð4:15Þ

so the corresponding effective mass is given by

sdm ¼ −
2

η2
; ð4:16Þ

where the prime denotes the derivatives with respect to the
conformal time and the contributions from the inflationary
potential is ignored as it is much smaller when compared
with the contributions from the Planck-scale curvature
near the bounce [52]. One can immediately find the
difference between the effective masses in the two different
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approaches. In the dressed metric approach, the effective
mass takes the negative values and increases exponentially
in magnitude during the backward evolution in the con-
tracting phase. Then, the following initial state of the linear
perturbations is chosen:

νk ¼
e−ikηffiffiffiffiffi
2k

p
�
1 −

i
kη

�
: ð4:17Þ

It should be noted that the modes in the infrared and
intermediate regimes are outside the Hubble horizon
initially, which indicates kη ≪ 1 at the time when the
initial states are imposed. As a result, the second term in the
parenthesis of (4.17) can not be ignored for those modes.
Only the modes in the ultraviolet regime are initially inside
the Hubble horizon, and hence their initial states coincide
with the zeroth order adiabatic states. On the other hand, in

the hybrid approach, the property of the effective mass
turns out to be quite different. The effective mass now takes
positive values and increases in a nonexponential way.
Consequently, in the hybrid approach, all the relevant
modes are inside the Hubble horizon at the initial time.
For this reason, one would expect the difference between
the power spectra from two approaches will mainly occur in
the infrared and intermediate regimes. However, we will
use the second order adiabatic states for the numerical
simulations of the power spectrum in the hybrid approach.
The use of other initial states, like the zeroth or fourth order
adiabatic state, will not qualitatively change our results.
Our final results on the power spectra are presented and

compared in Figs. 3–5. In Fig. 3, the scalar power spectra
in LQC and mLQC-I are compared in the range of the
comoving wave number k ∈ ð10−5; 50Þ. The power spec-
trum can still be divided into three distinctive regimes: the

FIG. 2. In this figure, we compare the behavior of the effective masses in mLQC-I in the hybrid approach and the dressed metric
approach. The left panel shows the effective mass sI near the bounce in the hybrid approach while the right panel depicts the effective
mass sdm in the dressed metric approach. Since in the contracting phase the universe quickly approaches the de Sitter space in the
backward evolution, sdm exponentially tends to negative infinity which is in contrast with the positive sI.

FIG. 1. The left panel compares the effective masses in LQC (sLQC) and mLQC-II (sII) from the hybrid approach in the contracting
phase until the moment when the initial states are imposed. The right panel depicts the absolute value of the effective masses in LQC,
mLQC-I (sI) and mLQC-II until t ¼ 107tPl. Right after the bounce, the effective masses take the positive values in all three models.
During inflation, the effective masses change signs which produces the spikes in the right panel.

PRIMORDIAL SCALAR POWER SPECTRUM FROM THE HYBRID … PHYS. REV. D 102, 126025 (2020)

126025-11



suppressed infrared regime for k ≈ ð10−5; 10−4Þ, the ampli-
fied oscillatory regime for k ≈ ð10−4; 1Þ and the scale
invariant regime for k ≈ ð1; 50Þ. Although the power
spectra in LQC and mLQC-I have the similar qualitative
behavior throughout the considered range of the wave
number, their quantitative difference can be seen from the
right panel of Fig. 3 in which the relative difference E is
shown. For any two quantities Q1 and Q2, the relative
difference E is defined by

E ¼ 2
jQ1 −Q2j
jQ1 þQ2j

: ð4:18Þ

In the infrared and oscillatory regimes, the relative differ-
ence can reach as large as 100% while the difference
reduces to less than 1% in the scale invariant regime. This is
primarily because LQC and mLQC-I have the same
classical limit in the expanding phase, and as shown in
Fig. 1, the effective masses in both approaches also tend
to the same value in the inflationary phase. It is also

remarkable to note that in the infrared and oscillatory
regimes, the power spectrum in mLQC-I is suppressed as
compared with its counterpart in LQC. This is a very
unique feature manifest only in the hybrid approach. In the
dressed metric approach, the power spectrum in mLQC-I is
largely amplified in the infrared regime where its magni-
tude is as large as of the Planck scale [52,53]. The main
reason that causes this seemingly contradictory behavior of
the power spectrum in mLQC-I in both approaches lies in
the distinctive behavior of the effective masses in the two
approaches as depicted in Fig. 2 and the corresponding
choices of the initial states in the contracting phase. In
Fig. 4, the power spectra in LQC and mQLC-II are
compared. As expected from the similarity of the effective
masses in these two models, the relative difference between
the power spectra of these two models are smaller than the
relative difference between LQC and mLQC-I. In the
infrared regime, the relative difference is around 50%.
The relative difference in the oscillatory regime also
oscillates as in this regime the oscillations of the power

FIG. 3. In this figure, we compare the scalar power spectra for the modes k ∈ ð10−5; 50Þ in LQC (blue square) and mLQC-I (red
triangle) from the hybrid approach when the initial states are chosen to be the second order adiabatic states and imposed in the
contracting phase. The right panel shows the relative difference of the two power spectra defined in (4.18).

FIG. 4. The scalar power spectra from the hybrid approach are depicted for LQC (blue square) and mLQC-II (red triangle) with the
initial states imposed at t ¼ −104 in both models. These initial states are the second order adiabatic states. The right panel shows the
relative difference between the two models.
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spectrum in LQC and mLQC-II are in general out of phase.
The comparison between the power spectra from mLQC-I
and mLQC-II are presented in Fig. 5 where we find that a
large relative difference (more than 100%) is still present in
the infrared and oscillatory regimes while the relative
difference in the scale invariant regime is around 2%.
In the above analysis, we have compared the scalar

power spectrum from the three models when the initial
conditions of the background dynamics are chosen at the
bounce so that the numbers of the inflationary e-foldings
turn out to be the same. This results in some difference in
the comoving wave numbers of the pivot mode at the
horizon crossing in the three models as presented in (4.14).
Due to this, there is an overlap in the value of k for the
observable window. Hence, a comparison of the primordial
power spectrum among the three different models can be
reliably made. In principle, one can choose other initial
conditions such that the wave numbers of the pivot mode
are exactly the same in the three models. This would imply
the inflationary e-foldings would be different. Then the
observable window corresponds to the same range of the
comoving wave numbers in all three models. For this set of
initial conditions of the background and with the same
initial states for the perturbations used in Figs. 3–5, we find
very similar results as presented in those figures.
Let us summarize the results from numerical simula-

tions. After fixing the initial conditions of the background
dynamics and the initial states of the scalar perturbations
for LQC, mLQC-I and mLQC-II in the hybrid approach we
compared the effective masses and the resulting power
spectra in these three models. We found a similar pattern
of the power spectra from the three models which can be
divided into three distinctive regimes. The maximum
relative difference of the power spectra from different
models are reached in the infrared and oscillatory regimes
while in the scale invariant regime, all three models predict
a similar result which is consistent with the current CMB
observations. It is to be emphasized that in the hybrid

approach, the power spectrum in mLQC-I is suppressed in
the infrared and oscillatory regimes which is in a striking
contrast with the results from the dressed metric approach.
This remarkable difference originates from the distinctive
properties of the effective masses in these two approaches
and reveals for the first time differences in predictions due
to underlying construction in these two approaches.

V. CONCLUSIONS

In this paper, we discussed the effective dynamics of the
hybrid approach in the modified loop cosmological models,
namely mLQC-I and mLQC-II. For this purpose, we first
briefly reviewed the effective dynamics of the hybrid
approach in LQC, including the effective equations for
the background dynamics and the gauge invariant perturba-
tions. An important step for deriving the Mukhanov-Sasaki
equation in LQC is the specification of the operator Λ̂ which
is well-defined in the subspaces H�

ϵ selected by the
homogeneous scalar constraint. Following the same strategy,
we specified the operator analogs to Λ̂ and their effective
counterparts in mLQC-I/II. It turns out that the Mukhanov-
Sasaki equation takes the same form in these two models as
in LQC, and the only difference lies in the effective masses
which have distinct behavior in each model.
In order to quantitatively study the difference in the

power spectra of the three loop cosmological models, we
then considered the Starobinsky inflation driven by a single
scalar field and found numerical solutions of the back-
ground and the perturbations under a representative set of
initial conditions which makes the inflationary e-foldings
equal in the three models. The initial states for the
perturbations are chosen to be the second order adiabatic
states and imposed in the contracting phase. Under these
conditions, we compared the effective masses and the
scalar power spectra in LQC and mLQC-I/II. In the
expanding phase, the effective masses are qualitatively
similar in the three models, they are initially positive valued

FIG. 5. We compare the scalar power spectra (left panel) in mLQC-I (red triangle) and mLQC-II (blue square) from the hybrid
approach and show the relative difference between the power spectra (right). The initial states are imposed at t ¼ −104 in mLQC-II and
t ¼ −2 in mLQC-I.
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and deceasing in the preinflationary stage. Later, the
effective masses change sign during inflation and their
magnitudes keep increasing until the end of the inflation.
Since the square of the comoving Hubble horizon is given
by the negative of the inverse of the effective mass, the
behavior of the effective masses in the three models is
consistent with the deceasing comoving Hubble horizon
during inflation. Based on the numerical solutions of the
background dynamics, we find in the contracting phase
the effective masses in LQC and mLQC-II have similar
properties, both of them tend to decrease in the backward
evolution from the bounce while the effective mass in
mLQC-I has qualitative different behavior. Initially, the
effective mass in mLQC-I is decreasing in the backward
evolution from the bounce. When the background space-
time becomes the de Sitter space, the effective mass tends to
climb up. We find that in the hybrid approach, the change
rate of the effective mass is much slower than that in the
dressed metric approach, and most importantly the effective
masses in these two approaches also have opposite signs.
As a result, in the dressed metric approach, only the
ultraviolet modes are inside the Hubble horizon when
the initial states are imposed while in the hybrid approach,
all the relevant modes are well inside the horizon. This is a
key difference between the two approaches.
The resulting power spectra in LQC and mLQC-I/II also

assume the similar patterns with three distinctive regimes:
the infrared regime, the oscillatory regime and the ultraviolet
regime. The magnitudes of the power spectra in the three
models are comparable in all three regimes. Quantitatively,
more diversities are present in the infrared and oscillatory
regimes than in the ultraviolet regime. The relative difference
of the power spectra can be as large as 100% between LQC/
mLQC-II and mLQC-I and 50% between LQC and mLQC-
II in the former regimes while in the ultraviolet regime, all
three models predict the scale invariant power spectra which
are consistent with the observations within the numerical
errors. Furthermore, the magnitude of the power spectrum in
mLQC-I is suppressed in the infrared and oscillatory regimes
as compared with the power spectra in LQC and mLQC-II.
This behavior is very distinct if compared with the results
from the dressed metric approach in [52] where a Planck
scale magnitude of the power spectrum in the same regimes
is found in mLQC-I. The difference between the two
different approaches for mLQC-I originates from the dis-
tinctive properties of the effective masses in the two
approaches. It is remarkable since this is for the first time
in loop cosmology the dressed and hybrid approaches yield
significantly different predictions in the power spectrum.
We would like to emphasize that our results are robust

with respect to the choices of the initial conditions and the
initial adiabatic states. Although the initial volume is set to
unity, we have to note that only the holonomy corrections
are considered in the effective dynamics. As the equations
of the motion are invariant under the rescaling of the

volume, it is convenient to set the initial volume to unity at
the bounce. Any rescaling of the initial volume is equiv-
alent to rescale the comoving wave numbers and thus
translate the power spectrum as a whole (as it would happen
in standard GR). The different choices of the initial values
of the scalar field can change the e-folding from the bounce
to the horizon exit of the pivot mode and thus move the
observable windows in the power spectrum. The different
choices of the adiabatic states can be related via the
Bogoliubov transformation, and the resulting averaged
power spectra will differ by a constant determined by
the initial states. As a result, the relative difference of the
power spectra from different models will not change by
specifying a different initial state instead of the second
order adiabatic states. However, the absolute magnitude of
the power spectra in the infrared regime does depend on the
initial states as shown in [41]. Since our main purpose is to
study the difference between LQC and mLQC-I/II, we find
it sufficient to show for the considered set of initial
conditions. Moreover, our result that power spectrum in
mLQC-I is significantly different in the dressed and hybrid
approaches is also independent of the choices discussed
above since it is tied to the effective masses which turn out
to be significantly different in both of the approaches.
Finally, we conclude with following remarks. Although

from our numerical analysis we found that the power spectra
from both, the hybrid and the dressed metric approaches for
mLQC-I are only different in the infrared and oscillatory
regimes and consistent with the CMB observations in the
ultraviolet regime at the level of the linear perturbations, it is
essential to consider the non-Gaussianity in mLQC-I to
fully compare the differences between two approaches in
the observable regime as the magnitude of the power
spectrum from the dressed metric approach are of the
Planck scale in the infrared and oscillatory regimes.
Therefore, the perturbations with the Planck-scale magni-
tude in the long wavelength modes are quite likely to affect
the magnitude of the power spectrum of the short wave-
length modes through the interactions between these modes.
Unlike the dressed metric approach, the small magnitude of
the power spectrum in the hybrid approach throughout the
whole spectrum justifies its application to mLQC-I at the
level of the linear perturbations. It also implies that at
the linear order, the hybrid approach is well suited to the
different quantizations of the classical Hamiltonian con-
straint in a spatially flat FLRW universe in LQC.
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