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We calculate the transport of a theory with two conserved currents by the holographic method and
compare it with graphene data to determine its dynamical exponents ðz; θÞ, which characterizes a “quantum
critical point.” As a result, we find that the electric and the thermal conductivity data can be fit more
naturally if we assume ðz; θÞ ¼ ð3=2; 1Þ rather than (1,0). Furthermore, we find that thermoelectric power
data at high temperature can be fit if we use (3=2; 1) but not by (1,0). The θ ¼ 1 result can be interpreted as
taking into account the fermionic nature of the electrons, and z ¼ 3=2 can be interpreted as the flattened
band by the strong interaction.
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I. INTRODUCTION

The strong correlation is the property of a phase of
general matter because even a weakly interacting material
can become strongly interacting in some parameter region.
It happens when the Fermi surface (FS) is tuned to be
small or when the conduction band is designed to be flat.
The Coulomb interaction in a metal is small only because
the charge is screened by the particle-hole pairs, which are
abundantly created when the FS is large. In fact, any Dirac
material is strongly correlated as far as its FS is near the
tip of the Dirac cone. This was demonstrated in clean
graphene [1,2] and the surface of topological insulator
[3–5] through the anomalous transports that could be
quantitatively explained by a holographic theory [6–8].
In twisted bilayered graphene [9,10], a flat band appears
due to the formation of an effective lattice system called
a Moire lattice, which has a larger size than the original
lattice. In short, strong correlation phenomena are ubiqui-
tous, where the traditional methods are not working very
well; therefore, a new method has been longed for many
decades.
The strongly interacting system (SIS) is hard to be

characterized in terms of its basic building blocks, and
one faces the question how to simplify the system to make a
sensible physics with only a few parameters. One possibil-
ity is that they become simple at the quantum critical point
(QCP) by the universality coming from the loss of system

information, which is similar to a black hole system. In this
sense, the SIS and holographic theory are similar by
sharing the property of black holes. AQCP is characterized
by z, θ defined by the dispersion relation of excitations
ω ∼ kz and the entropy density s ∼ Tðd−θÞ=z. Interestingly,
there exists a metric with the same scaling symmetry
ðt; r; xÞ → ðλzt; λ−1r; λxÞ,

ds2 ¼ r−θ
�
−r2zdt2 þ dr2

r2
þ r2ðdx2 þ dy2Þ

�
; ð1Þ

which is called the hyperscaling violation (HSV) metric.
The purpose of this paper is to reexamine the transport

data of graphene to determine its dynamical exponents
ðz; θÞ, which characterizes a QCP. In our previous work [6],
we assumed that the theory has a QCP at ðz; θÞ ¼ ð1; 0Þ
based on the presence of the Dirac cone and showed that
there must be at least two conserved currents. We also had
to assume that the entropy density is a free parameter to be
tuned to fit the data.
In this paper, we extend the holographic theory with

two currents [6,11] using the HSV geometry. As a result,
we could eliminate the last assumption, namely, the
entropy density is not assumed to be a free parameter
but a physical quantity determined by other parameters,
which is progress. The electric and the thermal conductivity
data can be fitted much more naturally if we assume
ðz; θÞ ¼ ð3=2; 1Þ rather than (1,0). We also find that
thermoelectric power data at high temperature can be fitted
if we use (3=2; 1) but not by (1,0). Our work demonstrates
that critical exponents together with the ratio of the
conserved charges completely determines the transport
data of a strong correlated system.
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Notice that our system has z ¼ 1 at UV. But never-
theless, due to the interaction between the gravity and the
spin 1 field Aμ, the system can have a solution with z > 1 at
IR. Therefore conceptually, it is good idea to assume that
HSV is embedded into an asymptotically AdS solution.
Recently, we noticed that Sungsik Lee and Metlistkiþ
Sachdev [12,13], using renormalization group method,
found that due to the curvature effect of the Fermi surface,
the fermion dispersion relation near the IR fixed point has
z ¼ 3=2, although a physical situation was not targeted as
graphene but the spin liquid. However, their formulation
seems to be universal. They assumed just the presence of a
Fermi surface and Yukawa interaction. The fact that we can
get a consistent result by solving a “classical equation” is
certainly a great power of the holography, and it is a true
evidence that holographic theory encodes the quantum
information.

II. HYPERSCALING VIOLATING GEOMETRY
WITH TWO CURRENTS

We consider a four-dimensional action with an asymp-
totically AdS metric gμν, a dilaton field ϕ, and three spin 1
fields Aμ, B1

μ, B2
μ. We also use two scalar fields χ1, χ2 called

axions to break the translational symmetry. The action is
given by S ¼ R

M d4xL, with

L ¼ ffiffiffiffiffiffi
−g

p �
Rþ Veγϕ −

1

2
ð∂ϕÞ2 − 1

4
ZAF2

−
X2
a

1

4
ZaG2

ðaÞ −
1

2
Y
X2
i

ð∂χiÞ2
�
; ð2Þ

where F ¼ dA, GðaÞ ¼ dBa. We use an ansatz,

ZA ¼ eλϕ; Za ¼ Z̄aeηϕ; Y ¼ e−ηϕ; χi ¼ βxi;

ð3Þ

where η, λ, and ν are dimensionless numbers and β denotes
the strength of momentum relaxation and can be interpreted
as the density of impurity. Notice that there are three gauge
fields in our model. Aμ is a part of gravity. It should be
considered as a Kaluza-Klein reduction of a higher dimen-
sional metric. Indeed its existence is solely to support the
Lifshitz gravity with HSV. The other two spin 1 fields are
gauge fields that are dual to two independent currents. In
Ref. [6], these two currents were introduced because there
are two independent currents due to the imbalance effect.
Briefly, the electron current and the hole current are
separately conserved because the process e → eþ eþ h,
which is necessary to balance the deficit electron, and a
similar process to create more holes are forbidden in the
small timescale since the energy-momentum conservation
requests collinearity of the four momenta, which is a zero
subset measure of the phase space. For more detail, see

[6,14]. Introducing two currents is also necessary because
with single current, one can not fit the data quantitatively.
The equations of motion of fields are

∂μð
ffiffiffiffiffiffi
−g

p
ZAFμνÞ ¼ 0; ∂μð

ffiffiffiffiffiffi
−g

p
ZaG

μν
ðaÞÞ ¼ 0; ð4Þ

Rμν −
1

2
ffiffiffiffiffiffi−gp gμνL −

1

2
∂μϕ∂νϕ −

Y
2

X
i

∂μχi∂νχi

−
1

2
ZAF

ρ
μFνρ −

X2
a

1

2
ZaG

ρ
ðaÞμG

ðaÞ
νρ ¼ 0; ð5Þ

□ϕþ Vγeγϕ −
1

4
Z0
AðϕÞF2 −

1

4

X
a

Z0
aðϕÞG2

ðaÞ

−
1

2
Y 0ðϕÞ

X2
i¼1

ð∂χiÞ2 ¼ 0; ð6Þ

∂μ

� ffiffiffiffiffiffi
−g

p
gμνY

X
i¼1

∂νχi

�
¼ 0: ð7Þ

The solutions for the fields are given by

ϕðrÞ ¼ ν ln r; with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − θÞð2z − 2 − θÞ

p
; ð8Þ

A ¼ aðrÞdt; B1 ¼ b1ðrÞdt; B2 ¼ b2ðrÞdt; ð9Þ

χ ¼ ðβx; βyÞ; ð10Þ

ds2 ¼ r−θ
�
−r2zfðrÞdt2 þ dr2

r2fðrÞ þ r2dx⃗2
�
; ð11Þ

fðrÞ ¼ 1 −mrθ−z−2 −
β2

ðθ − 2Þðz − 2Þ r
θ−2z

þ ðZ1q21 þ Z2q22Þðθ − zÞr2θ−2z−2
2ðθ − 2Þ ð12Þ

aðrÞ ¼ −qA
2þ z − θ

ðr2þz−θ
H − r2þz−θÞ;

baðrÞ ¼ ðμa − qarθ−zÞ; ð13Þ

where a ¼ 1, 2. Here, all the coordinate and parameters are
rescaled by the anti–de Sitter (AdS) scale L to make them
dimensionless. We set L ¼ 1 until the last moment to avoid
introducing a dimensionless version of the parameters. The
gauge couplings Z1 and Z2 are then given by

ZAðϕÞ ¼ eλϕ; ZaðϕÞ ¼ Z̄aeηϕ; YðϕÞ ¼ e−ηϕ;

ð14Þ

with
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λ¼ θ− 4

ν
; η¼ ν

2− θ
; γ ¼ θ

ν
; V ¼ z− θþ 1

2ðz− 1Þ q
2
A;

ð15Þ

qA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2z − 2Þð2þ z − θÞ

p
: ð16Þ

There are important restrictions in the range of the
parameters for the HSV solution coming from the null
energy condition and the positivity of q2A, which is studied
in the previous work [15], and we attached it in the
Appendix. The presence of the singularity in the HSV
geometry was pointed out in [16], and it was shown that it
can be resolved if ν ¼ 0 and 1 ≤ θ ≤ 2. We can check that
the screened HSV geometry are always regular independent
of ðz; θÞ. See the Appendix.
Notice that aðrÞ is divergent. From the early time of

Lifshitz gravity, such a divergence of the Aμ has been
controversial. At this moment, the consensus is that HSV
geometry should be embedded into asymptotically AdS
spacetime so that it is just the IR part of the total domain-
wall solution. See Fig. 1(b). A related question is about the

scaling property of Aμ. At zero temperature and zero
densities (B1μ, B2μ ¼ 0), At has the scaling properties
At → λ2þz−θAt. If any of these quantities are nonzero,
there is no scaling property. However, notice that we are
not describing a quantum critical point itself, which is at
zero temperature. Our interest is the quantum critical region
(QCR) above that point, where scale symmetries of all the
gauge field are broken by the existence of the temperature
and chemical potential for B1μ, B2μ. See Fig. 1(a).
From the equations of motion for the gauge fields B’s,

we can obtain the charge density as the integration
constants,

Qa ¼
ffiffiffiffiffiffi
−g

p
ZaGtr

ðaÞ ¼ Z̄aqaðz − θÞ: ð17Þ

The entropy density and the Hawking temperature are

s ¼ 4πr2−θH ; ð18Þ

4πT ¼ ðzþ 2 − θÞrzH − β2rθ−zH

2 − θ

−
1

2

�
Q2

1

Z̄1

þQ2
2

Z̄2

�
r2θ−2−zH ðz − θÞ2

ð2 − θÞ : ð19Þ

III. CALCULATION OF DC TRANSPORT

We use following perturbation to compute the transport
coefficients [17]:

δgtx ¼ htxðrÞ þ tf3xðrÞ; δgrx ¼ hrxðrÞ;
δBax ¼ bax − tfax; δχ1 ¼ φxðrÞ; ð20Þ

where linearized fi’s are chosen, such that they provide
time-independent source terms in Einstein equations,

fax ¼ −Ea þ ζbaðrÞ; f3x ¼ −ζUðrÞ; ð21Þ

where a ¼ 1, 2. Here, E1, E2 are electric forces acting on
J1, J2, respectively, and ζ is a thermoelectric force given by
the temperature gradient ζ ¼ −ð∇T=TÞ. We will set
E1 ¼ E2 ¼ E, after the calculation is done. The transports
can be computed at the event horizon using the Maxwell
equation that provides the conservation of the currents in a
radial direction. In the Eddington-Finkelstein (EF) coor-
dinates v, r, the background metric is given by

ds2 ¼ −Udt2 þ Vdr2 þWdx⃗2;

¼ −Udt2 − 2
ffiffiffiffiffiffiffi
UV

p
dvdrþWdx⃗2; ð22Þ

with v ¼ tþ R
dr

ffiffiffiffiffiffiffiffiffiffi
V=U

p
. Notice that it is regular at the

horizon. If we turn on δgrx ¼ hrx and δgtx ¼ htx, the metric
perturbation in EF coordinates can be written as

FIG. 1. (a) Phase diagram with quantum critical point, which is
denoted by gc where T ¼ 0. But we are interested in the finite
temperature region that can be affected by the quantum critical
point, which is called quantum critical region (QCR). Here, we
consider the region colored by yellow. (b) The schematic figure of
our geometry. The region inside the black hole is colored with
gray, and there is a domain wall ðr ¼ rDWÞ somewhere between
the AdS boundary and black hole horizon at rH .
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δgμνdxμdxν ¼ htxdvdxþ
�
hrx −

ffiffiffiffi
V
U

r
htx

�
drdx:

To guarantee its regularity at the horizon, the last term is
requested to vanish at the horizon so that

hrx ∼
ffiffiffiffi
V
U

r
htx: ð23Þ

Similarly, we can express the gauge field perturbation in the
EF coordinates as

δBax ∼ bax þ Eav − Ea

Z
dr

ffiffiffiffi
V
U

r
: ð24Þ

One should note that ba is the background solution of the
time component gauge field and bax are fluctuations of
gauge field components Bax. Then, gauge field perturbation
will take the regular form δBax ∼ Eavþ � � � by demanding

b0ax ∼
ffiffiffiffi
V
U

r
Ea; a ¼ 1; 2: ð25Þ

Now, the rx component of the Einstein equation is

Yβ2

W
hrx −

1

U

�X
a¼1;2

ðZab0afaxÞ þ f03x

�
þW0f3x

UW
¼ 0:

For the regularity at the horizon, we request

htxjrH ¼ −
1

β2Y

�
sTζ þ

X
i¼1;2

Z̄iqiEiðz − θÞ
�
; ð26Þ

where we used Eq. (23). The Eqs (23), (26), and (25) are the
regularity conditions for the metric and the gauge fields at
the event horizon. The Maxwell equations (4) give con-
served currents [17],

Ja ¼
ffiffiffiffiffiffi
−g

p
ZaGxr

ðaÞ; ð27Þ

Q ¼ U2ffiffiffiffiffiffiffi
UV

p
�
htx
U

�0
−

X
a¼1;2

baJa; ð28Þ

where the index a ¼ 1, 2 is for two currents, which are dual
to the two gauge fields Ba. These currents are radially
conserved so that their boundary values can be computed at
the horizon [17]. Therefore, we can get the boundary
current in terms of their horizon behavior (24), (26), which
again is given by the external sources,

J1 ¼
�
Z1 þ

Q2
1

WYβ2

�
E1 þ

Q1Q2

WYβ2
E2 þ

4πTQ1

Yβ2
ζ

J2 ¼
Q1Q2

WYβ2
E1 þ

�
Z2 þ

Q2
2

WYβ2

�
E2 þ

4πTQ2

Yβ2
ζ

Q ¼ 4πTQ1

Yβ2
E1 þ

4πTQ2

Yβ2
E2 þ

16π2WT2

Yβ2
ζ: ð29Þ

We can write (29) in matrix form, Ji ¼ ΣijEj, with J3 ¼ Q
and E3 ¼ ζ,

0
B@

σ11 σ12 α1T

σ21 σ22 α2T

ᾱ1T ᾱ2T κ̄T

1
CA ≔ Σ: ð30Þ

Notice that the matrix Σ is symmetric so that

σ12 ¼ σ21; αi ¼ ᾱi: ð31Þ

The heat conductivity κ is defined by the response of the
heat current to the temperature gradient ζ in the absence of
electric currents J1 and J2: we can express E1 and E2 in
terms of ζ by setting J1 and J2 to vanish in (29).
Substituting these expression for Ei to the last line of
(29) and taking derivative with respect to the temperature
gradient, we can get

κ ¼ κ̄ −
Tᾱ1ðα1σ22 − α2σ12Þ
σ11σ22 − σ12σ21

−
Tᾱ2ðα2σ11 − α1σ21Þ
σ11σ22 − σ12σ21

; ð32Þ

with κ̄ ¼ 4πsT=Yβ2. The Seebeck coefficient is defined by

Si ¼
X
j

σ−1ij αj: ð33Þ

Then, the transport coefficients for conserved currents can
be calculated as the following:

σij ¼ Ziδij þ
QiQj

WYβ2
; αi ¼

4πQi

Yβ2
; κ̄ ¼ 16π2WT

Yβ2

κ ¼ κ̄

1þP
i4πQ

2
i =sZiYβ2

Si ¼
sQi=Zi

WYβ2 þP
iðQ2

i =ZiÞ
: ð34Þ

If we define the total electric current as J ¼ P
i Ji and the

thermoelectric force as Ei ¼ E − T∇ðμi=TÞ, the electric
conductivity based on total current is given by

σ ¼ ∂J
∂E ¼

X
ij

σij ¼ Z þ Q2

WYβ2
; ð35Þ
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where Q ¼ P
i Qi and Z ¼ P

i Zi, showing the additivity
of the charge-conjugation-invariant part [18] of the electric
conductivity. If we define the heat conductivity due to the
ith current by 1=κi ¼ 1=κ̄ þQ2

i =Zis2T, then the heat
conductivity formula leads us to the additivity of the
dissipative part of the inverse heat conductivity. Therefore,

D½1=κ� ¼
X
i

D½1=κi�; D̄½σ� ¼
X
i

D̄½σi�; ð36Þ

where D½f� denotes the dissipative part of f and
D̄½f� ¼ f −D½f�.
The total Seebeck coefficient S by the two currents is

given by

S ¼ S1 þ S2 ¼
4πWðZ1Q2 þ Z2Q1Þ

Z1Q2
1 þ Z2Q2

2 þ Z1Z2WYβ2
: ð37Þ

Finally, the two currents are independently conserved for
short moments but long enough for the hydrodynamic
equilibrium to be reached, as argued in [6,14]. In this case,
individual charges, the hole, and electron charges are
separately conserved, therefore,

Qi ¼ giQ; ð38Þ

for some g1, g2. Then the experimental data of graphene
will be well fit by our two current theories, as we will
see below.

IV. THEORY VS EXPERIMENTS

A. Thermoelectric power

The total electric current J and total number current Jn
are defined by J ¼ Je þ Jh, Jn ¼ Je − Jh, respectively, and
their corresponding densities (electric charge densities and
number densities) are related by Q1 ¼ qen1 and Q2 ¼
−qen2 with a charge of an electron qe ¼ −1. The total
electric charge density and total number density are defined
by Q ¼ Q1 þQ2 and Qn ¼ −Q1 þQ2, which can be
connected with the proportionality constant gn such that
Qn ¼ gnQ. Notice that η ¼ 0 when z ¼ ðθ þ 2Þ=2 so that
Za ¼ Z̄a and Y ¼ 1. From now on, we take z ¼ 3=2,
θ ¼ 1. There are two reasons for choosing this ðz; θÞ:
(i) θ ¼ 1 is necessary to encode the fermionic nature of the
system. (ii) z ¼ 3=2 is the optimized dynamical exponent
for fitting the experimental results, which will be shown
later. Then, the total electric conductivity σ ¼ ∂J

∂E and κ can
be expressed in terms of Q and gn,

σ ¼ σ0

�
1þQ2

Q2
0

�
; κ ¼ κ̄

1þ ð1þ g2nÞðQ=Q0Þ2
; ð39Þ

where σ0 ¼ 2Z0 and Q0 ¼ σ0sβ2=4π.

Notice that in all our formula so far, we used dimension-
less version of the parameters, which was introduced at the
level of the equation of motion before we get the solution.
However, for the numerical fitting, all the dimensions of the
parameters should be restored to their original dimensionful
version. Following the prescription for the restoration of
dimensionality is useful,

β → βL; T →
kBT
ℏvF

L; s → sL2; Q → QL2;

ð40Þ

where vF ∼ c=300 ¼ 1 × 106 m=s, which is the Fermi
velocity in graphene.1

With such a prescription,

σ0 ¼
e2

ℏ
2Z0;

κ̄

T
¼ 4πk2B

ℏ
s
β2

; Q2
0 ¼

2Z0sβ2

4π
L4:

ð41Þ

To fit the experimental results in Fig. 2 for transports in
graphene, we used four measured values, σ0 ¼
0.338 kΩ−1, κ̄ ¼ 7.7 nW=K. From the curvature of the
density plot of κ, we fix gn ¼ 3.3 and assumed charge
conjugation symmetry to set Z1 ¼ Z2 ¼ Z0. Then, the
parameters of the theory can be determined:
L ¼ 0.2 μm, 2Z0 ¼ 1.387, β2 ¼ 96.75=ðμmÞ2. In previous
work [6], we replaced the horizon area 4πr2H as the entropy
density and considered the latter as a free parameter to tune.
On the other hand, we use rH as a function of other physical
parameters, such as temperature (T), charge density (Q),
and impurity density β2, which comes from (19). In that
sense, we could fit the data with one less parameter.
One more available data for the graphene are the seebeck

coefficients S given in Ref. [19]. S can be expressed in
terms of Q and gn,

S ¼ −
kB
e

8πQ=2Z0β
2

1þ ð1þ g2nÞ Q
2

Q2
0

: ð42Þ

1L was introduced as an AdS radius in the original top down
approach, but in our bottom up approach, it is any length scale.
Starting from the equation of motion, we rescaled all the
variables using L and set it to be 1 so that every coordinate
and the parameters are dimensionless. Notice that the physical
dimension and scaling “dimension” are different. The scaling
properties are those of dimensionless variables, and here, we are
explaining the restoration of the physical dimension. For
example, t and x can have different scaling although they have
the same physical dimension in a natural unit. Any quantity can
be written in terms of vAFℏ

BLC. Without introducing a length
scale in a theory, we can not describe or plot any dimensionful
physical quantity. We assumed that the Boltzman constant kB
always follows the T and s.

DETERMINATION OF DYNAMICAL EXPONENTS OF GRAPHENE … PHYS. REV. D 102, 126023 (2020)

126023-5



If we try to fit the experimental data of graphene, it seems
that one current model without dissipation follows the
hydrodynamic model. See Fig. 3(a). For the two currents
models with z ¼ 1, θ ¼ 0 [Fig. 3(b)], the theory curve of
S=T goes to a constant at large jQj, and the height of its
peak is independent of the temperature. On the other hand,
the experimental curves of S=T decrease as jQj increases,
and the height of its peak also decreases as the temperature
rises. Both of the features are not even close to the
qualitative feature of the experimental data.
On the other hand, for z ¼ 3=2 and θ ¼ 1, the two

currents model fits very well with the data when T is low
enough. Also, the theory curves have a tendency for
convergence of large jQj, and the height of its peak lowered
as one raises the temperature. It is natural that the model
does not fit with the experimental for large T because our
theory does not include the phonon effect, which is
important for a large temperature. The reason to take
z ¼ 3=2 is the following: due to the Null energy condition
ð2 − θÞð2z − 2 − θÞ ≥ 0, we cannot take z < 3=2 with
θ ¼ 1, and for z > 3=2, the bigger value z has, the greater
the inconsistency of the theoretical curve with the

experimental results becomes. We conclude that the gra-
phene data can be fit with holographic theory if we choose
the dynamical exponents ðz; θÞ ¼ ð3=2; 1Þ.

FIG. 2. Comparison with real experiment: (a) density plot of
electric conductivity σ and (b) of thermal conductivity κ. Red
circles are for data used in [1,2], and black curves are for two
current model. The region shaded with blue is for the Fermi
liquid, which is far from our theory.
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FIG. 3. Theory vs data for Seebeck effect: (a) We take gn ¼ 1,
which corresponds to one current model, and we set β ¼ 0 to
compare with the hydrodynamics result (dashed line). (b) Seebeck
coefficient for z ¼ 1 and θ ¼ 0. We used the parameters
L ¼ 0.2 μm, β2 ¼ 1406=ðμmÞ2, 2Z0 ¼ 1.387, and gn ¼ 16.
(c) For z ¼ 3=2 and θ ¼ 1, Seebeck coefficient at low temper-
ature fits well with experiment. We used the parameters
L ¼ 0.2 μm, β2 ¼ 1406=ðμmÞ2, 2Z0 ¼ 1.387, and gn ¼ 3.3.
Circles are for data used in [19].
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B. Lorentz ratio

In the Ref. [1], there is a plot for the Lorentz ratio L=L0,
which could be fitted even by an untwisted hydrodynamics
using the hydrodynamic formula,

LðnÞ ¼ LDF

ð1þ ðn=n0Þ2Þ2
; ð43Þ

where LDF ¼ v2FHτ

T2σQ
, n20 ¼ HσQ

e2v2Fτ
. Holographic theory with

one current gives the same type formula,

L=L0 ¼
A

ð1þ ðn=n0Þ2Þ2
: ð44Þ

Therefore, we might think that the fitting is trivial, because
we have one more parameter gn with the two current model.
The problem is that A ∼ s=σ0β2 and n20 ∼ sσ0β2 and our β
does not have any T dependence unlike τ in hydrodynamic
theory. Furthermore, the entropy density has a specific r0
dependence s ∼ rz−θ0 , which is very sensitive to z, θ. If we
treat r0 as a function of other variables as we treat in this
paper, not all the values of A and n0 are available in the
necessary temperature range if z ¼ 1, θ ¼ 0. So the holo-
graphic theory has a more tight constraint than the hydro-
dynamic theory, as it should be. The conclusion is that
z ¼ 1, θ ¼ 0 can not fit the data even with one more
parameter gn for the theory with two currents, while the
z ¼ 3=2, θ ¼ 1 theory can fit (see Fig. 4).

V. DISCUSSION

We determined the QCP’s dynamical exponents for the
graphene system. The θ ¼ 1 result can be interpreted as
taking into account the fermionic nature of the electrons,
and z ¼ 3=2 can be interpreted as the flattened band by the

strong interaction. The θ was originally introduced to
explain the difference of the power in the heat capacity
(and entropy density) between the bosonic and the fer-
mionic systems. For a boson, Cv ∼ Td while it is ∼T for
fermions. So, typically θ ¼ d − 1 for a fermion system if
we define the theta by Cv ∼ Tðd−θÞ. In the case of z ≠ 1, it
can be more subtle. At this moment, our assumption θ ¼ 1
even in the presence of z ≠ 1 is justified only by data
fitting.
There are some data we can not fit. Since our purpose is

to see what kind of data can be fit by holographic theories,
we also report such data here because nonfitting is also a
record worthwhile. In [2], the authors also computed σ, κ as
functions of T. Our result to fit the data is given in Fig. 5.
Figure caption explains how much our theory does not fit
the data. Naive scaling law trial that fits the data discarding
all flattened part is κ ∼ T7, which can not be explained by
any reasonable physics. From our experience, we can tell
that the density dependence at any fixed temperature could
be fit well, but no temperature dependence at a fixed
density is fitted well by holographic theory. We can roughly
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FIG. 4. Lorentz ratio fit by our theory. Due to the limited
temperature dependence of the horizon radius, the holographic
theory of z ¼ 1, θ ¼ 0 can not fit the data, while that of z ¼ 3=2,
θ ¼ 1 theory can fit.
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FIG. 5. (a) There is not much change in σðTÞ. Red circles are
the experimental data, and the solid line is for our model (b). The
fitting by our model (solid line) is not good for varying temper-
ature data. The simple fitting with T7 (dashed curve) misses all
the flat features but can fit rising data quite well. However, we can
not explain the power 7 for any reasonable scenario.
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understand why this is so: the data of varying temperatures
have too many features, and it is too steep near 70 K; hence,
it shows high unscaling. Therefore, it can not be fit by any
theory that respects the hydrodynamic principle, like a
holographic theory: any holographic theory with an horizon
should follow hydrodynamics [20] and therefore, can not fit
such data. In fact, the data show that as T increases, the
minimum values of the carrier density changes drastically.
See Fig. 3(a) in [1]. The manipulation of the experiment
with varying temperature with fixed density is very hard
because the temperature can pump up extra charges in a
semimetal or a semiconductor. On the other hand, changing
the charge density is just matter of changing the chemical
potential so varying density data are much more reliable.
The reason why Ref. [2] could fit the temperature plot data
even roughly is because the authors cleverly introduced an
idea that breaks the scale symmetry, the inhomogeneity in
the viscosity, and the coefficient of the derivative expan-
sion. Such an introduction violates the hydrodynamic
principle but is a good choice for fitting nonscaling data.
In short, we think that the data of a temperature plot are not
that of near QCP in the yellow region of Fig. 1(a). So it is
not a surprise for our theory not to fit the temperature plots
near the QCP.
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APPENDIX A: VALIDITY REGION OF
EXPONENTS

The allowed region for them is described in our previous
work [15], where we show that as a consequence of the null
energy condition and positivity of q2A, the allowed region
are given by the Fig. 6.

APPENDIX B: THE RESOLVING
SINGULARITY OF HSV GEOMETRY

In this section, we discuss the curvature singularity in
asymptotic hyperscaling violating geometry. We work in a
coordinate system that we defined in (9),

ds2 ¼ r−θ
�
−r2zfðrÞdt2 þ dr2

r2fðrÞ þ r2ðdx2 þ dy2Þ
�
:

Consider a radial timelike geodesic with four-velocity
u ¼ ð_t; _r; 0; 0Þ, where the dot denotes d=dτ. The conserved
energy is given by E≡ −gtt_t ¼ r2zfðrÞ_t; the normalization
of four velocity uμuμ ¼ −1 gives

_r2 ¼ E2r2ð1−zþθÞ
�
1 −

r2z−θfðrÞ
E2

�
: ðB1Þ

Then, we can choose an orthonormal frame for the
radial infall of a test particle with an energy E, which is
given by

e0 ¼
E

r2z−θfðrÞ ∂t − Er1−zþθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2z−θfðrÞ
E2

s
∂r

e1 ¼
E

r2z−θfðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2z−θfðrÞ
E2

s
∂t − Er1−zþθ∂r

ei ¼
1

r1−θ=2
∂i: ðB2Þ

Using these basis, we can have the Riemann curvature
tensor in this orthonormal frame,

Rabcd ¼ RμνρσðeaÞμðebÞνðecÞρðedÞσ: ðB3Þ

The nonvanishing components of the Riemann curvature
tensor at the horizon are given by

R0101 ¼
1

2
r1þθ
H ðð1þ 3z − θÞf0ðrHÞ þ rHf00ðrHÞÞ

R0i0i ¼ R1i1i

¼ 1

4
r−2zþ2θ
H ðθ − 2ÞðE2ð2 − 2zþ θÞ − r1þ2z−θ

H f0ðrHÞÞ

R0i1i ¼
1

4
E2r−2zþ2θ

H ðθ − 2Þð2 − 2zþ θÞ: ðB4Þ

Hence, the tidal forces at the horizon are always regular.

FIG. 6. Allowed region of z, θ coming from null energy
condition and positivity of q2A.
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