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According to the covariant open superstring description of D-branes in the AdS4 ×CP3 background,
1=2-BPS D2-branes are purely instantonic. Based on this and by taking the eleven dimensional viewpoint,
we identify the 1=2-BPS instantonic M2-brane configurations in the AdS4 × S7=Zk background, which
reduces to the AdS4 ×CP3 under the large k limit, and evaluate their action values. We also consider the
previously known 1=2-BPS instantonic objects in ten dimensions from the M2-brane viewpoint to compare
with our results.
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I. INTRODUCTION

The covariant open superstring description of D-branes
[1,2] is a useful tool in classifying supersymmetric
D-branes, especially 1=2-BPS D-branes, in a given super-
symmetric background. It has been successfully applied to
some important backgrounds in superstring theories such as
the flat spacetime [1], IIB plane wave [2], IIA plane wave
[3], AdS5 × S5 [4–7], and AdS4 ×CP3 [8] backgrounds.
The data obtained after the classification of supersymmetric
D-branes are however “primitive” in a sense that they
do not tell us about which configuration of a given D-brane
is really supersymmetric or which part of the background
supersymmetry is preserved on the D-brane world volume.
Nevertheless, the classification provides us a good guide-
line for further exploration of supersymmetric D-branes.
Indeed this has been illustrated for the AdS5 × S5 back-
ground in [9].
In our previous work [8], we have obtained the data

about 1=2-BPS D-branes in the AdS4 ×CP3 background.
One interesting point from the data is that 1=2-BPS
D2-brane is purely instantonic and there is no 1=2-BPS
Lorentzian D2-brane in contrast to other D-branes of
different dimensionalities.
As is well known, the type IIA superstring theory in

the AdS4 ×CP3 background is dual to the Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory [10]. Under

this correspondence, the study on the nonperturbative
aspects of the ABJM theory has been a fascinating research
subject, in which some instantonic objects have played
important roles.1 Basically, there are two types of instan-
tonic objects called world sheet and membrane instantons.
Both of them are known to be 1=2-BPS and, in the bulk
side, are identified as string [12] and D2-brane [13]
instantons wrapping certain subspaces of CP3. By the
way, the result of [8] indicates that, in addition to these
instantons, there is a possibility to have other 1=2-BPS
instantonic D2-brane configurations.
In the present work, we try to identify such 1=2-BPS D2-

brane configurations purely based on the data obtained in
[8] and evaluate their action values. These 1=2-BPS D2
brane configurations can be lifted to membrane (M2-brane)
configurations. Then one can extrapolate 1=2 BPS M2-
brane configurations in the AdS4 × S7=Zk background for
all finite k, which reduces to the AdS4 ×CP3 in the large k
limit. We also consider the ten dimensional instantons of
[12,13] and comment on the corresponding the M2-brane
configurations.
In the next section, we give a brief description of the

AdS4 × S7=Zk background. The possible 1=2-BPS instan-
tonic M2-brane configurations are identified in Sec. III, and
their action values are evaluated in Sec. IV. Finally, the
conclusion follows in Sec. V.

II. AdS4 × S7=Zk BACKGROUND

The AdS4 × S7=Zk background originated from the near
horizon limit of M2-brane supergravity solution is com-
posed of the AdS4 × S7=Zk geometry
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ds2 ¼ R2

4
ds2AdS4 þ R2ds2S7=Zk

ð1Þ

and the four-form field strength

F4 ¼
3

8
R3ϵAdS4 ; ð2Þ

where R is the radius of S7 given by

R ¼ lpð25π2NkÞ1=6 ð3Þ

with the eleven dimensional Planck length lp and the
number of M2-branes Nk, and ϵAdS4 is the volume form
of AdS4 space. The metric of AdS4 is, in the global
coordinates,

ds2AdS4 ¼ −cosh2ρdt2 þ dρ2 þ sinh2ρðdθ2 þ sin2θdψ2Þ:
ð4Þ

As for the geometry of S7=Zk, it is natural to express it
through the Uð1Þ Hopf fibration over CP3 for its obvious
connection with the type IIA background [14]:

ds2S7=Zk
¼ ds2CP3 þ 1

k2
ðdyþ AÞ2; ð5Þ

where y is the Uð1Þ fiber coordinate with the period
y ∼ yþ 2π, A is a one-form given by

A ¼ k
2

�
cos αdχ þ cos2

α

2
cos θ1dϕ1 þ sin2

α

2
cos θ2dϕ2

�
;

ð6Þ

and the CP3 geometry is as follows:

ds2CP3 ¼ 1

4
dα2 þ 1

4
cos2

α

2
ðdθ21 þ sin2θ1dϕ2

1Þ

þ 1

4
sin2

α

2
ðdθ22 þ sin2θ2dϕ2

2Þ

þ 1

4
sin2

α

2
cos2

α

2
ð2dχ þ cos θ1dϕ1 − cos θ2dϕ2Þ2;

ð7Þ

with the ranges of angles, 0 ≤ α; θ1; θ2 ≤ π and
0 ≤ χ;ϕ1;ϕ2 ≤ 2π.
From the metric of (5), we choose the elfbeine for S7=Zk

as2

e4 ¼ 1

2
dα;

e5 ¼ 1

2
sin

α

2
cos

α

2
ð2dχ þ cos θ1dϕ1 − cos θ2dϕ2Þ;

e6 ¼ 1

2
cos

α

2
dθ1; e7 ¼ 1

2
cos

α

2
sin θ1dϕ1;

e8 ¼ 1

2
sin

α

2
dθ2; e9 ¼ 1

2
sin

α

2
sin θ2dϕ2;

e♮ ¼ −
1

k
ðdyþ AÞ: ð8Þ

The reason for this choice is to make the Kähler structure of
CP3 in a canonical form. The Kähler structure itself can
be read off from one property of one-form A, dA ¼ 2kJ,
where J is the Kähler two-form of CP3. If we compute dA
using (6), we obtain

dA ¼ −2kðe4 ∧ e5 þ e6 ∧ e7 þ e8 ∧ e9Þ; ð9Þ

which indeed shows that J has the block diagonal structure,
that is, the canonical form and thus the above choice for the
elfbeine is a proper one.

III. 1=2-BPS M2-BRANE INSTANTONS

For the investigation of 1=2-BPS M2-brane configura-
tions, we need the Killing spinor ϵ of the AdS4 × S7=Zk
background. It has been obtained in [13,15,16] by solving
the Killing spinor equation and has the following form.

ϵ ¼ Mϵ0; ð10Þ

where ϵ0 is a 32 component constant spinor3 and M is
given by

M ¼ e
α
4
ðγ̂γ4−γ5♮Þe

θ1
4
ðγ̂γ6−γ7♮Þe

θ2
4
ðγ59þγ48Þe−

ξ1
2
γ̂γ♮e−

ξ2
2
γ67e−

ξ3
2
γ45e−

ξ4
2
γ89

× e
ρ
2
γ̂γ1e

t
2
γ̂γ0e

θ
2
γ12e

ψ
2
γ23 ð11Þ

with γ̂ ¼ γ0123 and a set of coordinate combinations,

ξ1 ¼
1

2
ðϕ1 þ χ þ 2yÞ; ξ2 ¼

1

2
ð−ϕ1 þ χ þ 2yÞ;

ξ3 ¼
1

2
ðϕ2 − χ þ 2yÞ; ξ4 ¼

1

2
ð−ϕ2 − χ þ 2yÞ: ð12Þ

The Killing spinor ϵ is obtained in the Lorentzian signature.
Since we are concerned about the instantonic configuration
for which the spacetime is taken to be Euclidean, we should
recast ϵ in a way to respect the Euclidean nature. However,
we will not care much about it because the time coordinate

2e0;1;2;3 are for the AdS4 space. Although their explicit form
is not necessary in this work, if we follow the choice of [13],
they are e0 ¼ 1

2
cosh ρdt, e1 ¼ 1

2
dρ, e2 ¼ 1

2
sinh ρdθ, and e3 ¼

1
2
sinh ρ sin θdψ .

3The constant spinor ϵ0 has 24 free components for k > 2.
Otherwise, that is, for k ¼ 1, 2, it has 32 free components. For
more detailed discussion, see Refs. [13,15,16].
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will be set to zero and our interest is the consistent
projection operators acting on ϵ (strictly speaking ϵ0)
which identify the 1=2-BPS configurations.
Having the Killing spinor, the 1=2-BPS instantonic

M2-brane configurations can be considered by using the
usual equation

Γϵ ¼ ϵ; ð13Þ

which is obtained by combining the spacetime supersym-
metry and κ-symmetry transformation. The symbol Γ is the
spinorial matrix appearing in the κ-symmetry projector and
satisfies Γ2 ¼ 1 and TrΓ ¼ 0. The explicit expression of Γ
for M2-brane is

Γ ¼ i
3!

ffiffiffi
g

p ϵijkΠa
iΠb

jΠc
kΓabc ð14Þ

whereΠa
i ¼ ∂iXμeaμ and g is the determinant of the induced

metric on M2-brane, gij ¼ Πa
iΠb

jηab. The indices i, j, k are
those of the M2-brane world volume, and μ; ν;… (a; b;…)
are the curved (tangential) spacetime indices. Now,
by using the Killing spinor (10), the Eq. (13) can be
rewritten as

Γ̃ϵ0 ¼ ϵ0; ð15Þ

where we have defined

Γ̃≡M−1ΓM: ð16Þ

Here Γ̃2 ¼ 1 is guaranteed because Γ2 ¼ 1. For a given
M2-brane configuration, Γ and M have the corresponding
expressions by which Γ̃ is determined. If the resulting Γ̃
does not depend on any world volume coordinate, then the
M2-brane configuration is confirmed to be 1=2-BPS.
For specifying a M2-brane configuration, let us intro-

duce a notation

½X; Y; Z�; ð17Þ

which means that the M2 world volume coordinates (ζ1, ζ2,
ζ3) are identified as ζ1 ¼ X, ζ2 ¼ Y, and ζ3 ¼ Z. In other
words, the notation represents a static gauge for the world
volume reparametrization. Except for the coordinates along
which M2-brane spans, all other coordinates in M which
are transverse to M2-brane are set to zero. These are the
natural generalizations of the previous results of 1=2-BPS
D2-brane configurations, which can be easily verified in M
theory setting. However, if a polar coordinate among α, θ1,
θ2 is taken to be transverse one, it is kept to be an arbitrary
constant.
Before investigating the instantonic M2-brane configu-

rations based on the covariant open string description of
1=2-BPS D-branes, we briefly reconsider the previously

explored string world sheet instanton [12] and D2-brane
instanton [13] from the viewpoint of eleven dimensional
M2-brane. Both of them have been studied in the context
of ten dimensional IIA string theory and turned out to be
1=2-BPS. As for the string world sheet instanton, it wraps
CP1 (⊂ CP3) parametrized by α and χ. Since a string is
nothing but the M2-brane wrapping the M-theory circle
direction y, the corresponding M2-brane configuration is
given by ½α; χ; y�. The expression of Γ (14) becomes simply
Γ ¼ −iγ45♮ and Γ̃ of Eq. (16) is evaluated as

Γ̃ ¼ −iγ45♮: ð18Þ

By the way, since there are two more two spheres within
CP3 parametrized by ðθ1;ϕ1Þ and ðθ2;ϕ2Þ, one may be
curious about whether the configurations ½θ1;ϕ1; y� and
½θ2;ϕ2; y� are also 1=2-BPS. Actually, they are but in a
restricted sense. As for ½θ1;ϕ1; y�, it is not difficult to check
that the configuration is 1=2-BPS only when its transverse
position in α is zero, α ¼ 0.4 In this case, Γ ¼ −iγ67♮
and Γ̃ simply becomes −iγ67♮. As for another configuration
½θ2;ϕ2; y�, it is 1=2-BPS only when α ¼ π. For this, we get
Γ ¼ −iγ89♮ and the corresponding Γ̃ as iγ̂γ4589 ¼ −iγ67♮.

5

On the other hand, the D2-brane instanton spans the
Lagrangian submanifold RP3 within CP3 which is para-
metrized by the coordinates (χ, ϑ, φ) with the identifica-
tions ϑ ¼ θ1 ¼ θ2 and φ ¼ ϕ1 ¼ −ϕ2. Since a D2-brane in
ten dimensions is just an M2-brane in eleven dimensions,
the M2-brane configuration corresponding to the D2-brane
instanton is simply ½χ; ϑ;φ�. Then the Γ of (14) for
this configuration becomes Γ ¼ −iγ67♮e

α
2
ð2γ5♮þγ68−γ79Þ and

the evaluation of Γ̃ of (16) leads to

Γ̃ ¼ −iγ67♮e
α
2
ðγ̂γ4þγ5♮þγ68−γ79Þ: ð19Þ

Obviously, the above two Γ̃’s, (18) and (19), are indepen-
dent of any of the world volume coordinates. Thus, from
Eq. (15), it is confirmed that the previously known M2-
brane configurations are 1=2-BPS as they should be.
Now let us turn to our main concern and investigate the

1=2-BPS M2-brane instantonic configurations based on the
covariant open string description of D-branes. According to
the open string description [8], purely instantonic D2-brane
can be 1=2-BPS under the following condition: only one
world volume direction is allowed to extend in each of three
two dimensional subspaces of CP3. The three subspaces
are realized by looking at the Kähler structure of CP3 (9).
Following this condition, we see that there are eight
candidates for the 1=2-BPS M2-brane instantonic

4One can check that the resulting two sphere has maximal
radius R=2 when α ¼ 0.

5An identity γ̂γ456789 ¼ γ♮ has been used.
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configurations which are ½α; θ1; θ2�, ½α; θ1;ϕ2�, ½α;ϕ1; θ2�,
½α;ϕ1;ϕ2�, ½χ; θ1; θ2�, ½χ; θ1;ϕ2�, ½χ;ϕ1; θ2�, and ½χ;ϕ1;ϕ2�.
We have investigated all the candidates and found that

only four configurations in which α is a world volume
direction are 1=2-BPS. In what follows, we describe the
1=2-BPS configurations in sequence. First of all, for the
configuration ½α; θ1; θ2�, the Γ of (14) becomes Γ ¼ iγ468,
and the corresponding Γ̃ of (16) is evaluated as

Γ̃ ¼ iγ468: ð20Þ

Second, the configuration ½α; θ1;ϕ2� with fixed θ2 leads to
Γ ¼ iγ456e−

α
4
γ5♮e−θ2γ59e−

α
4
γ5♮ , and we obtain the correspond-

ing Γ̃ as

Γ̃ ¼ iγ456e
θ2
2
ðγ48−γ59Þ: ð21Þ

The third configuration ½α;ϕ1; θ2� is equivalent to
½α; θ1;ϕ2�. So we just move on to the last configuration
½α;ϕ1;ϕ2� with fixed θ1 and θ2. For this configuration, we
have Γ ¼ −iγ45♮e−

α
4
γ5♮eθ1γ7♮e−θ2γ59e

α
4
γ5♮ , and the correspond-

ing Γ̃ is obtained as

Γ̃ ¼ −iγ45♮e
θ1
2
ðγ̂γ6þγ7♮Þe

θ2
2
ðγ48−γ59Þ: ð22Þ

We see that all the resulting Γ̃’s in (20), (21), and (22) do
not depend on any of the worldvolume coordinates.
Therefore Eq. (15) shows that half of the spacetime
supersymmetry ð1þ Γ̃Þϵ0 is preserved on the M2-brane
world volume.
At this point, one may ask why the other four configu-

rations in which χ is a world volume direction are not
1=2-BPS. Although we have checked all of them, we just
take one of them as an example and briefly illustrate
the reason. Consider ½χ; θ1; θ2�. For this configuration, Γ of
(14) is simply Γ ¼ −iγ68♮ and M of (11) becomes

M ¼ e
θ1
4
ðγ̂γ6−γ7♮Þe

θ2
4
ðγ59þγ48Þe−

χ
4
ðγ̂γ♮þγ67−γ45−γ89Þ. The evaluation

of Γ̃ of (16) is the process of pushing Γ to the left of M−1

(or to the right of M). But, unlike the previous cases, this
process makes us face with a problem from the beginning.
That is, what we get for the θ1 dependent part is

e−
θ1
4
ðγ̂γ6−γ7♮Þγ68♮e

θ1
4
ðγ̂γ6−γ7♮Þ ¼ γ68♮e−

θ1
2
γ7♮ ; ð23Þ

which means that Γ̃ depends on the world volume coor-
dinate θ1. There is no way to eliminate the θ1 dependence.
This is also the case for other world volume coordinates, θ2
and χ. Thus Γ̃ depends on the world volume coordinates
implying that we have different projection operators at
different world volume positions. This inconsistency
explicitly shows that the M2-brane configuration
½χ; θ1; θ2� is not 1=2-BPS. Of course, the configuration
may be less supersymmetric by imposing other projection

conditions. However, since here we are interested in
1=2-BPS objects, it will not be considered further.

IV. INSTANTON ACTION

For 1=2-BPS M2-brane instanton configurations con-
sidered in the last section, let us evaluate their classical
action values. The basic purpose is to compare the resulting
values with those for the string world sheet instanton and
D2-brane instanton obtained in [12,13], respectively.
The bosonic part of the Euclidean M2-brane action is

given by

S ¼ T2

Z
M3

d3ζ
ffiffiffi
g

p þ iT2

Z
M4ðM3¼∂M4Þ

F4; ð24Þ

where T2 is the M2-brane tension,

T2 ¼
1

4π2l3
p
; ð25Þ

and g is the determinant of the induced metric on the
M2-brane world volume. Since the M2-brane instantons we
have considered are placed within S7=Zk while the back-
ground four-form field strength F4 is turned on in the AdS4
space as one can see from Eq. (2), the Wess-Zumino term
including F4 does not contribute to the action. Thus we
only need to evaluate the Nambu-Goto type kinetic term.
We first consider the configuration ½α;ϕ1;ϕ2� with fixed

θ1 and θ2. For this,
ffiffiffi
g

p
is computed as R3

8
cos α

2
sin α

2
. We see

that there is no dependence on the transverse coordinates θ1
and θ2, and hence the action value will always be the same
regardless of the transverse position of the M2-brane
configuration. Having the expression for

ffiffiffi
g

p
, it is straight-

forward to evaluate the action, which is obtained as follows:

S ¼ 2T2

Z
π

0

dα
Z

2π

0

dϕ1

Z
2π

0

dϕ2

R3

8
cos

α

2
sin

α

2

¼ π2T2R3

¼ πk

ffiffiffiffiffiffiffi
2N
k

r
; ð26Þ

where Eqs. (3) and (25) have been used in the last step. We
note that the α integration has doubled in the first line asR
π
0 dα → 2

R
π
0 dα basically because the nature of α is a polar

angle. The two angles α and χ parametrize a sphere as one
notices from Eq. (7). One world volume direction of the
present M2-brane wraps this sphere along α with fixed χ.
But, since α is a polar angle, the world volume direction
covers not a circle but half the circle geometrically. Thus, in
order to get the correct action value, we should double the
integration over α.
By following the same way, the action values for other

configurations ½α; θ1; θ2�, ½α; θ1;ϕ2�, and ½α;ϕ1; θ2� can be
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evaluated. The resulting values are exactly the same with
that of ½α;ϕ1;ϕ2� obtained in Eq. (26). We note that the
action value πk

ffiffiffiffiffiffiffiffiffiffiffi
2N=k

p
agrees with that for the D2-brane

instanton wrapping the Lagrangian submanifold RP3

within CP3 computed in [13]. Although the D2-brane
result of [13] has been obtained in ten dimensional IIA
theory, it is not difficult to check that it holds even in eleven
dimensions without any modification by considering the
M2-brane configuration corresponding to the D2-brane
wrapping the RP3. Thus it seems plausible that all the
1=2-BPS M2-brane instantons which become D2-brane
instantons in ten dimensions are characterized by the action
value πk

ffiffiffiffiffiffiffiffiffiffiffi
2N=k

p
.

A noteworthy point of the above result is that the action
value is valid even at finite k in contrast to the ten
dimensional case where k ≫ 1 is assumed for the validity
of type IIA AdS4 ×CP3 background. Actually, this sit-
uation continues to hold even for the case of world
sheet instanton for which the action value has been
obtained as [12]

S ¼ 2π

ffiffiffiffiffiffiffi
2N
k

r
: ð27Þ

If we evaluate the corresponding M2-brane configuration
for the world sheet instanton, that is, ½α; χ; y�, then we get
the same result 2π

ffiffiffiffiffiffiffiffiffiffiffi
2N=k

p
yet valid at finite k.6 Thus we see

that the action values of the ten dimensional 1=2-BPS
instantons are not modified at finite k.

V. CONCLUSION

Based on the data [8] obtained from the covariant open
superstring description of 1=2-BPS D-branes in type IIA
AdS4 ×CP3 background, we have explored the possible
1=2-BPS M2-brane instanton configurations from the
eleven dimensional viewpoint. It has been shown that there
exist four additional 1=2-BPS M2-brane instanton con-
figurations in addition to the previously known ones. All of
them, which are interpreted as D2-brane instantons in ten
dimensions, have the same action value πk

ffiffiffiffiffiffiffiffiffiffiffi
2N=k

p
which is

identical to that of D2-brane instanton studied in [13]. One
important result is that the action value is valid even
at finite k. Actually, this is also the case for the 1=2-BPS
M2-brane instanton configuration corresponding to the
world sheet instanton [12]. We speculate that the validity
of action values at finite k is due to large amount of
supersymmetry.
A supersymmetric brane configuration means that the

theory on its world volume is supersymmetric. This in turn
implies that there is no tachyonic mode on the world
volume signaling instability of the configuration. Here,
since we have considered the Euclidean theory, it would be
appropriate to view a supersymmetric configuration as a
minimal action configuration rather than stable one. Let us
now read off the quadratic parts of small bosonic transverse
deformations for each supersymmetric configuration
based on the M2-brane action (24). What we obtain is
that all the transverse modes are massless for all the
supersymmetric configurations and their actions are of
the form

R
d3ζ

ffiffiffi
h

p
hij∂iδφ∂jδφ where hij is the induced

world volume metric for a given supersymmetric configu-
ration and δφ represents the small transverse deformation.
Since the quadratic action is positive definite, the transverse
deformations tend to increase the action value. This shows
that the supersymmetric instantons explored in this work
are action minimizing ones. It has been known that for the
supergravity background with nontrivial fluxes, the super-
symmetric cycle satisfies the generalized calibration con-
dition, which satisfies action minimizing condition. Under
the generalized calibration condition, it has been shown
that one can have stable and supersymmetric cycles even
though cycles are not carrying any topological charges
[17]. Note that three cycles on CP3 do not carry integer
charge since the third integer homology is at most torsion.
However since the instantonic configurations we have
considered are supersymmetric and therefore satisfy the
generalized calibration condition, they are nevertheless
favored ones.
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