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Quantum fluctuations of the vacuum stress-energy tensor are highly non-Gaussian, and can have
unexpectedly large effects on spacetime geometry. In this paper, we study a two-dimensional dilaton
gravity model coupled to a conformal field, in which the distribution of vacuum fluctuations is well
understood. In this model, the fluctuations of the matter field are responsible for the fluctuations of the
geometry itself. By analyzing the geodesic deviation in this model, we show that a pencil of massive
particles propagating on this fuzzy spacetime eventually converges and collapses. This is consistent with
our earlier analysis of null geodesics in [Phys. Rev. Lett. 107, 021303 (2011)].
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I. INTRODUCTION

Quantum fluctuations of the vacuum energy, when
connected to geometry via the Einstein field equations,
cause fluctuations of the spacetime itself. These have
the potential to disturb the motion of particles and even
the underlying causal structure. In Ref. [1], we studied the
impact of the vacuum fluctuations of a conformal field on
the causal structure of spacetime. To do this, we analyzed
the Raychaudhuri equation for a pencil of light in a two-
dimensional dilaton gravity model for which the proba-
bility distribution for the fluctuations is exactly known; the
dilaton field in this case played the role of a transverse area
in the “missing” dimensions. In this context, we showed
that the fluctuations of the stress-energy tensor lead to a
sharp focusing of light cones near the Planck scale,
breaking up the causal structure of spacetime at such small
scales.
Additional evidence for this phenomenon coming from

perturbative algebraic quantum field theory was obtained in
Ref. [2]. The connection between vacuum fluctuations and
spacetime geometry was further studied in Ref. [3]. Since
the exact probability distribution for vacuum fluctuations is
not known in four dimensions, only the variance of the
relative velocity and the mean squared distance fluctuation
could be obtained, through Riemann tensor correlation
functions, in this case. In two spacetime dimensions, on the
other hand, the exact probability distribution for fluctua-
tions of the stress-energy tensor is known, at least for

conformal fields in Minkowski spacetime [4–6]. Finite
results require that the stress-energy operator be smeared by
a test function, but for a wide variety of smearings in time,
the probability distribution for the fluctuations is given by a
shifted gamma distribution [5]. The smearing introduces an
arbitrary time scale, with quantum gravity effects arising as
one approaches the Planck scale.
In this paper, we explore another aspect of vacuum

fluctuations in two spacetime dimensions, which was
neglected in [1]: besides the direct effect on the dilaton,
the vacuum fluctuations of the stress-energy tensor couple
to the metric, inducing fluctuations of the spacetime itself.
Pure Einstein gravity has no dynamics in two dimensions,
since the Einstein-Hilbert action is a topological invariant.
In dilaton gravity, though, the spacetime curvature is
determined by the dilaton potential. Thus, once we find
how the dilaton responds to vacuum fluctuations of the
quantum field, we can determine the curvature fluctuations
and their effect on particle trajectories. This is the main
purpose of this work.

II. THE MODEL

Two-dimensional dilaton gravity can be obtained by
dimensional reduction from higher-dimensional general
relativity. Under such a reduction, the dilaton φ is essen-
tially the transverse area element. In a previous paper [1],
we considered the direct effect of vacuum fluctuations on
φ, viewed as an area, by using a version of the
Raychaudhuri equation in which the fluctuations acted
as a stochastic noise term. Here we consider a process of a
more geometric nature: fluctuations of the vacuum stress-
energy tensor induce fluctuations of the curvature, which in
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turn affect the behavior of timelike geodesics. As we shall
see, the two analyses lead to a consistent picture, in which
vacuum fluctuations at the Planck scale lead the “collapse”
of a pencil of geodesics at that scale.
In a dilatonic theory, with appropriate redefinitions, it is

always possible to bring the action into the form [7,8]

S ¼ SV þ SM; ð1Þ

with

SV ¼
Z

d2x
ffiffiffiffiffiffi
−g

p ½φRþ VðφÞ� ð2Þ

being the geometrical action and

SM ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
LM ð3Þ

being the action for thematter fields. Inwhat follows, wewill
take SM to describe a conformal field with central charge
c̄ ¼ 1. As wewill see later, given a characteristic scale τ̄ (the
smearing scale for the quantum field), the Ricci scalar will be
small compared to 1=τ̄2, and the random geometry will be
close to that of flat spacetime.Wewill therefore approximate
the vacuum fluctuations of thematter stress-energy tensor by
their flat spacetime distribution.
The right-moving/left-moving components of the

smeared stress-energy tensor have probability distributions
for individual measurements given by a shifted gamma
distribution [6],

PðTR=L ¼ωÞ¼Θðωþω0Þ
βαðωþω0Þα−1

ΓðαÞ e−βðωþω0Þ; ð4Þ

with

ω0 ¼
1

48πσ2
; α ¼ 1

24
; β ¼ 2πσ2; ð5Þ

where σ2 ¼ ðΔtÞ2 þ ðΔxÞ2, with Δt and Δx being the
characteristic widths of the smearing in time and space. For
the purpose of numerical simulation, we divide the space-
time in our model into rectangular patches such that
Δt ¼ Δx ¼ τ̄, where τ̄ is an arbitrary scale, which may
be identified later with the Planck scale τp if we want to
investigate quantum gravity effects. We then take the
fluctuations to act independently on each of these patches.
This is not quite correct—fluctuations in nearby patches are
correlated—but as shown in [4], these correlations fall off
very rapidly with distance.
The connection between geometry and vacuum fluctua-

tions comes into being as follows. Varying the action (1)
with respect to φ leads to

R ¼ −V 0ðφÞ: ð6Þ

This equation determines the curvature of the two-
dimensional spacetime in terms of the dilaton φ. The
equation for the dilaton field is obtained by varying the
action with respect to the metric gμν, which leads to

∇μ∇νφ ¼ 1

2
gμνVðφÞ þ gμνT − Tμν; ð7Þ

where Tμν is the stress-energy tensor associated with the
matter field, and T ¼ 0 since we are dealing with a
conformal field. Here we consider a VðφÞ to be small near
φ ¼ 0, so

VðφÞ ¼ 1

2
V0φ

2: ð8Þ

Let us write the spacetime metric in terms of a conformal
factor

ds2 ¼ eρðt;xÞðdt2 − dx2Þ: ð9Þ

In two dimensions, such form can always be achieved, at
least locally, through a choice of coordinates. The equations
of motion (6) and (7) then yield a complicated set of PDEs
to be solved for ρðt; xÞ. To first order in ρðt; xÞ, however,
they simplify to

∂4ρ

∂η3∂ξ ¼ −
V0

4
TR;

∂4ρ

∂η2∂ξ2 ¼ 0;

∂4ρ

∂η∂ξ3 ¼ −
V0

4
TL; ð10Þ

where η ¼ t − x and ξ ¼ tþ x. The general solution to this
system of equations is given by

ρðη; ξÞ ¼ −
V0ηξ

24
ðTRη

2 þ TLξ
2Þ þ ηξðc1 þ c2ηþ c3ξÞ

þ f1ðηÞ þ f2ðξÞ: ð11Þ

The solution that reduces to the Minkowski metric (in the
usual coordinates) when TR ¼ TL ¼ 0 is thus

ρðη; ξÞ ¼ −
V0ηξ

24
ðTRη

2 þ TLξ
2Þ; ð12Þ

which in turn gives rise to a scalar curvature of the
form

Rðη; ξÞ ¼ V0

2
ðTRη

2 þ TLξ
2ÞeV0

24
ηξðTRη

2þTLξ
2Þ: ð13Þ
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These expressions are valid on each rectangular patch of
dimensions Δx ¼ Δt ¼ τ̄, in the center of which we
momentarily put the origin of the coordinates.
We want to work in a regime in which ρ ≪ 1 and the

spacetime is nearly flat. In each patch, the absolute values
of ρ and R in Eqs. (12) and (13) assume maximum values,
ρmax and Rmax, at some point at the boundary of the patch.
Figure 1 shows the curves in the TRTL-plane that corre-
spond to the condition ρmax ¼ 0.1 and Rmax ¼ 0.1 for
various choices of V0.
Although ρ and R can always assume arbitrarily large

values, we see from Fig. 1 that the regions in the TRTL plane
corresponding to ρmax > 0.1 orRmax > 0.1 get smaller asV0

decreases. Using Eq. (4) to define a joint probability function
PðTR; TLÞ ¼ PðTRÞPðTLÞ, we find, for V0 ¼ 1, that
Pðρmax > 0.1Þ ∼ 10−128 and PðRmax > 0.1Þ ∼ 2 × 10−3.
Both of these values can be made arbitrarily small by
choosing a small enough V0 [9].

III. COLLAPSE TIME

We now analyze the behavior of a congruence of timelike
particles in this spacetime. We assume this congruence is
initially given by a pencil of particles with velocity v ¼ 0
with respect to the laboratory (the frame in which the stress-
energy tensor is measured). The particles then follow
geodesics determined by the metric given by Eqs. (9)
and (12). As such, they deviate from each other in response
to the scalar curvature in Eq. (13). Alternatively, we can
solve the Raychaudhuri equation for this congruence,

dθðτÞ
dτ

¼ −θðτÞ2 − 1

2
RðxðτÞÞ; ð14Þ

where τ is the proper time. In terms of the coordinate time t
of the laboratory frame, this becomes

dθðtÞ
dt

¼ −eρðt;xðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _xðtÞ2

q �
θðtÞ2 þ 1

2
Rðt; xðtÞÞ

�
; ð15Þ

where xðtÞ is determined by the coordinate expression of
the geodesic equation with initial coordinate velocity
_xð0Þ ¼ 0. As a result, we have a complicated system of
two coupled nonlinear ODEs for θðtÞ and xðtÞ, with
parameters TR and TL that vary from patch to patch.

Numerical solution

We have solved this system of equations numerically in
steps Δt ¼ τ̄, with the initial condition at each step taken
from the previous one and with θð0Þ ¼ 0, xð0Þ ¼ 0 and
_xð0Þ ¼ 0, that is, an initially parallel pencil of particles
initially at rest. At each step, a numerical value for the
vacuum fluctuation TR=L is randomly chosen using the
probability distribution (4). We evolve the solution until θ
diverges to −∞. We call the time tc for which θðtcÞ → −∞
the “collapse time” of the solution.
The collapse time is itself a random variable, with a

distribution we reconstruct by performing a large numberN
of numerical experiments. The results for N ¼ 106 are
shown in Fig. 2 for V0 ¼ 1 (in units of 1=τ̄2). The
associated mean collapse time is tc ∼ 718, with a standard
deviaton 611 (in units of τ̄). Typical trajectories for xðtÞ and
θðtÞ for this case are shown in Fig. 3.
It is worth emphasizing that although this value of tc is

not particularly small in terms of τ̄, small times of collapse
do play an important role in this model, as Fig. 2 shows. In
fact, the probability that tc < 100τ̄ is ∼0.25% in this case,
which is small but non-negligible. One would find smaller
values for tc by considering larger values of V0, as shown
in Fig. 5.
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FIG. 1. Top left: curves in the TRTL plane for which ρmax ¼ 0.1
for V0 ¼ 1 (outermost curve), V0 ¼ 2, V0 ¼ 5, V0 ¼ 10, V0 ¼
50 and V0 ¼ 100 (innermost curve). Top right: the same for the
condition Rmax ¼ 0.1. The region for which ρmax > 0.1, resp.
Rmax ¼ 0.1, lies outside the corresponding curves. Bottom:
probability of ρmax > 0.1 (left) and Rmax > 0.1 (right) as a
function of V0. All plots are in units τ̄ ¼ 1.
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FIG. 2. Histogram of collapse times for V0 ¼ 1 in units of τ̄.
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The problem with taking larger values for V0 is the
associated growth of ρmax and Rmax. The condition ρ ≪ 1 is
essential to our model, as discussed in the preceding
section. As shown in Fig. 1(c), though, this will hold even
for V0 as large as ∼50 (in units τ̄ ¼ 1). More importantly,
the assumption of small R was implicitly used when the flat
spacetime distribution (4) was adopted for the vacuum
fluctuations TR=L. In contrast to ρmax, the value of Rmax is
much more sensitive to the increase of V0, as shown
in Fig. 1.
Our results, however, are fairly independent of this

detailed form of the probability distribution for TR=L. In
fact, any reasonable distribution with the same mean and
standard deviation as the shifted gamma of Eq. (4) should
lead to similar results. To see this, suppose that the
probability of drawing an energy more negative than a
certain value, say −ω0, is essentially zero [10]. This sets a
lower negative bound for the scalar curvature, say −R0,
from Eq. (13). It then follows from Eq. (14) that θ will
never grow bigger than θc ¼

ffiffiffiffiffiffi
R0

p
and that, once θ falls

bellow −R0, it will inevitably collapse toward −∞. To
illustrate this point, we show in Fig. 4 the histogram for the
collapse times using a discrete distribution for TL=R with
only two possible outcomes, �e0, each with probability

1=2 (where e0 was chosen so that the mean and variance are
the same as before). Our results thus essentially follow from
the nonlinear nature of the Raychaudhuri equation; the
exact details of the fluctuations are not crucial for our
analysis.
Finally, we note from Fig. 5 that for small values of V0

the mean time of collapse is reasonably well fitted to

τc ¼ 718V−2=3
0 ;

in units τ̄ ¼ 1.

IV. CONCLUSION

Previous work has demonstrated that vacuum fluctua-
tions at the Planck scale lead to a rapid “collapse” of a
congruence of massless particles [1]. This was shown in
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FIG. 3. Examples of trajectories for θðtÞ (above) and xðtÞ
(below). The collapse time for this particular experiment was
∼300, with V0 ¼ 1 in units of τ̄.
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FIG. 4. Histogram for the collapse time using a discrete
probability distribution for TL=R with only two possible out-
comes, �e0, each with probability 1=2. The value of e0 was
chosen such that the mean and variance are the same those of
Fig. 2. The number of experiments is again 106. The mean time of
collapse is 684, with a standard deviation 565 (in units τ̄ ¼ 1).
Note the similarity with the histogram of Fig. 2.
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FIG. 5. Mean times of collapse as a function of V0. The
adjusted curve is given tc ¼ 718V−2=3

0 (in units τ̄ ¼ 1).
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two-dimensional dilaton gravity, for which the dilaton field
was interpreted as the transverse area of the missing
dimensions. Although the Raychaudhuri equation for null
expansions does not quite make sense in two dimensions,
the expansion of this missing area, θ̄, still obeys a
Raychaudhuri-like equation

dθ̄
dλ

¼ −θ̄2 − 16πTL; ð16Þ

in which the role of the curvature in the Raychaudhuri
equation (14) is taken over by the stress-energy tensor.
In this work, in contrast, we considered congruences of

massive particles in two dimensions. In this case, the usual
Raychaudhuri equation works perfectly well, and there is
no need to bypass the mediation of the spacetime curvature.
As a result, one can directly relate the convergence of the
congruence of geodesics to the fluctuations of the curvature
tensor, which in turn are caused by the vacuum fluctuations
of the stress-energy tensor.
To do so, we considered a simple two-dimensional

dilaton model, in which fluctuations in the vacuum energy
density of a quantum field induce fluctuations in the
curvature of the spacetime. The fluctuations act independ-
ently on each rectangular spacetime patch with dimensions

Δx ¼ Δt ¼ τ̄. As a result, the curvature scalar in each patch
inherits a gamma-like probability distribution that has zero
mean, is bounded below by a negative value and has an
infinite positive tail. As usual, a positive curvature scalar
focuses the congruence of geodesics, while a negative
curvature scalar defocuses. Our numerical results show
that, in the end, the focusing always wins, so the con-
gruence always collapses. This agrees with the results of
our earlier work [1].
It is worth emphasizing that the overall effect of the

quantum fluctuations is to focus geodesics, a positive
curvature effect. Thus one can think of the quantum
fluctuations as effectively generating a small positive
curvature, at least in the model presented here.
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