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Given a solution to 4D Einstein gravity with an isometry direction, it is known that the equations of
motion are identical to those of a 3D σ model with target space geometry SUð1; 1Þ=Uð1Þ. Thus, any
transformation by SUð1; 1Þ ≅ SLð2;RÞ is a symmetry for the action and allows one to generate new
solutions in 4D. Here we clarify and extend recent work on electromagnetic (EM) duality in the context of
the classical double copy. In particular, for pure gravity, we identify an explicit map between the Maxwell
field of the single copy and the scalars in the target space, allowing us to identify the Uð1Þ ⊂ SLð2;RÞ
symmetry dual to EM duality in the single copy. Moreover, we extend the analysis to Einstein-Maxwell
theory, where we highlight the role of Ehlers-Harrison transformations and, for spherically symmetric
charged black hole solutions, we interpret the equations of motion as a truncation of the putative single
copy for Einstein-Yang-Mills theory.
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I. INTRODUCTION

The classical double copy is an intriguing connection
between gravity and gauge theory [1], which has been
motivated from a relationship between perturbative scat-
tering amplitudes in gauge theory and gravity [2–4].1 In
its simplest form, the central observation is that solutions
to Einstein gravity, or “the double copy,” can be mapped
to solutions of Maxwell’s equations,2 or “the single
copy,” through a Kerr-Schild (KS) decomposition of
the spacetime. Interestingly, in contrast to Kaluza-Klein
dimensional reduction, the KS ansatz maintains dimen-
sionality. More concretely, one considers the spacetime
metric

gμν ¼ ημν þ ϕkμkν; ð1:1Þ

where ημν denotes the metric of flat spacetime, ϕ is a
scalar and k is a null vector, kμkμ ¼ 0, satisfying the
geodesic equation kρ∂ρkμ ¼ 0. The Maxwell gauge field

A arises from the identification A ¼ ϕk. See [6–25] for
related work in this direction.
In this double copy formalism the Schwarzschild sol-

ution corresponds to a Maxwell field with an electric charge
[1], while the Taub-NUT solution possesses a magnetic
charge [26]. Subsequently, the single copy of the Eguchi-
Hanson instanton has been shown to map to a self-dual
Maxwell field [27]. With both electric and magnetic
charges present, this raises the question whether there is
a gravity analogue of electromagnetic (EM) duality, namely
a rotation of the field strength F ¼ dA into �F that honors
the Maxwell equations of motion. This was answered in the
affirmative in two recent papers. In the first a complex
transformation in the gravity is mapped to a complexified
BMS (Bondi-Metzner-Sachs) supertranslation [28], while
in the second [29] a class of real transformations due to
Ehlers [30] (also Geroch[31]) are exploited.
One goal of this work is to clarify comments in the

latter paper. As we explain in the following section, the
magic of Ehlers transformations is that given 4D pure
gravity with a Uð1Þ isometry direction, the equations of
motion are identical to a 3D σ model with a target space
H2. Being maximally symmetric, the hyperbolic space
H2 possesses an isometry group SUð1; 1Þ ≅ SLð2;RÞ
that rotates the scalars, but importantly leaves the 3D
effective action, and therefore the equations of motion,
invariant. Of these three SLð2;RÞ transformations, one
corresponds to a trivial shift that is pure gauge, a second
to a constant rescaling of the Killing vector of the Uð1Þ
isometry direction, while it is the third “Ehlers
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1See the recent review [5] and references therein for a wider
perspective on this.

2Here Maxwell may be viewed as a linearization of the Yang-
Mills theory that features in perturbative statements at the level of
scattering amplitudes.
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transformation”3 that is nontrivial in 4D. In Sec. II, we
identify a linear combination of these transformations as
the appropriate Uð1Þ transformation that is EM duality in
the single copy. Our lower-dimensional approach here
should be contrasted with [29], where due to the fact that
one is working in 4D, the simplicity of the mapping
between the single and double copy is obscured. In short,
Ehlers is simpler in 3D.
Concretely, in Sec. II we rewrite the KS ansatz in a way

appropriate for dimensional reduction on a timelike direc-
tion. In essence, we are combining the classical double
copy in pure gravity with Kaluza-Klein reduction and the
beauty of this approach is that a manifestUð1Þ symmetry in
4D leads to an SLð2;RÞ symmetry in the lower-dimen-
sional theory. Through this process, we show how the
electric and magnetic Maxwell field strengths of the single
copy are related to the derivatives of the scalars of the 3D σ
model in the double copy, thereby providing a succinct way
to understand observations made in [29]. This map between
the scalars parametrizingH2 and the Maxwell fluxes allows
us to define electric and magnetic Maxwell charges at the
level of the 3D effective theory, which transform accord-
ingly. Our construction can be extended to a double KS
ansatz, which makes us believe that it holds for all
stationary spacetimes admitting a KS decomposition.
The generalization from Ehlers transformation to Ehlers-

Harrison transformations [32] in 4D Einstein-Maxwell
theory is immediate. Given the richer field content in
4D, the symmetries of the target spacetime of the 3D σ
model are enhanced from SUð1; 1Þ → SUð2; 1Þ [33–36].
Nevertheless, the interpretation of these enlarged sym-
metries in the double copy is unclear. More precisely,
despite a host of perturbative results at the level of
scattering amplitudes [37–39] and radiation [40,41] sug-
gesting that Einstein-Yang-Mills can be formulated as the
double copy of pure Yang-Mills and Yang-Mills coupled to
a biadjoint scalar with cubic potential, it is currently not
known how to define the classical double copy for black
hole spacetimes where the metric, in particular the gtt term,
scales with the radial direction r as r−n; n > 1.4 This raises
an interesting puzzle concerning the single copy interpre-
tation of charged black holes, especially black holes that are
related to the Schwarzschild solution through Ehlers-
Harrison transformations. In the latter part of this work
(Sec. III), we identify the relevant equations of motions for
a class of spherically symmetric charged black holes and
show that similar equations may be found from a truncation
of the putative single copy.

Concretely, we show through a generalized KS decom-
position [42] that the equations of motion for the Maxwell
fields reduce to the same equations of motion evaluated on
flat spacetime. Somewhat surprisingly, this implies that the
Maxwell field strength with a KS ansatz is always a
harmonic two-form on flat spacetime. Second, we observe
that the Harrison transformation, which turns on electric
and/or magnetic charges in black holes, is new to the
double copy literature. It should be noted that Harrison
transformations generate r−2 terms in the metric from r−1

expressions, thereby taking one outside of the current
classical double copy prescription.5 Third, we observe that
the same KS decomposition allows us to interpret an
additional equation as that of a truncation of the biadjoint
scalar equation [44], itself the expected single copy for
Yang-Mills theory. This provides potentially the first hint of
the biadjoint scalar equation beyond linear order in the
classical double copy approach. Finally, we illustrate how
the Ehlers transformation once again plays the counterpart
of EM duality in this extended setting.

II. EHLERS AND DOUBLE COPY

Here we follow the treatment described in the Appendix
of [45] for pure gravity in 4D, which serves as a warm-up
for the later extension to Einstein-Maxwell theory.
Consider a 4D spacetime with a Killing vector ∂t, which
we will assume is in the temporal direction. The most
general metric consistent with this Uð1Þ symmetry is

ds2 ¼ −VðdtþAÞ2 þ V−1γmndxmdxn; ð2:1Þ

where V is a scalar and A is a vector on the transverse 3D
space with metric γmn,m, n ¼ 1, 2, 3. We have rescaled the
internal space judiciously so as to arrive later in Einstein
frame in 3D. Now, let us demand that this is a vacuum
solution to Einstein gravity, so that it satisfies the equation

Rμν ¼ 0: ð2:2Þ

The joy of this setup is that the equation mixing the
temporal and spatial directions reduces to

dðV2 �3 F Þ ¼ 0; ð2:3Þ

where F is the field strength corresponding to the vector
field, F ¼ dA. Now comes the magic. Locally, one can
replace the above equation with

V2 �3 F ¼ dχ; ð2:4Þ
3Replacing H2 with AdS2, Ehlers is the analogue of a special

conformal transformation, while the shift is a translation and the
scale symmetry is dilatation.

4See [24] for black hole solutions in Einstein-Maxwell-dilaton
theory and their interpretation in terms of the single copy. The
examples given are close cousins of the Schwarzschild solution in
the sense that the gtt term is linear in 1=r.

5We note that all 4D black holes at order G and charge e2 can
be obtained from minimal coupling via tree-level and one-loop
triangle leading singularities [43]. Interestingly, the Harrison
transformation is a classical transformation that appears to rotate
tree-level and one-loop triangle diagrams into each other.
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where we have taken the opportunity to introduce a second
scalar. The fact that we can do this is essentially down to
dimensionality: in 3D vectors are dual to scalars. Gathering
the remaining equations of motion together, it can be shown
that the equations of motion follow from varying the
following 3D action:

L ¼ ffiffiffi
γ

p �
R −

1

2

∂mV∂mV þ ∂mχ∂mχ

V2

�
: ð2:5Þ

From the action it is evident that there is a hyperbolic target
space H2. Being maximally symmetric, it permits 3 Killing
directions. To make these symmetries manifest, it is best to
switch to the complex scalar

τ ¼ χ þ iV; ð2:6Þ

which allows us to rewrite the metric on the hyperbolic
space as

ds2ðH2Þ ¼ dV2 þ dχ2

V2
¼ dτdτ̄

ImðτÞ2 : ð2:7Þ

It is now an easy task to confirm that the 2D metric, and
thus the 3D action, is invariant under the SLð2;RÞ trans-
formation

τ→ τ0 ¼ aτþb
cτþd

; ad−bc¼ 1; a;b;c;d;∈R: ð2:8Þ

We believe that this is the simplest and most elegant way to
present the class of transformations attributable to Ehlers/
Geroch [30,31].6 In Appendix A we provide a coset
description for the same transformation.
Just so we are all on the same page, some comments are

in order. First, the SLð2;RÞ clearly rotates the scalars in the
action, but does not affect the 3D Ricci scalar. For this
reason, the 3D space with metric γmn is indeed invariant.
Second, although we appear to have three free parameters,
the freedom to rescale the Killing vector by a constant and
the freedom to shift χ by a constant removes two of these
parameters. In effect, if one is interested in generating new
inequivalent solutions in 4D, one has only one parameter to
play with. To see this explicitly, it is worth observing that
the following matrix corresponds to transformations that
are either pure gauge or can be removed by rescaling [31]:

�
a b

0 a−1

�
⊂ SLð2;RÞ: ð2:9Þ

Interestingly, as explicitly highlighted in [45], the same
SLð2;R) symmetry is at the heart of Lunin and
Maldacena’s T-duality, shift, and T-duality transformations
]46 ], and there one finds only one parameter, in line with

expectations. We explicitly check in Appendix B that the
most general SLð2;RÞ transformation applied to the
Schwarzschild solution leads to the Taub-NUT solution,
i.e., in addition to the mass, only one additional charge is
generated. This further confirms that there is only one
relevant parameter.

A. Kerr-Schild

Now comes a key point of this work. To fully understand
the Ehlers transformation in terms of the double copy, one
should start with the KS ansatz and identify the scalar V
and vector field A in terms of ϕ and the null vector k. The
only problem is that nowhere in the KS ansatz is a Killing
direction specified, so we will have to put one in by hand.
Luckily for us, for stationary spacetimes, the most general
null vector k can be decomposed as

k ¼ dtþ k̃; ð2:10Þ

where k̃ is a spatial vector with unit norm k̃mk̃
m ¼ 1. Once

this is done, one can easily identify the electric and
magnetic part of the Maxwell field,

Felec ¼ dϕ ∧ dt; Fmag ¼ dðϕk̃Þ; ð2:11Þ

where we have opted to use differential forms. Translated
into the language of the earlier dimensional reduction, one
finds

V ¼ ð1 − ϕÞ; A ¼ ϕ

1 − ϕ
k̃;

γmndxmdxn ¼ ð1 − ϕÞdx⃗2 þ ϕk̃2: ð2:12Þ

With this mapping, it is easy to identify the electric
Maxwell flux in terms of the derivative of the scalar V:

Felec ¼ −dV ∧ dt: ð2:13Þ

The magnetic Maxwell flux requires a little more work,
but in the end takes a simple form. Using the condition
k̃n∂nk̃m¼0, it is a straightforward calculation (Appendix C)
to show that

V2 �3 F ¼ �3Fmag; ð2:14Þ

where the Hodge duality on the lhs is with respect to the
metric γmn, whereas on the rhs the metric is δmn. Since the

6The reader is welcome to compare with Secs. 3 and 5 of the
recent paper [29], where the same transformation is discussed in
4D and the underlying simplicity is lost. It is helpful to note that
τ ¼ iσ.
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Maxwell field is assumed to live in flat spacetime, this is in
line with expectations. Now, returning to the key point in
the Ehlers transformation, where the vector is replaced by a
scalar, we can write

�3Fmag ¼ dχ: ð2:15Þ

Together (2.13) and (2.15) define an explicit mapping
between the Maxwell field strengths in the single copy
and the scalars of the 3D effective description of pure
gravity, namely the double copy. Note, this is a general
statement that holds for stationary spacetimes admitting
a KS description. This is one of our main results,
which generalizes statements in [29] beyond explicit
solutions.

B. EM duality

At this juncture it should be clear that any transformation
of the scalars under SLð2;RÞ is mapped into a trans-
formation in the Maxwell fields. The task remains to
identify the precise linear combination of SLð2;RÞ gen-
erators corresponding to EM duality, or more concretely,
the following transformation:

G → e2iβG; G≡ F þ i �4 F; ð2:16Þ

where β is a constant parameter, which ensures the
equations dF ¼ d �4 F ¼ 0 hold.
The search for this constant parameter is made easy by

the fact that, as explained earlier, there is only one relevant
parameter, so the most general SLð2;RÞ transformation
may be expressed as

�
a b

c d

�
¼

�
cos β sin β

− sin β cos β

�
: ð2:17Þ

Expanding this transformation for small β, we see that it is
generated by a combination of Ehlers/shift and gives rise to
a rescaling, but as explained, the nontrivial solution
generating element is coming from the Ehlers transforma-
tion. We have opted for this form of transformation as it
preserves V → 1 asymptotically, which is a necessary
condition for the spacetime to be asymptotically flat.
Then, bearing in mind that χ can be shifted by a constant,
asymptotically one has V ¼ 1þM=rþ � � � and
χ ¼ N=rþ � � �, where M, N denote constant charges
(see Appendix B for the relevant expressions for the
Schwarzschild spacetime). The requirement that V ¼ 1

asymptotically is enough to fix c2 þ d2 ¼ 1 and the form
(2.17) follows from the constraint ad − bc ¼ 1. Ultimately,
this guarantees that the charges rotate in the expected

manner in line with (2.16). Therefore, the asymptotic
condition V ¼ 1 is enough to fix (2.17) uniquely.7

Returning to the above transformation (2.17), we can
now comment on some special cases. The choice β ¼ π

4
generates the pure Newman-Unti-Tamburino (NUT) space,
while β ¼ π

2
executes the Buchdahl reciprocal transforma-

tion [47]. In contrast to [29], there is no need to rescale to
the Schwarzschild metric8 or treat the Buchdahl trans-
formation separately: everything naturally fits into
SLð2;RÞ. It is worth noting that above we have assumed
a KS ansatz, but it turns out that the above relations (2.13)
and (2.15) are robust. In Appendix C we show that if one
replaces a single KS ansatz with the double KS ansatz,9

then the same relations hold. In essence, provided the
spacetime admits a (double) KS description, which we
should recall is the key assumption in the classical double
copy narrative, then we can relate the electric and magnetic
fluxes in the single copy to scalars in a 3D σ model through
(2.13) and (2.15). It is worth stressing again that (2.15) only
holds for KS spacetimes.
Nevertheless, there is an important caveat to our treatment

here. It is not guaranteed that Ehlers transformations
preserve the KS description and the classification of such
solutions is an open problem. In fact, even an Ehlers
transformation applied to the Schwarzschild solution does
not preserve the single KS description, but the resulting
Taub-NUT spacetime admits a more general double KS
description [26]. For this reason, solutions preserving
a strict KS description are expected to be constrained:
Schwarzschild is precluded. Of course, if the transformed
geometry is not KS, then the classical double copy narrative
fails to apply. Thus, only for spacetimes where the Ehlers
transformation honors theKS description10 can one interpret
Ehlers in the double copy as EM duality in the single copy.
It should be noted that related statements on EM duality
in the single copy are very much solution dependent
(Schwarzschild → Taub-NUT) [28,29], so our analysis here
is in principle more general, albeit the classification of

7Now, the astute reader will note that Ehlers is inherently a
nonlinear transformation, which is expected in gravity. This then
implies that the Maxwell fields defined in (2.13) and (2.15) are
also transformed nonlinearly under (2.17). Nevertheless, as can
be shown for explicit solutions (see Sec. III C, Appendix B or
[29]), such nonlinearity can be removed by coordinate trans-
formation. For this reason, we expect that (2.17) recovers (2.16)
up to a coordinate transformation and that this can be checked on
a case-by-case basis.

8This rescaling can be viewed as yet another SLð2;R) trans-
formation where d ¼ 1=a. To make comparison with the Taub-
NUT geometry presented in [48], and reproduced in Sec. 3 of

[29], note that sin2 β ¼ c2
1

1þc2
1

.
9The Plebanski-Demianski family of metrics [49] admits a

double KS ansatz once the coordinates are complexified, so this is
in principle a large class.

10It can be single or double KS.
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Ehlers-invariant KS spacetimes is an open problem we do
not address.
Setting this important caveat aside, provided one is

careful about the asymptotics, it is possible to define
electric and magnetic Maxwell charges in the usual
manner:

Qe ¼
1

4π

Z
S2
�3dV; Qm ¼ 1

4π

Z
S2
�3dχ: ð2:18Þ

To the extent of our knowledge these charges are new in the
double copy literature, but are not new in general [see for
example [50], Eq. (2.9)]. This constitutes our second key
result. We can motivate the charges both physically and
mathematically. Physically, the Maxwell fields strengths of
the single copy are defined in flat spacetime and we have
seen that they are related to the scalars through (2.13) and
(2.15). Moreover, we have removed the temporal direction,
so this means we are restricted to the 3D flat metric
ds2 ¼ dr2 þ r2ds2ðS2Þ. Thus, this motivates the integrals
on purely physical grounds.
However, we can also rigorously define the asymptotics

mathematically. To do so, let us momentarily redefine the
scalar V → eϕ, so that the scalar equations of motion
become

dð�3dϕ − 2e−2ϕχ �3 dχÞ ¼ 0;

dðe−2ϕ �3 dχÞ ¼ 0: ð2:19Þ

Being conserved quantities, the two-forms in the brackets
are suitable for defining charges and can be integrated over
a closed 2D submanifold. Clearly if V → 1 (ϕ → 0) and
χ → 0 asymptotically as r → ∞, then we recover the
charges defined above. As is clear from the 4D metric
(3.14), V ¼ 1 is a necessary condition for the metric to be
asymptotically flat, whereas χ ¼ 0 can be easily imposed
by exploiting the translational (gauge) symmetry.
Let us return the example considered in [29] to which we

will apply our general one-parameter rotation (2.17). The
data describing the Schwarzschild solution is

V ¼
�
1 −

2M
r

�
; ð2:20Þ

and χ is a constant, so there is no vector field A in the
gravity. Translated into the single copy Maxwell field, the
Schwarzschild solution has only an electric flux. In this
case we have

Qe ¼ 2M; Qm ¼ 0: ð2:21Þ

Performing the SLð2;RÞ transformation, we generate new
scalars and from there we read off the transformed charges,

Q0
e ¼ 2M cos 2β; Q0

m ¼ −2M sin 2β: ð2:22Þ

As a further simple example, it is easy to convince
oneself that the Buchdahl reciprocal transformation [47]
flips the sign of electric charge.

III. EHLERS-HARRISON AND DOUBLE COPY

Admittedly, the presentation in the last section has been
to the point, but probably a bit quick—we did not provide
any details of the dimensional reduction—and some subtle-
ties may still require teasing out. So, in this section we
extend the analysis to the Einstein-Maxwell theory in 4D
and work with explicit solutions. The motivation comes
from the observation that charged black holes permit a
generalized KS description,11 a feature we will explain in
due course. But before going there, let us explain how the
assumption that solutions to Einstein-Maxwell theory in 4D
admit a single Uð1Þ Killing vector leads to a hidden
SUð2; 1Þ symmetry in 3D. See [51] for seminal work in
this direction.
Let us start with the 4D action

L4 ¼
ffiffiffiffiffiffi
−g

p �
R −

1

4
FαβFαβ

�
; ð3:1Þ

where F ¼ dA is the field strength for a Maxwell gauge
field A. Now, consider the following ansatz for the
spacetime metric and one-form:

ds24 ¼ −VðdtþAÞ2 þ V−1γmndxmdxn;

A ¼ fðdtþAÞ þ B ⇒ F ¼ df ∧ ðdtþAÞ þ fF þH;

ð3:2Þ

where we have further definedF ¼ dA andH ¼ dB. Up to
the inclusion of the scalar f and vector B, this is the same
ansatz as before. Now performing the dimensional reduc-
tion at the level of the action by simply inserting the ansatz,
while leaving a demonstration of the consistency to
Appendix D, we arrive at the 3D action:

L ¼ ffiffiffi
γ

p �
R −

1

2V2
ð∂VÞ2 þ 1

4
V2F 2

−
1

4
VðfF þHÞ2 þ 1

2V
ð∂fÞ2

�
: ð3:3Þ

Varying this action with respect to the vectorsA and B, one
gets the following equations of motion:

dðV �3 ðfF þHÞÞ ¼ 0; ð3:4Þ

11This possibility has already been noticed in [11] within the
context of the classical double copy.
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dðV2 � F Þ − Vdf ∧ �ðfF þHÞ ¼ 0: ð3:5Þ

It is worth noting at this point that the exterior derivative of
the second equation is consistent with the first equation and
that truncating f ¼ B ¼ 0 we recover the equation (2.3).
With the equations of motion at hand, we are now in a
position to dualize the vectors through the following
redefinitions:

V �3 ðfF þHÞ ¼ dω ð3:6Þ

V2 �3 F ¼ dχ þ 1

2
ðfdω − ωdfÞ; ð3:7Þ

where the reader should note that the equations of motion
still hold, so once again everything is consistent. Care
should be taken with the sign of the kinetic terms since in
3D spacetime �3�3 ¼ −1, so we eventually end up with a
scalar manifold of signature ðþ;þ;−;−Þ. At this point we
are in a position to import various existing older results in
the literature [33–36] (see [52] for an overview) through
simple field redefinitions. Concretely, we can redefine as
follows:

V ¼ eξ; f ¼
ffiffiffi
2

p
v; ω ¼

ffiffiffi
2

p
u ð3:8Þ

to bring the target spacetime manifold to the form [36]:

ds2 ¼ 1

2
½dξ2 þ e−2ξðdχ þ vdu − udvÞ2� − e−ξðdv2 þ du2Þ:

ð3:9Þ

Once again, we recover the analysis of the previous section
when v ¼ u ¼ 0.
With the target spacetime identified, we can now

enumerate the symmetries. The most trivial correspond
to the three shift symmetries

χ → χ þ c;

v → vþ c; χ → χ − cu;

u → uþ c; χ → χ þ cv; ð3:10Þ

where c is a constant. In addition, we have a pretty obvious
rotational symmetry in the ðu; vÞ plane, which is the usual
EM duality exchanging electric and magnetic fluxes in the
Einstein-Maxwell theory. Although a little less obvious
from the 4D perspective, we have the rescaling symmetry,

ξ→ ξþc; u→ e
c
2u; v→ e

c
2v; χ→ ecχ: ð3:11Þ

The remaining three transformations fleshing out the
SUð2; 1Þ symmetry of the target spacetime are less obvious,
but as explained in [36] are best described through the
introduction of (complex) Ernst potentials:

Φ ¼ 1ffiffiffi
2

p ðvþ iuÞ; E ¼ eξ þ iχ −ΦΦ�: ð3:12Þ

Then to read off the transformed target spacetime, one
simply has to unravel a complex Harrison transformation

Φ0 ¼ Φþ λE
1−2λ�Φ− jλj2E ; E0 ¼ E

1−2λ�Φ− jλj2E ; ð3:13Þ

and a real Ehlers transformation,

Φ0 ¼ Φ
1þ iγE

; E0 ¼ E
1þ iγE

: ð3:14Þ

into constituent components.

A. Maxwell fields in KS spacetimes

We begin our analysis by discussing the implications of a
KS decomposition for the equations of motion of the
Maxwell field strength. Note that the equations of motion
following from the action (3.1) are

d � F ¼ 0; Rμ
ν ¼

1

2
Fμ

ρFν
ρ −

1

8
δμνF2: ð3:15Þ

First, let us observe that the Hodge dual in KS spacetimes
may be explicitly written in terms of coordinates as

ð�FÞμν ¼
1

2!

ffiffiffi
g

p
ϵμνρσgρλgσϵFλϵ

¼ 1

2!

ffiffiffi
η

p
ϵμνρσðFρσ − ϕkσkϵFρ

ϵ − ϕkρkλFλ
σÞ;

¼ 1

2!

ffiffiffi
η

p
ϵμνρσFρσ; ð3:16Þ

where in the second line we have used the fact the inverse of
the metric (1.1) is linear in ϕ and detðgÞ ¼ detðηÞ. We have
also raised and lowered indices using the metric ημν. In the
third line we have used the result kμFμν ∝ kν

12 to convince
ourselves that the ϕ-dependent terms must cancel. Thus,
the Hodge dual of a two-form on a KS spacetime is
equivalent to the Hodge dual on flat spacetime. This means
that the Maxwell field strength is a harmonic two-form on
flat spacetime and this is a generic feature for all KS
spacetimes. We expect similar conclusions to hold for
differential forms of different dimensionality.
Next let us turn our focus to the rhs of the Einstein

equation. Using arguments similar to above, which essen-
tially follow from the fact that k is null, one can show that
the rhs reduces to the same expression but evaluated once
again on flat spacetime, i.e.,

12One can show this by recalling A ¼ ϕk and using the null
condition kμkμ ¼ 0 and the geodesic equation kμ∂μkν ¼ 0 to
show that kμFμν ¼ ðkμ∂μϕÞkν.
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Rμ
ν ¼

�
1

2
Fμ

ρFν
ρ −

1

8
δμνF2

�
jg¼η: ð3:17Þ

In summary, provided a KS description exists, the Maxwell
equations of motion are reduced to those of flat spacetime.
This constitutes a remarkable simplification.

B. A puzzle with the single copy

Having spelled out the implications for the Maxwell
field, we turn our attention to what we will refer to as
a generalized KS description [42], where we use “gener-
alized” in the sense that the scalar in the pure gravity KS
ansatz picks up a component that depends on the Maxwell
fields. Here, we quickly confirm that any black hole
solution with purely diagonal metric components gtt ¼
grr ¼ fðrÞ can be brought to a KS form. We follow the
treatment in [29]. Consider the redefinition

dl ¼ dtþ dr
fðrÞ ; ð3:18Þ

so that the metric becomes

ds2 ¼ −fðrÞdl2 þ 2dldrþ r2ds2ðS2Þ: ð3:19Þ

Then further redefining l ¼ t̄þ r, we can bring the metric
to the generalized KS form:

ds2 ¼ −dt̄2 þ dr2 þ r2ds2ðS2Þ þ ð1 − fðrÞÞðdt̄þ drÞ2:
ð3:20Þ

Let us now be more specific and consider the Reissner-
Nordstrom (RN) black hole where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
: ð3:21Þ

As we show in Appendix E this solution, as well
as its dyonic generalization, can be generated from
Schwarzschild by employing a Harrison transformation.
In some sense, the Schwarzschild solution and the RN
solution are no longer independent, they are related by a
rotation in the effective 3D target manifold.
From the perspective of scattering amplitudes this is an

interesting result. Let us explain why. In [43] it is shown
that to recover the Schwarzschild and RN black hole
solutions at leading order in G and e2 through minimal
coupling one requires respectively tree-level and one-loop
triangle leading singularities. In effect, the existence of a
simple rotation from Schwarzschild to the RN solution
suggests that some hint of the same symmetry should exist
perturbatively at the level of scattering amplitudes. Thus,
the existence of Harrison transformations also has impli-
cations for amplitudes.

Now this brings us to an interesting observation. As
noted in [11], we are in a position to split the scalar ϕ into a
purely gravitational part ϕg and a part that is electromag-
netic in origin ϕem, ϕ ¼ ϕg þ ϕem, where ϕg ∼ r−1 and
ϕem ∼ r−2. As we have already shown the Maxwell field
strength is a harmonic two-form on flat spacetime, which
means that the rhs of the Einstein equation scales as
F2 ∼ r−4. This term is canceled by the ϕem term as we
now explicitly demonstrate.
Recall that once a spacetime is written in KS format, the

lhs of the Einstein equation becomes [1]

R0
0 ¼

1

2
∇2ϕ;

Ri
0 ¼ −

1

2
∂j½∂iðϕkjÞ − ∂jðϕkiÞ�;

Ri
j ¼

1

2
∂l½∂iðϕklkjÞ þ ∂jðϕklkiÞ − ∂lðϕkikjÞ�: ð3:22Þ

Explicitly for the RN solution and the first Einstein
equation, we find the equation13:

1

2
∇2ϕg −

1

2
∇2

�
Q2

r2

�
¼ 1

2
F0

ρF0
ρ −

1

8
F2 ¼ −

ðQ2Þ
r4

;

ð3:23Þ

where similar expressions exist for the remaining equa-
tions. Since the Laplace operator is defined with respect to
flat spacetime, it is clear that the Einstein equation is
satisfied through two different equations that are schemati-
cally of the form

∇2ϕg ∼ 0; ∇2ϕem ∼ ϕ2
em: ð3:24Þ

While the first equation is just the expected term from the
classical double copy for pure gravity [1], where it is
interpreted as the Maxwell equation, the second equation is
intriguing. Although we have focused on the RN solution,
essentially for illustrative purposes, it should be stressed
that our observations here extend to dyonic black holes
with spherical symmetry. Moreover, when the electric and
magnetic charges agree, the corresponding solution is not
only a solution to Einstein-Maxwell theory, but also
Einstein-Maxwell-dilaton theory.
Let us try to interpret these equations in terms of the

putative single copy. To do so, we recall that at the
perturbative level Einstein-Yang-Mills should be the double
copy of Yang-Mills and a biadjoint scalar field with a cubic
potential [37–39]. Let us start from the single copy action
presented in Eq. (4.5) of [37]:

13In our conventions the field strength is F ¼ 2 Q
r2 dt ∧ dr.
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L ¼ −
1

4
Fâ
μνF

μν
â þ 1

2
ðDμϕ

aÞâðDμϕbÞâδab

þ gg0

3!
ðifâ b̂ ĉÞFabcϕ

âaϕb̂bϕĉc; ð3:25Þ

where we have defined Yang-Mills field strengths and
covariant derivatives

Fâ
μν ¼ ∂μAâ

ν − ∂νAâ
μ þ gfâb̂ ĉA

b̂
μAĉ

ν;

ðDμϕ
aÞâ ¼ ∂μϕ

âa þ gfâb̂ ĉA
b̂
μϕ

ĉa: ð3:26Þ

Following [41], we have dropped an Oðg2Þ quartic scalar
term in the action on the grounds that it is not needed for the
double copy. One should note that g0 is arbitrary and
dimensionful, while g and fâb̂ ĉ denote the coupling and
structure constants for the gauge group. The rank-three
tensor Fabc has entries that are given by the structure
constants of a subgroup of SOðnÞ. We refer the reader
to [37] for further details.
The corresponding equations of motion for the action

(3.25) may be expressed as

0 ¼ −∂μðDμϕaÞâ þ gfĉb̂ âA
b̂
μðDμϕaÞĉ

þ gg0

2!
ifâ b̂ ĉFabcϕ

b̂bϕĉc; ð3:27Þ

0 ¼ ∂μFâ
μν − gfĉb̂ âA

b̂
μFĉ

μν þ gfb̂â ĉϕĉaðDνϕaÞb̂: ð3:28Þ

Let us now put these equations in context. First, one can
consistently truncate out the scalars through ϕâa ¼ 0
and one arrives at Yang-Mills theory through (3.28), which
is the expected single copy for pure gravity, at least in the
classical double copy prescription.14 Alternatively, one
could try to truncate out the gauge fields. Doing so, one
recovers the biadjoint scalar equation from (3.27),

∇2ϕâa ¼
gg0

2!
ifâ b̂ ĉFabcϕ

b̂bϕĉc; ð3:29Þ

but unfortunately the consistency of this truncation is
spoiled by the final term in (3.28) and one is left with a
constraint on ϕ, fb̂â ĉϕĉa∂νϕb̂a ¼ 0. Modulo this con-
straint, one recovers the biadjoint scalar equation on the
nose, which it should be stressed is the expected single
copy for Yang-Mills theory. The key point we wish to stress
here is that one can almost disentangle the equations into
the single copy for gravity and the single copy for
Yang-Mills.

Now, let us recall that in the original classical double
copy formulation [1], one interprets the zeroth copy, or the
∇2ϕ ¼ 0 equation, as simply a linearisation of the biadjoint
scalar equation (3.29). It is valid to ask if one can go further.
Here, we can follow the analysis of [44] and adopt a
spherical ansatz for the scalar ϕâa ¼ δâaϕ, while at the
same time identifying the structure constants fâb̂ĉ and
iFabc, which for simplicity could be identified with the
structure constants of the Lie algebra g ¼ suð2Þ.15 This
condition is enough to solve the constraint remaining from
(3.28), so that (3.27) reduces to the required additional
equation on the right-hand side of (3.24).
Note, throughout the above discussion we omitted the

gauge fields, but these can be reintroduced and truncated
through the choice Aa ¼ A ⇒ Fa ¼ F. This would seem to
interfere with the biadjoint scalar equation (3.27), but for
the choice of configurations we consider, namely spheri-
cally symmetric charged black holes in Einstein-Maxwell
theory, one can confirm that ∂μAμ ¼ Aμ∂μϕ ¼ 0 is always
true. To appreciate this fact, note that ϕ is a function of the
radial direction, whereas A is the Maxwell field inferred
from the metric, which for any charged black hole related to
Schwarzschild through a Harrison-Ehlers transformation
will only possess At and Aϕ components.
Let us summarize our discussions here. We observed

that any spherically symmetric solution to Einstein-
Maxwell theory could be put in a generalized KS form.
Doing so, one observes that the mass and the charges
have to cancel separately through two distinct equations.
One of these is the original equation from the classical
double copy and this suffices to explain metrics with r−1

scaling. We have argued that the additional equation can
be recovered from the equations of motion of the putative
single copy to Einstein-Yang-Mills via a well-defined
truncation procedure. In particular, this truncation allows
one to avoid the usual linearization of the biadjoint scalar
equation [1].

C. Ehlers transformation

Our goal in this subsection is to show how the nontrivial
Ehlers transformation (3.14) is EM duality in the extended
setting of Einstein-Maxwell theory. This should be con-
trasted with the trivial form of EM duality where one
exploits the rotational symmetry in the ðv; uÞ directions of
the target spacetime. Concretely, let us start with the dyonic
solution (E10) and generate a new geometry with electric,
magnetic and NUT charge. After performing an Ehlers
transformation (3.14) and a rescaling, the final data
becomes

14Strictly speaking, one would expect the bosonic sector of
supergravity, i.e., gμν; Bμν and ϕ, as in the perturbative double
copy, but B and ϕ are not relevant in our example.

15As noted in [44], the more general choice ϕâa ¼ χâξa leads
to a vanishing of the cubic term and a resulting free field
theory.
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eξ ¼ ðr2 − 2MrþQ2 þ P2Þec
r2 þ γ2ðr − 2MÞ2 ;

χ ¼ −
γðr − 2MÞ2ec

r2 þ γ2ðr − 2MÞ2 ;

v ¼ −
ffiffiffi
2

p ðQrþ γPðr − 2MÞÞec
2

r2 þ γ2ðr − 2MÞ2 ;

u ¼ −
ffiffiffi
2

p ðPr − γQðr − 2MÞÞec
2

r2 þ γ2ðr − 2MÞ2 : ð3:30Þ

Translating from the 3D target spacetime to the 4D solution
to Einstein-Maxwell, we arrive at the following solution:

ds2 ¼ −eξðdtþAÞ2 þ e−ξðdr2 þ r2fðrÞds2ðS2ÞÞ;
A ¼

ffiffiffi
2

p
vðdtþAÞ þ B ð3:31Þ

where we have defined

A ¼ 4Me−cγ cos θdϕ; B ¼ −2e−c
2ðP − γQÞ cos θdϕ:

ð3:32Þ

By performing the following transformations [29],

ec ¼ 1þ γ2; N ¼ 2γM
1þ γ2

;

r − Nγ ¼ ρ; M0 ¼ M
1 − γ2

1þ γ2
: ð3:33Þ

we can bring it to the form:

ds2 ¼ −
ρ2 − 2M0ρ − N2 þQ2 þ P2

ρ2 þ N2
ðdtþ 2N cos θdϕÞ2

þ ρ2 þ N2

ρ2 − 2M0ρ − N2 þQ2 þ P2
dρ2

þ ðρ2 þ N2Þds2ðS2Þ;

A ¼ −2
�
ρðQþ γPÞ − NðP − γQÞ

ρ2 þ N2

× ðdtþ 2N cos θdϕÞ þ ðP − γQÞ cos θdϕ
�
; ð3:34Þ

where we have performed the following further redefini-
tions:

Qþ γPffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p → Q;
P − γQffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p → P; ð3:35Þ

so that we recover the RN-Taub-NUT solution of [53] with
g ¼ 0 (see also [54] for the purely electric solution).
At this point we are again in a position to comment on

the Maxwell charges in the double copy. However, there are
some small differences, which we now outline, otherwise

the basic idea is the same. In our earlier section we showed
that (2.15) held in the absence of a Maxwell field. As
explained above, the Maxwell field in the double copy
formalism is essentially a Maxwell field inferred from the
metric, which sources a scalar potential ϕg in a generalized
KS description. Since this is purely a quantity we define at
the level of the metric, the Maxwell fields in Einstein-
Maxwell do not affect this definition. For this reason, (2.15)
is generalized to

�3Fmag ¼ V2 �3 F ¼ dχ þ vdu − udv; ð3:36Þ

where as before Hodge duality is performed on different
spaces. It is worth noting that in the original dyonic solution
(E10) this term is not sourced, so the Maxwell field in the
double copy is purely electric. However, once we perform
an Ehlers transformation, as we have seen above, χ, u and v
become nonzero, so this term makes a contribution. Taking
into account the rescaling, we find that the electric and
magnetic flux are

Qe ¼
1

4π

Z
S2
�3dV ¼ 2M0;

Qm ¼ 1

4π

Z
S2
�3ðdχ þ vdu − udvÞ ¼ −2N; ð3:37Þ

where it can checked that u, v have the correct asymptotic
form, i.e., u; v → 0 as r → ∞, thus ensuring that our
definition of the charges is once again consistent with
the scalar equations of motion. Note, these charges are
purely gravitational and should not be confused with P, Q,
which are electromagnetic in nature.
It is worth noting that since N2 þM02 ¼ M2, or alter-

natively since the NUT charge N combines with the new
mass M0 to recover the original mass of the black hole M,
both the electric and magnetic Maxwell charges have been
transformed from the original Schwarzschild geometry.
Finally, following the arguments similar to [55], where a
class of solutions to Einstein-Maxwell in Plebanski for-
malism [56] are studied, one can convince oneself that the
above metric can be brought to a generalized double KS
description.

IV. CONCLUSIONS

In the earlier part of this work we married the KS ansatz
of pure gravity with a natural 4D to 3D dimensional
reduction, which allowed us to identify the Maxwell field
strengths of the double copy formalism directly in terms of
the scalars parametrizing a hyperbolic coset geometry in
3D. As we have argued, this can be done for generic
spacetime geometries and it is the rotation of the scalars
under a Uð1Þ ⊂ SLð2;RÞ that is mapped to EM duality in
the Maxwell fluxes of the double copy formalism. We
believe our work clarifies and generalizes to stationary
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spacetimes admitting a (double) KS form, the findings
presented earlier in [29].
In the latter part of this work, we extended our findings

to Einstein-Maxwell theory in 4D. To do so, we identified
the 3D σ model with SUð2; 1Þ symmetry, and tried to
interpret the equations of motion of Einstein-Maxwell
theory, at least in the context of spherically symmetric
charged black holes, in terms of the equations of motion of
the putative single copy. In particular, starting from the
putative single copy for Einstein-Yang-Mills [37,41], we
showed that a truncation exists whereby one not only
recovers the usual classical double copy prescription that
allows for r−1-terms in the metric, but also an additional
equation that corresponds to the r−2-terms. As we
explained, the latter is a truncation of the biadjoint scalar
equation constituting the expected single copy for Yang-
Mills theory, thus generalizing the zeroth copy of Ref. [1].
That being said, it should be stressed here that we are not
claiming that Einstein-Maxwell has a single copy descrip-
tion, only that one can find an interpretation of the
equations of motion for spherically symmetric charged
black holes in Einstein-Maxwell within the putative single
copy for Einstein-Yang-Mills theory. This is simply a
statement about the existence of a truncation, but whether
or not it is coincidental requires further investigation.
Our work raises a number of interesting future directions.

First, it is clear that EM duality in the double copy can be
realised in terms of BMS symmetries [28] and our analysis
shows EM duality is also related to Ehlers transformations
(see also [29]), so the task remains to connect Ehlers
transformations to BMS symmetries directly in pure
gravity, before potentially extending to Einstein-Maxwell
theory or equivalent. On that note, an interesting recent
paper [57] discusses dualities in linearized gravity and it is
conceivable that this is the Ehlers transformation at the
nonlinear level once a Killing direction is assumed.
Moreover, the connection in Sec. III.2 is intriguing and
we should endeavor to extend it to Einstein-Maxwell-
dilaton theory, a setting where the (classical) double copy is
expected to be on firmer footing.
It would be interesting to extend the results presented

here to asymptotically (anti)–de Sitter spacetimes. That
being said, the simplest generalization of introducing a
cosmological constant does not work. To see why, let us
return to (2.5) and observe that the inclusion of a cosmo-
logical constant in 4D leads to a 3D cosmological constant
dressed by a V−1 factor. As observed in [58] (see also [59]),
demanding that the 3D action is invariant forces one to
consider SLð2;RÞ transformations that are pure gauge
(2.9). Nevertheless, extensions to different dimensions
appear pretty immediate. Indeed, there are numerous
examples of supergravity theories—where the classical
double copy story is being actively studied [23–25]—that
can be truncated to scalar sectors and similar sym-
metries arise.
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APPENDIX A: SYMMETRIES
OF THE COSET SLð2;RÞ=Uð1Þ

In this section, we illustrate how the symmetries are
manifest at the level of the coset SLð2;RÞ=Uð1Þ. Consider
the matrices

t0 ¼
�
1 0

0 −1

�
; tþ ¼

�
0 1

0 0

�
; t−¼

�
0 0

1 0

�
; ðA1Þ

which generate the Lie algebra slð2Þ:

½t0; tþ�¼ 2tþ; ½t0; t−� ¼−2t−; ½tþ; t−� ¼ t0: ðA2Þ

Exponentiating these matrices, we get elements of the Lie
group SLð2;RÞ,

eαt0 ¼
�
eα 0

0 e−α

�
; eβtþ ¼

�
1 β

0 1

�
; eγt− ¼

�
1 0

γ 1

�
:

ðA3Þ

Note, these are clearly all of the form

�
a b

c d

�
∈ SLð2; RÞ; ad − bc ¼ 1: ðA4Þ

From the matrix,

V ¼ eχtþeln
ffiffiffi
V

p
t0 ¼

�
V

1
2 V−1

2χ

0 V−1
2

�
; ðA5Þ

we can define the current J ¼ V−1dV, from where we
can further define the target space metric through
ds2 ¼ TrðP2Þ, where P denotes the symmetric part of J,
P≡ 1

2
ðJ þ JTÞ. The finite transformations come from

M0 ¼ gMgT; ðA6Þ

where g ∈ SLð2;RÞ and we have defined M ¼ VVT .
Concretely, we have
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�
V 0 þ χ02

V 0
χ0
V 0

χ0
V 0

1
V 0

�
¼
�
a b

c d

��
Vþ χ2

V
χ
V

χ
V

1
V

��
a c

b d

�
: ðA7Þ

One can check that this is equivalent to

τ0 ¼ aτ þ b
cτ þ d

; τ≡ χ þ iV: ðA8Þ

This provides a realization of the symmetries of the
hyperbolic space H2 starting from the coset description.
Here, it is clear that t0 is generating scale transformations,
tþ corresponds to pure gauge transformations, while it is t−
that is generating the nontrivial Ehlers transformations.

APPENDIX B: GENERAL SLð2;RÞ
TRANSFORMATION

In this section we comment on the general SLð2;RÞ
transformation applied to Schwarzschild with a goal to
convince ourselves that of the three unconstrained SLð2;RÞ
parameters, only one is relevant after various redefinitions.
Recall the most general form of a SLð2;RÞ transformation
is given by (2.8). For the Schwarzschild solution we have

V ¼ 1 −
2M
r

; χ ¼ 0; ðB1Þ

so under the SLð2;RÞ transformation we get following
expressions for V 0 and χ0:

V 0 ¼ rðr−2MÞ
c2ðr−2MÞ2þd2r2

; χ0 ¼ acðr−2MÞ2þbdr2

c2ðr−2MÞ2þd2r2
:

ðB2Þ

Using (2.4) the two-form F takes following form:

F ¼ 4dcMvolðS2Þ: ðB3Þ

Finally the 4D metric can be written as

ds2 ¼ −
rðr − 2MÞ

c2ðr − 2MÞ2 þ d2r2
ðdtþ 4Mdc cos θdφÞ2

þ c2ðr − 2MÞ2 þ d2r2

rðr − 2MÞ ds23 ðB4Þ

where we have defined,

ds23 ¼ dr2 þ rðr − 2MÞðdθ2 þ sin2 θdφ2Þ: ðB5Þ

In above metric only two of independent parameters of
SLð2;RÞ appear. Indeed one can show that one of these
parameters can be also eliminated by a shift and a rescaling
of both the radial and time coordinates. If we define two
positive parameters r� by

rþ ¼ 2Mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p ; r− ¼ 2Md2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p : ðB6Þ

After a shift and scaling

r →
rþ rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p ; t →
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ d2
p ðB7Þ

metric (B4) takes following form:

ds2 ¼ −fðrÞðdt − 2
ffiffiffiffiffiffiffiffiffiffi
rþr−

p
cos θdφÞ2

þ dr2

fðrÞ þ ðr2 þ rþr−Þds2ðS2Þ; ðB8Þ

where function f is defined by

fðrÞ ¼ ðrþ rþÞðr − r−Þ
r2 þ rþr−

: ðB9Þ

This is the metric of the Taub-NUT space time.

APPENDIX C: DOUBLE KS

In this section we provide some details to support the
identity (2.15). We work with a double KS ansatz for
greater generality. Consider the double KS ansatz:

gμν ¼ ημν þ ϕkμkν þ ψlμlν; ðC1Þ

where kμ and lμ satisfy following equations:

ημνkμkν ¼ gμνkμkν ¼ 0; ημνlμlν¼ gμνlμlν¼ 0;

ημνkμlν ¼ gμνkμlν¼ 0; kμ∂μkν¼ 0; lμ∂μlν¼ 0: ðC2Þ

Assuming ∂t is a Killing direction, we can always write

k ¼ dtþ k̃; l ¼ dtþ l̃: ðC3Þ

Rewriting everything in terms of the earlier ansatz (3.14)
gives

V ¼ 1 − ϕ − ψ ; A ¼ −V−1ðϕk̃þ ψ l̃Þ ðC4Þ

and the 3D metric ds23 becomes

ds23 ¼ γmndxmdxn ¼ Vðdx2i þ ϕk̃2 þ ψ l̃2Þ þ ðϕk̃þ ψ l̃Þ2:
ðC5Þ

To find the Hodge dual, first we need to invert the above
metric. It is easy to show that the inverse metric is

γmn ¼ ð1 − ϕ − ψÞ−1ðδmn − ϕk̃mk̃n − ψ l̃ml̃nÞ; ðC6Þ

where we defined k̃m and l̃m by
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k̃m ¼ δmnk̃n; l̃m ¼ δmnl̃n: ðC7Þ

Now, using (C4) and (C2) we get

ðV2 �3 F Þp ¼ −2∂mðϕk̃n þ ψ l̃nÞϵmnp ðC8Þ

which can be further rewritten as (2.15). Although we have
not performed the calculation, there is nothing that suggests
the same analysis will not work for a KS ansatz with three
null vectors.

APPENDIX D: CONSISTENCY OF
DIMENSIONAL REDUCTION

In this section, we show that the dimensional reduction
of 4D Einstein-Maxwell theory on a temporal direction
leads to the four-dimensional target spacetime in the text.
We will perform this reduction at the level of the action and
equations of motion (EOMs), thereby demonstrating con-
sistency. The EOMs of the action (3.1) are

Rμν −
1

2

�
FμρFν

ρ −
1

4
gμνF2

�
¼ d �4 F ¼ 0: ðD1Þ

Now, we can reduce to 3D through the ansatz16:

ds24 ¼ −e2VðdtþAÞ2 þ ds23;

A ¼ fðdtþAÞ þ B ⇒

F ¼ df ∧ ðdtþAÞ þ fF þH; ðD2Þ

where we have further defined F ¼ dA and H ¼ dB.
For the reduction to 3D, we have the Ricci tensor,

Rαβ ¼ R̄αβ −∇β∇αV − ∂αV∂βV þ 1

2
e2VF αγF β

γ

Rα0 ¼
1

2
e−2V∇γðe3VF γ

αÞ;

R00 ¼ ∇γ∇γV þ ∂γV∂γV þ 1

4
e2VF αβF αβ: ðD3Þ

Doing the reduction directly at the level of the action
(3.1), we get

L3 ¼
ffiffiffiffiffi
g3

p
eV

�
R̄þ 1

4
e2VF 2 −

1

4
ðfF þHÞ2

þ 1

2
e−2Vð∂fÞ2

�
: ðD4Þ

Note that this action is not in Einstein frame, but perform-
ing the conformal transformation g3 → e−2Vγ brings it to

the form quoted in the text once V is redefined. It turns out
that the truncation is consistent as we now demonstrate.
First, observe that 4D Maxwell EOM leads to the two

equations in 3D:

dðeV �3 ðfF þHÞÞ ¼ 0; ðD5Þ

dðe−V �3 dfÞ þ eV �3 ðfF þHÞ ∧ F ¼ 0: ðD6Þ

These equations follow from the action (D4) upon varying with
respect toB andf, respectively, so the action passes the first test.
Note, the first equation will allow us introduce a scalar.
The remaining Einstein equation becomes

∇2V þ ð∂VÞ2 þ 1

4
e2VF 2 −

1

4
e−2Vð∂fÞ2

−
1

8
ðfF þHÞ2 ¼ 0; ðD7Þ

1

2
e−2V∇γðe3VF γ

αÞ þ
1

2
e−V∂γfðfF̃ þHÞαγ ¼ 0; ðD8Þ

R̄αβ −∇β∇αV − ∂αV∂βV þ 1

2
e−2V∂αf∂βf þ 1

2
e2VF αγF β

γ

−
1

2
ðfF þHÞαγðfF þHÞαγ ¼ 0: ðD9Þ

One can check that (D7) follows from the action (D4) by
varying V, while (D8) follows from (D4) by varying with
respect to A. Finally, it can be checked that the Einstein
equation follows from the action. This demonstrates the
consistency of the reduction, which is modulo a conformal
transformation the same as the action (3.3) quoted in
the text.

APPENDIX E: HARRISON TRANSFORMATION

Since these transformations may look new to a hep-th
readership, let us get oriented by describing an explicit
example. To begin, let us first assume ξ ≠ 0, which is
enough to describe a Schwarzschild solution, and generate
a dyonic solution through a complex Harrison transforma-
tion. To preserve asymptotic flatness, as we did previously
for the Ehlers transformation in pure gravity, we will also
perform a scale transformation. More concretely, we will
consider

λ ¼ κeiα: ðE1Þ

After the transformation, the solution is

v ¼ κ cos α
ffiffiffi
2

p
eξ0e

c
2

1 − κ2eξ0
; u ¼ κ sin α

ffiffiffi
2

p
eξ0e

c
2

1 − κ2eξ0
;

eξ ¼ eξ0ec

ð1 − κ2eξ0Þ2 ; ðE2Þ16This is the same as the ansatz in the text up to the
replacement e2V → V.
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where c is a scaling parameter we have introduced and ξ0
denotes the original data, in this case the Schwarzschild
solution

eξ0 ¼ 1 −
2M
r

: ðE3Þ

The first thing to note is that this transformation is a
symmetry of the target spacetime and one can check that

1

2
dξ2 − e−ξðdv2 þ du2Þ ¼ 1

2
dξ20: ðE4Þ

Since the 3D effective action is invariant, this guarantees a
new solution in 4D and the task remains to identify the
explicit form of the final solution. Evaluating all expres-
sions, and performing Hodge dualities where necessary to
identify the vector fields, we find that the final solution may
be expressed as

ds2¼−
ecrðr−2MÞ

ðrð1− κ2Þþ2Mκ2Þ2dt
2

þðrð1− κ2Þþ2Mκ2Þ2
ecrðr−2MÞ ½dr2þ rðr−2MÞds2ðS2Þ�;

A¼ 2e
c
2κcosαðr−2MÞ

rð1− κ2Þþ2Mκ2
dt−e−

c
2κ sinα4Mcosθdϕ: ðE5Þ

This is still rather unsightly and to bring it to a more
appealing form, one should consider the following change
in the radial coordinate and accompanying judicious choice
for the rescaling,

e
c
2r̃ ¼ rð1 − κ2Þ þ 2Mκ2; ec ¼ ð1 − κ2Þ2: ðE6Þ

With these substitutions, we can simply drop tildes on the
radial coordinate and recast the solution as

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ds2ðS2Þ;

A ¼ 2κ cos α

�
1 −

2M
rð1 − κ2Þ

�
dt

−
κ

ð1 − κ2Þ sin α4M cos θdϕ; ðE7Þ

where we have further defined

fðrÞ ¼ 1 −
2Mð1þ κ2Þ
rð1 − κ2Þ þ 4M2κ2

r2ð1 − κ2Þ2 : ðE8Þ

Observe that the rescaling was instrumental to recover flat
asymptotics and that the final solution can be brought to a
more familiar form through the redefinitions,

M0 ¼Mð1þ κ2Þ
ð1− κ2Þ ; Q¼ κ cosα2M

ð1− κ2Þ ; P¼ κ sinα2M
ð1−κ2Þ ;

ðE9Þ

so that we arrive at the final expression:

ds2¼−fðrÞdt2þ 1

fðrÞdr
2þ r2ds2ðS2Þ;

A¼−
2Q
r
dt−2Pcosθdϕ; fðrÞ¼ 1−

2M
r

þQ2þP2

r2
:

ðE10Þ

Note, we have dropped a prime onM and also a constant in
the electric component of A that was pure gauge.
On the whole, this is more or less as we may have been

expected. We have seen that when pure Einstein gravity is
coupled to Maxwell theory in 4D, we have a larger class of
hidden symmetries upon dimensional reduction on a Uð1Þ
Killing direction. Within this class, one finds the class of
transformations originally identified by Harrison [32],
which provides a means to generate charged black hole
solutions from the Schwarzschild solution. Here, we have
opted for a complex transformation, so that the resulting
geometry is dyonic, but a real Harrison transformation in
tandem with a rotation in the ðu; vÞ plane of the target
spacetime achieves the same result. We emphasise once
again the role of a rescaling transformation in maintaining
the asymptotics.

[1] R. Monteiro, D. O’Connell, and C. D. White, Black holes
and the double copy, J. High Energy Phys. 12 (2014)
056.

[2] Z. Bern, J. J. M. Carrasco, and H. Johansson, New relations
for gauge-theory amplitudes, Phys. Rev. D 78, 085011
(2008).

[3] Z. Bern, J. J. M. Carrasco, and H. Johansson, Perturbative
Quantum Gravity as a Double Copy of Gauge Theory, Phys.
Rev. Lett. 105, 061602 (2010).

[4] Z. Bern, T. Dennen, Y. t. Huang, and M. Kiermaier, Gravity
as the square of gauge theory, Phys. Rev. D 82, 065003
(2010).

EHLERS TRANSFORMATIONS AS EM DUALITY IN THE … PHYS. REV. D 102, 126017 (2020)

126017-13

https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevD.78.085011
https://doi.org/10.1103/PhysRevLett.105.061602
https://doi.org/10.1103/PhysRevLett.105.061602
https://doi.org/10.1103/PhysRevD.82.065003
https://doi.org/10.1103/PhysRevD.82.065003


[5] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R.
Roiban, The duality between color and kinematics and its
applications, arXiv:1909.01358.

[6] S. Sabharwal and J.W. Dalhuisen, Anti-self-dual spacetimes,
gravitational instantons and knotted zeros of the Weyl tensor,
J. High Energy Phys. 07 (2019) 004.

[7] A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes, and S.
Nagy, Yang-Mills Origin of Gravitational Symmetries,
Phys. Rev. Lett. 113, 231606 (2014).

[8] L. Borsten and M. J. Duff, Gravity as the square of Yang-
Mills?, Phys. Scr. 90, 108012 (2015).

[9] A. K. Ridgway and M. B. Wise, Static spherically symmet-
ric Kerr-Schild metrics and implications for the classical
double copy, Phys. Rev. D 94, 044023 (2016).

[10] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, and C.
D. White, The double copy: Bremsstrahlung and accelerat-
ing black holes, J. High Energy Phys. 06 (2016) 023.

[11] M. Carrillo-Gonzalez, R. Penco, and M. Trodden, The
classical double copy in maximally symmetric spacetimes,
J. High Energy Phys. 04 (2018) 028.

[12] A. Anastasiou, L. Borsten, M. J. Duff, M. J. Hughes, A.
Marrani, S. Nagy, and M. Zoccali, Twin supergravities from
Yang-Mills theory squared, Phys. Rev. D 96, 026013 (2017).

[13] A. Anastasiou, L. Borsten, M. J. Duff, A. Marrani, S. Nagy,
and M. Zoccali, Are all supergravity theories Yang-Mills
squared?, Nucl. Phys. B934, 606 (2018).

[14] G. L. Cardoso, S. Nagy, and S. Nampuri, A double copy for
N ¼ 2 supergravity: A linearised tale told on-shell, J. High
Energy Phys. 10 (2016) 127.

[15] G. Cardoso, S. Nagy, and S. Nampuri, Multi-centered N ¼
2 BPS black holes: A double copy description, J. High
Energy Phys. 04 (2017) 037.

[16] L. Borsten, On D ¼ 6,N ¼ ð2; 0Þ andN ¼ ð4; 0Þ theories,
Phys. Rev. D 97, 066014 (2018).

[17] A. Anastasiou, L. Borsten, M. J. Duff, A. Marrani, S. Nagy,
and M. Zoccali, The mile high magic pyramid, Contemp.
Math. 721, 1 (2019).

[18] A. Anastasiou, L. Borsten, M. J. Duff, S. Nagy, and M.
Zoccali, Gravity as Gauge Theory Squared: A Ghost Story,
Phys. Rev. Lett. 121, 211601 (2018).

[19] M. Gurses and B. Tekin, Classical double copy: Kerr-
Schild-Kundt metrics from Yang-Mills theory, Phys. Rev. D
98, 126017 (2018).

[20] A. Anastasiou, L. Borsten, M. J. Duff, S. Nagy, and M.
Zoccali, Gravity as Gauge Theory Squared: A Ghost Story,
Phys. Rev. Lett. 121, 211601 (2018).

[21] G. Lopes Cardoso, G. Inverso, S. Nagy, and S. Nampuri,
Comments on the double copy construction for gravitational
theories, Proc. Sci., CORFU2017 (2018) 177 [arXiv:
1803.07670].

[22] W. D. Goldberger and J. Li, Strings, extended objects, and the
classical double copy, J. High Energy Phys. 02 (2020) 092.

[23] K. Lee, Kerr-Schild double field theory and classical double
copy, J. High Energy Phys. 10 (2018) 027.

[24] W. Cho and K. Lee, Heterotic Kerr-Schild double field
theory and classical double copy, J. High Energy Phys. 07
(2019) 030.

[25] K. Kim, K. Lee, R. Monteiro, I. Nicholson, and D. Peinador
Veiga, The classical double copy of a point charge, J. High
Energy Phys. 02 (2020) 046.

[26] A. Luna, R. Monteiro, D. O’Connell, and C. D. White, The
classical double copy for Taub-NUT spacetime, Phys. Lett.
B 750, 272 (2015).

[27] D. S. Berman, E. Chacon, A. Luna, and C. D. White, The
self-dual classical double copy, and the Eguchi-Hanson
instanton, J. High Energy Phys. 01 (2019) 107.

[28] Y. T. Huang, U. Kol, and D. O’Connell, The double copy of
electric-magnetic duality, Phys. Rev. D 102, 046005 (2020).

[29] R. Alawadhi, D. S. Berman, B. Spence, and D. P. Veiga, S-
duality and the double copy, J. High Energy Phys. 03 (2020)
059.

[30] J. Ehlers, Transformations of static exterior solutions of
Einstein’s gravitational field equations into different solu-
tions by means of conformal mapping, Colloq. Int. CNRS
91, 275 (1962).

[31] R. P. Geroch, A method for generating solutions of Ein-
stein’s equations, J. Math. Phys. (N.Y.) 12, 918 (1971).

[32] B. K. Harrison, New solutions of Einstein-Maxwell equa-
tions from old, J. Math. Phys. (N.Y.) 9, 1744 (1968).

[33] D. Maison, Ehlers-Harrison type transformations for Jor-
dan’s extended theory of gravitation, Gen. Relativ. Gravit.
10, 717 (1979).

[34] W. Kinnersley, Symmetries of the stationary Einstein-
Maxwell field equations. 1., J. Math. Phys. (N.Y.) 18,
1529 (1977).

[35] W. Kinnersley and D. M. Chitre, Symmetries of the sta-
tionary Einstein-Maxwell field equations. 2., J. Math. Phys.
(N.Y.) 18, 1538 (1977).

[36] D. V. Galtsov, A. A. Garcia, and O. V. Kechkin, Symmetries
of the stationary Einstein-Maxwell dilaton theory, Classical
Quantum Gravity 12, 2887 (1995).

[37] M. Chiodaroli, M. Günaydin, H. Johansson, and R. Roiban,
Scattering amplitudes in N ¼ 2 Maxwell-Einstein and
Yang-Mills/Einstein supergravity, J. High Energy Phys.
01 (2015) 081.

[38] M. Chiodaroli, M. Gunaydin, H. Johansson, and R. Roiban,
Spontaneously broken Yang-Mills-Einstein supergravities
as double copies, J. High Energy Phys. 06 (2017) 064.

[39] M. Chiodaroli, Simplifying amplitudes in Maxwell-Einstein
and Yang-Mills-Einstein supergravities, arXiv:1607.04129.

[40] W. D. Goldberger and A. K. Ridgway, Radiation and the
classical double copy for color charges, Phys. Rev. D 95,
125010 (2017).

[41] D. Chester, Radiative double copy for Einstein-Yang-Mills
theory, Phys. Rev. D 97, 084025 (2018).

[42] P. C. Vaidya and P. V. Bhatt, A generalized Kerr-Schild
metric, Pramana 3, 28 (1974).

[43] N. Moynihan, Kerr-Newman from minimal coupling, J.
High Energy Phys. 01 (2020) 014.

[44] C. D. White, Exact solutions for the biadjoint scalar field,
Phys. Lett. B 763, 365 (2016).

[45] I. Bakhmatov, N. S. Deger, E. T. Musaev, E. Ó Colgáin, and
M.M. Sheikh-Jabbari, Tri-vector deformations in d ¼ 11

supergravity, J. High Energy Phys. 08 (2019) 126.
[46] O. Lunin and J. M. Maldacena, Deforming field theories

with Uð1Þ × Uð1Þ global symmetry and their gravity duals,
J. High Energy Phys. 05 (2005) 033.

[47] H. A. Buchdahl, Reciprocal static metrics and scalar fields
in the general theory of relativity, Phys. Rev. 115, 1325
(1959).

BANERJEE, Ó COLGÁIN, ROSABAL, and YAVARTANOO PHYS. REV. D 102, 126017 (2020)

126017-14

https://arXiv.org/abs/1909.01358
https://doi.org/10.1007/JHEP07(2019)004
https://doi.org/10.1103/PhysRevLett.113.231606
https://doi.org/10.1088/0031-8949/90/10/108012
https://doi.org/10.1103/PhysRevD.94.044023
https://doi.org/10.1007/JHEP06(2016)023
https://doi.org/10.1007/JHEP04(2018)028
https://doi.org/10.1103/PhysRevD.96.026013
https://doi.org/10.1016/j.nuclphysb.2018.07.023
https://doi.org/10.1007/JHEP10(2016)127
https://doi.org/10.1007/JHEP10(2016)127
https://doi.org/10.1007/JHEP04(2017)037
https://doi.org/10.1007/JHEP04(2017)037
https://doi.org/10.1103/PhysRevD.97.066014
https://doi.org/10.1090/conm/721
https://doi.org/10.1090/conm/721
https://doi.org/10.1103/PhysRevLett.121.211601
https://doi.org/10.1103/PhysRevD.98.126017
https://doi.org/10.1103/PhysRevD.98.126017
https://doi.org/10.1103/PhysRevLett.121.211601
https://arXiv.org/abs/1803.07670
https://arXiv.org/abs/1803.07670
https://doi.org/10.1007/JHEP02(2020)092
https://doi.org/10.1007/JHEP10(2018)027
https://doi.org/10.1007/JHEP07(2019)030
https://doi.org/10.1007/JHEP07(2019)030
https://doi.org/10.1007/JHEP02(2020)046
https://doi.org/10.1007/JHEP02(2020)046
https://doi.org/10.1016/j.physletb.2015.09.021
https://doi.org/10.1016/j.physletb.2015.09.021
https://doi.org/10.1007/JHEP01(2019)107
https://doi.org/10.1103/PhysRevD.102.046005
https://doi.org/10.1007/JHEP03(2020)059
https://doi.org/10.1007/JHEP03(2020)059
https://doi.org/10.1063/1.1665681
https://doi.org/10.1063/1.1664508
https://doi.org/10.1007/BF00756907
https://doi.org/10.1007/BF00756907
https://doi.org/10.1063/1.523458
https://doi.org/10.1063/1.523458
https://doi.org/10.1063/1.523459
https://doi.org/10.1063/1.523459
https://doi.org/10.1088/0264-9381/12/12/007
https://doi.org/10.1088/0264-9381/12/12/007
https://doi.org/10.1007/JHEP01(2015)081
https://doi.org/10.1007/JHEP01(2015)081
https://doi.org/10.1007/JHEP06(2017)064
https://arXiv.org/abs/1607.04129
https://doi.org/10.1103/PhysRevD.95.125010
https://doi.org/10.1103/PhysRevD.95.125010
https://doi.org/10.1103/PhysRevD.97.084025
https://doi.org/10.1007/BF02847266
https://doi.org/10.1007/JHEP01(2020)014
https://doi.org/10.1007/JHEP01(2020)014
https://doi.org/10.1016/j.physletb.2016.10.052
https://doi.org/10.1007/JHEP08(2019)126
https://doi.org/10.1088/1126-6708/2005/05/033
https://doi.org/10.1103/PhysRev.115.1325
https://doi.org/10.1103/PhysRev.115.1325


[48] D. Momeni, M. Nouri-Zonoz, and R. Ramezani-Arani,
MM-NUT disk space via Ehlers transformation, Phys.
Rev. D 72, 064023 (2005).

[49] J. Plebanski and M. Demianski, Rotating, charged, and
uniformly accelerating mass in general relativity, Ann. Phys.
(N.Y.) 98, 98 (1976).

[50] G. Bossard, H. Nicolai, and K. S. Stelle, Universal BPS
structure of stationary supergravity solutions, J. High En-
ergy Phys. 07 (2009) 003.

[51] P. Breitenlohner, D. Maison, and G.W. Gibbons, Four-
dimensional black holes from Kaluza-Klein theories, Com-
mun. Math. Phys. 120, 295 (1988).

[52] D. V. Galtsov, Generating solutions via sigma-models, Prog.
Theor. Phys. Suppl. 172, 121 (2008).

[53] N. Alonso-Alberca, P. Meessen, and T. Ortin, Supersym-
metry of topological Kerr-Newman-Taub-NUT-AdS space-
times, Classical Quantum Gravity 17, 2783 (2000).

[54] R. B. Mann and C. Stelea, New Taub-NUT-Reissner-
Nordstrom spaces in higher dimensions, Phys. Lett. B
632, 537 (2006).

[55] Z.W. Chong, G.W. Gibbons, H. Lu, and C. N. Pope,
Separability and killing tensors in Kerr-Taub-NUT-de sitter
metrics in higher dimensions, Phys. Lett. B 609, 124 (2005).

[56] J. F. Plebañski, A class of solutions of Einstein-Maxwell
equations, Ann. Phys. (N.Y.) 90, 196 (1975).

[57] W. T. Emond, Y. T. Huang, U. Kol, N. Moynihan, and D.
O’Connell, Amplitudes from Coulomb to Kerr-Taub-NUT,
arXiv:2010.07861.

[58] A. C. Petkou, P. M. Petropoulos, and K. Siampos, Geroch
group for Einstein spaces and holographic integrability,
Proc. Sci., PLANCK2015 (2015) 104 [arXiv:1512.04970].

[59] M. Astorino, Charging axisymmetric space-times with cos-
mological constant, J. High Energy Phys. 06 (2012) 086.

EHLERS TRANSFORMATIONS AS EM DUALITY IN THE … PHYS. REV. D 102, 126017 (2020)

126017-15

https://doi.org/10.1103/PhysRevD.72.064023
https://doi.org/10.1103/PhysRevD.72.064023
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1016/0003-4916(76)90240-2
https://doi.org/10.1088/1126-6708/2009/07/003
https://doi.org/10.1088/1126-6708/2009/07/003
https://doi.org/10.1007/BF01217967
https://doi.org/10.1007/BF01217967
https://doi.org/10.1143/PTPS.172.121
https://doi.org/10.1143/PTPS.172.121
https://doi.org/10.1088/0264-9381/17/14/312
https://doi.org/10.1016/j.physletb.2005.10.085
https://doi.org/10.1016/j.physletb.2005.10.085
https://doi.org/10.1016/j.physletb.2004.07.066
https://doi.org/10.1016/0003-4916(75)90145-1
https://arXiv.org/abs/2010.07861
https://arXiv.org/abs/1512.04970
https://doi.org/10.1007/JHEP06(2012)086

