
 

Pion quasiparticles and QCD phase transitions at finite temperature
and isospin density from holography
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The spectra of pions—known as the pseudo-Goldstone bosons of spontaneous chiral symmetry breaking
—and their relationship with the chiral and pion superfluidity phase transitions have been investigated in
the framework of soft-wall AdS/QCD. We prove that pions are massless Goldstone bosons in the chiral
limit even at finite temperature, which was usually considered an assumption in soft-wall models. Above
Tc, at which the chiral condensate hq̄qi vanishes, the spectra of pions and scalar mesons merge, showing
evidence of restored chiral symmetry at the hadronic spectrum level. Extending to finite quark mass, pion
masses increase with quark mass. Further, it is more interesting to observe that the pole masses of pions
decrease with temperature below Tc, which agrees with the analysis by Son and Stephanov [Phys. Rev.
Lett. 88, 202302 (2002)]. Meanwhile, symmetry restoration above Tc could be seen in the scalar and
pseudoscalar meson spectra. With finite temperature and isospin chemical potential μI , we show that the
masses of charged pions are split. The mass of a positively charged pion πþ decreases almost linearly to
zero when μI grows to its critical value μcI , where pion condensation begins. This reveals the Goldstone
nature of πþ after the pion superfluidity transition, which is closely related to experimental observations.

DOI: 10.1103/PhysRevD.102.126014

I. INTRODUCTION

Relativistic heavy-ion collisions (RHICs) provide an
important approach to probe possible new states of nuclear
matter in the laboratory [1]. The fireball created by
collisions of high-energy nuclei is far from equilibrium,
and it exists for only a few fm=c, which makes it difficult to
detect directly. Instead, the distributions and correlations of
hadrons emitted after freeze-out and hadronization are the
direct observables to probe the hot/dense nuclear matter. To
understand the experimental data, the in-medium properties
of particles are of critical importance. For example, the
variation of meson mass at finite temperature might
significantly change the final distribution of hadrons
[2,3]. Therefore, it is quite essential to get a full under-
standing of the particles in the medium.
Among the different probes, the pion is an important and

special one both theoretically and phenomenologically. It is
the lightest meson, which shows its nature as a pseudo-

Goldstone boson. Consequently, it is closely related to the
chiral phase transition, which happens between the broken
and restored chiral symmetry phases. Thus, it is considered
as a possible probe of the transition [4]. Furthermore, the
detection of a significant fraction of coherent charged pions
[5] at LHC energies suggests a possible superfluid phase
consisting of condensed charged pions [6,7]. Besides, the
ratio of the multiplicities of charged pions (π− and πþ)
provides the possibility to extract nuclear symmetry energy,
which plays an important role in neutron stars [8]. Thus, the
properties of pions in the medium has attracted a lot of
attention.
Due to its pseudo-Goldstone nature, the relevant physics

of the pion spectrum in the medium is naturally non-
perturbative. Actually, it is usually studied within non-
perturbative frameworks, like lattice simulations [9–11],
Dyson-Schwinger equations (DSEs) [12,13], the functional
renormalization group (FRG) [14,15], and Nambu–Jona-
Lasinio (NJL) models [16–21]. Generally, due to the
effective interactions (attractive or repulsive) with the
medium, pions might have different masses and widths
at different temperatures and densities, and they were
termed “quasipions” in Ref. [22]. At relatively high
temperature, above the chiral transition temperature Tc,
most of studies have obtained growing masses of pion
quasiparticles with increasing temperature [12–14,17,18].
Such behavior might originate partly from the pions’
Goldstone nature. In the chiral limit, mπ remains zero at
temperatures below Tc, and it can only increase with T
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above Tc (though the excitation modes might change).
Then, extending to physical quark masses, it is quite
reasonable to expect the increase of mπ with temperature..
However, there are debates in the literature on the temper-
ature behavior of mπ with a physical quark mass below Tc.
Son and Stephanov gave a general analysis in Refs. [23,24],
and a decreasingmπ below Tc was proposed. An estimated
30% reduction of mπ from its vacuum value to its value
around Tc was suggested. Qualitatively, this result was
supported by lattice simulations in Refs. [10,11] and a study
using an NJL model with gluon condensate in Ref. [16].
Nevertheless, other research groups using different meth-
ods—including NJL modes [17,18], FRG [14], lattice
simulations [9], and DSEs [13]—obtained contrasting
results, showing an increase of mπ below Tc. A conclusion
on this issue is still hard to be drawn, and more information
from other approaches might be useful and necessary.
Fortunately, in recent decades the discovery of the

AdS=CFT correspondence [25–27] offered another pos-
sibility to solve the strong-coupling problems of quantum
chromodynamics (QCD). The shear viscosity to entropy
density ratio η=s was determined to be as small as
1=ð4πÞ ≈ 0.08 [28], which agrees with the values used
in fitting the elliptic flow v2 of RHIC data [29–32]. In
addition, the application of holographic methods in QCD
has proven to be powerful in many other models, like
top-down brane systems [33–37] and the bottom-up
hard wall model [38], the soft-wall model [39], light-
front holographic QCD [40], Einstein-Maxwell-Dilaton
systems [41–45], and so on (for a review, please refer to
Refs. [46–50]).
Among these models, the hard-wall and soft-wall models

provide a good starting point to describe the hadronic
spectrum, as well as the chiral phase transition. The
spectrum of pions in the vacuum extracted in their extended
models agree very well with the experimental data [51–60].
Chiral symmetry breaking is well characterized by both a
nonzero chiral condensate and the mass splits of chiral
partners [ðρ; a1Þ and ðf0; πÞ] [51,52,55,56]. Extended to
finite temperature, it has been shown that the chiral
condensate can be determined dynamically by the soft-
wall model itself, and the chiral phase transition can be well
described [61–71]. For pion quasiparticles at finite temper-
ature, a few investigations have been made using extended
hard-wall and soft-wall models [72–74]. Those studies
showed that the pion mass decreases with temperature at a
relatively low temperature. Nevertheless, as pointed out in
Ref. [72], a constant chiral condensate is an input, and the
restoration of chiral symmetry is neglected at high temper-
atures. Thus, the relationship between the spectrum of pion
quasiparticles and the chiral phase transition in those
models is still unknown. Besides, the high-temperature
(above the chiral transition temperature Tc) behavior has
not been investigated, and it is unclear whether chiral

symmetry could be restored in the hadronic spectrum.
Therefore, it is still interesting to investigate the pion
spectrum at finite temperature in hard-wall and soft-wall
models. From theoretical aspects, one should check whether
mπ remains zero below Tc in the chiral limit to guarantee the
Goldstone theorem [75,76]. Phenomenologically, moving to
the realistic casewith a physical quarkmass, the temperature-
dependent behavior of mπ under the effect of a dynamically
determined chiral condensate is still an interesting topic.
Finally, it would be interesting to check whether chiral
symmetry could be restored in the hadronic spectrum. It is
meaningful to checkwhether a scalarmesonσ andpion could
become degenerate above Tc. In this work, since the chiral
condensate can be determined dynamically in soft-wall
models, we consider all of these issues in the soft-wall
framework. For the quasiparticle masses at finite temper-
ature, we introduce the spectral method for our study, which
has been applied throughout the literature to investigateQCD
properties [77–89], and the masses are extracted from the
locations of the peaks of the spectral functions.
Besides the temperature effects, density effects are of

great interest as well. To seek the possible critical end point
(CEP) in the T-μB (temperature–baryon number chemical
potential) plane is the primary goal of the Beam Energy
Scan (BES) project [90–92]. Recent experimental data also
suggest the increasing effect of isospin density nI at LHC
energies [5–7]. At large isospin chemical potential μI , a
transition from the normal phase to a pion superfluidity
phase, consisting of condensed charged pions, might play
an important role at this energy scale. Thus, there is
growing interest in the density-dependent behavior of the
pion mass. In the bottom-up holographic framework, the
pure isospin density effect has been studied in the hard-wall
model [93–97]. A transition from a normal phase to a pion
condensed phase has been shown to occur at μI ¼ mπ ,
T ¼ 0. Also, the mass splitting of mesons has been shown
in the hard-wall model. Since those studies focused on
finite isospin density only and the mutual effect from
temperature is unclear, we extend those studies to finite
temperature in the soft-wall model and get the T − μI phase
diagram [98,99]. Here, we also continue our studies and
consider the mutual effect of isospin densities and temper-
ature on pion quasiparticles.
The paper is organized as follows. In Sec. II, after a brief

review of the chiral phase transition in the soft-wall model,
we extract the mass spectra of pion quasiparticles and scalar
mesons from spectral functions at finite temperature. In the
chiral limit, both numerically and analytically, we prove the
Goldstone nature of pions at low temperatures. An exten-
sion of the Gell-Mann–Oakes–Renner (GOR) relation at
finite temperature and physical quark mass is given. In
Sec. III we study the mutual effect of temperature and
isospin density on the pion spectrum. In Sec. IV we give
our conclusions.
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II. QUASIPIONS AND THE CHIRAL PHASE
TRANSITION AT FINITE TEMPERATURE IN A

SOFT-WALL MODEL

As mentioned above, both the hard-wall and soft-wall
models provide a good starting point to deal with the
hadronic spectrum and the chiral phase transition.
Incorporating the global symmetry of QCD, it could be
naturally extended to cases with multiple flavors
[67,70,71], finite temperature [61–71], finite baryon num-
ber density μB [61,70], finite isospin number density μI
[98,99], different space-time dimensions [100,101], and so
on. Since the soft-wall model can be imposed on the radial
excitations and the equation of motion can self-consistently
determine the chiral condensate, the soft-wall model
provides a better framework for studying the relationship
between the spectrum and phase transition. Here, we briefly
review the soft-wall model.
The model starts from an action with SULðNfÞ ×

SURðNfÞ gauge symmetry, which reads1

S ¼
Z

d5x
ffiffiffi
g

p
e−ΦðzÞTr

�
jDMXj2 − VXðjXjÞ

−
1

4g25
ðF2

L þ F2
RÞ
�
: ð1Þ

Here, g is the determinant of the background metric gMN ;
ΦðzÞ is the dilaton field, which depends only on the fifth
dimension z,;X is the matrix-valued bulk field, which is
dual to the operator q̄αqβ, where α, β are the indices in
flavor space; VX ¼ m2

5jXj2 þ λjXj4 is the potential of X,
where m2

5 is the five-dimensional (5D) mass of X and λ is a
free parameter of the potential; and g5 is the gauge
coupling, which can be determined to be g5 ¼ 2π by
comparing the large-momentum expansion of vector current
correlator [Jaμ ¼ q̄γμtaq, μ ¼ ð0; 1; 2; 3Þ] to the perturbation
calculation [38]. In this work, we focus on Nf¼2, with
the lightest two flavors. Thus, ta(a¼1, 2, 3) are taken
as the generators of SUð2Þ. The covariant derivative DMX
with M ¼ ðμ; 5Þ and the gauge field strengths FL=R

MN are
defined as

DMX ¼ ∂MX − iLMX þ iXRM; ð2aÞ

FL
MN ¼ ∂MLN − ∂NLM − i½LM;LN �; ð2bÞ

FR
MN ¼ ∂MRN − ∂NRM − i½RM; RN �; ð2cÞ

where the gauge fields LM ¼ La
Mt

a, RM ¼ Ra
Mt

a are dual to
left- and right-handed currents in the four-dimensional (4D)
field theory at the boundary, i.e., La

μ ↔ q̄LγμtaqL and Ra
μ ↔

q̄RγμtaqR [38]. For later convenience, one can redefine the
chiral gauge fields as the vector gauge field and the axial-
vector gauge field,

VM ¼ LM þ RM

2
; ð3aÞ

AM ¼ LM − RM

2
; ð3bÞ

where the vectorVa
M and the axial field Aa

M correspond to the
vector and axial-vector current, JaVμ and JaAμ, respectively.
After a transformation, the covariant derivative and the
transformed gauge field strength are deformed as

DMX ¼ ∂MX − i½VM; X� − i½AM; X�; ð4aÞ

FV
MN ¼ 1

2
ðFL

MN þ FR
MNÞ; ð4bÞ

FA
MN ¼ 1

2
ðFL

MN − FR
MNÞ: ð4cÞ

In this section, we focus on the temperature effect on
scalar and pseudoscalar mesons. Thus, all of the gauge
fields will be set to zero. In the QCD vacuum, only the
diagonal components of the operator q̄αqβ have nonvanish-
ing expectation values. Accordingly, on the dual gravity
side, X would be taken as

X ¼ χt0; ð5Þ
where we have t0 ¼ I2=2, where I2 a 2 × 2 is the identity
matrix. Up to now, if one couples the soft-wall action (1)
with certain gravity systems, like the Einstein-Maxwell-
Dilaton systems [41–45], one can solve the background
gravity and extract the information for the 4D field theory.
However, the full numerical process is difficult. Here, we
follow previous studies [61–71] and take Eq. (1) as a probe.
In this way, the profile of the dilaton field, the background
geometric would be considered as an input generated from
a certain Einstein-Maxwell-Dilaton system.2 Since the
AdS-Schwarzchild black hole solution has been widely
tested, we follow those studies and take the geometric as3

ds2 ¼ e2AðzÞ
�
fðzÞdt2 − dxidxi −

1

fðzÞ dz
2

�
; ð6Þ

where zh is the horizon of the black hole and z ≤ zh [46].
Therefore, the integration interval of the fifth dimension is

1If one considers the baryon number density, a Uð1Þ related to
the Uð1ÞB symmetry can be added.

2Generally, one might solve the background field from a fixed
dilaton potential like in Refs. [41–45,102–104] or use the
potential reconstruction approach to construct such a background
like in Refs. [105–110].

3In the current work, the topology of the boundary is flat and
the AdS radius Lwill be cancelled everywhere. Thus, we have set
L ¼ 1.
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always ð0; zhÞ, which is exactly outside the black hole.
Nevertheless, one can also have the fifth dimension in the
interval of ðzh;∞Þ by an inverse transformation. Besides,

AðzÞ ¼ − lnðzÞ; ð7Þ

fðzÞ ¼ 1 −
z4

z4h
: ð8Þ

The temperature is encoded by the following equation:

T ¼
���� f

0ðzhÞ
4π

���� ¼ 1

πzh
: ð9Þ

In the original soft-wall model, the dilaton field is taken as

ΦðzÞ ¼ μ2gz2; ð10Þ

where μg is a free parameter, which will be determined from
the meson spectrum.
The 5D mass m5 is determined via the relation [26,27]

m2
5 ¼ ΔðΔ − 4Þ, whereΔ ¼ 3 is the dimension of the scalar

operator q̄αRq
β
L in the original hard-wall and soft-wall models

[38,39]. However, for the field X in the nonconformal field
theory, a z-dependent correction can be incorporated. It
effectively introduces the anomalous dimension γðμrÞ by
replacing Δ with Δþ γðμrÞ [42]. If one maps the renorm-
alization scale μr to the 5D z, then m2

5 would be naturally a
function of z [111,112]. Phenomenologically, it has been
shown that there is no spontaneous chiral symmetry breaking
under such a dilaton and constant 5D mass m2

5. Either
modifying the dilaton field [63,64] or modifying the 5D
mass [69] is necessary. In Ref. [69], to match the exper-
imental data of the meson spectra, it was found that χðzÞ
should behave as mqzþ σ

ζ z
3 þ � � � at the UV boundary and

be linear in z at the IRboundary. Thus, the z-dependentm2
5ðzÞ

is determined to be the sumof a constant term and a quadratic
term,4

m2
5ðzÞ ¼ −3 − μcz2; ð11Þ

where μc is another free parameter. According to the study in
Ref. [69],

μg ¼ 440 MeV; μc ¼ 1450 MeV; λ ¼ 80 ð12Þ

gives the best fit of the meson spectra. Thus, we take this
group of parameters in the following calculation. It should be
pointed out that the main goal of this paper is to investigate
the trends of the pion and scalar meson. Therefore, the
analysis of this paper is mainly qualitative.

Inserting Eqs. (5)–(10) into Eq. (1), one can easily derive
the equation of motion for χ as

χ00 þ
�
3A0 þ f0

f
−Φ0

�
χ0 þ e2A

f

×

�
ð3þ μ2cz2Þ −

λχ2

2

	
χ ¼ 0: ð13Þ

The above equation has two boundaries: the ultraviolet
(z ¼ 0) and the infrared (z ¼ zh). The asymptotic behaviors
at the two boundaries can be obtained as

χðz → 0Þ ¼ mqζzþ
mqζ

4
ð−2μc2 þ 4μg

2 þm2
qζ

2λÞ

× z3 lnðzÞ þ σ

ζ
z3 þOðz4Þ; ð14aÞ

χðz → zhÞ ¼ c0 þ
c0ð2μ2cz2h − c20λþ 6Þ

8zh − 4γμ2z3h
ðz − zhÞ

þO½ðz − zhÞ2�; ð14bÞ

where mq and σ are the two independent integral constants
in the UV, dual to the quark mass and chiral condensate,
respectively. ζ is a normalization constant and it was
determined to be ζ ¼ ffiffiffiffiffiffi

Nc
p

=2π in Ref. [113]. Here, we
take Nc ¼ 3 for realistic QCD. c0 is the integral constant
generating a regular solution at the horizon zh, while the
other integral constant in the IR is dropped since it leads to
a divergent solution at zh. It is interesting to observe that,
with a fixed quark mass mq, one can solve for σ and c0
simultaneously from Eq. (13) with the “shooting method”
introduced in the Appendix.

A. The chiral phase transition in the soft-wall model

Taking the values of the parameters in Eq. (12), one can
obtain the temperature- and quark-mass-dependent behav-
iors of the chiral condensate. The chiral phase transition
reflects the breaking of the chiral symmetry SUð2Þ×
SUð2Þ, which is the exact symmetry in the 4D theory only
in the chiral limit, with vanishing quark masses, as a finite
quark mass would always generate a slight breaking of the
symmetry. As a theoretical check, one should check
whether symmetry breaking appears in this limit first.
Therefore, we take mq ¼ 0 in Eq. (14) and extract σ at
different temperatures. The result is shown by the black line
in Fig. 1(a). From the figure, we can see that σ ≈
ð0.246 GeVÞ3 ¼ 0.0148 GeV3 ≠ 0 at temperatures near
zero. Thus, spontaneous chiral symmetry breaking is
realized at low temperature.We can also see that σ decreases
with T and it vanishes at Tc ¼ 0.163 GeV. Above Tc, σ
becomes zero and chiral symmetry is restored. Actually,
from the study in Ref. [114], the existence of Tc is governed
by the linearized equation

4Actually, one can also consider it as a modification of the
interaction between the scalar χ and dilaton ϕ.
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χ001 þ
�
3A0 þ f0

f
−Φ0

�
χ01 þ

e2A

f
ð3þ μ2cz2Þχ1 ¼ 0; ð15Þ

which is the expansion at Tc around the leading solution
χ0 ≡ 0. The existence of Tc requires the existence
of a solution to the above equation, with the boundary
condition

χ01ðz ¼ 0Þ ¼ 0; χ01ðz ¼ zhÞ ¼ finite: ð16Þ

This conclusion was proved in Ref. [114]. Here, as a
numerical check, we take χ1ðzhÞ ¼ 1 and solve Eq. (15)
numerically. Then, we plot χ0ðz ¼ 0Þ as a function of T in
Fig. 1. It is easy to see that Tc in Fig. 1 is located exactly at
the temperature where χ01ðz ¼ 0Þ ¼ 0. So we conclude that
at Tc, Eq. (15) has a solution satisfying χ01ðz ¼ 0Þ ¼ 0

and χ01ðz ¼ zhÞ ¼ finite.
After the theoretical check in the chiral limit, it is also

important to move to the case with a physical quark mass.
According to Ref. [69], mq ¼ 3.22 MeV gives the best
fit of experimental data. Thus, we take this value of the

quark mass and solve Eq. (13) to obtain the temperature-
dependent σðTÞ. The result is shown by the red line in
Fig. 1(a). From this figure, we can see that the second-
order phase transition turns out to be a crossover-type
transition. Due to the finite quark mass, the exact chiral
symmetry at the 4D Lagrangian level is explicitly broken,
though only slightly. Thus, the phase transition is weakened.
Furthermore, one can extract the pseudocritical temperature
Tcp ¼ 0.164 GeV where jσ0ðTÞj reaches its maximum.

B. Spectral functions for scalar and pseudoscalar
modes at finite temperature

In the previous section the phase transition was well
described by the order parameter σ. As mentioned in the
previous section, this is also expected to be seen from the
hadron spectrum. In the chiral limit, as considering pion as
the Goldstone bosons of the symmetry breaking below Tc,
one might expect the pion mass mπ to remain zero at any
temperature below Tc. Also, since the scalar meson f0 or
the σ meson is the chiral partner of the pion, one might ask
whether they would become degenerate at a temperature
above Tc. Therefore, we will try to study the temperature
behavior of the pion and scalar meson. The particles are
excitations of the vacuum in the 4D theory. In the dual
description, they are perturbations around the background
field on the gravity side. Thus, to describe the pion and
scalar meson, we should consider the following perturba-
tions:

X ¼ ðχ þ SÞt0e2iπata ; ð17Þ

where πa and S are the pseudoscalar and scalar perturba-
tions, respectively. In addition, one can check that the
pseudoscalar perturbation will couple with the longitudinal
partðφiÞ of the axial vector

aiμ ¼ aT;iμ þ ∂μφ
i; ð18aÞ

∂μaT;iμ ¼ 0: ð18bÞ

Thus, φi should be considered as well.
Inserting the above perturbation into the action (1) and

keeping the quadratic terms, one gets the effective part for
the scalar perturbation as

SS ¼
1

2

Z
dx5

ffiffiffi
g

p
e−Φ

�
gμν∂μS∂νSþ gzzð∂zSÞ2 −m2

5S
2

−
3λ

2
χ2ðSÞ2

	
; ð19Þ

and that for the pseudoscalar part as

mq=0

mq=3.22 MeV

0.05 0.10 0.15 0.20
0.000

0.002

0.004
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0.008

0.010

0.012

0.014

T(GeV)

(G
eV

3
)

(0.163,0)

(a)

0.14 0.15 0.16 0.17 0.18

0.04

0.02

0.00

0.02

0.04

T(GeV)

1
[

]

(0.163,0)

(b)

FIG. 1. (a) Temperature-dependent behavior of the chiral
condensate. The black line stands for the chiral limit, mq ¼ 0,
where the critical temperature is labeled with a red solid dot,
Tc ¼ 0.163 GeV. The red line stands for mq ¼ 3.22 MeV with
pseudocritical temperature Tcp ¼ 0.164 GeV [69]. (b) Temper-
ature-dependent behavior of χ01ðδÞ from Eq. (15), where δ is a
vanishingly small constant and is set to 10−8 GeV−1 in our
numerical calculations. The red dot, where χ01ðδÞ ¼ 0, is located
at ðT ¼ 0.163 GeV; 0Þ.
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SPS ¼ −
1

2g52

Z
d5x

ffiffiffi
g

p
e−Φ

X3
i¼1

fgμνgzz∂z∂μφ
i∂z∂νφ

i

− g52χ2ðgμν∂μφ
i∂νφ

i þ gμν∂μπ
i∂νπ

i

þgzzð∂zπ
iÞ2 − 2gμν∂μφ

i∂νπ
iÞg: ð20Þ

Generally, S and πi;φi are functions of all of the
coordinates. Here, since we focus on the quasiparticle’s
pole mass at finite temperature, we assume that all of the
perturbations only depend on t and z. Thus, one can
transform the perturbations to frequency space by the
Fourier transformations

Sðt; zÞ ¼ 1

2π

Z
dωe−iωtSðω; zÞ; ð21Þ

and

πiðt; zÞ ¼ 1

2π

Z
dωe−iωtπiðω; zÞ; ð22Þ

φiðt; zÞ ¼ 1

2π

Z
dωe−iωtφiðω; zÞ: ð23Þ

Under these conditions, one can get the equation of motion
for the scalar quasiparticle as

S00 þ
�
3A0 þ f0

f
−Φ0

�
S0 þ

�
ω2

f2
−
2m2

5 þ 3λχ2

2f
A02

�
S ¼ 0;

ð24Þ

and that for the pseudoscalar quasiparticle as5

φ00 þ ðA0 −Φ0Þφ0 −
e2Ag25χ

2

f
ðφ − πÞ ¼ 0; ð25aÞ

π00 þ
�
3A0 þ f0

f
−Φ0 þ 2χ0

χ

�
π0 −

ðφ − πÞω2

f2
¼ 0: ð25bÞ

Here, we have neglected the isospin index i in πi, φi due to
the isospin symmetry at finite temperature.
Due to the interaction with the hot medium, the spectra

of particles are broadening at finite temperature, and the
good description is the spectral function. The quasiexcita-
tion appears as the peak of the spectral function. The
spectral function can be extracted from the retarded Green
function GRðωÞ,

ρðωÞ ¼ −
1

π
ImGRðωÞ: ð26Þ

The holographic correspondence states that the 4D
operator OðxÞ and 5D field ϕðx; zÞ are connected through
the relation between the 4D generating function with an
external source ϕ0ðxÞ and the classical action S5D in AdS
space as

hei
R

d4ϕ0ðxÞOðxÞiCFT ¼ eiS5D½ϕcl�
���
ϕclðx;z¼0Þ¼ϕ0

; ð27Þ

where ϕcl is the classical solution of S5D½ϕcl� with its
boundary value equaling the external source ϕ0ðxÞ [26–28].
Therefore, the Green functions can be obtained by differ-
entiating the 5D effective action with respect to the external
sources. Here, for the scalar mode, the on-shell action
becomes

SonS ¼ −
1

2

Z
dωfðzÞSð−ω; zÞe3AðzÞ−ΦðzÞS0ðω; zÞ

����
z¼zh

z¼ϵ

;

ð28Þ

where ϵ is a UV cutoff. For the pseudoscalar mode, the on-
shell action has the following form:

Sonπ ¼ −
1

2g25

Z
dωeA−Φ½e2Ag25fχ2πð−ω; zÞπ0ðω; zÞ

−ω2φð−ω; zÞφ0ðω; zÞ�jz¼zh
z¼ϵ : ð29Þ

Up to now, the main task has been to solve S; π;φ from
Eqs. (24) and (25a)–(25b). For the scalar mode, from
Eq. (24), one can get the UV asymptotic solution of S as

Sðz → 0Þ ¼ s1zþ s3z3 −
1

4
s1z3½2μ2c − 4μ2g − 3ζ2λm2

q

þ 2ω2� logðzÞ þOðz3Þ: ð30Þ

Here, s1 and s3 are the two integral constants of the second-
order ordinary derivative equation (ODE). From the holo-
graphic principle, we assume that s1 corresponds to the
external source, while s3 corresponds to the scalar operator
q̄q. Inserting this expansion into the on-shell action (28),
one gets the retarded Green function and spectral function
of the scalar mode as

GR
S ðωÞ ¼

δ2SonS
δs�1δs1

����
z¼ϵ

; ð31Þ

ρSðωÞ ¼ −
1

π
ImGR

S ðωÞ

¼ 2

π
Im

�
s3
s1

	
; ð32Þ

Here, since we focus on the imaginary part of the Green
function, we have erased the real part inside the “Im”
function. Right now, both s1 and s3 are free integral

5We note that the coupling to φ is neglected in Refs. [73,74],
which is different from our scenario.
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constants. The retarded Green function property of Eq. (31)
is related to the IR boundary at the horizon zh. In fact, the ω2

f2

leads to the infalling and outgoing boundary conditions at
the horizon. According to the study in Ref. [115], to get the
retarded Green function one has to impose the infalling
boundary condition. Then, we have

Sðz → zhÞ ∼ ðzh − zÞ−iω=4πT: ð33Þ

Taking this boundary condition and solving the equation of
motion (24), one can obtain s1, s3, and the spectral function.
Similarly, for the pseudoscalar mode, from Eqs. (25a)–

(25b) one can obtain the asymptotic expansion at the UV
boundary as

φðz → 0Þ ¼ cf −
1

2
ζ2g25m

2
qπ0z2 logðzÞ þ φ2z2 þOðz3Þ;

ð34aÞ

πðz → 0Þ ¼ π0 þ cf −
1

2
π0ω

2z2 logðzÞ þ π2z2 þOðz3Þ;
ð34bÞ

where cf, φ2, π0, and π2 are the four integral constants of
the two second-order ODEs. We note that Eqs. (25a)–(25b)
are invariant under the transformations π → π þ cf and
φ → φþ cf. Thus, it is easy to understand that cf corre-
sponds to a redundant degree of freedom, and we will set it
to zero. Then, only the three integral constants π0;φ2, and
π2 are relevant. Substituting the asymptotic solutions
(34a)–(34b) into Eq. (29), one gets

Sonπ ¼
Z

dω

�
1

4
π�0ζ

2m2
qðπ0ω2 − 4π2Þ

þ 1

2
ζ2m2

qω
2jπ0j2 logðzÞ

	����
z¼zh

z¼ϵ

: ð35Þ

According to the holographic dictionary, the coupled 5D
fields of φ and π can be decomposed in terms of bulk-to-
boundary propagators [116,117] as

φðω; zÞ ¼ iJðωÞ
ω

φ̃ðω; zÞ; ð36aÞ

πðω; zÞ ¼ iJðωÞ
ω

π̃ðω; zÞ; ð36bÞ

where JðωÞ is the external source of the longitudinal
component of the axial current operator J0Aμ, or the value
of the φ field on the boundary. Comparing to Eqs. (34a)–
(34b), one can identify the boundary value π0 as the source
JðωÞ. Then, the retarded Green function can be extracted
from the second derivative of the action with respect to the
source. From Eq. (35), it reads

GR
π ðωÞ ¼

δ2Sonπ
δπ�0δπ0

����
z¼ϵ

¼ 1

4π0
ζ2m2

qðπ0ω2 − 4π2Þþ
1

2
ζ2m2

qω
2 logðzÞ

����
z¼ϵ

:

ð37Þ

Taking the relation in Eq. (26), one can get the spectral
function of the pion as

ρπðωÞ ¼ −
1

π
ImGR

π ðωÞ ¼
m2

qζ
2

π
Im

�
π2
π0

	
: ð38Þ

As in the scalar mode, to get the retarded Green function
one has to impose the infalling boundary condition at zh.
On this side, the asymptotic expansion reads

φðz → zhÞ ¼ ðzh − zÞ−iωzh
4

�
−
4ic20g

2
5πh0ðz − zhÞ

ωz2hðiωzh − 4Þ

þO½ðz − zhÞ2�
�
þ ch0; ð39aÞ

πðz → zhÞ ¼ ðzh − zÞ−iωzh
4 fπh0 þOðz − zhÞg þ ch0: ð39bÞ

Here, πh0 and ch0 are the two integral constants describ-
ing the infalling mode, while another two describing the
outgoing mode are omitted. The parameter c0 is the integral
constant as shown in Eq. (14). Since the ODEs are linear,
one can take πh0 ¼ 1without shifting the spectra. The other
integral constant ch0, as well as the integral constants in the
UV π0, φ2, and π2, can be determined by requiring cf ¼ 0

when applying the “shooting” algorithm. Then, one obtains
the spectral function for the pseudoscalar mode. After all of
these preparations, we will extract and discuss the spectral
functions and the spectra of the scalar and pseudoscalar
quasiparticles in the next three subsections.

C. The chiral limit: Goldstone bosons and symmetry
restoration of chiral partners

As mentioned above, theoretically, it is important to
check whether the pseudoscalar mode at finite temperature
is the Goldstone mode. If it is not, there would be
theoretical inconsistency in the soft-wall model. To check
this, the quark massmq is set to zero, i.e., in the chiral limit,
to guarantee the exact chiral symmetry in the 4D
Lagrangian. Then, we solve χ by applying the process
described in Sec. II A. By substituting χ into the process
described in Sec. II B, one can obtain the spectral functions
for both the scalar and pseudoscalar modes. We take
T ¼ 0.060, 0.120, and 0.150 GeV as an example and plot
the spectral functions in Figs. 2(a) and 2(b). We can see that
there are peaks in the spectral functions. These peaks are
related to thermal excitations. Thus, we can extract the
masses from the locations of these peaks. From Fig. 2(b),
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we can see that for the pseudoscalar mode, below Tc, there
is always a divergence located at ω ¼ 0, which reveals
mπ ¼ 0. The temperature-dependent behaviors of mπ and
mS are shown in Fig. 2(c). From the figure, we can see that
mS is about 1.05 GeV near T ¼ 0. It decreases at low
temperature and reaches zero at T ¼ 0.163 GeV, which is
exactly the chiral transition temperature Tc in the chiral
limit. Moreover, it is interesting to observe that, above Tc,
mπ and mS converge to the same line and increase together
very fast. Numerically, in the soft-wall model the

Goldstone nature of the pion is checked, and chiral
symmetry restoration is realized at the hadronic level.
Actually, this conclusion can also be proved analytically.

First, it is quite easy to understand whymS ¼ 0 at Tc in the
chiral limit. We have proved in Sec. II A that, at and above
Tc, χ ≡ 0 in the chiral limit. Substituting this equation into
Eq. (24) and setting ω ¼ 0, it is easy to see that Eq. (24)
becomes the same as the Tc criteria (15). In fact, the
solution of Eq. (15) under the boundary condition (16) is
just the wave function of a massless scalar mode at Tc.
Physically, in the chiral limit, when mS ¼ 0, instability
appears. Actually, this is the physical meaning of the Tc
criteria (15).
Then, since χ ≡ 0 above Tc, from Eq. (17) the coupling

between π and φ disappears. Since the modulus of X
vanishes, the expansion of X can no longer be Eq. (17).
Instead, the scalar expansion and the pseudoscalar expan-
sion should have the same form. As a result, the masses of
the two modes are naturally the same. In this sense, the red
piece above Tc in Fig. 2(c) is for mπ as well, though it is
actually obtained from the scalar sector.
Finally, we will try to get an analytical understanding of

the masses of pions below Tc. As we have shown, below Tc
the pseudoscalar mode satisfies Eqs. (25a)–(25b). Our main
goal is to check the existence of the massless mode with
ω ¼ 0. Under this condition, we see that Eq. (25b) becomes

π00 þ
�
3A0 þ f0

f
−Φ0 þ 2χ0

χ

�
π0 ¼ 0; ð40Þ

which can be directly solved as

πðzÞ ¼ p1 þ p2

Z
z

0

e−3AþΦ

fχ2
dz0; ð41Þ

where p1 and p2 are the two integral constants of the
second-order ODE. However, the p2 branch is not physi-
cally acceptable at either the UV or IR boundary.
At the UV boundary z ¼ 0, in the chiral limit, the leading

expansions are χ ∼ z3, f ∼ 1, e−3A ¼ z3, and eΦ ∼ 1. Thus,
the integral kernel is divergent as z−3. Only when quark
mass is finite, this part could appear in the wave function.
At the horizon z ¼ zh, the leading expansions are

χ ∼ const; f ∼ ðz − zhÞ; e−3A ¼ const, and eΦ ∼ const,
and it is also divergent. Therefore, the physically acceptable
solution for π is π ≡ const. Since we will normalize π0 ¼ 1
in calculating spectral functions, the constant should be
chosen as 1. Thus, the existence of the massless mode is
equivalent to the existence of a solution to the equation
[subject to φð0Þ ¼ 0]

φ00 þ ðA0 −Φ0Þφ0 −
e2Ag25χ

2

f
ðφ − 1Þ ¼ 0; ð42Þ

which comes from Eq. (25b) by replacing π with 1.
Redefining φ̃ ¼ φ − 1, one reaches a linear ODE,
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FIG. 2. Spectral functions in frequency space of (a) the scalar
meson ρðS;ωÞ and (b) the pion ρðπ;ωÞ, in the chiral limit at
T ¼ 0.06, 0.12, and 0.15 GeV. (c) Temperature dependence of the
lowest mS and mπ in the chiral limit.
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φ̃00 þ ðA0 −Φ0Þφ̃0 −
e2Ag25χ

2

f
φ̃ ¼ 0: ð43Þ

The asymptotic expansion of the above second-order ODE
can be easily extracted as

φ̃ ¼ p0 þ p2z2 þOðz4Þ ð44Þ

at the UV boundary and

φ̃ ¼ ph0

�
1þ g25χðzhÞ2

4zh
ðz − zhÞ lnðzh − zÞ

�

þ ph1ðz − zhÞ þOððz − zhÞ2Þ ð45Þ

at the IR boundary, where p0; p2; ph0, and ph1 are the
corresponding integral constants on both sides. The ph0
branch should be dropped since it leads to a divergent φ0 at
zh. Thus, only ph1 can be nonzero. Considering the
linearity of the equation, one can take ph1 ¼ 1 and solve
for φ̃ using the equation. After one gets the solution, one
can normalize p0 to 1, again from the equation’s linearity.
Then, one has actually obtained the massless wave function
φ ¼ φ̃þ 1 and π ≡ 1 subject to the boundary condition
φð0Þ ¼ 0. Therefore, we have proved that the massless
mode always exists below Tc, and it is the Goldstone mode
or the massless pion at finite temperature. It should be
pointed out that the above proof cannot be extended to
finite quark mass. The reason is that with finite quark mass,

there would be terms
p0g25m

2ζ2

2
z2 lnðzÞ between p0 and p2z2,

which leads to a divergent on-shell action. So it is not dual
to the physical mode. As a result, with a finite quark mass,
the massless mode does not exist for most of the cases in
the soft-wall model.6 Also, it cannot be extended to
temperatures above Tc. When χ ≡ 0 above Tc, the equa-
tions of motion for pseudoscalar and scalar modes should
be the same, and the two kinds of excitations would
become degenerate.
To summarize, we have proved that the pion is always

massless in the chiral limit by numerical calculation and
analytical analysis. It is the Goldstone mode of the
spontaneous symmetry breaking below Tc. The analytical
proof is quite general for most of the models in the soft-wall
AdS/QCD framework. Moreover, the expected degener-
ation in spectral of chiral partners is observed.

D. Physical quark mass: Pole masses of quasipions

In the previous section we checked the theoretical
consistency of the soft-wall model in the chiral limit. To

be more realistic and to get more information about the
current experimental data, we consider the situation with a
physical quark mass, mq ¼ 3.22 MeV. With a finite quark
mass, below Tc, the pion might gain a certain mass due to
the explicit chiral symmetry breaking.
Takingmq ¼ 3.22 MeV and the values of the parameters

in Eq. (12), one can solve for χ using Eq. (13). Then, by
imposing the IR boundary condition (33) and Eqs. (39a)–
(39b) and solving Eqs. (24) and (25a)–(25b), and after
normalizing s1 ¼ 1 and π0 ¼ 1, one can obtain s3, φ2,
and π2, which are defined in the UV expansion (30) and
(34a)–(34b). Inserting these results into the expressions
for the spectral functions in Eqs. (31), (37), and (38), one
can obtain the finite-temperature spectral functions for the
scalar meson and pion.
From the numerical calculation, we find that the behavior

of the spectral function at temperatures below the pseudo-
transition temperature Tcp ¼ 0.164 GeV [Fig. 1(a)] is
different from that at temperatures above Tcp. To show
this difference, we take T ¼ 0.070; 0.140; 0.160 GeV and
0.166; 0.170; 0.175 GeV and extract the spectral functions
for the scalar meson and pion in Fig. 3. The left two panels
are the results of the scalar spectral functions, while the
right two panels are for the pseudoscalar spectral functions.
The upper two panels give the low-temperature behavior.
At very low T, e.g., T ¼ 0.07 GeV (the red lines in the
upper two panels), for th scalar and pseudoscalar spectral
functions there are sharp peaks at around ω ¼ 1.05 GeV
andω ¼ 0.137 GeV, respectively, very close to the vacuum
values of the scalar and pseudoscalar mesons. To the right
of the first peaks, at around ω ¼ 1.88 GeV for the scalar
function and ω ¼ 1.52 GeV for the pseudoscalar function,
wide peaks corresponding to the radial excitations at zero
temperature appear in the two spectral functions. When
the temperature increases to T ¼ 0.14 GeV, we can see that
the centers and heights of the left peaks decrease, while the
widths of the peaks are broadened (though still quite sharp).
This shows the decrease of the masses of the scalar meson
and pion at low temperatures. Moreover, the right peaks at
T ¼ 0.14 GeV cannot be identified at this temperature due
to the rapid decrease of the heights and the rapid increase of
the widths. This might correspond to the melting of the
higher excitations at finite temperature. Actually, this is
quite reasonable. It is easier to destroy the weaker binding
of the higher excitations, so they melt before the ground
states. When the temperature increases to T ¼ 0.16 GeV
(still slightly lower than Tcp) we find that the masses
continue to decrease, while the peaks become very wide.
Thus, we can see the decrease of the meson mass at
temperatures below Tcp, which is similar to the decrease of
the masses in the chiral limit. In some sense, the chiral limit
behavior also governs the small quark masses’ behavior.
The chiral condensate and meson mass results with small
quark masses differ slightly from that in the chiral limit.

6Of course, if one chooses the background field properly, with
finite quark masses, the massless mode might appear at a certain
temperature. However, it is still hard to guarantee the existence of
a Goldstone mode at any temperature below Tc. We have checked
that in the current model, there will not be such a weird result.
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Then, we increase the temperature further. From the
lower two panels in Fig. 3, we can see that at temperatures
above Tcp (but not far away from Tcp) the left peaks are still
alive. However, the temperature behaviors are totally

different. From T ¼ 0.166 GeV to T ¼ 0.175 GeV, we
can see that the masses of both scalar and pseudoscalar
mesons increase, together with the broadening of the
widths. Such a behavior is consistent with the 4D effective
model studies [12–14,17,18]. Physically, this is probably
related to the transition from bound states to resonances,
though the exact details from the holographic framework
are still unclear and need further study in the future.
To be clearer, we extract the temperature dependence of

the masses of the scalar meson (mS) and pion (mπ) in Fig. 4.
In the figure, the red and blue lines represent mSðTÞ and
mπðTÞ, respectively. From the figure, mS decreases rapidly
below Tcp, from its vacuum valuemS ¼ 1.06 GeV tomS ¼
0.115 GeV around Tcp, an almost 90% reduction. As for
the pion, mπ also decreases below Tcp, from its vacuum
value of about mπ ¼ 0.140 GeV to mπ ¼ 0.062 GeV
around Tcp, an almost 60% reduction. It is also quite
interesting to see that qualitatively the results for the pion
are consistent with Son and Stephanov’s prediction [23,24]
and the lattice simulations in Refs. [10,11]. Quantitatively,
the holographic model gives almost double the reduction,
with a rate of 60%, while the reduction rates from
Refs. [23,24] and Refs. [10,11] are around 30% and
20%, respectively. Since a reduction of the pion mass
would enhance the low-momentum distribution of the pion,
this effect contributes more in the relevant physics from our
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FIG. 3. Spectral functions of (a) the scalar mode ρðS;ωÞ at T ¼ 0.070, 0.140, and 0.160 GeV, (b) the pion ρðπ;ωÞ at T ¼ 0.070, 0.140,
and 0.160 GeV, (c) the scalar mode ρðS;ωÞ at T ¼ 0.166, 0.170, and 0.175 GeV, and (d) the pion ρðπ;ωÞ at T ¼ 0.166, 0.170, and
0.175 GeV.
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FIG. 4. Masses of the scalar meson and pion at finite temper-
ature. The red and blue lines are extracted from the peaks of the
spectral functions, representing results for the scalar meson and
pion, respectively. The black dots are extracted via Eq. (51).
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holographic prediction. Of course, the exact value of the
enhancement depends on the fireball’s evolution model,
and this is outside of the scope of this work. Also, the
holographic prediction is consistent with the NJL model
prediction with gluon condensation [16], and it is in
contrast to that in the NJL model without gluon condensa-
tion. In some sense, the gluon dynamics have been
considered correctly, though in an implicit way. Finally,
one can easily find that above Tcp, mπ increases as well as
the scalar meson, which is consistent with the 4D studies
[12–14,17,18]. Moreover, the degeneracy of the scalar
meson and pion is observed in the mass spectrum above
Tcp, which reveals the restoration of the broken symmetry
at the hadronic spectrum level. From another perspective,
we find that the peaks for the spectral functions for the
scalar and pseudoscalar modes above Tc, as well as those
below Tc, are all determined by the quasinormal-mode
frequencies ω0 in the complex ω plane. However, the
relationship between quasinormal modes and spectral
functions is complicated, and we will investigate these
topics in a future article [118].

E. The GOR relation at finite temperature

In the previous section we extracted the masses from the
spectral functions. Here, we will follow Ref. [38] and try to
derive a different way to calculate the mass below Tc.
Going back to Eq. (25), one can prove that it is equivalent to

φ00 þ ðA0 −Φ0Þφ0 −
e2Ag25χ

2

f
ðφ − πÞ ¼ 0; ð46aÞ

π0 −
ω2e−2Aφ0

g25fχ
2

¼ 0: ð46bÞ

The main observation is that with fðzhÞ ¼ 0 in Eq. (46b),
the boundary condition in the IR could not be the normal
real regular condition. The wave-like solution, i.e., the
infalling and outgoing boundary conditions, appears. One
has to calculate the spectral functions. Thus, we will make a
naive assumption that the peak location for the pion below
Tc is not related to fðzÞ in Eq. (46b), which only generates
the widths at temperatures below Tc. Under such an
assumption, one replaces fðzÞ in Eq. (46b) with fðzÞ≡
1 at zero temperature, and obtains

φ00 þ ðA0 −Φ0Þφ0 −
e2Ag25χ

2

f
ðφ − πÞ ¼ 0; ð47aÞ

π0 −
m2

πe−2Aφ0

g25χ
2

¼ 0; ð47bÞ

where we have replacedω2 withm2
π explicitly. Though only

ω2 corresponding to the normalizable mode can be con-
sidered as pion mass.

Then, the process is similar to the derivation of the GOR
relation at zero temperature done in Ref. [38]. When
approaching the chiral limit mq → 0, mπ → 0, one can
construct the solution with a very small quark mass from
the Goldstone mode in the chiral limit. Given the leading
solution φ̃ and π ≡ 0, one can try to construct the next order
for π as

δπðzÞ ¼
Z

z

0

du
m2

πu3

χ2
φ̃0

g25u
: ð48Þ

It is easy to check that the above integration is divergent in
the UV if mq equals zero exactly. However, if there is any
finite mq, the divergence would be removed. Thus, one can
parametrize the divergence in mq. Considering a small mq

in χ, the divergence in the chiral limit tells us that the
contribution of the integration is mainly from the UV.
Actually, with a very small mq, the contribution is from a
small z. Thus, one can get

δπðzÞ ∼m2
πf2π;T

Z
z

0

du
u3

χ2
; ð49Þ

where the temperature-dependent pion decay constant fπ;T
is defined as f2π;T ¼ φ̃0

g2
5
z jz→0. In the small-mq limit, the

integration can be obtained as 1=ð2mqσÞ. Thus, we have

δπðzÞ ∼m2
πf2π;T
2mqσ

: ð50Þ

Considering the exact chiral limit, this solution should be
the massless Goldstone mode with π ≡ 1, and we have the
GOR relation at finite temperature,

m2
πf2π;T ¼ 2mqσ: ð51Þ

For a small mq, fπ;T and σ can be extracted from the
solutions of φ̃ and χ. Then, by using this relation, one can
get mπ at finite temperature.
Since the above derivation depends on the assumption

given at the beginning of this section, we make a numerical
check of this relation. The black dots in Fig. 4 are obtained
from the finite-T GOR relations in Eq. (51). In Fig. 4, we
can see that it agrees very well with the blue line from the
spectral functions. This might be considered as a numerical
check of our assumption. It might provide a simpler way to
extract the pole mass at temperatures below T. Of course,
when the temperature is above Tc, the Goldstone mode in
the chiral limit disappears, and the GOR relation derived
here cannot be used. From the discussion in this section, we
can see that the coupling with φ is quite important to realize
the Goldstone nature of the pion. The scenario neglecting
such couplings in Refs. [73,74] might not be a good
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approximation at low temperature, especially in the chi-
ral limit.

III. PION QUASIPARTICLES AT FINITE ISOSPIN
DENSITY

In the previous section we presented a careful analysis of
scalar-type quasiparticles only at finite temperatures.
However, in heavy-ion collisions, the nuclear matter
density might also be very important at certain collision
energies. The recent experimental project BES [90–92] was
designed mainly to probe the baryon number density effect,
and in particular to determine the CEP in the T-μB plane.
Besides the baryon number, the isospin number is another
conserved charge in QCD, and its density might also
change the properties of the medium. For example, a finite
isospin density might be generated by the different numbers
of protons and neutrons in the initial nuclei. This might lead
to an imbalance between charged pions in the final
distribution [119]. Also, the pion superfluid phase, con-
sisting of condensed charged pions, might have been
produced in experiments [5–7]. Thus, investigating the
isospin density nI (or the isospin chemical potential μI)
effect has attracted growing attention.
At finite T and μB, one of the main interests is the chiral

phase transition, which is related to the symmetry breaking
from SUð2ÞV × SUð2ÞA [or, equivalently, SUð2ÞL×
SUð2ÞR] to SUð2ÞV . As shown in previous sections, in this
transition the neutral pion π0 together with the two charged
pions πþ and π− play the role of Goldstone bosons in the
chiral limit and pseudo-Goldstone bosons with finite quark
mass. Son and Stephanov [120] suggested that with a
sufficiently large μI , the nuclear matter might transit from
the normal phase to the pion superfluid phase. This is
supported by both lattice simulations [121] and model
studies [17,18]. In this transition, the SUð2ÞV symmetry
would be broken toUIð1Þ, which is the Abelian subgroup of
SUð2ÞV . Since the isospin numbers I3 of πþ, π0, and π− are
different, the three pions might split at finite μI . One of the
charged pions would become the Goldstone boson of this
symmetry-breaking process. Since one of the main goals of
thiswork is to investigate the relationshipbetween thehadron
spectrum and phase transitions, in this section we focus on
the isospin density effect, which provides a possibility to
probe another kind of phase transition.
In the holographic framework, the isospin density effect

has been studied in the hard-wall model in Refs. [93–97]. It
has been shown that above μI charged pions tend to form a
Bose-Einstein condensate. In our previous work [99], we
extended this study to both finite temperature and isospin
density, and we obtained the phase diagram in the T-μI
plane, as shown in Fig. 5. In the figure, a Λ type of phase
boundary (the red solid line) is observed. Below the phase
boundary, i.e., at relatively large μI and low T, the pion
condensed phase forms. Outside this region, the nuclear

matter is in the normal phase. The chiral transition line is
also shown by the blue line.

A. Spectral functions of pseudoscalar modes

According to the holographic recipe, the conserved
current is dual to the gauge field in Eq. (3). The isospin
current q̄γμt3q is dual to V3

μ. At finite isospin density, one
has to consider a nonzero V3

μ. Generally, the solution
should be solved using a certain kind of gravity system
coupled with the soft-wall AdS/QCDmodel action. But it is
difficult to solve the action with the full backreaction. Thus,
for simplicity, in the sense of theprobe limit, we take the
AdS-Reissner-Nordström metric solution of the action,
which couples the F2

L þ F2
R terms in Eq. (1) with the

5D Einstein-Hilbert action. Thus, the metric in Eqs. (6)
and (7) would be replaced with

ds2 ¼ e2AðzÞ
�
fðzÞdt2 − dxidxi −

1

fðzÞ dz
2

�
; ð52aÞ

fðzÞ ¼ 1 − ð1þ μ2I z
2
hÞ
z4

z4h
þ μ2I

z6

z4h
; ð52bÞ

together with a nonzero V3
0 of the following form:

V3
0ðzÞ ¼ μI

�
1 −

z2

z2h

�
: ð53Þ

Here, μI is the isospin density and zh is the horizon where
fðzÞ ¼ 0. In this case, the temperature is defined by the
surface gravity as

0.0 0.1 0.2 0.3 0.4 0.5
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T
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)

(0,0.164)

(0.146,0)

(0.1,0.162)

(0.333,0.129)

(0.17,0.06)

Pion condensed

SR

SB

FIG. 5. QCD phase diagram at finite temperature and finite
isospin chemical potential [99]. The blue line is the phase
boundary between the normal chiral-symmetry-broken (χSB)
phase and chiral-symmetry-restored (χSR) phase. The pion con-
densed phase is bounded by the red line and the μI axis. The
maximal temperature of pion condensation is Tc;top ¼ 129 MeV,
labeled at the peak of the red line. The masses of pions along the
three grey lines are studied in Sec. III B.
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T ¼
���� f

0ðzhÞ
4π

���� ¼ 2 − μ2I z
2
h

2πzh
: ð54Þ

Since we focus on the pion superfluid transition, in which
the pseudoscalar mode is relevant, we will only consider
pions in this section. At finite temperature, the three

pseudoscalar modes π1, π2, and π3 in Eq. (17) are
symmetric under rotation in isospin space. However, with
finite isospin chemical potential μI , such symmetry is
broken, and we expect the splits of these three modes.
This can be easily read from the effective action

SPS ¼ −
1

2g52

Z
d5x

ffiffiffiffiffiffi
−g

p
e−Φ

�X3
i¼1

fgμνgzz∂z∂μφ
i∂z∂νφ

i − g52χ2½gμν∂μφ
i∂νφ

i

þ gμν∂μπ
i∂νπ

i þ gzzð∂zπ
iÞ2�g − g52χ2

�
g00ðV3

0Þ2½ðπ1Þ2 þ ðπ2Þ2�

þ 2g00V3
0ðπ1∂0π

2 − π2∂0π
1Þ − 2g00V3

0ðπ1∂0φ
2 − π2∂0φ

1Þ−2gμν
X3
i¼1

∂μφ
i∂νπ

i

�	
: ð55Þ

For later convenience, we redefine π1 and π2 as

π� ¼ 1ffiffiffi
2

p ðπ1 ∓ iπ2Þ; φ� ¼ 1ffiffiffi
2

p ðφ1 ∓ iφ2Þ; ð56Þ

where π� and φ� represent the degrees of freedom for
charged pions. We denote the modes π3;φ3 as π0;φ0 to
specify the charge difference.
Like the case at finite temperature, we only consider the

time t and z dependence of the three modes and transform
all of them to frequency space as

π0ðt; zÞ ¼ 1

2π

Z
dω0e−iω0tπ0ðω0; zÞ; ð57aÞ

π�ðt; zÞ ¼ 1

2π

Z
dω�e−iω�tπ�ðω�; zÞ; ð57bÞ

φ0ðt; zÞ ¼ 1

2π

Z
dω0e−iω0tφ0ðω0; zÞ; ð57cÞ

φ�ðt; zÞ ¼ 1

2π

Z
dω�e−iω�tφ�ðω�; zÞ: ð57dÞ

Then, one can obtain the equations of motion for the three
modes as

φ000 þ ðA0 −Φ0Þφ00 −
e2Ag25χ

2

f
ðφ0 − π0Þ ¼ 0; ð58aÞ

π0
00 þ

�
3A0 þf0

f
−Φ0 þ2χ0

χ

�
π0

0 −
ðφ0−π0Þω2

f2
¼ 0; ð58bÞ

and

φ�00 þ ðA0 −Φ0Þφ�0

−
e2Ag25χ

2

ω�f
½ω�φ� − ðω� � V3

0Þπ�� ¼ 0; ð59aÞ

π�00 þ
�
3A0 þ f0

f
−Φ0 þ 2χ0

χ

�
π�0

−
ðω� � V3

0Þ½ω�φ� − ðω� � V3
0Þπ��

f2
¼ 0: ð59bÞ

Also, it is not difficult to derive the on-shell action for the
neutral pion as

Sonπ0 ¼ −
1

2g25

Z
dωeA−Φ½e2Ag25fχ2π0ð−ω; zÞπ0

0 ðω; zÞ

−ω2φ0ð−ω; zÞφ00 ðω; zÞ�jz¼zh
z¼ϵ : ð60Þ

The charged pions’ on-shell actions are

Sonπ� ¼ −
1

2g25

Z
dωeA−Φ½e2Ag25fχ2π�ð−ω; zÞπ∓

0 ðω; zÞ

−ω2φ�ð−ω; zÞφ∓0 ðω; zÞ�jz¼zh
z¼ϵ : ð61Þ

To get the on-shell action, one has to solve the equations
of motion. Before that, the UVand IR boundary conditions
should be specified. At the UV boundary, the asymptotic
expansion can be derived as

φ0ðz → 0Þ ¼ cf þ φ2z2 −
1

2
ζ2g25m

2π0z2 logðzÞ þOðz3Þ;
ð62aÞ

π0ðz → 0Þ ¼ π0 þ cf þ π2z2 −
1

2
π0ω

2z2 logðzÞ þOðz3Þ;
ð62bÞ
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and

φ�ðω; z → 0Þ ¼ g25m
2ζ2½ωφ�

0 − ðω� μIÞπ�0 �z2 logðzÞ
2ω

þ φ�
0 þ φ�

2 z
2 þOðz3Þ; ð63aÞ

π�ðω; z → 0Þ ¼ 1

2
ðω� μÞ½φ�

0 ω − ðω� μIÞπ�0 �z2 logðzÞ
þ π�0 þ π�2 z

2 þOðz3Þ; ð63bÞ

for π0;φ0 and π�;φ� respectively, where π0, cf, π2, φ2, φ�
0 ,

φ�
2 , π

�
0 , and π�2 are integral constants.

To get the retarded Green functions, the infalling con-
dition should be imposed at the IR boundary. Thus, the
expansions at the IR boundary are

φ0ðz → zhÞ ¼ ðzh − zÞ
iωzh

2μ2
I
z2
h
−4

�
2ic20g

2
5πh0ðμ2I z2h − 2Þðz − zhÞ

ωz2hð2μ2I z2h þ iωzh − 4Þ

þO½ðz − zhÞ2�
�
þ ch0; ð64aÞ

π0ðz → zhÞ ¼ ðzh − zÞ
iωzh

2μ2
I
z2
h
−4fπh0 þOðz − zhÞg þ ch0;

ð64bÞ

and

φ�ðz → zhÞ ¼ ðzh − zÞ
iωzh

2μ2
I
z2
h
−4

�
2ic20g

2
5ðz − zhÞðμ2I z2h − 2Þπ�h0

ωz2hð2μ2I z2h þ iωzh − 4Þ

þO½ðz − zhÞ2�
�
þ c�h0; ð65aÞ

π�ðz → zhÞ ¼ ðzh − zÞ
izh

2μ2
I
z2
h
−4fπ�h0 þOðz − zhÞg þ c�h0;

ð65bÞ

where πh0, ch0, π�h0, and c�h0 are integral constants. Under
these conditions, one can solve all of the integral constants
and get the spectral function through the following expres-
sions7:

ρðπ0;ωÞ ¼ −
1

π
ImGR

π0
ðωÞ

¼ Im

�
1

4ππ0
m2

qζ
2ð4π2 − π0ω

2Þ
	
; ð66Þ

and

ρðπ�;ωÞ ¼ −
1

π
ImGR

π�ðωÞ

¼ Im

�
1

4ππ�0
m2

qζ
2½4π�2 − ðω� μÞ2π�0 �

�
: ð67Þ

B. Mass spectra of pion quasiparticles and the
Goldstone boson

The pion superfluid transition is connected with the
breaking of SUð2ÞV symmetry, which is an exact symmetry
in both the chiral limit and cases with finite quark masses.
So, in this section we only consider the realistic case with a
physical quark mass. Taking mq ¼ 3.22 MeV and solving
the equations of motion (EOMs) in Eqs. (58) and (59), one
can obtain the spectral functions.
First, we fix μI ¼ 0.1 GeV and investigate the temper-

ature-dependent behavior of the three modes, i.e., along the
vertical gray line in Fig. 5. The spectral functions for
πþ; π0, and π− are shown in Figs. 6(a), 6(b), and 6(c),
respectively, for temperatures T ¼ 0.07, 0.13, and
0.165 GeV. From the locations of the peaks, we can see
that at low temperature and finite isospin chemical potential
the masses of πþ; π0, and π− are split. For example, at
T ¼ 0.07 GeV, mπþ ≈ 0.057 GeV and mπ0 ≈ 0.136 GeV,
which are smaller than their vacuum values, while
mπ− ≈ 0.210 GeV, which is larger than its vacuum value.
Moreover, from the locations of the peaks one can see that,
with increasing temperature, the masses of π− and π0

decrease monotonically, whilemπþ increases at low temper-
ature. This result might be reasonable. Considering that the
pion condensed phase appears at Tc;π ¼ 0; μI ≈ 0.146 GeV,
a possible coherent fraction of πþ might form at
μI ¼ 0.1 GeV, which would reduce the energy needed to
excite theπþ. The increasing temperature tends to destroy the
coherence of particles. Thus, it would have a contrasting
effect on mπþ .
For temperatures above the blue line in Fig. 5, we take

T ¼ 0.166, 0.170, and 0.175 GeV as examples and show
the results in Fig. 6(d). From the figure, we can see that
although the heights of the peaks are different for the three
modes, the locations of the peaks are almost the same. This
shows that the high-temperature modes are still governed
by the chiral phase transition.
To be clearer, we extract the temperature-dependent

masses and plot them in Fig. 7. The decreasing of mπ−

and mπ0 can be clearly seen from the black and blue lines,
respectively. The result formπ0 is almost the same as that at
μI ¼ 0, since the third component of isospin number (I3) of
π0 is zero. For mπ−, which is enhanced by μI, near T ¼ 0 it
increases to about 0.235 GeV. With increasing temperature,
it decreases to 0.061 GeV near the pseudotransition
temperature Tcp ¼ 0.162 GeV. For mπþ, a little bump
appears near the chiral crossover point. At first glance,

7The parameter cf and φ�
0 are set to zero. Certain real terms

inside the imaginary function are neglected.
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this is quite strange. Actually, it could also be reasonable.
Here, the increasing temperature has two effects. One is to
destroy the coherent fraction of πþ, while the other one is to
decrease the chiral condensate. The former effect would
lead to an increase of mπþ while the latter leads to a
decrease, as discussed in Sec. II. Therefore, the bump is the
result of the competition between these two effects. It is
obvious that the three pions become degenerate at temper-
atures above Tcp, which is mainly controlled by the chiral
phase transition.

Now we turn to the μI dependence of the three modes.
We fix T ¼ 0.06 GeV and vary μI, i.e., along the lower
gray horizontal line in Fig. 5. The spectral functions of
πþ; π0, and π− are presented in Figs. 8(a), 8(b), and 8(c),
respectively. From Fig. 8(b), again, we find that the
dependence of mπ0 on μI is rather weak at low temperature.
The locations of the peaks move slightly towards ω ¼ 0. In
Figs. 8(a) and 8(c), the μI dependence of mπþ is opposite
that of mπ− . The former decreases with μI while the latter
increases. In particular, the most interesting thing is the
appearance of a massless πþ at μI ≈ 0.170 GeV. Another
observation is that the widths of the peaks increase with μI
at such a low temperature.
We also display the μI dependence of the quasiparticles’

masses in Fig. 9. Qualitatively, the picture of the mass
splitting is in agreement with the previous study in the
hard-wall model [94,96,97]. At T ¼ 0.06 GeV; μI ¼ 0, the
masses of the three pions are degenerate atm ≈ 0.138 GeV.
When μI increases to 0.170 GeV, the πþ becomes massless.
This is related to a certain instability. In fact, T ¼
0.06 GeV; μI ¼ 0.17 GeV is located exactly at the phase
boundary between the pion condensed phase and normal
phase. Above μI ¼ 0.17 GeV, the SUð2ÞV symmetry is
broken to its subgroup UIð1Þ, and πþ becomes the massless
Goldstone bosonof the symmetry breaking. Interestingly,we
observe the realization of the Goldstone theorem in the
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FIG. 7. Temperature-dependent behaviors of pions masses at
μI ¼ 0.1 GeV. The black, blue, and red lines are for mπ− , mπ0 ,
and mπþ , respectively.
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FIG. 6. Spectral functions of (a) ρðπþ;ωÞ [an enlarged view for frequency in the interval (0,0.15) is shown], (b) ρðπ0;ωÞ, and
(c) ρðπ−;ωÞ, at μI ¼ 0.1 GeV. The red, blue, and black solid lines represent results below Tcp, at T ¼ 0.07, 0.13, and 0.165 GeV,
respectively. (d) Spectra functions at μI ¼ 0.1 GeV and T above Tcp, with the dotted line for πþ, solid line for π0, and dashed line for π−.
The red, blue, and black lines represent the results for T ¼ 0.166, 0.170, and 0.175 GeV, respectively.
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holographic approach at both finite temperature and isospin
density. As for π−, its mass increases from 0.138 GeV to
around 0.253 GeV. The increasing mass split of πþ and π−

might affect the distribution of the final charged pions if the
fireball passes such an intermediate state.
Finally, as shown in Fig. 5, when the temperature is

higher than Tc;top ¼ 0.129 GeV, the condensed phase is
destroyed, even with a very large μI. Thus, we will also
investigate the behavior of the mass spectral at high
temperatures. We take T ¼ 0.13 GeV as an example.
From our calculation, with larger widths, the peaks in
the spectral functions are similar to those at T ¼ 0.06 GeV,
so we give the μI dependence of pion masses only. This is
shown in Fig. 10. Qualitatively, the results for π0 and π− are
similar to those at T ¼ 0.06 GeV. As for πþ, the massless
mode disappears even at very large μI, which is consistent
with the absence of pion superfluid at high temperatures.

IV. CONCLUSION

In this work, we investigated the masses of light (pseudo)
scalar mesons at finite temperature T and isospin chemical
potential μI (extracted from the spectral functions), as well
as their relationship with the chiral phase transition and
pion superfluid transition in a two-flavor soft-wall AdS/
QCD model.
In the chiral limit, charged and neutral pions were proved

numerically and analytically to be massless Goldstone
modes for any temperature below the critical temperature
Tc of the chiral phase transition. The mass of the scalar
meson decreases from its vacuum value 1.05 GeV to zero at
Tc ¼ 0.163 GeV. Above Tc, the masses of scalar and
pseudoscalar mesons become degenerate and increase with
temperature. This can be considered as the realization of
chiral symmetry restoration at the hadronic level, which is
consistent with the signal from the chiral condensate hq̄qi.
Qualitatively, this picture is in good agreement with the
Goldstone theorem [75,76] and expectations from theo-
retical analysis. In this sense, the theoretical consistency of
the soft-wall model has been checked.
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FIG. 9. μI dependence of the pions’ masses at T ¼ 0.06 GeV.
The black, blue, and red lines represent results for mπ− , mπ0 , and
mπþ , respectively. mπþ vanishes at 0.170 GeV, as shown by the
black dot.
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FIG. 10. μI dependence of the pions’ masses at T ¼ 0.13 GeV.
The black, blue, and red lines represent results for mπ− , mπ0 , and
mπþ , respectively.
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FIG. 8. Spectral functions for (a) ρðπþ;ωÞ, (b) ρðπ0;ωÞ, and
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μI ¼ 0.165 GeV in panels (b) and (c).
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To be more realistic, we studied physical quark mass
cases, in which the chiral phase transition is a crossover.
Qualitatively, the scalar masses with respect to temperature
are similar to the chiral limit case except for the nonzero
minimum at the pseudocritical temperature at Tcp ¼
0.164 GeV.However, themain difference comes frompions.
Below Tcp, their masses decrease from the vacuum value
0.140 GeV to 0.062 GeVat Tcp. This result agrees well with
the general analysis by Son and Stephanov in Refs. [23,24],
as well as lattice simulations in Refs. [10,11]. The reduction
rate from our holographic study is about 60%,which is larger
than the 30% fromRefs. [23,24] and20% fromRefs. [10,11].
This behavior might lead to a larger contribution from the
mass decrease of pions to the enhancement of the low-
momentum distribution of pions in heavy-ion collisions. For
temperatures above Tcp, the degeneration of scalar and
pseudoscalar modes is observed again, and both the spectral
increase with temperature, which is consistent with results
from 4D models [12–14,17,18]. Phenomenologically, it
might be a possible candidate for the signal of phase
transitions in experiments.
Considering the growing interest in the effect of isospin

density, we extended the above study to the situation with a
finite isospin chemical potential μI and investigated the
pion mass behaviors with finite μI and T. With a fixed μI ,
e.g., μI ¼ 0.1 GeV, there are mass splits of πþ; π0, and π−

as a result of a finite μI at low temperature. The masses
of πþ and π− are shifted down and up, respectively, while
mπ0 is kept unchanged. This result is consistent with
previous holographic studies at T ¼ 0; μI ≠ 0 [94,96,97].
Phenomenologically, the mass splits of π� would affect the
distribution of π� and contribute to the ratio of the
multiplicity of charged pions (π− to πþ) detected in
experiments. Below Tcp, with the increasing temperature,
mπ− and mπ0 decrease. mπþ increases to a maximum value
first, and then decreases with temperature. Above Tcp, the
three modes become degenerate and increase with temper-
ature, as shown in Fig. 7. With a fixed low temperature,
e.g., T ¼ 0.06 GeV, mπþ (mπ−) decreases (increases) with
μI , while mπ0 depends weakly on μI . The mass splits of
pions increase rapidly with μI . When mπþ ¼ 0 and
μI ¼ 0.17 GeV, an instability occurs and the pion con-
densed phase appears. There is a spontaneous symmetry
breaking from SUð2ÞV to UIð1Þ, and πþ is the Goldstone
mode. With a fixed high temperature, e.g., T ¼ 0.13 GeV,
qualitatively the μI dependence of pions is similar to that at
T ¼ 0.06 GeV with a relatively small μI . However, one can
no longer find the massless Goldstone mode at large μI .
This is consistent with our previous study [99] where
we determined that no condensed phase exists above
Tc;top ¼ 0.129 GeV.
The current study checked the theoretical consistency of

the soft-wall holographic framework. The qualitative
behavior of the chiral phase transition and pion super-
fluidity transition can be well realized from both the order

parameters and hadronic spectra. Furthermore, the T and μI
dependences of light scalar and pseudoscalar mesons might
have interesting consequences in heavy-ion collisions. The
LHC data indicate that the chemical freeze-out temperature
Tch is about 0.156 GeV [122], at which the hadron
abundances are fixed. From the current results, the decrease
of the pion mass around this temperature might contribute
to the overpopulation of pions at low momenta. Also, the
effect of pion splits at finite μI might contribute
to the charge imbalance in the final particle spectra.
Though the highest pion condensed temperature Tc;top ¼
0.129 GeV is a bit lower than Tch, it is still higher than the
thermal freeze-out temperature Tth, which is estimated
to be 0.1–0.12 GeV [123–125]. Thus, the formation
of pion condensate is possible before thermal freeze-out.
Therefore, in the final detection, the low-energy pion and
the coherent fraction would be enhanced. The quantitative
relation between our results and the experimental data
requires further study, and we leave this to future work.
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APPENDIX: SHOOTING METHOD

A second-order ODE can be numerically solved with
two determining boundary conditions. However, in our
work the boundary conditions always include free param-
eters. Therefore, we have to use the “shooting method” to
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FIG. 11. Solutions for χ at T ¼ 0.11 GeV. Different solutions
are obtained with different values of σ or c0 with the UV
boundary condition or the IR horizon boundary condition. The
black solid line and the red dashed line overlap each other give
the right solutions ðσ; c0Þ ¼ ð0.0146 GeV3; 0.572 GeVÞ.
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numerically solve the EOMs. In this Appendix we use the
EOM of χ in Eq. (13) as an example to illustrate how the
‘shooting method” works.
For the EOM of χ in Eq. (13), we have the expansion

boundary conditions (14a) and (14b) for the UV boundary
at z ¼ 0 with σ undetermined and the IR horizon at z ¼ zh
with a free parameter c0, respectively. On both sides, with a
certain value of σ or c0, one can solve the equation
numerically and get solutions for χσ or χc0 that are regular
in the UV or IR, respectively. Requiring the smooth
connection of χσ and χc0 , one gets the two conditions
χσðzcÞ ¼ χc0ðzcÞ and χ0σðzcÞ ¼ χ0c0ðzcÞ, where zc is an
arbitrary selected point in the interval ð0; zhÞ. However,
we choose the midpoint (zc ¼ zh=2) for convenience. Then,
σ and c0 can be solved, and a full solution that is regular on
both sides is obtained. Imposing such a “shooting”method,

one can obtain the temperature-dependent chiral conden-
sate and get information about the chiral phase transition.
For the other EOMs, we just follow the illustrated “shoot-
ing method.”
At last, we give a concrete example, shown in Fig. 11. At

T ¼ 0.110 GeV, if one lets the solutions from both sides
satisfy χσðzh=2Þ ¼ χc0ðzh=2Þ and χ0σðzh=2Þ ¼ χc0

0ðzh=2Þ
simultaneously, the values σ ¼ 0.0360 GeV3 and c0 ¼
0.660 GeV are obtained. With these values, the solutions
χσðzÞ and χc0ðzÞ overlap each other, as shown by the solid
black and dashed red lines. When the values of σ or χ0
deviate from them, such as σ ¼ 0.0146, 0.006 GeV3 and
c0 ¼ 0.572, 0.400 GeV, the corresponding solutions devi-
ated from the right solutions and will never smooth connect
with the solution from the other side.
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