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We holographically calculate two-point functions in the pseudoconformal universe, an early universe
alternative to inflation. The pseudoconformal universe can be modeled as a defect conformal field theory,
where the reheating surface is a codimension-1 spacelike defect that breaks the conformal algebra to a
de Sitter subalgebra. The dual spacetime geometries are domain walls with de Sitter symmetry in an
asymptotically anti–de Sitter spacetime. We compute two-point functions of scalars and stress tensors by
solving the linearized equations for scalar and tensor fluctuations about these backgrounds.
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I. INTRODUCTION

Alternatives to inflation often involve a pre–big
bang phase in which the universe is approximately flat.
Some well studied examples include the ekpyrotic scenario
[1,2] and genesis-type models [3,4]. Another example,
which will be our primary interest, postulates that the early
universe is described by a conformal field theory (CFT) on
a nearly flat spacetime whose conformal algebra is sponta-
neously broken by a time-dependent vacuum expectation
value (VEV) of the form

hϕi ∼ 1=ð−tÞΔ; ð1:1Þ

where ϕ is a dimension Δ scalar operator. This VEV
breaks the conformal symmetry down to a de Sitter (dS)
subalgebra,

soð4; 2Þ → soð4; 1Þ: ð1:2Þ

This is the so-called pseudoconformal universe [4–11].
As t → 0 from below, the VEV (1.1) goes to infinity and
the universe must then reheat and transition to the standard

big bang radiation dominated phase. The reheating
surface at t ¼ 0 can be considered as a codimension 1
spacelike defect in the CFT. The presence of the defect
preserves a dS subgroup and is responsible for the
symmetry breaking (1.2).
Ideally one would have complete examples of CFTs

which possess states with the required VEVs to realize
the pseudoconformal mechanism. This issue has been
addressed in [12,13] where holographic constructions of
the pseudoconformal mechanism are found using the
AdS=CFT [14] correspondence. Another advantage of
the holographic approach is that it opens up the possibility
for a strongly coupled early universe scenario, in contrast to
standard scenarios such as inflation which are typically
weakly coupled.
The holographic dual to the four-dimensional pseudo-

conformal universe is a five-dimensional asymptotically
anti–de Sitter (AdS) space in which there is a domain wall
that is foliated by slices that are four-dimensional infla-
tionary-patch dS spaces. In [12], a spacetime background
satisfying these requirements was identified in the context
of pure Einstein gravity minimally coupled to a massless
scalar field, and one-point functions of the fields were
computed, verifying the existence of VEVs with the correct
symmetry breaking pattern.
In this paper we compute two-point functions. These are

the observables which are relevant for the computation
of power spectra in cosmology. In the AdS=CFT dictionary,
the one-point functions in the dual CFT are determined
by the background configurations of fields in the bulk,
whereas two-point functions are determined by linear
fluctuations on top of the bulk geometry. Thus, to obtain
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the two-point functions we must solve the linearized
equations for bulk fluctuations on top of the domain wall.
Our strategy will be to employ a coordinate system in
which the spatial slices, and the boundary geometry,
are dS4 spaces. In this slicing, the required VEV (1.1)
which breaks conformal symmetry down to dS symmetry
becomes simply a constant hϕidS ∼ const. Once the corre-
lators on dS4 are obtained, they can be Weyl transformed to
recover the original flat space correlators of interest.

II. HOLOGRAPHIC CFT CORRELATORS

We start by reviewing the formalism that relates CFT
correlation functions to bulk fields. The AdS=CFT corre-
spondence tells us that for every bulk field ϕ there is a
corresponding single-trace operator O of the large N CFT
which lives at the boundary. The standard AdS=CFT
prescription [15,16] tells us that the generating function
of the correlation functions of the operators O of the CFT
defined on the boundary ∂M of the bulk spacetime M,

ZCFT½Φ0�≡
D
e−

R
∂M Φ0O

E
; ð2:1Þ

is given at leading order in large N by the extrema of the
bulk gravitational action on M,

ZCFT½Φ0� ¼ e−Son-shell½Φ0�: ð2:2Þ

HereΦ0 are the boundary values of the bulk fieldsΦ, which
act as sources for the dual operators in the CFT. At tree
level, which corresponds to leading order in 1=N, the bulk
action is to be evaluated for the on-shell solution that
reduces to Φ0 on the boundary.
More precisely, the bulk field Φ satisfies the boundary

condition

Φ0ðxÞ ¼ lim
z→0

zΔ−4Φðx; zÞ; ð2:3Þ

where Δ is the scaling dimension of O. In this expression,
we are using Fefferman-Graham coordinates [17] in which
the metric is written as

ds2 ¼ L2

z2
ðdz2 þ gijðx; zÞdxidxjÞ; z > 0; ð2:4Þ

covering the Poincaré patch in the AdS case for which
gij ¼ ηij and L is the AdS radius. In these coordinates, the
boundary is located at z → 0.
We will be interested in a bulk theory corresponding to a

scalar field living in a curved background; that is, the bulk
fields are a graviton and a scalar. Near the boundary, these
fields have an asymptotic expansion of the form

gijðx; zÞ ¼ gð0ÞijðxÞ þ z2gð2ÞijðxÞ þ z4ðhð0ÞijðxÞ
þ gð4ÞijðxÞ log zþ � � �Þ þ � � � ; ð2:5Þ

Φðz; xÞ ¼ z4−Δ½ϕð0ÞðxÞ þ z2ϕð2ÞðxÞ þ z4ϕð4ÞðxÞ þ � � ��
þ zΔ½φð0ÞðxÞ þ z2φð2ÞðxÞ þ z4φð4ÞðxÞ þ � � ��;
Δ ∉ Integer; ð2:6Þ

Φðz;xÞ ¼ z4−Δ½ϕð0ÞðxÞþ z2ϕð2ÞðxÞþ � � �þ z2Δ−6ϕð2Δ−6ÞðxÞ
þ z2Δ−4ðφð0ÞðxÞþϕð2Δ−4ÞðxÞ lnzÞ
þ z2Δ−2ðφð2ÞðxÞþϕð2Δ−2ÞðxÞ lnzÞþ � � ��;
Δ∈ Integer; ð2:7Þ

where Δ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

p
is the scaling dimension of the

dual CFT operator.
The 4D fields ϕð0Þ and φð0Þ can be considered as the two

independent boundary data for the 5D bulk equations of
motion. Using the bulk equations of motion, the ϕðnÞ, n ≥ 2

are determined in terms of ϕð0Þ, and the φðnÞ, n ≥ 2 are
determined in terms of φð0Þ. The function ϕð0Þ is the
boundary value corresponding to the source for a scalar
operator in the dual CFT, and φð0Þ turns out to correspond to
the VEV of that operator, with its value determined by
additional boundary conditions deep in the bulk.
Similarly, the Einstein equations will require two pieces

of boundary data. One of these is the boundary metric gð0Þij,
and a near boundary expansion of the equations of motion
will determine the gðkÞij for k ≥ 2 in terms of gð0Þij. The
other piece of boundary data is hð0Þij, with the hðkÞij for
k ≥ 2 determined in terms of gð0Þij and hð0Þij. However, we
are not completely free to choose hð0Þij; its trace and
divergence (with respect to gð0Þij) will be determined, and
the rest of hð0Þij will be set by boundary conditions other
than Dirichlet data at z ¼ 0 (i.e., data at z ¼ ∞).
The on-shell action is generally divergent, and a proper

renormalization procedure must be used [18,19]. The
renormalized action is defined as

Sren½Φ0� ¼ lim
ϵ→0

ðSreg½Φ0; ϵ� þ Sct½ϵ�Þ; ð2:8Þ

where Sreg is the on-shell action with the radial integration
domain restricted to z > ϵ and Sct is a counterterm action
consisting of purely local terms on the boundary, chosen to
cancel the divergent terms in the regularized action Sreg
as ϵ → 0. The regularized action and the corresponding
counterterms that lead to the renormalized action for the
proposed dual of the pseudoconformal universe can be
found in [12]. After renormalizing the action, the resulting
one-point functions are
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hOðxÞis ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgð0ÞðxÞj
q δSren

δϕð0ÞðxÞ
;

hTijis ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgð0ÞðxÞj
q δSren

δgijð0ÞðxÞ
; ð2:9Þ

where Sren is the on-shell renormalized action and the
subscript s denotes the correlation functions in the presence
of sources. The higher point correlation functions can then
be obtained with further functional derivatives of the one-
point functions with respect to the sources.
In the CFT, there are Ward identities corresponding to

global symmetries. In AdS=CFT, there exists a correspon-
dence between gauge symmetries of the bulk (in our
case only diffeomorphisms) and global symmetries of
the boundary theory. We can understand the Ward identities
of the CFT correlators by performing shifts on the action
given by bulk diffeomorphisms. Consider the variation of
the renormalized action, which upon using (2.9) is given by

δSren ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
jgð0Þj

q �
−
1

2
hTijisδgijð0Þ þ hOisδϕð0Þ

�
:

ð2:10Þ

The Ward identities correspond to diffeomorphisms that
leave the Fefferman-Graham form of the metric invariant.
The infinitesimal action of these symmetries on the sources
is given by

boundary diffeomorphisms∶

δgijð0Þ ¼ ð∇iξj þ∇jξiÞ; δϕð0Þ ¼ ξi∇iϕð0Þ; ð2:11Þ

boundaryWeyl transformations∶

δgijð0Þ ¼ 2σgijð0Þ; δϕð0Þ ¼ −ð4 − ΔÞσϕð0Þ; ð2:12Þ

which correspond to diffeomorphisms transverse to the
radial coordinate and a subset of the 5D diffeomorphisms
that act as a Weyl transformation on the boundary metric.
These symmetries imply the Ward identities

∇ihTijis ¼ −hOis∇jϕð0Þ; ð2:13aÞ

hTi
iis ¼ −ð4 − ΔÞϕð0ÞhOis þA; ð2:13bÞ

where A is the Weyl anomaly that arises because the
regularized action necessarily breaks the radial diffeomor-
phism symmetry that induces the Weyl transformation [20].

III. VEV DEFORMATIONS AND TWO-POINT
FUNCTIONS

We will be interested in the case of a CFT where the
scalar develops a VEV. In this case, the source field is zero

and the leading term in the asymptotic expansion is the zΔ

term. The VEV turns out to be proportional to φð0Þ, and
since the VEV is nonzero, this will break conformal
invariance. For the pseudoconformal universe dual, we
require a time dependent VEV of the form (1.1), which
realizes the symmetry breaking pattern (1.2).
If we use Fefferman-Graham coordinates in which the

slices of constant radial coordinate are curved dS4 slices,
then the VEV will appear to be coordinate independent
[12]. Our approach thus consists of first computing the
correlation functions for a CFT living in a curved slicing
with dS4 metric γij and afterwards performing a Weyl
transformation to obtain the correlation functions for the
dual CFT living in flat space. CFT correlation functions on
spaces of constant curvature have been studied previously;
see, e.g., [21,22] (see also [23] for other details on holo-
graphic CFTs on maximally symmetric spacetimes).
While the expressions for the one-point functions can be

obtained through a near-boundary analysis, higher order
correlators require taking into account the dynamics of
fluctuations inside the bulk. In most cases, an exact solution
of the nonlinear equations is not available. However, the
two-point functions only require the linear dependence on
the sources, and thus we can compute the two-point
functions by solving for the linearized fluctuations around
the background [19].
Consider an asymptotically AdS “domain wall” back-

ground of the form

ḡμνdxμdxν ¼ nðρÞ2dρ2 þ aðρÞ2γijdxidxj; ϕ̄ ¼ ϕ̄ðρÞ;
ð3:1Þ

where ρ is some general radial coordinate of the bulk and
γij is a maximally symmetric domain wall metric with
curvature k normalized as

RðγÞijkl ¼ kðγikγjl − γjkγilÞ: ð3:2Þ
In a cosmological setting, nwould be the lapse function and
a the scale factor.
We define the perturbations of the metric and scalar field,

respectively, as hμν and φ, i.e.,

gμν ¼ ḡμν þ hμν; ϕ ¼ ϕ̄þ φ: ð3:3Þ
All the following expressions are γ covariant; that is,
indices are raised and lowered by γij and the covariant
derivatives and curvature tensors are those of the γ metric.
Analogously to cosmological perturbation theory (see,
e.g., [24]), the metric perturbation can be decomposed as

hρρ ¼ n2Φ;

hiρ ¼ nað∇iBþ viÞ;
hij ¼ a2ðρÞðζδij þ∇i∇jχ þ∇iwj þ∇jwi þ hTTij Þ; ð3:4Þ
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where

∇ivi¼0; ∇iwi¼0; ∇ihTTij ¼0; γijhTTij ¼0: ð3:5Þ

We now insert this into the expression (2.10) for the
variation of the renormalized action, and keep terms only to
linear order in these perturbations. After using the Ward
identities, Eq. (2.13), and assuming that the background
VEV or the source is constant, we find1

δSren ¼
Z

d4x
ffiffiffiffiffi
jγj

p �
1þ 2ζð0Þ þ

1

2
∇2χð0Þ

�

×

�
−
1

2
hTijiδhTTð0Þij −

1

2
hTi

iiδζð0Þ

þ 1

2
hOið∇2φð0ÞÞδχð0Þ þ hOiδφð0Þ

�
: ð3:6Þ

Our next step is to transform to Fourier space. To do so,
we use a basis of eigenfunctions of the Laplacian of the
metric γ. In flat space this basis simply corresponds to plane
waves, but here we need to consider the basis appropriate
for the symmetries of the curved slicing. We will not need
to be explicit about the basis—it will be enough to know
that it is complete and orthonormal. Define YλðxÞ to be a
complete set of orthonormal eigenfunctions of the scalar
Laplacian with eigenvalues λ,

−∇2YλðxÞ ¼ λYλðxÞ: ð3:7Þ

The completeness and orthonormality relations are

Z
d4x

ffiffiffiffiffi
jγj

p
YλðxÞYλ0 ðxÞ ¼ δλλ0 ; ð3:8Þ

X
λ

YλðxÞYλðx0Þ ¼
1ffiffiffiffiffijγjp δ4ðx − x0Þ: ð3:9Þ

Given this, any function FðxÞ can be expanded over the
basis Yλ to yield an associated Fourier transform F̃ðλÞ, with
the Fourier transform pair given by

FðxÞ ¼
X
λ

F̃ðλÞYλðxÞ; F̃ðλÞ ¼
Z

d4x
ffiffiffiffiffi
jγj

p
FðxÞYλðxÞ:

ð3:10Þ

Using this, we can write the variation of the renormalized
action (3.6) in Fourier space as

δSren ¼
X
λ

�
−
1

2
ðhTijiB þ hTijiδÞδhTTð0Þij

−
1

2
ðhTi

iiB þ hTi
iiδÞδζð0Þ −

λ

2
hOiBφð0Þδχð0Þ

þ hOiδδφð0Þ þ 2hOiBζð0Þδφð0Þ −
λ

2
hOiBχð0Þδφð0Þ

�
;

ð3:11Þ

where we have divided the scalar and tensor VEVs into
the background and perturbation contributions as hOi ¼
hOiB þ hOiδ and hTiji ¼ hTijiB þ hTijiδ. Every term in
this expression depends on λ but we have suppressed this
dependence. We have also omitted any terms that do not
contribute to the two-point functions in this expression, and
we will keep doing so for all other expressions that follow.
Using this result, we can write the nonvanishing two-point
functions as

hOðλÞOðλÞi≡ −
δ2S

δφð0ÞðλÞδφð0ÞðλÞ
¼ −

δhOi
δφð0Þ

; ð3:12Þ

hTTT
ij ðλÞTTT

kl ðλÞi≡ −4
δ2S

δhTTð0Þ
ijðλÞδhTTð0ÞklðλÞ

¼ 2
δhTiji
δhTTð0Þ

kl ;

ð3:13Þ

hTi
iðλÞOðλÞi≡ 2

δ2S
δζð0ÞðλÞδφð0ÞðλÞ

¼ 4hOiB þ 2
δhOi
δζð0Þ

;

ð3:14Þ

∇i∇jhTijðλÞOðλÞi≡ 2
δ2S

δχð0ÞðλÞδφð0ÞðλÞ
¼ −λhOiB:

ð3:15Þ

Using the Ward identities and Eq. (3.14), we can see that

δhOiðλÞ
δζð0Þðλ0Þ

¼ −
Δ
2
hOiBδλλ0 : ð3:16Þ

Now, transforming back to coordinate space, we find that
the position-space two-point functions are given by, e.g.,

hOðxÞO0ðx0Þi ¼
X
λ

YλðxÞYλðx0Þ hOðλÞO0ðλÞi: ð3:17Þ

The last step is to perform a Weyl transformation to
find the two-point functions of the flat space CFT. In
our case, since maximally symmetric spaces are confor-
mally flat, the flat boundary metric is related to γ through
ημνðxÞ ¼ Ω2ðxÞγμνðxÞ, with the Weyl factor Ω > 0;
thus, we can obtain the correlation functions on the

1Notice that the one-point functions depend on the sources but
we have removed the subscript s for simplicity.
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AdS boundary from the correlation functions computed in
the curved slicing as

hO1ðx1Þ � � �O2ðxnÞiη
¼ Ω−ΔO1 ðx1Þ � � �Ω−ΔOn ðxnÞ

�
hOðx1Þ � � �OðxnÞiγ

þ ð−1Þnþ1
1ffiffiffiffiffiffiffiffiffiffi
jgð0Þj

q δnSA
δϕð0Þðx1Þ � � � δϕð0ÞðxnÞ

����
ϕð0Þ¼0

�
;

ð3:18Þ

where ΔOi
is the scaling dimension of Oi. The term SA is a

contribution from the Weyl anomaly [20]; in general it is
theory dependent, but it is always local and so does not
contribute at separated points. Wewill not keep track of it in
what follows.
The desired CFT two-point functions are given by the

following:

hOðxÞOðx0Þiη ¼ −Ω−ΔðxÞΩ−Δðx0Þ
X
λ

YλðxÞYλðx0Þ
δhOi
δφð0Þ

;

ð3:19Þ

hTTT
ij ðxÞTTT

kl ðx0Þiη
¼ 2Ω−4ðxÞΩ−4ðx0Þ

X
λ

YλðxÞYλðx0Þ
δhTiji
δhTTð0Þ

kl ; ð3:20Þ

accompanied by two other expressions that are fixed by
Ward identities,

hTi
iðxÞOðx0Þiη
¼ Ω−4ðxÞΩ−Δðx0Þ

�
4hOiB

1ffiffiffiffiffijγjp δ4ðx − x0Þ

þ
X
λ

YλðxÞYλðx0Þ2
δhOi
δζð0Þ

�
;

¼ Ω−4ðxÞΩ−Δðx0Þð4 − ΔÞhOiB
1ffiffiffiffiffijγjp δ4ðx − x0Þ;

ð3:21Þ

∇i∇jhTijðxÞOðx0Þiη
¼ −Ω−4ðxÞΩ−Δðx0ÞhOiB

X
λ

YλðxÞYλðx0Þλ;

¼ Ω−4ðxÞΩ−Δðx0ÞhOiB∇2

�
1ffiffiffiffiffijγjp δ4ðx − x0Þ

�
; ð3:22Þ

where in both cases the second equality was obtained
by using Eq. (2.13). Notice that the correlators (3.21) and
(3.22) are manifestly local, which is consistent with the

conservation and tracelessness of the stress-energy tensor at
separate points.

IV. GAUGE INVARIANT PERTURBATIONS

We now turn to solving the bulk equations of motion of
the linearized perturbations. We first must isolate the bulk
gauge-invariant perturbations. The gauge freedom corre-
sponds to diffeomorphisms which at the linearized level act
on the perturbations as

δhμν ¼ ∇μξν þ∇μξν; δφ ¼ ξμ∂μϕ; ð4:1Þ

with ξν an arbitrary vector gauge parameter. These diffeo-
morphisms are a symmetry of the quadratic action for
the perturbations. Similar to our decomposition of the
perturbation in Eq. (3.4), we decompose the gauge
parameter ξμ as

ξi ¼ ∇iϵ
S þ ϵVi ; ξ0 ¼ ϵ0; ð4:2Þ

where

∇iϵVi ¼ 0: ð4:3Þ

Expanding out the linearized gauge transformations (4.1)
we can find then the following gauge transformation rules
for the perturbations of the metric and scalar field

δΦ ¼ 2

n
d
dρ

�
1

n
ϵ0

�
;

δB ¼ 1

an

�
ϵ0 − 2

a0

a
ϵS þ ϵ0S

�
;

δζ ¼ 2

n2
a0

a
ϵ0;

δχ ¼ 2

a2
ϵS;

δφ ¼ ϕ0

n2
ϵ0;

δvi ¼
1

an

�
ϵ0Vi − 2

a0

a
ϵVi

�
;

δwi ¼
1

a2
ϵVi ;

δhTTij ¼ 0; ð4:4Þ

where a prime denotes a derivative with respect to the radial
coordinate ρ. Note that the transverse traceless tensor
modes hTTij are automatically gauge invariant. From these
expressions, we can construct gauge invariant variables for
the perturbations which are given by
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ṽi ¼ vi −
a
n
w0
i; ζ̃ ¼ ζ −

2a0

n
Bþ aa0

n2
χ0;

Φ̃ ¼ Φ −
2

n
d
dρ

ðaBÞ þ 1

n
d
dρ

�
a2

n
χ0
�
;

φ̃ ¼ φ −
a
n
ϕ0
�
B −

1

2

a
n
χ0
�
: ð4:5Þ

These are the analogs of the Bardeen variables [25] in
cosmology and will be the variables used to solve the
equations of motion.

A. The quadratic action

With gauge invariant perturbation variables in hand, we
turn to constructing the corresponding quadratic action.
As we have mentioned, our setup consists of a domain
wall spacetime sourced by a scalar field. The Lagrangian is
that of a canonical scalar with potential VðϕÞ minimally
coupled to gravity in five dimensions,

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�
; ð4:6Þ

where the overall 5D Planck mass has been set to unity. The
equation of motion for the scalar is

□ϕ − V 0ðϕÞ ¼ 0; ð4:7Þ

and the Einstein equations for the metric are

Rμν −
1

2
Rgμν ¼ ∇μ∇νϕ −

1

2
gμνð∂ϕÞ2 − gμνVðϕÞ: ð4:8Þ

By considering the perturbations around an arbitrary back-
ground solution of these equations, as in Eq. (3.3), we find
the quadratic Lagrangian is given by

1ffiffiffiffiffiffi−gp Lð2Þ ¼ −
1

8
∇αhμν∇αhμν þ 1

4
∇αhμν∇νhμα

−
1

4
∇μh∇νhμν þ

1

8
∇μh∇μh

þ 1

4
VðϕÞ

�
hμνhμν −

1

2
h2
�
þ hμν∂μϕ∂νφ

−
1

2
hð∂μϕ∂μφþ V 0ðϕÞφÞ

−
1

2
½ð∂φÞ2 þ V 00ðϕÞφ2�; ð4:9Þ

where everything here is covariant with respect to the
background metric ḡμν. This expression was obtained after
integrating by parts and using the background equations
of motion.
Now, we specialize to the case of a domain wall

background as in Eq. (3.1). With this ansatz, the two

independent equations of motion are the scalar equation of
motion, which becomes

ϕ00 þ
�
4
a0

a
−
n0

n

�
ϕ0 − n2V 0ðϕÞ ¼ 0; ð4:10Þ

and the 00 component of the Einstein equation, which
becomes

6

�
a02

a2
− k

n2

a2

�
¼ 1

2
ϕ02 − n2VðϕÞ: ð4:11Þ

We can further decompose the Lagrangian in terms of the
gauge invariant variables in Eq. (4.5). In the final expres-
sions the tensor, vector, and scalar sectors decouple and
their Lagrangians read

(i) tensor sector:

1ffiffiffiffiffijγjp Ltensor

¼ na4

8

�
1

n2
h0TTij

2 þ 1

a2
hTTij ðΔL þ 6kÞhTTij

�
;

ð4:12Þ

(ii) vector sector:

1ffiffiffiffiffijγjp Lvector ¼
na2

4
ṽiðΔL þ 6kÞṽi; ð4:13Þ

(iii) scalar sector:

1ffiffiffiffiffijγjp Lscalar

¼ na4
�
3

2n2

�
ζ̃0 −

a0

a
Φ̃
�

2

−
3

4a2
ζ̃ðΔL þ 4kÞζ̃

−
3

4a2
ζ̃ðΔL þ 4kÞΦ̃ −

ϕ02

8n2
Φ̃2

þ 1

2

�
−

1

n2
φ̃02 þ 1

a2
φ̃ΔLφ̃ − ∂2

ϕVφ̃
2

�

−
1

2
∂ϕVφ̃ðΦ̃þ 4ζ̃Þ þ ϕ0

2n2
φ̃0ðΦ̃ − 4ζ̃Þ

�
:

ð4:14Þ

Here, ΔL is the Lichnerowicz Laplacian, which acting on a
rank-s spatial tensor is

ΔL ¼ ∇i∇i − ksðsþ 2Þ: ð4:15Þ

This is the natural Laplacian to use on a maximally
symmetric space, because it commutes with covariant
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derivatives and with traces. When obtaining the expressions
for the Lagrangians above, we have again made heavy
use of integration by parts, as well as the background
equations (4.10) and (4.11).
Focusing on the scalar sector, we notice that the Φ̃

variable appears in the action without any time derivatives,
and so we can eliminate it as an auxiliary variable,

Φ̃ ¼ 1

12H2 − ϕ02 ½12Hζ̃0 þ 3ðn=aÞ2ðΔL þ 4kÞζ̃ − 2ϕ0φ0�:

ð4:16Þ

Substituting back into the action, and considering the case
of a constant potential which is the case of current interest,
we find

Lscalar ¼ Lφ̃ þ Lζ̃ þ Lφ̃ ζ̃; ð4:17Þ

where

1ffiffiffiffiffijγjp Lφ̃ ¼ na4
�
1

2a2
φ̃ΔLφ̃ −

6H2

n2½12H2 − ϕ02� φ̃
02
�
; ð4:18Þ

1ffiffiffiffiffijγjp Lζ̃ ¼ na4
�
−

9H
a2½12H2 − ϕ02� ζ̃

0ðΔL þ 4kÞζ̃

−
3ϕ02

2n2½12H2 − ϕ02� ζ̃
02 −

3

4a2
ζ̃ðΔL þ 4kÞζ̃

−
n2

8a4
9

12H2 − ϕ02 ζ̃ðΔL þ 4kÞ2ζ̃
�
; ð4:19Þ

1ffiffiffiffiffijγjp Lφ̃ ζ̃ ¼ na4ϕ0
�

6H
n2½12H2 − ϕ02� ζ̃

0φ̃0

þ 1

2
φ̃0
�
−

4

n2
þ 3

a2½12H2 − ϕ02� ðΔL þ 4kÞ
�
ζ̃

�
;

ð4:20Þ

and where, in analogy to cosmology, we have defined
H ≡ a0=a.
Once we have our quadratic Lagrangians for the gauge

invariant perturbations, we can obtain the linearized equa-
tions of motion by varying the actions with respect to the
corresponding fields. For the scalar sector we have

0 ¼ 1

a2
ΔLφ̃þ 12

na4

�
H2a4

n½12H2 − ϕ02� φ̃
0
�0

− 6
1

na4

�
Ha4ϕ0

n½12H2 − ϕ02� ζ̃
0
�0

−
1

2na4
d
dρ

�
na4ϕ0

�
−

4

n2
þ 3

a2½12H2 − ϕ02� ðΔL þ 4kÞ
�
ζ̃

	
; ð4:21Þ

0 ¼ 9

�
Hna2

½12H2 − ϕ02�
�0
ðΔL þ 4kÞζ̃ − 3

2
na2ðΔL þ 4kÞζ̃ þ 3

�
ϕ02a4

n½12H2 − ϕ02� ζ̃
0
�0

−
9

4

n3

12H2 − ϕ02 ðΔL þ 4kÞ2ζ̃

− 6

�
Ha4ϕ0

n½12H2 − ϕ02� φ̃
0
�0

þ 1

2
na4ϕ0

�
−

4

n2
þ 3

a2½12H2 − ϕ02� ðΔL þ 4kÞ
�
φ̃0: ð4:22Þ

In analogy to cosmological perturbation theory, we can use
part of the gauge freedom to set wi ¼ 0 so that the vector
equation of motion is simply

ðΔL þ 6kÞvi ¼ 0; ð4:23Þ

which is solved by a vanishing vector. Meanwhile, the
tensor sector is given by

�
a4

n
ðhijTTÞ0

�0
þ na2ðΔL þ 6kÞhTTij ¼ 0: ð4:24Þ

V. PSEUDOCONFORMAL UNIVERSE DUAL

In [12], a solution of the form (3.1) which breaks the
conformal symmetries down to the 4D de Sitter symmetries

was considered and the one-point functions were com-
puted. This solution is sourced by a scalar with scaling
dimension Δ ¼ 4 with equation of motion

dϕ̄
dρ

¼ c
aðρÞ4 ; ð5:1Þ

when specializing to a vanishing potential. Here, c is a
constant that determines the energy in the scalar field,
Eϕ ∼ c2.
The explicit solution for the background metric is more

conveniently written in terms of a new radial coordinate u
defined by u ¼ 1=aðρÞ2. In terms of this coordinate, the
metric and scalar field satisfy

ds̄2 ¼ du2

4u2ð1þ uþ b2u4Þ þ
1

u
γijðxÞdxidxj; ð5:2Þ
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dϕ̄
du

¼ −
c
2

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uþ b2u4

p : ð5:3Þ

In these equations, we have defined the dimensionless
parameter

b2 ≡ c2l2

12M3
Pl

≪ 1; ð5:4Þ

where we have reinserted the appropriate factors of the
spatial de Sitter length l and the higher dimensional Planck
mass MPl. The explicit solutions were found in [12] in
flat Fefferman-Graham coordinates [Eq. (2.4)] by working
perturbatively in b, and read

ḡtt ¼ −1þ b2

8

�
z
t

�
8

þO
��

z
t

�
10
�
; ð5:5Þ

ḡ11 ¼ 1 −
b2

8

�
z
t

�
8

þO
��

z
t

�
10
�
; ð5:6Þ

ϕ̄ ¼ const −
ffiffiffi
3

p
b

2

�
z
t

�
4

þO
��

z
t

�
6
�
: ð5:7Þ

We can see that the scalar field at OðbÞ backreacts on the
metric at Oðb2Þ. This must be the case since, for a
vanishing potential, the stress tensor depends quadratically
on derivatives of ϕ. From this solution, one can read off the
one-point functions which read

hOiB ¼ 4φ̄ð0Þ ¼ −
2

ffiffiffi
3

p
b

t4
; hTijiB ¼ 2h̄ð0Þij ¼ 0;

ð5:8Þ

where B indicates the background solution where all the
sources have been set to zero.
For the purposes of this paper, it is more convenient to

work with the de Sitter slicing in the u coordinates of
Eq. (5.2) instead of the flat Fefferman-Graham coordinates.
In this case, the asymptotic expansion of the fields is

gijðx; uÞ ¼ ĝð0Þij þ uĝð1Þij

þ u2ðĥð0Þij þ ĝð2Þij loguþ � � �Þ þ � � � ; ð5:9Þ

ϕðx; uÞ ¼ ϕ̂ð0Þ þ uϕ̂ð1Þ þ u2ðφ̂ð0Þ þ ϕ̂1ð2Þ log uÞ þ � � � :
ð5:10Þ

Near the boundary we have u ∼ z2=t2 þ z4=t4 which can be
used in the results above to relate the asymptotic expan-
sions in the u and z coordinates. The one-point functions
in this slicing can be obtained by using Eq. (3.18) with
Ω ¼ 1=t4, yielding

hOiγ ¼ 4t4φð0Þ ¼ 4ðϕ̂ð1Þ þ φ̂ð0ÞÞ;
hTijiγ ¼ 2t4hð0Þij ¼ 2ðĝð1Þij þ ĥð0ÞijÞ; ð5:11Þ

and the background values are

ðhOiγÞB ¼ −2
ffiffiffi
3

p
b; ðhTijiγÞB ¼ 0: ð5:12Þ

In the following, we focus on finding the solutions to the
linearized perturbed equations and explicit expressions for
the two-point correlators.

A. Perturbations and two-point correlators

The two-point functions of a CFT where the conformal
symmetries are spontaneously broken due to a VEV down
to soð1; 4Þ are obtained by solving the linearized equations
of motion for the perturbations around the solution in
Eqs. (5.2) and (5.3). These are given by

hOðxÞOðx0Þiη¼−
1

t4
1

t04
X
λ

YλðxÞYλðx0Þ
δhOiγ
δφð0Þ

ðλÞ; ð5:13Þ

hTTT
ij ðxÞTTT

kl ðx0Þiη ¼ 2
1

t4
1

t04
X
λ

YλðxÞYλðx0Þ
δhTijiγ
δhTTð0Þ

kl ðλÞ;

ð5:14Þ

where the VEVs are given by Eq. (5.11).
In Appendix B we determine the extent to which the

breaking pattern (1.2) determines the forms of these corre-
lators in the pseudoconformal universe. Note that any
function of the form

P
λ YλðxÞYλðx0ÞFðλÞ is invariant under

the dS4 invariant distance between the points x and x0. On
flat space this becomes precisely the cross ratio (B32). Thus
the form of the scalar-scalar correlator will have the correct
form (B34) for a scalar of dimension Δ ¼ 4.
We now find the solutions to the linearized equations of

motion for the perturbations around the domain wall
background reviewed above. We start by taking the
following ansatz for the perturbations:

φ̃ðx; uÞ ¼
X
λ

φ̃λðuÞYλðxÞ; ð5:15Þ

ζ̃ðx; uÞ ¼
X
λ

ζ̃λðuÞYλðxÞ; ð5:16Þ

h̃TTij ðx; uÞ ¼ eij
X
λ

f̃λðuÞYλðxÞ; ð5:17Þ

which is just an expansion over the basis Yλ. Here, eij is the
polarization tensor of the graviton. Note that we only
Fourier transform the CFT coordinates and leave the radial
coordinate untouched. The equations of motion for the
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perturbations in the u coordinates can be obtained from
Eqs. (4.21), (4.22), and (4.24) by setting

k ¼ 1; ϕ0 ¼ −
c
2

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uþ b2u4

p ;

n2 ¼ 1

4u2ð1þ uþ b2u4Þ ; a2 ¼ 1

u
; H ¼ −

1

2u
:

ð5:18Þ

For the coupled scalar sector they read

λφðuÞ
2u2

ffiffiffiffiffiffiffiffiffiffi
GðuÞp þ 2∂u

�
GðuÞ3=2φ0ðuÞ
uðb2 − GðuÞÞ

�

− 2∂u

�
GðuÞζ0ðuÞ

uðb2 − GðuÞÞ
�
þ 4

ffiffiffi
3

p
bζ0ðuÞ

þ
ffiffiffiffiffiffi
3b

p ∂u

�
ζðuÞ

�
−λþ 1

4u3ðb2 −GðuÞÞ þ 4

��
¼ 0 ð5:19Þ

ð−λþ 4ÞζðuÞ
�
9∂u

� ffiffiffiffiffiffiffiffiffiffi
GðuÞp

12u3ðGðuÞ − b2Þ
�
þ 3

4u2
ffiffiffiffiffiffiffiffiffiffi
GðuÞp

�

þ 3ð−λþ 4Þ2ζðuÞ
32u5

ffiffiffiffiffiffiffiffiffiffi
GðuÞp ðb2 −GðuÞÞ −

2
ffiffiffi
3

p
bGðuÞφ00ðuÞ

uðb2 −GðuÞÞ

− 4
ffiffiffi
3

p
bφ0ðuÞ

�
−λþ 4

4u3ðb2 −GðuÞÞ þ 4

�

þ 6b∂u

� ffiffiffiffiffiffiffiffiffiffi
GðuÞp

ζ0ðuÞ
uðb2 −GðuÞÞ

�
2

ffiffiffi
3

p
b∂u

�
GðuÞ

uðb2 −GðuÞÞ
�

¼ 0;

ð5:20Þ

where GðuÞ ¼ 1þ uþ b2u4. Similarly, for the tensor
sector we have

4ð1þ uþ b2u4Þðuf̃00λðuÞ − f̃0λðuÞÞ þ ð2þ λÞf̃λðuÞ ¼ 0:

ð5:21Þ

The vector equation of motion is easily solved for an
arbitrary λ by a vanishing vi, which is similar to the
situation in cosmological perturbation theory. Therefore, in
the following, we focus on solving the tensor and scalar
sectors and can ignore the vectors.
We will solve for φ̃λðuÞ; ζ̃λðuÞ, and fλðuÞ by finding

a solution as a series expansion in the small parameter b.
The ansatz for expansions of the fields are

φ̃ ¼ φ̃1bþ φ̃3b3 þ � � � ; ð5:22Þ

ζ̃ ¼ ζ̃2b2 þ ζ̃4b4 þ � � � ; ð5:23Þ

f ¼ f2b2 þ f4b4 þ � � � ; ð5:24Þ

which is motivated by the fact that a scalar field of order b
backreacts on the metric at order b2, which in turn back-
reacts on the scalar at order b3. This trend is followed to all
higher orders in b. By solving the equations of motion
order by order in b, we find that the leading order solutions
are given by

φ̃ ¼ −b
π

8
φ1
ð0Þl

2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2λ

p
ðuþ 1Þ csc

�
1

2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2λ

p �
2F1

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2λ

p
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2λ

p
; 2; uþ 1

�
; ð5:25Þ

ζ̃ ¼ b2
32z4

ffiffiffiffiffiffiffiffiffiffiffi
uþ 1

p ðð−t8ðl2λþ 4Þ þ 2t6z2 þ 2t4z4 − 16t2z6 − 16z8Þφ̃0ðuÞ − 2t2z4ðt2 þ z2Þφ̃00ðuÞÞffiffiffi
3

p
t4ðl2λþ 4Þð−t8ðl2λþ 4Þ þ 24t6z2 þ 24t4z4 − 8t2z6 − 8z8Þ ; ð5:26Þ

f ¼ b2f2ð0Þ
π

8
ðuþ 1Þðl2λþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2λþ 2

p
2F1

�
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2λþ 2

p
;
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2λþ 2

p
; 2; uþ 1

�
csc

�
1

2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−l2λþ 2

p �
; ð5:27Þ

where we have required that the solutions remain finite
inside the bulk. The boundary conditions imposed on these
solutions were found by looking at the gauge invariant
combination

φ̃ −
ϕ0

2H
ζ̃ ¼ φ −

ϕ0

2H
ζ: ð5:28Þ

Note that terms involving ζ0 will first appear at order b3.
More details can be found in Appendix A. Similarly, for the

metric perturbation we have fðz ¼ 0Þ ¼ f0. The solutions
above are complex—we take the real part to obtain a
real solution.2

In order to compute the two point functions we can look
at the asymptotic expansion of the perturbations. More
specifically, we seek the linear terms in the sources of the

2The imaginary part will have no dependence on the source,
and thus is not considered here since it makes no contribution to
the correlators.
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u and u2 coefficients. Here, we will only show the final
results and leave the details of this computation for
Appendix A. The two-point functions at leading order in
b read

hOðxÞOðx0Þiη ¼ −b
1

t4
1

t04
X
λ

YλðxÞYλðx0Þ
ðl2λþ 4Þ

4
l2λ

× Re

�
H

1−1
2

ffiffiffiffiffiffiffiffiffi
4þl2λ

p þH
1þ1

2

ffiffiffiffiffiffiffiffiffi
4þl2λ

p
�

þ local terms; ð5:29Þ

hTTT
ij ðxÞTTT

kl ðx0Þiη ¼ b2
1

t4
1

t04
X
λ

ΠTT
ijklYλðxÞYλðx0Þ

ð4 − l4λ2Þ
16

× Re

�
H

1−1
2

ffiffiffiffiffiffiffiffiffiffi
18−l2λ

p þH
1þ1

2

ffiffiffiffiffiffiffiffiffiffi
18−l2λ

p
�

þ local terms; ð5:30Þ

where Hn is the nth harmonic number defined as Hn ¼P
n
i¼1 1 and can be expressed analytically as

Hn ¼ γ þ Ψðnþ 1Þ ¼ γ þ Γ0ðnþ 1Þ
Γðnþ 1Þ ; ð5:31Þ

where γ is the Euler constant, ΨðnÞ is the digamma
function, and ΓðnÞ is the gamma function. We have also
defined the transverse-traceless projector ΠTT

ijkl as

ΠTT
ijkl ≡

δhTTð0Þij
δhTTð0Þ

kl ¼
1

2
ðπikπjl þ πilπjkÞ −

1

3
πijπkl ð5:32Þ

in terms of the projection operator πij ¼ δij −∇i∇j=∇2.

VI. CONCLUSIONS

We have shown how to holographically compute two-
point correlators for a CFT in which the conformal
symmetries are spontaneously broken down to a de
Sitter soð4; 1Þ algebra by a spacelike defect. This models
the pseudoconformal universe, an alternative to inflation.
This is one of three ways of breaking conformal symmetry
down to a subgroup corresponding to isometries of a
maximally symmetric space of the same dimension as
the CFT. The others are breaking to the Poincaré group
isoð3; 1Þ or to the anti–de Sitter group soð3; 2Þ. The case of
symmetry breaking down to Poincaré occurs when a scalar
gets a constant VEV, and has been widely analyzed in the
holographic context, for example in [26,27]. The breaking
down to anti–de Sitter corresponds to a CFT with a
codimension-1 timelike defect. Some examples analyzing
this breaking can be found in [28] (see also [29] for a
computation of scalar two-point functions for conformal
interfaces in the D1/D5 CFT).

The advantage of this holographic approach, as opposed
to the direct approach of [7] is that it can model a strongly
coupled scenario. Generally, inflation and other early
universe scenarios are taken to be weakly coupled so that
they remain calculable. The pseudoconformal scenario, by
contrast, is built on a CFT, which can be strongly coupled,
and thus accessible through AdS=CFT. Another interesting
direction would be to adapt the conformal bootstrap
[30–32] to the pseudoconformal case, in order to directly
explore strongly coupled possibilities. The defect con-
formal bootstrap has already seen much development
[33–41], and adapting this to the pseudoconformal case
would presumably put constraints on the possible CFTs and
operators that could realize the scenario.
We do not necessarily expect the scalar two-point

function we computed to correspond directly to the power
spectrum that is observed in the CMB. As discussed in [7],
the observed scale-invariant two-point function should
instead come from some Δ ¼ 0 spectator field, whose
perturbations must then be imprinted on the CMB [42].
It would be interesting to extend the calculation to include
such spectators and create a more realistic model, perhaps
in a setup similar to [43,44].
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APPENDIX A: SERIES EXPANSIONS AND
SCALAR TWO-POINT FUNCTION

In order to find a solution to the linearized equations
of motion for small fluctuations about the domain wall
background, we consider series expansions in the small
parameter b defined in (5.4), so that the fields read

φ̃ ¼ φ̃1bþ φ̃3b3 þ � � � ; ðA1Þ

ζ̃ ¼ ζ̃2b2 þ ζ̃4b4 þ � � � ; ðA2Þ

φ ¼ φ1bþ φ3b3 þ � � � ; ðA3Þ

ζ ¼ ζ2b2 þ ζ4b4 þ � � � ; ðA4Þ

f ¼ f2b2 þ f4b4 þ � � � : ðA5Þ

The leading order power in b is justified by solving
the equations of motion and by the behavior of the
background solution. Besides the expansion in b, we
also perform an expansion in u to find the boundary
conditions and two-point functions. We will specifically
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look at the near-boundary expansion of the gauge invariant
combination

φ̃ −
ϕ0

2H
ζ̃ ¼ φ −

ϕ0

2H
ζ: ðA6Þ

a. Order u0 This order sets the boundary conditions for
the gauge invariant fields. To find this, we expand

ϕ0

2H
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1þ uþ b2u4

r
ðA7Þ

around u ¼ 0. It is easy to see that at leading order in b
we have

φ̃1
ð0Þ ¼ φ1

ð0Þ; ðA8Þ

where the index (n) labels the coefficient of the order un

term in the series expansion and the upper index m labels
the coefficient of the order bm term. Terms containing ζ0
will appear at order b3 and lead to

φ̃3
ð0Þ ¼ φ3

ð0Þ −
ffiffiffi
3

p
bζ2ð0Þ; ðA9Þ

where we have used the fact that in our perturbative
solution ζ̃2ð0Þ ¼ 0. Similarly, at order bn we have

φ̃n
ð0Þ ¼ φn

ð0Þ −
ffiffiffi
3

p
ðζn−1ð0Þ − ζ̃n−1ð0Þ Þ: ðA10Þ

In order to make the dependence on b explicit, the
derivatives with respect to the sources will now be
written as

δ

δφð0Þ
¼ 1

b
δ

δφ1
ð0Þ

þ 1

b3
δ

δφ3
ð0Þ

þ � � � : ðA11Þ

b. Order u At this order we have

ffiffiffi
3

p
bζð1Þ ¼ φð1Þ − φ̃ð1Þ þ

ffiffiffi
3

p
bζ̃ð1Þ þ

1

2

ffiffiffi
3

p
bðζð0Þ − ζ̃ð0ÞÞ:

ðA12Þ

From this we see that at leading order in b

ffiffiffi
3

p
b
δζð1Þ
δφð0Þ

¼
δðφ3

ð1Þ − φ̃3
ð1ÞÞÞ

δφ3
ð0Þ

þ
δðφ5

ð1Þ − φ̃5
ð1ÞÞÞ

δφ5
ð0Þ

þ � � � ;

ðA13Þ

ffiffiffi
3

p
b
δζð1Þ
δζð0Þ

¼
δðφ3

ð1Þ − φ̃3
ð1ÞÞÞ

δζ2ð0Þ
þ
δðφ5

ð1Þ − φ̃5
ð1ÞÞÞ

δζ4ð0Þ

þ � � � þ 1

2

ffiffiffi
3

p
b: ðA14Þ

Note that any contribution from ζ̃ is higher order since
we know from solving the equations of motion order by
order that ζ̃n ¼ ζ̃nðφn−1

ð0Þ ;φ
n−3
ð0Þ ;…; ζn−2ð0Þ ;…Þ. Also, at lead-

ing order in b the relation in Eq. (A12) becomes
φ1
ð1Þ − φ̃1

ð1Þ ¼ 0.

c. Order u2 This order determines the two-point func-
tions and reads

φð2Þ ¼ φ̃1
ð2Þbþ φ̃3

ð2Þb
3 þ � � � þ

ffiffiffi
3

p
bðζð2Þ − ζ̃ð2ÞÞ −

ffiffiffi
3

p
b

2
ðζð1Þ − ζ̃ð1ÞÞ þ

3

8

ffiffiffi
3

p
bðζð0Þ − ζ̃ð0ÞÞ: ðA15Þ

At leading order in b we find

δφð2Þ
δφð0Þ

¼
δφ̃1

ð2Þ
δφ1

ð0Þ
þ
δφ̃3

ð2Þ
δφ3

ð0Þ
þ � � � − 1

2

�δðφ3
ð1Þ − φ̃3

ð1ÞÞÞ
δφ3

ð0Þ
þ
δðφ5

ð1Þ − φ̃5
ð1ÞÞÞ

δφ5
ð0Þ

þ � � �
�
; ðA16Þ

δφð2Þ
δζð0Þ

¼
�δφ̃3

ð2Þ
δζ2ð0Þ

þ
δφ̃5

ð2Þ
δζ4ð0Þ

þ � � � − 1

2

�δðφ3
ð1Þ − φ̃3

ð1ÞÞÞ
δζ2ð0Þ

þ
δðφ5

ð1Þ − φ̃5
ð1ÞÞÞ

δζ4ð0Þ
þ � � �

�
þ 1

8

ffiffiffi
3

p �
b; ðA17Þ

where we have used the expansions at lower orders in u to simplify these expressions. We have also used the fact that
ζð2Þ ∼ hTi

ii and the Ward identity, Eq. (2.13b). We have omitted any terms that are not linear in the sources, since these
would not contribute to the two-point function. In principle, such terms arise from the conformal anomaly contribution in
Eq. (2.13b).
We proceed to simplify the scalar two-point function result by using the Ward identities. Combining Eq. (3.16) and

Eq. (A17) we find

δφ̃3
ð2Þ

δζ2ð0Þ
þ
δφ̃5

ð2Þ
δζ4ð0Þ

þ � � � þ 1

2

�δð3φ3
ð1Þ þ φ̃3

ð1ÞÞÞ
δζ2ð0Þ

þ
δð3φ5

ð1Þ þ φ̃5
ð1ÞÞÞ

δζ4ð0Þ
þ � � �

�
¼ 7

8

ffiffiffi
3

p
: ðA18Þ
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Now, we can use the fact that the sources will appear only
in the combination on the right-hand side of Eq. (A10) to
write

δφ̃3
ð2Þ

δφ3
ð0Þ

þ � � � þ 1

2

�δð3φ3
ð1Þ þ φ̃3

ð1ÞÞÞ
δφ3

ð0Þ
þ
δð3φ5

ð1Þ þ φ̃5
ð1ÞÞÞ

δφ5
ð0Þ

þ � � �
�

¼ 7

8
: ðA19Þ

This allows us to write the two-point function at leading
order in b as

hOðλÞOðλÞi ¼ −4
δφ̃1

ð2Þ
δφ1

ð0Þ
−
7

2
: ðA20Þ

Notice that this final expression only requires us to find the
leading order solution of the perturbed equations, unlike
in Eq. (A16).

APPENDIX B: PSEUDOCONFORMAL
CORRELATORS FROM EMBEDDING SPACE

Correlation functions of the type we are interested in
are heavily constrained by the symmetry breaking pattern
(1.2). Here we present a method to find the form of
correlators that satisfy these constraints, directly from
symmetry considerations. This relies on the embedding
space approach for finding conformally covariant correla-
tors [45–47], extended to allow for spontaneous symmetry
breaking [36,38,48,49]. (For other earlier work on CFT
correlators near a boundary see [33,34,50,51]).
We consider an ambient six-dimensional Lorentzian

space, with Cartesian coordinates

XA ¼ fX−1; X0; Xμg; ðB1Þ

and metric

ηAB ¼ diagð−1; 1; ημνÞ; ðB2Þ

so that X−1 is a “time” dimension and μ labels the four
dimensions of the CFT.
Now consider the light cone, centered at the origin,

ηABXAXB ¼ −ðX−1Þ2 þ ðX0Þ2 þ ημνXμXν ¼ 0: ðB3Þ

The space of rays of the light cone, the equivalence classes
of points on the light cone under the identification

XA ∼ λXA; λ ∈ R; ðB4Þ

is the conformal sphere, the space on which the CFT lives.
Flat space is given by choosing the ray representative of
each point of the conformal sphere which is given by the
intersection with the plane

X−1 þ X0 ¼ 1: ðB5Þ
(This misses one point on the conformal sphere, the ray at
the south pole, X−1 ¼ −X0, Xμ ¼ 0. This will be the point
at infinity.) The surface on which the CFT lives is thus
embedded as

X−1ðxÞ¼1

2
ð1þx2Þ; X0ðxÞ¼1

2
ð1−x2Þ; XμðxÞ¼xμ;

ðB6Þ

and the induced metric is the usual flat metric,

∂μXA∂νXBηAB ¼ ημν: ðB7Þ

Lorentz transformations in the ambient space become
precisely the conformal transformations in the embedded
flat space.
It is convenient to use light cone coordinates in embed-

ding space:

X� ¼ X−1 � X0; X−1 ¼ 1

2
ðXþ þ X−Þ;

X0 ¼ 1

2
ðXþ − X−Þ: ðB8Þ

The embedding space metric is now

ds2 ¼ −dXþdX− þ ημνdxμdXν; ðB9Þ

the light cone condition (B3) becomes

−XþX− þ ημνXμXν ¼ 0; ðB10Þ
and the flat slice condition (B5) becomes

Xþ ¼ 1: ðB11Þ
The embedding (B6) becomes XþðxÞ ¼ 1, X−ðxÞ ¼ x2,
XμðxÞ ¼ xμ, i.e.,

XAðxÞ ¼ ð1; x2; xμÞ: ðB12Þ

There is a bijective map between symmetric tensor fields
tμ1���μsðxÞ of rank s in the CFT and symmetric tensor fields
TA1���As

ðXÞ of rank s in the ambient space that satisfies the
following conditions:

defined on the null coneX2 ¼ 0; ðB13Þ

homogeneity∶ ðXA∂A þ ΔÞTA1���As
¼ 0 ⇔ TA1���As

ðλXÞ
¼ λ−ΔTA1���As

ðXÞ;
ðB14Þ

tangentiality∶ XA1TA1���As
ðXÞ ¼ 0; ðB15Þ
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where Δ is some fixed real number, the homogeneity
degree. Equations (B14) and (B15) serve to define the
tensor everywhere on the cone, given that they are defined
on the flat section. The fact that TA1���As

ðXÞ is defined on the
null cone means that its value off the cone is unimportant,
which translates to requiring the gauge symmetrylike
identification

TA1���As
ðXÞ ∼ TA1���As

ðXÞ þ XðA1
UA2���AsÞ þ X2VA1���As

;

ðB16Þ

for any symmetric UA1���As−1
, VA1���As

.
The relation between the tensors is given by the pullback,

tμ1���μsðxÞ ¼ eA1
μ1 � � � eAs

μs TA1���As
ðXðxÞÞ; ðB17Þ

where the tangent vectors to the embedding surface are

eAμ ≡ ∂XA

∂xμ ¼ ð0; 2xμ; δνμÞ: ðB18Þ

Under conformal transformations, i.e., Lorentz rotations
in the ambient space, tμ1���μsðxÞ transforms as a conformal
primary of dimension Δ.
It is generally convenient to package symmetric traceless

tensor operators using polarizations zμ,

tðx; zÞ ¼ tμ1���μsz
μ1 � � � zμs : ðB19Þ

The polarizations satisfy z2 ¼ 0, which ensures traceless-
ness of the operator. Ambient space operators are con-
tractions with 6D polarizations ZA,

TðX; ZÞ ¼ TA1���As
ZA1 � � �ZZs: ðB20Þ

The relation between the two is

ZA ¼ ð0; 2x · z; zμÞ: ðB21Þ

This satisfies the conditions Z2 ¼ 0, Z · X ¼ 0, which
ensure tracelessness and the transversality condition.
Given two points 1 and 2, the following relations are

useful when reducing from ambient space to CFT space:

X1 · X2 ¼ −
1

2
ðx1 − x2Þ2; Z1 · Z2 ¼ z1 · z2;

X1 · Z2 ¼ ðx1 − x2Þ · z2: ðB22Þ

In an unbroken CFT, the correlators must be transverse
functions of two embedding space fields with the correct
scaling. This fixes all the one-point functions to vanish
(there is no nonvanishing transverse structure that can be
made from a single point), and fixes the two-point functions
to be diagonal,

hTðX1; Z1ÞTðX2; Z2Þi ∼
Hs

ðX1 · X2ÞΔ
: ðB23Þ

Here s is the spin of the two operators and Δ is their scaling
dimension (the correlator must vanish if the spins or scaling
dimensions of the two operators are different);

H ≡ Z1 · Z2 −
X1 · Z2X2 · Z1

X1 · X2

ðB24Þ

is the unique transverse, scale-invariant structure of two
points. Upon using (B22) the correlator projects to

htðx; z1Þtð0; z2Þi ¼
½z1 · z2x2 − 2ðx · z1Þðx · z2Þ�s

x2ðΔþsÞ : ðB25Þ

In the presence of a spacelike defect (the t ¼ 0 boundary
of our pseudoconformal universe) there is a preferred
direction in the CFT—the direction normal to the defect.
This can be represented as a unit-normalized vector field
vμ ¼ ð1; 0; 0; 0Þ in the CFT. We can extend this to an
embedding space vector field

VA ¼ ð0; 0; 1; 0; 0; 0Þ; ðB26Þ

which can now be used as an ingredient in constructing the
invariants for correlators; see Fig. 1. On the hypersurface
we have

X · V ¼ x · v ¼ ð−tÞ; Z · V ¼ z · v ¼ −zt: ðB27Þ

1. One-point functions

In an unbroken vacuum the one-point functions vanish
because no invariants can be constructed from a single X
or Z. However, in the broken vacuum we can now use V,
and there is a single scalar invariant that can be constructed
from a single XA and VA, namely X · V. Considering a
scalar one-point function hΦðXÞi ∼ ðX · VÞp, for some
power p, the scaling requirement (B14), ΦðλXÞ ¼
λ−ΔΦðXÞ, tells us that Δ ¼ −p. Thus, the scalar one-point
function is

hΦðXÞi ∼ 1

ðX · VÞΔ : ðB28Þ

Restricting to the flat hypersurface using (B27), this is

hϕðxÞi ∼ 1

ð−tÞΔ ; ðB29Þ

the correct form (1.1) for the pseudoconformal universe
symmetry breaking VEV.
Higher spin operators (s > 0) are unable to develop

VEVs because the numerator would need to have a factor
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ðV · ZÞs which is not transverse, and so the one-point
functions vanish,

hϕμ1���μsðxÞi ¼ 0; s ≥ 1: ðB30Þ

2. Scalar-scalar two-point functions

There are three scalar invariants that can be made from
the two points,

X1 · X2; X1 · V; X2 · V: ðB31Þ

The two-point function should be a function of
these, hΦ1ðX1ÞΦ2ðX2Þi ∼ ðX1 · X2Þp1ðX1 · VÞp2ðX2 · VÞp3 ,
and the scaling requirements Φ1ðλX1Þ ¼ λ−Δ1Φ1ðX1Þ,
Φ2ðλX2Þ ¼ λ−Δ2Φ2ðX2Þ give p1þp2¼−Δ1, p1 þ p3 ¼
−Δ2. This is a rank 2 system for the three p’s, so there is
one undetermined invariant (cross ratio) which is not fixed.
We may choose the particular solution p2 ¼ −Δ1, p3 ¼
−Δ2, and the homogenous solution, pi ¼ ð1;−1;−1Þ, cor-
responding to the cross ratio

ξ≡ −
1

2

X1 · X2

ðX1 · VÞðX2 · VÞ
¼ 1

4

ðx1 − x2Þ2
ð−t1Þð−t2Þ

: ðB32Þ

The correlation function may contain an arbitrary function F
of this cross ratio, and thus takes the form

hΦ1ðX1ÞΦ2ðX2Þi ∼
FðξÞ

ðX1 · VÞΔ1ðX2 · VÞΔ2
; ðB33Þ

which, after reducing to the flat hypersurface, gives

hϕ1ðX1Þϕ2ðX2Þi ∼
FðξÞ

ð−t1ÞΔ1ð−t2ÞΔ2
: ðB34Þ

This matches the form computed in special cases in [7,8].
Note that the conformal weights of the two scalars may

be different. This is unlike the unbroken case where two-
point functions of fields with different conformal weights
must vanish at separated points.3

3. Scalar-tensor two-point functions

In the unbroken case, correlators of primaries with
differing spin must vanish at separated points. However,
in the broken case there are allowed nonvanishing struc-
tures. In the scalar-tensor case there is one such structure

hϕðX1ÞTðX2; Z2Þi ∼
ðZ2 · VX1 · X2 − X2 · VX1 · Z2Þ2

ðX1 · VÞΔ1þ2ðX2 · VÞΔ2þ2
FðξÞ:

ðB35Þ

FIG. 1. Embedding space for the pseudoconformal correlators. The vector field VA is normal to the ambient defect plane X0 ¼ 0,
whose intersection with the CFT surface is the defect plane at t ¼ 0.

3They may, however, have contact terms at coincident points in
certain cases [52].
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This is the unique transverse structure with the correct
scalings for both points. Restricting to the CFT surface
using (B22) and (B27) this becomes

hϕðx1Þtðx2; z2Þi ∼
ð1
2
x212v · z2 þ x2 · vx12 · z2Þ2
ðx1 · vÞΔ1þ2ðx2 · vÞΔ2þ2

FðξÞ;

ðB36Þ

where xμ12 ≡ xμ1 − xμ2. Stripping the auxiliary z
μ coordinates

and using vμ ¼ ð1; 0; 0; 0Þ we obtain

hϕðx1Þtμνðx2Þi

∼
1
4
x412δ

ðμ
t δ

νÞT
t þ ð−t2Þx212xðμ12δνÞTt þ ð−t2Þ2xðμ12xνÞT12

ð−t1ÞΔ1þ2ð−t2ÞΔ2þ2
FðξÞ;

ðB37Þ

where ðÞT means to take the symmetric traceless combi-
nation of the enclosed indices.
There are additional restrictions if tμν is conserved.

Setting the derivative to zero, ∂νhϕðx1Þtμνðx2Þi ¼ 0, and
then equating powers of t2, yields an equation that forces
the dimension of tμν to be the correct value for the stress
tensor,

Δ2 ¼ 4; ðB38Þ

and equating powers of t1 provides a differential equation
for F,

6ð2ξ − 1ÞFðξÞ þ 2ðξ − 1ÞξF0ðξÞ ¼ 0; ðB39Þ

whose solution is

FðξÞ ∼ ðξðξ − 1ÞÞ−3: ðB40Þ

Thus, for the stress tensor, the form of the scalar-vector
two-point function is completely fixed up to an overall
constant. Note that F has singularities on the light cone
ξ ¼ 0 and on the surface ξ ¼ 1. This possible transverse

and traceless structure at separated points does not get
realized in our holographic calculation.

4. Tensor-tensor two-point functions

The tensor-tensor two-point function takes the form

hTðX1; Z1ÞTðX2; Z2Þi ∼
F1ðξÞH2 þ F2ðξÞHQþ F3ðξÞQ2

ðX1 · VÞΔ1ðX2 · VÞΔ2
;

ðB41Þ

where

H ≡ Z1 · Z2 −
X1 · Z2X2 · Z1

X1 · X2

; ðB42Þ

Q≡
�
X1 · VX2 · Z1

X1 · X2

þ Z1 · V

��
X2 · VX1 · Z2

X1 · X2

þ Z2 · V

�
ðB43Þ

are two transverse, symmetric, scale-invariant structures,
and there are three undetermined functions F1, F2, F3 of
the cross ratio ξ. Pulling back to the CFT surface using
(B22) and (B27), this becomes

htðx1; z1Þtðx2; z2Þi ∼
F1ðξÞh2 þ F2ðξÞhqþ F3ðξÞq2

ð−t1ÞΔ1ð−t2ÞΔ2
;

ðB44Þ

where

h≡ z1 · z2 − 2
x12 · z2x12 · z1

x212
; ðB45Þ

q≡
�
2
ð−t1Þx12 · z1

x212
− zt1

��
−2

ð−t2Þx12 · z2
x212

− zt2

�
:

ðB46Þ

Imposing conservation fixes Δ1 ¼ Δ2 ¼ 4 and also gives
two equations that relate F1, F2, and F3, fixing two of them
in terms of a third, so that there is only an independent
function of ξ.
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