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The Kerr/CFT correspondence is a possible route to gain insight into the quantum theory of gravity in the
near-horizon region of a Kerr black hole via a dual holographic conformal field theory (CFT). Predictions
of the black hole entropy, scattering cross section and the quasinormal modes from the dual holographic
CFT corroborate this proposed correspondence. More recently, it has been suggested that quantum
gravitational effects in the near-horizon region of a black hole may drastically modify the classical general
relativistic description, leading to potential observable consequences. In this paper, we study the absorption
cross section and quasinormal modes of a horizonless Kerr-like exotic compact object (ECO) in the dual
CFT picture. Our analysis suggests that the near-horizon quantum modifications of the black hole can be
understood as finite size and/or finite N effects in the dual CFT. Signature of the near-horizon modification
to a black hole geometry manifests itself as delayed echoes in the ringdown (i.e., the postmerger phase) of a
binary black hole coalescence. From our dual CFT analysis we show how the length of the circle, on which
the dual CFT lives, must be related to the echo time-delay that depends on the position of the near-horizon
quantum structure. We further derive the reflectivity of the ECO membrane in terms of the CFT modular
parameters, showing that it takes the Boltzmann form.
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I. INTRODUCTION

Over the past few decades, the quasinormal modes
(QNMs) of various black holes and exotic compact objects
(ECOs) have been studied extensively [1,2]. The ringdown
in the postmerger phase of a binary coalescence can be
described in terms of a superposition of the QNM. This is
sensitive to any modification to the near-horizon physics
of the compact object that can modify/remove the horizon,
as the boundary condition imposed at the horizon for
obtaining the QNM spectrum, depends on the nature/
presence of the horizon. Precise detection of the QNM
by analysing the ringdown spectrum can give us a fair idea
about the exact nature of the black hole (or ECO) horizon
and test the accuracy of general relativity in the strong
gravity regime. From the ringdown signal, it is possible to
probe some of the quantum aspects of a black hole and

analyse key signatures of quantum gravity leading to near-
horizon modification of the black hole geometry. Such
near-horizon modifications of the black hole are usually
realised in models (Firewalls [3], fuzzball geometry [4],
gravastars [5], 2-2 holes [6]) resolving the information loss
paradox or stems from the modified dynamics in the strong
gravity regime addressing the dark energy problem [7].
Echoes in the ringdown part of the gravitational wave

spectrum [8–12] are considered as a signature of quantum
modifications to the classical black hole horizon and
reports of tentative detection of these echoes, [10,13,14]
makes the subject even more interesting. Attempts to
provide a microscopic description of the spectrum of
quantum black holes include a quantum multilevel system
[15,16], quantum corrected black holes in the braneworld
scenario [17], interpreting the echo time in terms of the
scrambling time [18], black hole area quantization [19,20],
or 2-2 holes in asymptotically free quadratic quantum
gravity [6,21]. Removal of the black hole horizon due
quantum effects in the near-horizon region (e.g., through
introducing a partially reflective membrane in front of the
would-be horizon) would modify the quasi normal modes
and the QNM spectrum of these horizonless ECOs are
different from that of the classical black holes as a purely

*ramitdey@gmail.com
†nafshordi@pitp.ca

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 126006 (2020)

2470-0010=2020=102(12)=126006(18) 126006-1 Published by the American Physical Society

https://orcid.org/0000-0001-5717-1589
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.126006&domain=pdf&date_stamp=2020-12-01
https://doi.org/10.1103/PhysRevD.102.126006
https://doi.org/10.1103/PhysRevD.102.126006
https://doi.org/10.1103/PhysRevD.102.126006
https://doi.org/10.1103/PhysRevD.102.126006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ingoing boundary condition at the horizon cannot be
imposed for these horizonless compact objects. Since the
motivation for near-horizon modifications to the black hole
geometry comes from quantum gravitational effects, in
principle it must be possible to explain the removal/
modification of the event horizon from the near-horizon
degrees of freedom within a theory of quantum gravity.
The Kerr/CFT correspondence conjectures that quantum

gravity in the near-horizon region of the Kerr black hole is
dual to a two-dimensional thermal CFT [22,23]. The
correspondence [22] was originally shown to exist for an
extremal Kerr black holes and it relied heavily on the
decoupling of the near-horizon region (NHEK) with an
exact SLð2; RÞ ×Uð1Þ symmetry. The SLð2; RÞ symmetry
governed the behavior of the near-horizon scattering cross
section and it was explicitly shown that the dual two-
dimensional chiral CFT gives the same results as the
gravity computation. For nonextremal Kerr black holes,
the realisation of the correspondence was less trivial but it
was shown that there is an underlying hidden SLð2; RÞ ×
SLð2; RÞ present in the dynamics of a probe scalar field
close to the horizon (in the low frequency limit) [24]. Based
on this “hidden conformal symmetry”, and the dual two-
dimensional CFT living in the near-horizon region of the
Kerr black hole, the black hole entropy as well as the
absorption cross section of the black hole [24,25] was
computed. It was further shown that the probe scalar field
equation can be written as the SLð2; RÞ × SLð2; RÞ
Casimir, establishing the conjectured correspondence even
further. In this case the local conformal symmetry in the
solution space of the wave equation for propagating fields
in the Kerr background was the sufficient condition for
obtaining the correct scattering cross section. In [25–27]
the central charge of the dual CFTwas computed using the
covariant phase space formalism, making the correspon-
dence for nonextremal Kerr black holes even stronger.
In this paper, we look for a plausible way to interpret the
near-horizon quantum modifications to a Kerr black hole
within this holographic setup.
For a Kerr-like ECO with a partially reflective mem-

brane placed in front of the horizon, a probe scalar field
would inherit the same hidden conformal symmetry in the
near-horizon region as shown in [24]. In this paper, we
study the appropriate holographic CFT description that is
dual to the microscopic degrees of freedom in the near-
horizon region of such an horizonless ECO. We argue that
the near-horizon modifications due to quantum effects can
originate as finite size effects in the dual field theory,
living on a circle of length L (or an Euclidean torus having
periodicities of L and 1=T). For Kerr-like ECOs the
reflectivity of the membrane is not well understood and
it is assumed that an exact quantum gravity computation is
required to determine the reflectivity accurately. In this
paper, our dual CFT analysis suggests that the reflectivity
can be interpreted in terms of a Boltzmann factor which

matches with the reflectivity of a quantum horizon as
derived in [12].
In the context of AdS=CFT correspondence, attempts

were made to understand the bulk geometry dual to a
boundary field theory in the strongly coupled regime
having a finite volume [28–30]. Usually, finite-N effects
in the boundary theory would correspond to a modification
of the semiclassical description of the black hole in the
bulk and in particular the black hole horizon is removed
(e.g., replaced by a wormhole or a “fractal brick-wall” [30])
due to breakdown of the semiclassical physics close to
the horizon at finite Planck length [31]. The brick-wall
scenario [32] would be a classic example of such non-
perturbative near-horizon modifications where a “brick-
wall” (or Dirichlet wall) is placed few Planck length away
from the horizon to regularize and interpret the black hole
entropy as the entropy of particles forming a thermal
atmosphere outside the black hole horizon. One must
consider the finite-N corrections of the boundary theory
to match the spectrum of the bulk having such a brick-wall
within the context of AdS=CFT [30,33,34]. Since the exact
dual field theory is not known at a microscopic level for the
Kerr/CFT correspondence, we do our computation in terms
of a generic thermal CFT.
In this context, perturbation of the black hole corre-

sponds to perturbation of the dual CFT state with some
relevant operator. Thus, to understand the perturbation on
the gravity side with a modified boundary condition at the
horizon, we must study the thermal two-point function of
certain conformal operators. Usually for a classical black
hole, the dual thermal field theory lives on a toroidal two-
manifold and is considered in the high temperature limit so
the effective spatial length of the torus becomes infinite.
For the computation of the two-point function in the high
temperature limit, a cylindrical approximation of the torus
is used which in terms of the spatial cycle (L) and temporal
cycle (1=T) of the torus can be written as L ≫ 1=T.
However, one must note that the cylindrical limit makes
the discrete spectrum of the theory continuous as one might
expect for an infinite volume theory. As we will see, the
QNM spectrum of the Kerr-like ECO is discrete, and hence
we must consider the dual field theory on a circle of finite
length L to establish the duality between the two descrip-
tions. We study the finite-size effects of the covering space
(for a dual CFT living on an Euclidean torus having
periodicities L and 1=T) to the thermal two-point function
in order to understand the spectrum of the horizonless
ECO. As given in [28,30], such finite-size effects of the
dual CFT can be contrasted with the behavior of finite N
field theories in the strong coupling regime dual to super-
gravity on AdS3. Following the original derivation for BTZ
black holes [35], we show that the poles of the CFT two-
point correlation function on a finite torus match the QNM
spectrum of the Kerr-like ECO. The absorption cross
section is also correctly predicted by the dual CFT when
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the length of the circle on which the dual theory lives, is
related to the distance of the reflective membrane from the
(would-be) horizon, or equivalently the “echo time-delay”
[15] for the Kerr black hole/ECO.
The paper is organized as follows: In Sec. II we review

some of the basic aspects of a Kerr-like ECO and
demonstrate how the absorption cross section and the quasi
normal modes differ from the Kerr black hole with a
classical event horizon. In Sec. III, we discuss the hidden
conformal symmetry associated with a probe scalar field in
Kerr spacetime and establish the conformal coordinates
based on which the Kerr/CFT correspondence is conjec-
tured. We demonstrate how the dual field theory living on a
finite circle captures the necessary near-horizon modifica-
tion of a Kerr-like ECO, finally predicting the QNM
spectrum and absorption cross section from the dual field
theory which matches with the direct bulk computations.
In Sec. IV we comment on the observational aspects of
our findings. Finally, Sec. V summarizes our results and
provides some open questions for future study.

II. KERR-LIKE EXOTIC COMPACT
OBJECT (ECO)

We consider a model of exotic compact object (ECO)
where the exterior spacetime is described by the Kerr metric
but the near-horizon geometry is modified due to the
presence of quantum structures originating from quantum
gravitational effects [36,37]. Usually such ECOs do not
have an event horizon but a partially reflective membrane is
placed slightly outside the usual position of the event
horizon for the stability of these compact objects. For a
rotating Kerr-like compact object with massM and angular
momentum J ¼ aM, the metric in the Boyer-Lindquist
coordinate can be written as

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dt2

þ
�
r2 þ a2 þ 2a2Mr sin2 θ

ρ2

�
sin2 θdϕ2

−
4aMr sin2 θ

ρ2
dϕdtþ ρ2

Δ
dr2 þ ρ2dθ2; ð1Þ

where we defined

ρ2 ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr ¼ ðr − rþÞðr − r−Þ: ð2Þ

The position of the classical black hole horizons and the
angular velocity of the horizon is given as

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ΩH ¼ a

2Mrþ
: ð3Þ

In this section, we study the QNM spectrum and the
absorption cross section of the Kerr-like ECO with a
modified boundary condition at the horizon. Later we will
reproduce these results from a dual CFT analysis by
establishing a correspondence between quantum gravity
in the near-horizon region and a thermal two-dimensional
CFT. We study a massless field in the Kerr background and
the Klein-Gordon equation for the scalar field is given as:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0: ð4Þ

We will assume excitation wavelengths larger than the
black hole radius i.e., ωM ≪ 1 to simplify the wave
equation, which can be solved analytically by using the
method of asymptotic solution matching, where the back-
ground spacetime is divided into a “near-region” (ωr ≪ 1),
a “far-region” (r ≫ M) and a intermediate matching region
(M ≪ r ≪ 1=ω). As shown in the Appendix A, we solve
the wave equation in near/far-region and match the sol-
utions in the intermediate region (M ≪ rmatch ≪ 1=ω) at
some arbitrary position (given as “rmatch”).

A. Scattering

We use the approximate wave function obtained in
Appendix A to compute the absorption cross section of
a Kerr-like ECO and analyze the effects due to the presence
of the near-horizon quantum structure. We assume, at
(rh þ ϵ) there is a reflective membrane with reflectivity
R, where ϵ is usually assumed to be of the order of the
Planck length. This reflective membrane can be seen as an
effective description of the quantum corrections at the
horizon such as a firewall or as seen in the fuzzball
scenario. The scattering cross section of the ECO is
sensitive to the near-horizon geometry as presence of such
reflective membranes would modify the boundary con-
dition at the horizon. For a scalar perturbation in the Kerr
background the asymptotic behavior of the waveform
would be given as

R ∼
�
Cr−1e−iωr

� þDr−1eiωr
�

for r� → ∞
Ae−iω̃r

� þ Beiω̃r
�

for r� → −∞;
ð5Þ

where ω̃ is the horizon-frame frequency, r� is the tortoise
coordinate defined in (A15) and the asymptotic amplitudes
(A, B, C, D) are shown in Fig 1. The reflectivity of the
membrane can be defined in terms of these asymptotic
amplitudes as

Reiπδ ≡ B
A
z2iσ0 ; ð6Þ

where δ is a phase determined by the quantum properties
of the ECO, σ ¼ ωH−mΩ

4πTH
and z0 corresponds to a particular

point outside the horizon, where the reflective membrane is
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placed, in terms of the coordinate defined as z ¼ r−rþ
r−r−

. The
conserved flux associated to the radial wave equation (A2)
for the radial wave function R is given as

F ¼ −i2πðR�Δ∂rR − RΔ∂rR�Þ: ð7Þ

Using this expression we can calculate the ingoing/out-
going flux at the horizon (Fin

r→rþ ; F
out
r→rþ) and the ingoing

flux from infinity (Fin
∞), to obtain the absorption cross

section as

σabs ¼
Fin
r→rþ þ Fout

r→rþ

Fin
r→∞

¼ 4πσðrþ − r−Þ
1 − jRj2

jα=Aj2 þ jβ=Aj2 :

ð8Þ

To arrive at the last expression we have used the reflectivity
of the ECO (6) to write the asymptotic amplitude B in
terms of A and α, β can be expressed as some linear

combination of C, D as given in Appendix A. As we are
performing the calculation in the low frequency limit, jβ=Aj
is suppressed compared to jα=Aj due to the positive power
of ω in the former. Using jα=Aj as given in (A18) we can
write the absorption cross section, (8), as

σabs ∼ω2lþ1 sinh

�
4πMrþ
rþ − r−

ðω−mΩHÞ
�����Γð1þ l− i2MωÞΓ

�
1þ l− i

4M2

rþ − r−
ωþ i

2a
rþ − r−

m

�����2 1− jRj2
j1−Re−2ir

�
0
ðωH−mΩÞþiδj2 ;

ð9Þ

where r�0 is the position of the membrane in terms of tortoise
coordinate. As an example, Fig. 2(a) shows σabs for an ECO
with different constant values of R (with R ¼ 0, corre-
sponding to a classical black hole). However, like any
physical system, the reflectivity can change with frequency,

depending on its microscopic structure and energy levels.
The Boltzmann frequency-dependent reflectivity for a quan-
tum black hole was first derived in [15,16] and is given by

R ∼ e−jω−mΩH j=2TQH ; ð10Þ

FIG. 1. The difference in the near-horizon region between a
black hole and ECO is shown in the above schematic diagram.
Due to the presence of a quantum structure at r�0 the near-horizon
region would have an additional wave reflected by the membrane
placed in front of the would-be horizon. This wave would
eventually tunnel through the potential barrier and reach the
asymptotic region after a time delay.

FIG. 2. The figure on the top shows the absorption cross section
for different values of the reflectivity keeping the position of the
membrane fixed at r�0 ¼ 50. For the bottom figure we used a
frequency dependent reflectivity (Boltzmann reflectivity [16])
and plotted the absorption cross section for different positions of
the wall. The dotted line in the bottom figure corresponds to the
classical black hole absorption cross section with zero reflectivity.
For this plot we assumed γ ¼ 1. For both the plots we used
a ¼ 0.67, m ¼ 2, l ¼ 2.
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where TQH is defined as the “quantum horizon temperature”
[12] and as shown, it is expected to be comparable to the
Hawking temperature:

TH ¼ 1

8π

rþ − r−
Mrþ

: ð11Þ

Thus we can write TQH ¼ γTH, where γ is the proportion-
ality constant that depends on the dispersion and dissipation
effects in graviton propagation [38]. In order to avoid
instability of the ergoregion (for all BH spins) one must
satisfy the condition, γ < 1.86 [12]. In Fig. 2(b) we have
plotted the absorption cross section for different positions of
the reflective membrane [using the reflectivity defined in
Eq. (10)] in front of the horizon.
For a Kerr black hole, the low frequency absorption cross

section is negative due to superradiance [39] (ω < mΩH)
but the novel feature of the absorption cross section of the
ECO’s are the oscillatory features, superposed on top of the
classical cross section in Fig. 2. These oscillations corre-
sponds to resonances at the ECO quasinormal frequencies.

B. Quasinormal modes

To obtain the quasinormal modes of a classical black
hole, usually an ingoing boundary condition is imposed at
the horizon and the boundary condition at asymptotic
infinity would be set by the fact that there is no incoming
wave from infinity (in Fig. 1 this would correspond to
setting C ¼ 0). There are various approaches used in the
literature to obtain the QNM spectrum of a black hole/ECO.
Analytically it is difficult to obtain the QNM of ECOs
without making assumptions as the wave equation gov-
erning the perturbations are difficult to solve, depending on
the model of the ECO. Numerical techniques are used to
solve the wave equation or one can obtain the QNM
spectrum from the poles of the Green’s function expressed
in terms of a transfer function [40]. As demonstrated in
Appendix A we use the low frequency approximation to
solve the wave function and obtain the QNM spectrum.
Using the frequency dependent Boltzmann reflectivity (10),
in (A23) the QNM spectrum is given as [15]

ωn −mΩH ∼
πð2nþ 1þ δÞ

2r�0

�
1 −

i × sgnð2nþ 1þ δÞ
4r�0γTH

�
:

ð12Þ

This matches exactly with the quasinormal frequencies
obtained in [16], assuming the Boltzmann reflectivity for
the near-horizon membrane in Kerr spacetime. One must
note that one major difference between the QNM spectra
obtained for the ECOs and the black holes is that the
quality factor, Q≡ℜωn=ℑωn for ECO QNM is parametri-
cally enhanced, and approaches infinity in the continuum

limit r�0TH → ∞. In contrast, Q≲ 1 for classical black
hole QNMs.

III. TOWARD A HOLOGRAPHIC
INTERPRETATION OF KERR-LIKE ECOs

A. Hidden conformal symmetry
of classical Kerr spacetime

Let us start by reviewing the current progress in the Kerr/
CFT correspondence for nonextremal Kerr black holes.
Castro, Maloney, and Strominger have found that Kerr
black holes with generic mass and spin inherit a hidden
local conformal symmetry acting on the low frequency
modes [24]. When solving for the wave equation using
the method of the asymptotic solution matching, we saw
that the final solution does not depend on rmatch and this
indicates that the solution in the near region must inherit
some special symmetry keeping it invariant under trans-
formations of rmatch. The symmetry becomes evident in
the near-horizon region of the phase space defined as
ωðr − rþÞ ≪ 1, where r is the Boyer-Lindquist radial
coordinate and rþ is the radius of the outer horizon. The
near-horizon wave function for a scalar field in Kerr
background is given by hypergeometric functions (A13),
one can understand the emergent conformal symmetry from
the fact that these hypergeometric functions fall into the
SLð2; RÞ representation. The conformal symmetry is called
hidden in this case as it acts locally on the solution space
and it is globally broken to Uð1Þ × Uð1Þ by the periodic
identification of the azimuthal angle ϕ.
To understand the hidden conformal symmetry explic-

itly, one can introduce a set of conformal coordinates
[24,25,27] (similar to the coordinate transformation that
turns Poincaré AdS3 into BTZ black hole [41,42]):

wþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ
r − r−

r
e2πTRϕ; ð13Þ

w− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ
r − r−

r
e2πTLϕ− t

2M; ð14Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ − r−
r − r−

r
eπðTRþTLÞϕ− t

4M; ð15Þ

where we defined a right and left temperature as

TR ¼ rþ − r−
4πa

; TL ¼ rþ þ r−
4πa

: ð16Þ

In terms of the conformal coordinates, the past horizon and
the future horizons are at w� ¼ 0, respectively. The inverse
transformation is given by

ϕ ¼ 1

4πTR
ln
wþðwþw− þ y2Þ

w− ; ð17Þ
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r ¼ rþ þ 4πaTR
wþw−

y2
; ð18Þ

t ¼ MðTR þ TLÞ
TR

ln
wþ

w− þMðTL − TRÞ
TR

lnðwþw− þ y2Þ:

ð19Þ

To leading order around the bifurcation surface, it is
possible to obtain a metric in terms of the conformal
coordinates from (1) as [25]

ds2¼4ρ2þ
y2

dwþdw−þ
16J2 sin2θ

y2ρ2þ
dy2þρ2þdθ2þ��� ð20Þ

Using these coordinate transformations one can express
the scalar wave equation in the near-horizon region as the
SLð2; RÞ Casimir with conformal weights [23,24]

ðhL; hRÞ ¼ ðl; lÞ: ð21Þ

As mentioned earlier the SLð2; RÞL × SLð2; RÞR symmetry
is spontaneously broken by the periodic identification of
the angular coordinate

ϕ → ϕþ 2π: ð22Þ

For the given periodicity, the conformal coordinates would
be identified as

wþ ∼ e4π
2TRwþ; w− ∼ e4π

2TLw−; y ∼ e2π
2ðTRþTLÞy:

ð23Þ

From (13), at fixed radial distance r we can write the
relation between the conformal coordinates and Boyer-
Lindquist coordinate as

w� ¼ e�tR;L : ð24Þ

This relation looks analogous to the relation that identifies
the Minkowski coordinates (w�) to the Rindler coordinates
ðtR;LÞ where we defined

tR ¼ 2πTRϕ;

tL ¼ t
2M

− 2πTLϕ: ð25Þ

The periodic identification of the angular coordinate ϕ
in (25) gives the periodicity of these coordinates as

ðtL; tRÞ ∼ ðtL; tRÞ þ 4π2ð−TL; TRÞ: ð26Þ

The frequencies ðωL;ωRÞ associated with the Killing
vectors ði∂tL ; i∂tRÞ are conjugate to ðtL; tRÞ. We can write

the relation between ðω; mÞ, which are eigenvalues of the
operators ði∂t;−i∂ϕÞ, and ðωL;ωRÞ through [43]

e−iωtþimϕ ¼ e−iωLtL−iωRtR : ð27Þ

This relation between the frequencies along with (25)
would explicitly give the left/right frequencies as

ωL ¼ 2Mω; ð28Þ

ωR ¼ 2M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p ω −
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p m: ð29Þ

As given in [24], another way of writing the relation
between the left, right frequencies (ωL, ωR) and ðω; mÞ of
Kerr spacetime having an entropy SBH, Hawking temper-
ature TH, is by taking a thermodynamic route using the first
law of thermodynamics, THδSBH ¼ δM −ΩδJ. Identifying
ω ¼ δM and m ¼ δJ, we need to consider the conjugate
charges (δER; δEL), following the relation

δSBH ¼ δER

TR
þ δEL

TL
; ð30Þ

to show the relation between ðω; mÞ and ðδER; δELÞ as1

δEL ¼ ω̃L ¼ ωL2πTL ¼ 2M3

J
ω;

δER ¼ ω̃R ¼ ωR2πTR ¼ 2M3

J
ω −m: ð31Þ

In the context of Kerr/CFT correspondence this identifi-
cation between the frequencies were used to show the
consistency between the absorption cross section of the
dual CFT (calculated from the thermal two-point function)
and the calculation performed in Kerr spacetime [24,44].

B. Dual CFT of the Kerr-like ECO

Now that we have reviewed the current understanding
of the classical Kerr/CFT correspondence, we shall derive a
CFT dual to a Kerr-like ECO. As we have discussed in
Sec. II, for a Kerr-like ECO the horizon is modified due to
quantum gravitational effects in the near-horizon region
of a black hole, while the exterior spacetime is well
approximated by the Kerr metric. The equations governing
the evolution of the perturbation in the ECO background
is exactly the same as in classical Kerr spacetime; the
only difference is in the boundary condition at the
horizon. Hence, in the case of the ECO, the solution of
the near-horizon scalar perturbation is given in terms of

1One must note that δEL;R ¼ ω̃L;R is conjugate to the rescaled
coordinate t̃L;R ¼ tL;R=2πTL;R (in terms of which we will later
define the torus coordinates (37) on which the CFT lives), thus
drawing the equivalence between this identification and (28).
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hypergeometric functions as well (hinting at the hidden
conformal symmetry). One can define a set of vector fields
(similar to the classical Kerr case [24]) falling in the
SLð2; RÞ representation and the Casimir would be the
same as the near-horizon scalar perturbation equation,
allowing us to identify the conformal dimension of the
CFT. Usually, quantum gravity modifications to the bulk
geometry can be understood as nonperturbative effects in
the dual field theory, finite N and/or finite size effects in the
usual AdS=CFT terminology [28,30,31]. We can then use
the fact that the dual CFT lives in a space of finite volume to
reproduce the discrete QNM spectrum of the Kerr-like
ECO. We can see similar finite N/finite size effects in the
holographic interpretation of the brick wall [30,33]; the
near-horizon cutoff can be understood in terms of finite N
effects in the dual CFT in order to make the free energy and
the entropy finite (on either side of the duality).
In order to compute the QNM spectrum and the

absorption cross section from the dual CFT, we start with
the thermal two-point function of a CFT living on an
Euclidean torus having a spatial cycle of length L and an
temporal cycle of length 1=T. Unlike in the limit of,
L ≫ 1=T or L ≪ 1=T where the torus decompactifies to
a cylinder, it is usually difficult to determine the two-point
function on a torus keeping both the lengths finite, as
conformal symmetry is not enough to determine the
universal form of the correlator. As shown by [28,30,
45,46], some progress can be made in special cases such as
the supersymmetric CFT in the strong coupling regime dual
to string theory in AdS3 which describes the low energy
excitation of D1-D5 branes [47].
In the usual description of Kerr/CFT correspondence, the

cylinder approximation of the torus is considered based
on the assumption L ≫ 1=T and thus the spatial direction
effectively decompactifies [24,48]. In the context of
AdS3=CFT2, we have seen that a similar approximation
is done for the BTZ black holes whereas, for its T-dual,
thermal AdS3 one can assume 1=T ≫ L. However, to
include the finite size=N effects, we can no longer use
the L ≫ 1=T approximation. Therefore, for computation of
physical quantities such as the absorption cross section, the
precise doubly-periodic two-point function on the torus is
needed. The latter is computed in Appendix B 1.
One way to put the dual CFT on a circle of finite length,

in the context of Kerr CFT, is by considering a rescaling of
the temperatures ðTR; TLÞ, that appear in the conformal
coordinates (13), by some constant. One can verify the
consistency of the Cardy entropy on rescaling of the
temperatures in the conformal coordinates from the recent
arguments given in [27]. We modify the size of the covering
space, where the CFT lives, by introducing a factor of
L (L is an integer) in the periodicity of the azimuthal
angle that appears in the torus coordinates. As we will see,
L will correspond to the length of the circle on which the
CFT lives, thus allowing us to study the finite size/N

effects. We must warn the reader that the gravity/CFT
duality is not well defined in the finite size/N limit and
hence, to a certain extent, we have to guess how the finite
size/N effects of the holographic CFT reflects on the gravity
side. Our objective is to verify if the QNM spectrum
(calculated from the poles of two-point function of a CFT
living on a torus) matches with the spectrum obtained on
the gravity side, once the black hole horizon is removed and
replaced by a partially reflective membrane in front of the
would-be horizon.
For the ECO the usual periodic identification of the

azimuthal coordinate is there, as given in (22). We can
combine this azimuthal periodicity (times an integer
multiple of L) with thermal periodicity of imaginary time
to get

ϕ → ϕþ 2Lπ þ iΩH=TH; ð32Þ

t ¼ tþ i=TH: ð33Þ

Now, under the periodic identifications (32) for the coor-
dinates of the torus (25) we get

ðtL; tRÞ ∼ ðtL; tRÞ þ ð−4π2TLL

− ið2πTLΩH=TH − 1=2MTHÞ;
4π2TRLþ i2πTRΩH=THÞ: ð34Þ

C. Quasinormal modes spectrum
from the dual CFT

The postmerger ringdown phase after a binary black
hole coalescence is described in terms of QNM and can
carry information about the near-horizon quantum struc-
tures of an ECO. In the context of AdS=CFT, it was
shown in [35] that the black hole QNM spectrum can be
obtained from the poles of the retarded CFT correlation
function. Assuming that quantum gravity in the near-
horizon region of a Kerr black hole is dual to a two-
dimensional thermal CFT, as conjectured by the Kerr/
CFT correspondence, the consistency between the gravity
results and CFT computations of the QNM was shown
in [44,49].
Here, we conjecture that quantum gravity living in the

near-horizon region of a Kerr-like ECO is dual to a two-
dimensional CFT that lives on a circle of finite length L,
where the CFT coordinates are defined by the relation (25)
having periodicities as given in (34). To obtain the QNM
spectrum from the poles of the retarded CFT correlator, we
need to perform the Fourier transform of the retarded
correlation function to momentum space. It is complicated
to perform this computation due to the presence of the
Θ—function in the retarded two-point correlation function.
Instead, we perform the Fourier transform of the two-point
function given in (B6) and look at the poles lying in the

ECHOES IN THE KERR/CFT CORRESPONDENCE PHYS. REV. D 102, 126006 (2020)

126006-7



lower half-plane as these would match with the poles of the retarded correlation function. The Fourier transform of the two-
point function is given as2

ḠðωL;ωRÞ ¼
Z

dtRdtLe−iωRtRe−iωLtLhOðtR; tLÞOð0;0Þitorus

¼
Z

dtRdtLe−iωRtRe−iωLtL
X
p∈Z

ðπTRÞ2hRðπTLÞ2hL
½sinhðtR

2
þpð2π2LTRþ iπTR

ΩH
TH
ÞÞ�2hR ½sinhðtL

2
þpð2π2LTL− iπTL

ΩH
TH

þ i
4MTH

ÞÞ�2hL

¼
Z

dtRdtLe−iωRtRe−iωLtL
X
p∈Z

ðπTRÞ2hRðπTLÞ2hL
½sinh½πTRð tR

2πTR
þpð2πLþ i=TRÞÞ��2hR ½sinh½πTLð tL

2πTL
þpð2πLþ i=TLÞÞ�2hL

:

ð35Þ

The CFT two-point function derived here based on the torus coordinate along with their periodicities (34) matches with the
generic two-point function of a CFT living on a Euclidean torus as given in (B6) if we choose the group parameters as
ða ¼ 1;b ¼ 1; c ¼ −1;d ¼ 0Þ. However,the CFT two-point function can be written in a more general way by keeping the
value of the group parameter a arbitrary. Without fixing the value of a, the two-point function (35) is now modified as

ḠðωL;ωRÞ ¼
Z

dtRdtLe−iωRtRe−iωLtL
X
p∈Z

ðπTRÞ2hRðπTLÞ2hL
½sinh½πTRð tR

2πTR
þ pð2πLþ ia=TRÞÞ��2hR ½sinh½πTLð tL

2πTL
þ pð2πLþ ia=TLÞÞ�2hL

:

ð36Þ

In order to do the Fourier transform in a convenient way we perform a coordinate transformation, defining the torus
coordinates ðt̃R;LÞ as

t̃R ¼ tR=2πTR þ pð2πLþ ia=TRÞ:
t̃L ¼ tL=2πTL þ pð2πLþ ia=TLÞ: ð37Þ

These newly defined coordinates along with (36) would give us

Ḡðω̃L; ω̃RÞ ∼
X
p∈Z

eipð2πω̃LLþ2πω̃RLþiaω̃RTRþiaω̃LTLÞ
Z

dt̃Rdt̃Le−iω̃Rt̃Re−iω̃Lt̃L
ðπTRÞ2hRðπTLÞ2hL

½sinhðπTRt̃RÞ�2hR ½sinhðπTLt̃LÞ�2hL

∝ T2hL−1
L T2hR−1

R e−
ω̃L
2TL

− ω̃R
2TR

����Γ
�
hR þ i

ω̃R

2πTR

�
Γ
�
hL þ i

ω̃L

2πTL

�����2

×

�
1

1 − ei2πLðω̃Rþω̃LÞ−ajω̃RTRþ
ω̃L
TL
j −

1

1 − ei2πLðω̃Rþω̃LÞþajω̃RTRþ
ω̃L
TL
j

�
: ð38Þ

The CFT two-point function in the momentum space has two set of poles coming from the exponential part of (38)
lying in the upper and lower half of the ω plane. As we discussed above, the QNM spectrum is given by the poles
of the retarded correlation function, the poles of (38) in the lower half plane are the ones relevant for us and these
are given as3

2πLðω̃L þ ω̃RÞ þ ia

���� ω̃R

TR
þ ω̃L

TL

���� ¼ 2πn: ð39Þ

Using the relation between the CFT frequencies and the ECO frequencies as given in (31) we get

2The infinite sum appears in front of the two-point function as we are implementing the method of images. To describe an ECO/black
hole in the dual CFT one must take into account the correct periodic identification as given in (34) and hence we are shifting the
periodicity by an integer multiples and summing over the images.

3There are other poles coming from the singularities of the Gamma function and it can be shown that these poles match with the usual
Kerr black hole QNM spectrum obtained by imposing an ingoing boundary condition at the horizon.

RAMIT DEY and NIAYESH AFSHORDI PHYS. REV. D 102, 126006 (2020)

126006-8



4M2

a
ω −mþ ia

�
1

2πLTH
jω −mΩHj

�
¼ π

2πL
2n;

⇒ ω −mΩH ≃
a

8M2L
ð2nþ 1þ δÞ

×

�
1 − ia

a × sgn½2nþ 1þ δ�
8M2πLTH

�
: ð40Þ

where we have defined the quantity δ as

δ ¼ −2mLr−=rþ − 1: ð41Þ

For the Kerr-like ECO the QNM spectrum is calculated in
the low frequency approximation as given in (12) consid-
ering a Boltzmann reflectivity of the near-horizon mem-
brane [15]. We notice that both the real and imaginary parts
of the quasi normal frequency for Boltzmann ECOs (12)
would match with the CFT result if we take, a ¼ 1=2γ and
the length of the torus as

L ¼ ajr�0j
4πM2

: ð42Þ

Comparing (40) with (A23) we can explicitly read off the
reflectivity of the membrane as

R ¼ e−jω−mΩH ja=TH ; ð43Þ

which is identical to the generalized Boltzmann reflectivity
introduced in [12], reducing to the standard Boltzmann for
a ¼ 1=2 [16]. Furthermore, from (41) we get the phase of
reflection as defined in (6). The phase can depend on the
frequency but as we are working in the low frequency limit
such frequency dependence is not evident in our calculation
and we determine δ as a constant.

D. CFT interpretation of absorption probability

In the previous section, we saw that the identification
(42) makes the QNM of the ECO consistent with the dual
CFT computation. The other important check about the
accuracy of this identification is to compute the absorption
cross section from the CFT two-point function and see if it
can determine the near-horizon contribution to the scatter-
ing cross section correctly, as predicted by the gravity result
in (9) (Fig. 2). The low frequency absorption cross section
for a massless scalar in Kerr spacetime is a well known
result [48]. In [24,48,50] the absorption cross section was
computed for a scalar field in Kerr background with an
ingoing boundary condition at the horizon and its equiv-
alence with the CFT computation was shown.
In this section we will compute the absorption cross

section from the CFT two-point function given in (B6). We
again consider the dual field theory on a circle of length L
and study the finite size effects of the boundary theory on
the absorption cross section. Given the two-point function

of a two-dimensional CFT,Gðt̃R; t̃LÞ ¼ hOðt̃R; t̃LÞOð0; 0Þi,
having right and left moving coordinates ðt̃R; t̃LÞ, the
absorption cross section can be defined using Fermi’s
golden rule (to leading order in perturbation theory) as

σabs ∼
Z

dtRdtLe−iωRtR−iωLtL ½GðtR − iϵ; tL − iϵÞ

− GðtR þ iϵ; tL þ iϵÞ�: ð44Þ

We perform the integral in the same way as we obtained the
momentum space two-point function in (38). In this case
the �iϵ prescription determined which poles contribute
while performing the integral. The absorption cross section
is given as4:

σabs ∼ T2hL−1
L T2hR−1

R ðωÞ2l−1 sinh
�
ω̃R

2TR
þ ω̃L

2TL

�

×

����Γ
�
hR þ i

ω̃R

2πTR

�����2
����Γ
�
hL þ i

ω̃L

2πTL

�����2

×
1 − e−2aj

ω̃R
TR

þω̃L
TL
j���1 − ei2πLðω̃Rþω̃LÞ−ajω̃RTRþ

ω̃L
TL
j
���2 ð45Þ

In Sec. II A, we obtained the low frequency scattering cross
section by using a matching procedure where we divided
the Kerr spacetime into a near-horizon region (ωr ≪ 1), far
region (r ≫ M) and an overlapping matching region
(1=ω ≫ r ≫ M). Using the relation between the CFT
frequencies ðω̃R; ω̃LÞ and ðω; mÞ, as given in (31), along
with (42) and (41) we get the absorption cross section as
given in (9). Plotting (45) for the value of L given by the
condition (42), corresponding to a particular position of the
membrane, we can see the correspondence with the gravity
result in Fig. 3.
In (41) we found the phase change due to the reflection

at the near-horizon membrane from the dual CFT analysis.
In Fig. 4 we have plotted the absorption cross section
taking δ ¼ 0 and the specific value that we found in (41). It
is interesting to note that the behavior of the absorption
cross section is different at the superradiant frequency
(ω ¼ mΩH) for the two values of δ that we have chosen for
the plot. For δ ¼ 0 there is a discontinuity at the super-
radiant frequency as the Boltzmann reflectivity becomes
unity and is nonanalytic at ω ¼ mΩH. On the contrary
when δ ¼ −2mLr−=rþ − 1 the discontinuity disappears.

4Following [51] we can fix the prefactor on the right side
of (45) based on the fact that the emission of any quanta in the
dual CFT takes place due to an interaction, between the bulk
modes and the CFT operator OðhR;hLÞ, given as ϕbulkOðhR;hLÞ. It
was argued that due to the presence of derivatives acting on the
outgoing wave function in the general form of the coupling and
the normalization of the outgoing modes, the prefactor would
be ðωÞ2l−1.
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IV. OBSERVABLE SIGNATURES

It is well established that possible near-horizon mod-
ifications to the Kerr spacetime could have signatures in
terms of echoes in the ringdown phase of the detected
gravitational wave signal [8,11,38]. In the presence of the
partially reflective membrane in front of the horizon,
we saw that the ringdown of the black hole is modified,
leading to a new tower of QNMs for the ECO (12). These
QNMs will manifest as repeating echoes, with amplitudes
decaying as a power-law [15,52], in contrast to the fast
exponential decay in case of the classical black hole. The
time delay between two consecutive echoes would give
the echo time-delay and can be written in terms of, r�0, the

distance between the photon sphere and the near-horizon
membrane in tortoise coordinates:

Δtecho ¼ 2jr�0j: ð46Þ

In geometric optics approximations, one can understand
this echo time-delay as the time it would take for the
classical QNM, generated at the photon sphere due to the
perturbation of the ECO, to travel to the membrane placed
in front of the horizon and then reflected back to the photon
sphere. This argument, as well as the expression (46) makes
it evident that Δtecho is sensitive to the position of the
membrane. Converting the tortoise coordinate to the proper
distance of the membrane from the would-be horizon dwall,
Eq. (46) becomes:

Δtecho ≃
4Mrþ
rþ − r−

ln

�
8M2rþ

ðrþ − r−Þd2wall

�
¼ 1

2πTH
ln

�
M

πTHd2wall

�
:

ð47Þ

In terms of the echo time-delay (47) we can write the length
of the circle as

L ¼ Δtecho
a

8πM2
¼ a

16π2M2TH
ln

�
M

πTHd2wall

�
∈ N: ð48Þ

From this relation the position of the wall (dwall) can be
written as

dwall ¼
ffiffiffiffiffiffiffiffiffi
M
πTH

s
e−L16π

2M2TH=a: ð49Þ

Further, a, M can be written in terms of SBH; TH as

M ¼ THSBH

�
−1þ

�
1þ 1

2πT2
HSBH

�
1=2

�
; ð50Þ

a¼THSBH

��
−1þ

�
1þ 1

2πT2
HSBH

�
1=2

�
2

−4

�
1=2

: ð51Þ

From (49) we can see that the position of the membrane
(dwall) in front of the horizon is determined by the size of
the covering space L, on which the dual field theory lives.
If the membrane is pushed all the way to the horizon,
i.e., dwall → 0, we get L → ∞, which is the well-defined
classical limit on both sides of the duality. Also we note that
L is an integer and this puts a constraint on the relation
between the echo time-delay and BH properties. In Fig. 5
we show how the ringdown of the ECO is sensitive to the
value of dwall. We see that for a larger dwall, the distance
between the angular momentum barrier and the partially
reflective membrane in front of the would-be horizon
decreases, leading to shorter echo time-delays.

FIG. 3. Comparison of the CFT absorption cross section
corresponding to r�0 ¼ 50 for the position of the reflective
membrane in front of the ECO. For the gravity computation
we choose γ ¼ 1 so that TQH ∼ TH . For the CFT cross section we
see that a ¼ 1=2 exactly matches with the gravity computation as
we expected. For a ¼ 1 we can infer that the reflectivity is
suppressed. Once again we assumed a ¼ 0.67, m ¼ 2, l ¼ 2 for
the plots.

FIG. 4. The absorption cross section for two different values of
the phase (δ), placing the reflective membrane at r�0 ¼ 50, is
shown. The magnified part shows the behavior of the absorption
cross section at the superradiant frequency, ω ¼ mΩH .
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V. DISCUSSION

In this paper, we analysed the holographic CFT dual to a
Kerr spacetime whose near-horizon region is modified due
to quantum gravitational effects. One motivation for such
near-horizon modification is to address the information loss
paradox and we have seen models (such as the firewall or
fuzzball) where the horizon is removed or replaced by a
partially reflective membrane a few Planckian distance
away from the position of the would-be horizon. According
to holographic renormalization group (RG) flow program,
any UV (near-horizon) modifications to the bulk geometry
gets mapped onto an IR modification in the dual CFT
[53–55]. To be more precise, for the Kerr-like ECO,
removal of the horizon can be interpreted as a UV cutoff
on the gravity side. In this context, we proposed that the
dual field theory lives on a finite toroidal two-manifold,
where the limit LT → ∞ for the periodicity of the torus in
the spatial and temporal direction is not taken (i.e the spatial
circle has a finite length given as L). In this picture, the
spatial length of the torus, L, acts as an IR regulator on the
field theory side, and as we do not know the microscopic
realization of the Kerr/CFT correspondence, we kept the
arguments simply in terms of the basic features of a thermal
CFT. One might interpret this as a nonperturbative or finite
N effect in the dual field theory which captures the near-
horizon modifications of the Kerr black hole as expected.
We showed the consistency between the quasinormal

modes and the absorption cross section computed from
the gravity side and similar quantities computed from the
dual CFT. On the gravity side, this leads to echoes in the
ringdown which repeat with a period of Δtecho (which in
turn depends on the position of the reflective membrane),
and decay as a power law. We proposed a relation between
the length of the circle, L ∈ N on which the CFT lives and
the echo time-delay, so that there is an exact matching of

the CFT results with the gravity computation. This relation
between the echo time-delay and L determines the position
of the membrane in front of the horizon in terms of the
length of the covering space on which the CFT lives.
For an ECO, the reflectively of the membrane depends

on the quantum properties of the near-horizon membrane.
Since a rigorous derivation of the reflectivity from a
quantum theory of gravity is not available one needs to
make a guess about this feature of the membrane. The
reflectivity is usually assumed to be a constant, or as
proposed recently based on a semiclassical analysis, the
reflectivity is given in terms of the frequency dependent
Boltzmann factor [16]. From the dual CFT computation,
we could determine what the reflectivity would be and
surprisingly it does take the form of the Boltzmann factor.
We believe the derivation of the reflectivity of the mem-
brane based on the holographic CFT opens up the pos-
sibility of its interpretation in terms the quantum theory
of gravity in the near-horizon region of a black hole/ECO.
The ingoing modes would also undergo a phase change
upon reflection by the near-horizon membrane. This phase
depends on the intrinsic quantum properties of the mem-
brane, which also follows from our CFT computation.
Furthermore, we showed the absorption cross section has a
discontinuity at the superradiance frequency when the
phase change at the near-horizon membrane is taken to
be zero. However, if we use the phase predicted by the CFT
computation, the absorption cross section is well behaved
at superradiant frequency.
The Kerr/CFT correspondence was originally estab-

lished for the NHEK geometry in [22] and later a micro-
scopic description of the Kerr/CFT for the extremal case
was established in [56,57] by embedding the NHEK
geometry in string theory. For the near-horizon quantum
gravity modifications to the Kerr geometry, we saw that in
the corresponding dual CFT one needs to incorporate finite
size effects and we can conjecture that such effects would
come from finite N corrections in the usual CFT terminol-
ogy. Understanding the quantum corrections to the “near-
NHEK” geometry from the CFT side (e.g., [50]) as a result
of which the horizon may be removed (e.g., [30,58]), would
make it possible for a more rigorous analysis in terms of the
microscopic theory.
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FIG. 5. Echoes in the ringdown for different positions of the
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from the horizon.
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APPENDIX A: SCALAR WAVE EQUATION IN
KERR BACKGROUND

In this Appendix we solve the scalar perturbation
equation using the method of asymptotic solution match-
ing. The spacetime outside a rotating black hole/ECO
is divided into a near-horizon region (ωr ≪ 1), the
asymptotic far-region (r ≫ M) and a matching region
(1=ω ≫ r ≫ M) where the near and far-region overlaps.
The solutions are obtained in the low frequency limit
1=ω ≫ M as the Compton wavelength of the scalar particle
is much larger than the typical size of the ECO. We impose
suitable boundary conditions at asymptotic infinity and at
the horizon to obtain the QNM spectrum and the absorption
cross section of a Kerr-like ECO. For a massless scalar field
satisfying (4), with the ansatz

Φ ¼ eiðmϕ−ωtÞSAðθ; aωÞRðrÞ; ðA1Þ

the radial part of the scalar perturbation equation is given as

Δ∂rðΔ∂rRÞ þ ½ωðr2 þ a2Þ −ma�2R − ΔλR ¼ 0: ðA2Þ

where λ ¼ lðlþ 1Þ þ a2ω2 − 2mωa.

1. Far-region solution

In the far-region (r ≫ M) the scalar perturbation equa-
tion reduces to a wave equation for a scalar field having
frequency ω and angular momentum l in flat background,

∂rðr2∂rRÞ þ ½r2ω2 − lðlþ 1Þ�R ¼ 0: ðA3Þ

This equation can be solved in terms of spherical Bessel
functions as,

R ¼ 1ffiffiffi
r

p fαJlþ1=2ðωrÞ þ βJ−l−1=2ðωrÞg; ðA4Þ

where α and β are arbitrary constants. In the intermediate
matching region the small r limit of the above equation is
relevant and it is given as

R ∼ α
ðω=2Þlþ1=2

Γðlþ 3=2Þ r
l þ β

ðω=2Þ−l−1=2
Γð−lþ 1=2Þ r

−l−1: ðA5Þ

We have used the expansion of the Bessel function for
small values of r, i.e., JbðrÞ ¼ f1=Γðbþ 1Þgðr=2Þb, to
arrive at the above result. Along similar lines we can
determine the behavior of the solution written down in (A4)
for large values of r as

R ∼
1

r

ffiffiffiffiffiffi
2

πω

r
½α sinðωr − lπ=2Þ þ β cosðωrþ lπ=2Þ�: ðA6Þ

2. Near-horizon solution

To write the radial wave equation (A2) in the near-
horizon limit defined as ωðr − rþÞ ≪ 1, we define a new
variable

z ¼ r − rþ
r − r−

; Δ∂r ¼ ðrþ − r−Þz∂z: ðA7Þ

In terms of this new variable and using the near-horizon
approximation appropriately, from (A2) we obtain,

zð1 − zÞ∂2
zRþ ð1 − zÞ∂zRþ

�ðma − 2MrþωÞ2
zðrþ − r−Þ2

−
ðma − 2Mr−ωÞ2

ðrþ − r−Þ2
−
lðlþ 1Þ
1 − z

�
R ¼ 0: ðA8Þ

To write the above equation as the standard differential
equation for a hypergeometric function we redefine the
wave function R as

R ¼ ziσð1 − zÞlþ1F; ðA9Þ

where

σ ¼ ω −mΩH

4πTH
; ðA10Þ

σ0 ¼ 2ωMr− −ma
rþ − r−

; ðA11Þ

we define σ0 for later convenience. Using this, (A8)
becomes

zð1 − zÞ∂2
zF þ ð1þ i2σ − ð1þ 2ðlþ 1Þ þ i2σÞzÞ∂zF

− ððlþ 1þ iσ þ iσ0Þðlþ 1þ iσ − iσ0ÞÞF ¼ 0: ðA12Þ

The solution of the above equation is given in terms of
hypergeometric functions as

R ¼ Az−iσð1 − zÞlþ1F½a − cþ 1; b − cþ 1; 2 − c; z�
þ Bziσð1 − zÞlþ1F½a; b; c; z�; ðA13Þ

where a¼ 1þ lþ iσ− iσ0;b¼ lþ1þ iσþ iσ0;c¼ 1þ2iσ.
For small values of z i.e near the reflective membrane this
solution can be expanded as

R ∼ Az−iσ þ Bziσ ¼ Ae−iðω−mΩHÞrþ2Mr� þ Beiðω−mΩHÞrþ2Mr� ;

ðA14Þ

where the tortoise coordinate r� is defined as

r� ¼
Z

r2 þ a2

ðr − rþÞðr − r−Þ
dr: ðA15Þ
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From (A14) we can interpret the first part as the outgoing wave and the second part multiplied with B as the ingoing wave.
The large r limit of the above solution (A13) is relevant in the intermediate matching region and it is given as

R ∼
�

r
rþ − r−

�
l
Γð2lþ 1Þ

�
A

Γð1 − 2QÞ
Γð1þ l −Q −Q0ÞΓðlþ 1 −QþQ0Þ þ B

Γð1þ 2QÞ
Γðlþ 1þQþQ0ÞΓðlþ 1þQ −Q0Þ

�

þ
�

r
rþ − r−

�
−l−1

Γð−2l − 1Þ
�
A

Γð1 − 2QÞ
Γð−l −Q −Q0ÞΓð−l −QþQ0Þ þ B

Γð1þ 2QÞ
Γð−lþQþQ0ÞΓð−lþQ −Q0Þ

�
; ðA16Þ

where we defined Q ¼ iσ and Q0 ¼ iσ0.

3. Matching region

Assuming a reflective membrane, with reflectivity R, at z0 we can write the boundary condition at the horizon as

B
A
z2iσ0 ¼ Reiπδ ðA17Þ

Now matching (A5) and (A16) in the intermediate region (1=ω ≫ r ≫ M) and using the boundary condition (A17) we get
two independent equations that will be used for computation of the flux

α

A
¼
�
ω

2

�
−l−1

2 Γðlþ 3
2
ÞΓð2lþ 1Þ

ðrþ − r−Þl
�

Γð1− 2QÞ
Γð1þ l−Q−Q0ÞΓðlþ 1−QþQ0Þ þ z−2iσ0 Reiπδ

Γð1þ 2QÞ
Γðlþ 1þQþQ0ÞΓðlþ 1þQ−Q0Þ

�
ðA18Þ

β

A
¼

�
ω

2

�
lþ1

2 Γð−lþ 1
2
ÞΓð−2l − 1Þ

ðrþ − r−Þ−l−1
�

Γð1 − 2QÞ
Γð−l −Q −Q0ÞΓð−l −QþQ0Þ þ z−2iσ0 Reiπδ

Γð1þ 2QÞ
Γð−lþQþQ0ÞΓð−lþQ −Q0Þ

�
ðA19Þ

One must note that the result does not depend on the arbitrary choice of the matching surface. If rmatch is the matching
surface the solution of the wave equation must be invariant under any change in rmatch for the procedure to work. Changing
rmatch would also change the redshift factor at the matching surface which would indicate a local change in scale. This hints
at a local conformal symmetry of the solutions.
To obtain the QNM spectrum of the ECO we must use an outgoing boundary condition at infinity. This would mean, in

the wave function of the far region given in (A6) there would be no incoming wave from infinity, giving us the relation
β ¼ −iαeiπl. As we discussed before, for a Kerr-like ECO the near-horizon boundary condition is modified and is given
by (A17). Using these boundary conditions, matching (A16) and (A5) to eliminate the unknown constants (A, B, α, β)
we get

z2iσ0

Yl
n¼1

�
nþ 2iσ
n − 2iσ

��
1þ 2Lðrþ − r−Þ2lþ1σω2lþ1

Q
l
n¼1ðn2 þ 4σ2Þ

1 − 2Lðrþ − r−Þ2lþ1σω2lþ1
Q

l
n¼1ðn2 þ 4σ2Þ

�
¼ −Reiπδ; ðA20Þ

where L in the above equation is defined as

L≡ πfΓðlþ 1Þg2
22lþ2Γðlþ 3=2ÞΓð2lþ 2ÞΓð2lþ 1ÞΓðlþ 1=2Þ : ðA21Þ

Usually one needs to resort to various numerical techniques for solving (A20) but we can solve it approximately in the low
frequency limit to obtain the quasi normal frequencies. Near the superradiant bound ω ¼ mΩH we can assume σ ≪ 1,
which is same as the low frequency limit Mω ≪ 1, we are working in. In this limit, from (A20) and using the tortoise
coordinates we get

z2iσ0 ¼ e2iσr
�
0
ðrþ−r−Þ=ð2MrþÞ ¼ −Reiπδ: ðA22Þ
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This can be solved to obtain the QNM spectrum as,

ωn −mΩH ¼ πð2nþ 1þ δÞ
2r�0

− i
lnR
2r�0

: ðA23Þ

APPENDIX B: TWO-DIMENSIONAL
CONFORMAL FIELD THEORY ON A TORUS

In AdS=CFT the thermal state of a black hole corre-
sponds to the thermal state of the boundary CFT.
Perturbations in the bulk corresponds to perturbations in
the boundary thermal field theory with operatorOðh;h̄Þ. The
time evolution of the perturbation and the evolution of the
system is described in terms of the linear response theory.
According to this theory all the relevant information about
the evolution of the perturbation and the relaxation of the
system is contained in the retarded two-point function.
Now our aim in this paper is to understand the quantum
modification to the near-horizon geometry of a Kerr
spacetime within the context of the Kerr/CFT correspon-
dence. To do this we need a better understanding of the dual
two-dimensional CFT living in the near-horizon region
of the Kerr spacetime as proposed by the correspondence
and compute the appropriate thermal correlation function.
In this Appendix we first review some basic features of a
two-dimensional conformal field theory and discuss about
the two-point function of a CFT living on a torus.
We start with a field theory on an Euclidean plane

with coordinates x1 and x2 and define a set of complex
coordinates as

w ¼ x1 þ ix2 w̄ ¼ x1 − ix2: ðB1Þ

A field ϕðw; w̄Þ is called a primary field of conformal
dimension ðh; h̄Þ if it transforms under a conformal trans-
formation w → fðtRÞ; w̄ → fðtLÞ as

ϕðtR; tLÞ ¼ f0ðwÞhf̄0ðw̄Þh̄ϕðfðwÞ; f̄ðw̄ÞÞ: ðB2Þ

Based on the transformation properties of the local CFT
operators, it is ensured that the correlation functions will
transform covariantly under the conformal group. This
would determine and fix the form of the two-point function
of CFT operator Oðw; w̄Þ as

hO1ðw1; w̄1ÞO2ðw2; w̄2Þi ¼
C12

ðw1 − w2Þ2hRðw̄1 − w̄2Þ2hL
;

ðB3Þ

where C12 is a constant and hR, hL is related to the
conformal dimension of the operators O1, O2.

1. Two-point function on the torus

A two-dimensional torus can be described in terms of
coordinates ðx; τEÞ with periodicity ðx; τEÞ → ðxþ L;
tE þ T−1Þ. This torus is characterised by the modular
parameter τ ¼ iT−1=L and the complex holomorphic
coordinate tR ¼ xþ iτE, having periodicity tR → tR þ
nLþ imT−1, for n;m ∈ Z. The antiholomorphic coordi-
nate can be defined as tL ¼ x − iτE. The modular trans-
formation, characterising the modular parameter and the
holomorphic coordinate is given as

τ0 ¼ aτ þ b
cτ þ d

; t0R ¼ tR
cτ þ d

; ad − bc ¼ 1: ðB4Þ

For fields having conformal weights hL, hR the correlation
function is given by (B3). The relation between w and the
torus coordinate tR can be defined as w ¼ eitR=ðcτþdÞ. In
terms of the torus coordinates we can define the two-point
function (after performing the sum over images) as

hO1ðtR; tLÞO2ð0; 0ÞiSLð2;ZÞ
¼

X
n∈Z

����2ðcτ þ dÞ sin π
�
tR þ nLðaτ þ bÞ

Lðcτ þ dÞ
�����−2hR

×

����2ðcτ̄ þ dÞ sin π
�
tL þ nLðaτ̄ þ bÞ

Lðcτ̄ þ dÞ
�����−2hL ; ðB5Þ

where τ ¼ iT−1
R =L; τ̄ ¼ iT−1

L =L
We must note that, according to the sum over geometries

prescription of [45] if we want to compute the two-point
function on the torus one must sum over the SLð2;ZÞ=Z
family with an appropriate weight factor which usually
depends on the action [59]. Here we are interested in
computing the two-point function of a particular geometric
configuration corresponding to a specific set of values for
the group elements and obtain the QNM spectrum form the
poles of the two-point function. Hence we are ignoring the
weight factor in front that depends on the action as it would
not contribute to the pole. Now for computing the real time
correlation function, we perform the analytic continuation
τE → it, hence tR ¼ x − t and tL ¼ xþ t, this will give us
the two-point function as

hO1ðtR; tLÞO2ð0; 0ÞiSLð2;ZÞ
¼

X
n∈Z

�
L2

c2T−2
R þ d2L2

�
2hR

�
L2

c2T−2
L þ d2L2

�
2hL

×
ðπ=LÞ2hRðπ=LÞ2hL

½sinh πðxRÞ�2hR ½sinh πðxLÞ�2hL
; ðB6Þ

where
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xR;L ¼ TR;L

c2T−2
R;L þ d2L2

ðctR;L � nLÞ − i
L

c2T−2
R;L þ d2L2

�
dtR;L þ n

acT−2
R;L þ bdL2

L

�
: ðB7Þ

For a black hole choosing the SLð2;ZÞ parameter as ða ¼ 0;b ¼ 1; c ¼ −1;d ¼ 0Þ5 we obtain the two-point function on
the tours as [28,29,60,61]

hOðtR; tLÞOð0; 0Þitorus ¼
X
n∈Z

ðπTRÞ2hRðπTLÞ2hL
½SinhðπTRðtR þ nLÞÞ�2hR ½SinhðπTLðtL þ nLÞÞ�2hL : ðB8Þ

The torus two-point function is doubly periodic as expected and it can be expressed in terms of basic elliptic functions
(double periodic Eisenstein Weierstrass series), which is given as [61–64]

p2hðzjTÞ ¼
X

m;n≠0;0

1

ðzþmLþ in=TÞ2h : ðB9Þ

where again the two periods ðL; i=TÞ can be identified with the coordinates on the torus t ∼ tþ LZþ iZ
T . For h ¼ 1 in (B6),

using Euler’s formula we can write the 2 point function as [61,64]

hOðtR; tLÞOð0; 0Þitorus ¼
X

m;n≠0;0

1

ðtR þmRLþ in=TRÞ2
1

ðtL þmLLþ in=TLÞ2
¼ p2hðtRjTRÞp2hðtLjTLÞ: ðB10Þ

For h > 1 (B6) can be written as a series of higher order Eisentein functions [63].

2. The Cardy formula

Using two linearly independent lattice vectors (periods
of the lattice ω1 and ω2) on the complex plane
and identifying points that differ by an integer combination
of ω1, ω2, we can define a torus. The CFT defined on the
torus is independent of the overall scale of the lattice and
the modular parameter, τ ¼ ω2=ω1 is the only relevant
parameter (we will take the modular parameter as purely
imaginary and given by τ ¼ β=2πL).
We can write the partition function Z in terms of the

Hamiltonian (H) and momentum (P) of the theory. A
translation operator that translates the system parallel to
the period ω2 over a distance a is given as

e−
a
ω2
½H Imω2−iPReω2�: ðB11Þ

Defining a as the lattice spacing, this translation operator
would take us from one row of the lattice to the next
one (parallel to ω2). The partition function can be
written as

Zðω1;ω2Þ ¼ Tr e−½H Imω2−iPReω2�: ðB12Þ

Expressing the operators H and P in terms of the Virasoro
generators ðL0; L̄0Þ6 we can write (B12) as

Zðτ; τ̄Þ ∼ Tr e2πi½τðL0−cL=24Þ−τ̄ðL̄0−cR=24Þ�: ðB15Þ

If we take cL ¼ cR ¼ c, the energy eigenvalue L0 ¼ EL
and focusing on the τ part, the density of state is given by
the following contour integral:

ρðEÞ ¼
Z
C
dτZðτÞe−2πiτðEL−c=24Þ: ðB16Þ

To compute the density of state, the trick is to use the
modular invariance of the partition function ðZðτÞ ¼
Zð−1=τÞÞ to relate the low temperature and the high
temperature behavior. We can further use a saddle point
approximation to compute the dominant contribution to the
integral and obtain the density of state as:

5In the case of AdS3=CFT2, for the SLð2; ZÞ parameters we
know the choice ða¼1;b¼c¼0;d¼1Þ corresponds to thermal
AdS while ða ¼ 0;b ¼ 1; c ¼ −1;d ¼ 0Þ corresponds to the
BTZ black hole.

6The torus can be constructed by gluing the ends of an infinite
cylinder. If we define the circumference of the cylinder as R, the
Hamiltonian and the momentum can be written as

H ¼ 2π=RðL0 þ L̄0 − cL=24 − cR=24Þ ðB13Þ
P ¼ 2πi=RðL0 − L̄0Þ ðB14Þ

cL, cR are the central charges of the CFT as we defined before.
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ρðEL; ERÞ ∝ const × exp

"
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL
6

�
EL −

cL
24

�s

þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR
6

�
ER −

cR
24

�s #
: ðB17Þ

One must note that this expression is valid in the
limit E ≫ c=12 (high temperature limit). Taking the
logarithm of the density of state(neglecting the constant
in the front as it is small in the high temperature limit) we
get the entropy as

SCardy ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL
6

�
EL −

cL
24

�s
þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR
6

�
ER −

cR
24

�s
:

ðB18Þ

This is the well known Cardy formula and we can see
interestingly that it depends on the central charge and the
energy eigenvalues. Further, it is possible to write the Cardy
formula in terms of the right and left temperature for a
canonical ensemble. The temperatures are defined as

∂S
∂EL

¼ 1

TL
; ðB19Þ

∂S
∂ER

¼ 1

TR
: ðB20Þ

In terms of the temperature the Cardy formula is given as

SCardy ¼
π2

3
ðcLTL þ cRTRÞ: ðB21Þ

We must note that incase we lift the CFT to a covering space
which is a n times longer circle than the original spatial
length of the torus both the central charge and the temper-
ature would get rescaled as c̃ ¼ c=n; T̃ ¼ nT making the
entropy invariant [56,65]. Also, recently it was shown in
[27], the central charge can be expressed in terms of the left
and right temperature as cL=R ∝ 1=ðTL þ TRÞ. Thus, if we
consider a rescaled temperature by some constant factor, the
combination cLTL þ cRTR remains unchanged making the
entropy invariant under such rescaling.
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