
 

Criticality from Einstein-Maxwell-dilaton holography
at finite temperature and density

Alfonso Ballon-Bayona ,1,* Henrique Boschi-Filho ,1,† Eduardo Folco Capossoli ,1,2,‡ and Diego M. Rodrigues 1,3,§

1Instituto de Física, Universidade Federal do Rio de Janeiro, 21.941-972, Rio de Janeiro, RJ, Brazil
2Departamento de Física and Mestrado Profissional em Práticas de Educação Básica (MPPEB), Colêgio

Pedro II, 20.921-903, Rio de Janeiro, RJ, Brazil
3Federal University of ABC, Center of Mathematics, Santo André 09580-210, Brazil and Federal
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We investigate consistent charged black hole solutions to the Einstein-Maxwell-dilaton (EMD)
equations that are asymptotically AdS. The solutions are gravity duals to phases of a nonconformal
plasma at finite temperature and density. For the dilaton we take a quadratic ansatz, leading to linear
confinement at zero temperature and density. We consider a grand canonical ensemble, where the chemical
potential is fixed, and find a rich phase diagram involving the competition of small and large black holes.
The phase diagram contains a critical line and a critical point similar to the van der Waals–Maxwell liquid-
gas transition. As the critical point is approached, we show that the trace anomaly in the plasma phases
vanishes, signifying the restoration of conformal symmetry in the fluid. We find that the heat capacity and
charge susceptibility diverge as CV ∝ ðT − TcÞ−α and χ ∝ ðT − TcÞ−γ at the critical point with universal
critical exponents α ¼ γ ¼ 2=3. Our results suggest a description of the thermodynamics near the critical
point in terms of catastrophe theories. In the limit μ → 0 we compare our results with lattice results for
SUðNcÞ Yang-Mills theories.
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I. INTRODUCTION

Matter under extreme conditions is an exciting and
challenging research field in high-energy physics. In the
case of quantum chromodynamics (QCD), exploring had-
ronic matter at extreme conditions is an excellent oppor-
tunity for understanding nonperturbative aspects of QCD
and gaining new insights into strongly coupled phenomena
such as confinement and chiral symmetry breaking. A good
example is the celebrated quark-gluon plasma (QGP) [1–3]
observed in high-energetic heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) in Brookhaven.
The QGP is a new state of matter that behaves as an ideal
fluid and whose constituents are deconfined quarks and
gluons. Lattice QCD has correctly predicted a cross-
over transition to the QGP [4] to occur at approximately
T ≈ 155 MeV [5].

Just like ordinary matter—e.g., water—hadronic matter
in QCD is expected to have different phases. It is therefore
natural to consider the so-called QCD phase diagram,
which is usually described in a temperature (T) vs chemical
potential (μ) plane. A finite chemical potential is associ-
ated with nonzero baryonic/quark density. At μ ¼ 0, as
described above, when increasing the temperature we
expect a transition from a hadronic gas to the QGP.
At T ¼ 0, on the other hand, for increasing μ we expect
a transition to nuclear matter, and then for sufficiently large
μ, a transition to another state of matter called a color
superconductor. Currently, there is an experimental pro-
gram devoted to investigating the QCD phase diagram from
relativistic heavy ion collisions; see, e.g., Ref. [6]. Neutron
stars are also a very interesting framework for investigating
the transition to nuclear matter at low temperatures; see,
e.g., Ref. [7].
One important aspect of the QCD phase diagram con-

cerns the possible existence of a critical end point (CEP) in
the T − μ plane [8,9]. For large μ and small T, a first-order
transition from the hadronic gas to the QGP is expected; at
μ ¼ 0, lattice QCD predicts a crossover transition to the
QGP. One therefore concludes that a CEP, represented by
the coordinates (μc, Tc), should be located at the interface
between the crossover and the first-order transition.
Together with the experimental achievements, theoretical
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efforts have been made in order to understand QCD matter
under extreme conditions. Perturbative QCD methods lead
to reliable results in the regime of large temperatures or
large chemical potentials [10–12]. Nambu–Jona-Lasinio
models [13,14] also provide good results related to the
QCD phase diagram (for recent work, see Ref. [15]).
Lattice QCD works very well at μ ¼ 0 but faces a difficult
challenge at finite μ due to the sign problem [16]; there
have been, however, recent promising developments [17].
In this work, we instead follow the gauge/gravity duality

approach to investigate criticality in nonconformal plasmas
at finite temperature and density. Nonconformal plasmas
arising from the gauge/gravity duality are far from the real
QGP found in QCD, but they provide very useful insights
regarding the breaking and restoration of conformal sym-
metry. They are also useful for investigating the real-time
dynamics associated with perturbations and the response of
the fluid. The gauge/gravity approach applied to QCD is
usually called holographic QCD, and it is based on the
AdS=CFT correspondence. According to gauge/gravity
duality, the physics of four-dimensional strongly coupled
nonconformal plasmas maps to five-dimensional black hole
solutions that are asymptotically AdS. Nonconformal
plasmas described in the gauge/gravity approach satisfy
the property of conformal symmetry restoration at very
high temperatures, which is associated with the vanishing
of the trace anomaly E − 3p, where E and p are the energy
density and pressure, respectively. This property is in
agreement with the QGP equation of state obtained from
lattice QCD [18].
Since the advent of AdS=CFT correspondence, the study

of black hole physics has gained a lot of interest due to its
holographic connection with thermal phase transitions in
strongly coupled field theories. In particular, the study of
the thermodynamic phase structure of charged AdS black
holes in global coordinates has stood out in the pioneering
papers [19,20] and, subsequently, in Ref. [21]. In these
works it was shown that these charged AdS black holes
present a variety of fascinating features and critical phe-
nomena, including a rich phase structure with first-order,
second-order, and continuous phase transitions. Moreover,
one of the most interesting features of these charged AdS
black holes is the striking similarity with the van der
Waals–Maxwell liquid-gas phase transition. The analogy
with the van der Waals–Maxwell liquid-gas system and the
study of the criticality of charged AdS black holes was
further explored and analyzed in Refs. [22–24] (for a
review, see Ref. [25]). Furthermore, holographic van der
Waals–Maxwell–like systems were extended to the case of
Born-Infeld AdS black holes in Ref. [26] and Gauss-Bonet
AdS black holes in Refs. [27,28].
The rich thermodynamic phase structure of charged AdS

black holes has also been applied to investigate the phase
diagram of holographic QCD in the context of Einstein-
Maxwell-dilaton (EMD) holography by Gubser et al. in

Refs. [29,30]. The criticality of holographic QCD plasmas
in the T-μ plane was first studied in Refs. [31,32] within the
context of EMD holography. Several other studies fol-
lowed, dealing with different aspects of the thermodynam-
ics, including phase transitions between different black
hole branches and a quantitative comparison with lattice
QCD results for some holographic models [33–42]. In these
works, however, universal aspects of charged black holes in
EMD holography were not investigated. In particular, the
relation between charged black hole transitions in EMD
holography and the liquid-gas transition, described by the
van der Waals model, was not explored.
Holographic models based on Einstein-Maxwell theory

have also been useful for describing nonconformal plasmas
in the presence of a magnetic field [43–52] or an electric
field [53,54]. Still in the context of EMD holography,
another important ingredient considered was the effect of
anisotropy in strongly coupled gauge theories [55], and its
interplay with an applied magnetic field in holographic
QCD [56,57]. Criticality has also been investigated in
gauge/gravity models applied to condensed-matter physics.
This approach is called AdS/CMT and has led to new
insights for strongly coupled systems in condensed matter
near the quantum critical point [58–60].
In this work, we describe nonconformal plasmas that

admit a CEP in the T-μ phase diagram using EMD
holography. We consider analytic background solutions
generated by a quadratic dilaton profile, to investigate the
phase structure and criticality of asymptotically charged
AdS black holes in the grand canonical ensemble.1 We find
a rich phase structure due to the presence of three black
hole solutions. One of them will always be unstable,
whereas the other two will compete, leading to a first-
order transition. We describe the thermodynamics and
phase transitions between the different black hole branches
using the thermodynamic observables, which are obtained
from the grand canonical potential, which, in turn, is
reconstructed from the first law of thermodynamics in a
consistent way. Interestingly, we find that the thermody-
namics of charged black hole solutions in EMD holography
display strong similarities with the thermodynamics of
charged black holes in global AdS, the latter described by
Chamblin et al. in the pioneer works [19,20]. In particular,
we find that EMD holography leads to a relation between
the temperature and the horizon radius for charged black
holes qualitatively similar to the corresponding relation for
charged black holes in global AdS.
We find in this work a critical line in the T-μ phase

diagram, associated with the first-order transition, that ends
on a CEP. The critical point in our work will correspond to

1The background solutions considered here are similar to the
ones considered recently in Ref. [61] for investigating asymp-
totically AdS charged hairy black hole solutions, and in Ref. [62]
for studying analytically magnetic catalysis in holographic QCD.
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the situation where the unstable black hole disappears and
the two other black holes merge. We develop an analogy
between the phase transitions found in this work and the
van der Waals–Maxwell liquid-gas transition. In this
analogy, the temperature T and horizon radius zh are
mapped to the pressure P and volume V of the van der
Waals model. The curves at fixed μ in our work will
play the role of the isothermal curves in the van der
Waals model. We present a systematic description of all
the relevant thermodynamic quantities in our model.
In particular, we show explicitly the following results:
(i) Conformal symmetry is explicitly broken at μ ¼ 0 due to
the deformation of the 4D theory, dual to the dilaton
backreaction to the AdS black brane. (ii) Conformal
symmetry breaking due to the dilaton backreaction persists
at finite μ, and the trace anomaly E − 3p is in general
nonzero. (iii) As we reach the critical point in the T-μ phase
diagram, the trace anomaly goes to zero. We interpret
this result as the emergence of a nontrivial CFT at the
critical point.
We also perform a careful and universal analysis of the

thermodynamics in the neighborhood of the critical point.
From that analysis, we find universal critical exponents for
the specific heat and charge susceptibility. These results
hold for any holographic model, based on EMD theory with
a minimal coupling, displaying a critical line that ends on a
CEP as the chemical potential increases. For the specific
heat, we find a critical exponent α ¼ 2=3, which is in
agreement with the result found in Refs. [19,20] for
charged AdS black holes in global coordinates. For the
charge susceptibility, we find a critical exponent γ ¼ 2=3,
which is identical to the result for the specific heat. We are
not aware of any previous calculation in holography
leading to a similar result for the charge susceptibility.
From our analysis for the thermodynamics near the critical
point, we suggest a connection between the criticality of
nonconformal plasmas in EMD holography and catastro-
phe theories of type A3. Lastly, in the limit μ → 0, we
compare our results against the lattice results for SUðNcÞ
Yang-Mills theories and conclude that our model is
compatible with the thermodynamics of SUðNcÞ Yang-
Mills theories in the large-Nc limit.
This work is organized as follows: In Sec. II, we review

the EMD holographic theory and construct analytically the
charged black brane solutions dual to nonconformal plas-
mas. In Sec. III, we study the black hole temperature and
derive the grand canonical potential along with its related
thermodynamic quantities. In Sec. IV, we present our
results for the thermodynamic observables and the phase
diagram in the T-μ plane. In Sec. V, we analyze the
thermodynamics of our holographic model near the critical
point, and from this analysis we find universal critical
exponents for the heat capacity and charge susceptibility. In
Sec. VI, we compare our results in the limit μ → 0 against
the lattice results for SUðNcÞ Yang-Mills theories. Finally,

in Sec. VII, we discuss the results and present our conclud-
ing remarks. Appendix A briefly reviews the thermody-
namics of a pure Reissner-Nordström AdS black brane.
Appendix B describes an alternativemethod for reconstruct-
ing the grand canonical potential, andAppendix C describes
the charge susceptibility in our model.

II. NONCONFORMAL PLASMAS AT FINITE
TEMPERATURE AND DENSITY FROM EMD

HOLOGRAPHY

In this section, we present our framework for describing
nonconformal plasmas at finite temperature and density
arising from 5D Einstein-Maxwell-dilaton (EMD) theory.
First, we describe the general EMD equations, and then we
describe the ansatz that leads to black hole solutions. The
latter will be interpreted as 5D gravity duals of non-
conformal fluids in the dual 4D theory.

A. Einstein-Maxwell-dilaton theory

In this subsection, we describe the five-dimensional
Einstein-Maxwell-dilaton (EMD) theory in the Einstein
frame and obtain the corresponding field equations.
The EMD action is given by

S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

4

3
gμν∂μϕ∂νϕ

þ VðϕÞ − 1

4
FμνFμν

�
; ð1Þ

where G5 is the five-dimensional Newton’s constant,
g ¼ detðgμνÞ, R is the Ricci scalar, ϕ is the dilaton
field, VðϕÞ is the dilaton potential, and Fμν is the
usual electromagnetic field strength defined as Fμν ¼
∂μAν − ∂νAμ.
The field equations derived from the action (1) are

given by

Gμν −
4

3

�
∂μϕ∂νϕ −

1

2
gμνð∂ϕÞ2

�

−
1

2
gμνVðϕÞ −

1

2

�
FμαFα

ν −
1

4
gμνF2

�
¼ 0; ð2Þ

∇2ϕþ 3

8

∂VðϕÞ
∂ϕ ¼ 0; ð3Þ

∇μFμν ¼ 0; ð4Þ

with the Einstein tensor Gμν defined as

Gμν ¼ Rμν −
1

2
gμνR: ð5Þ
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The field equations (2) correspond to the Einstein equations
in the presence of an energy momentum tensor due to the
scalar and gauge fields. Equation (3) describes the dynam-
ics of the scalar field ϕ (the dilaton) in a curved space,
whereas Eq. (4) corresponds to the Maxwell equations for
the gauge field Aμ in curved space.

B. Ansatz for finite T and μ

Wewill consider the following ansatz for a charged black
brane solution coupled to a scalar field2:

ds2 ¼ 1

ζðzÞ2
�
dz2

fðzÞ − fðzÞdt2 þ dx⃗2
�
; ð6Þ

ϕ ¼ ϕðzÞ; ð7Þ

A ¼ AtðzÞdt; ð8Þ

where fðzÞ is the horizon function and At is the time
component of the Uð1Þ gauge field AμðzÞ. The former will
be related to the temperature T, whereas the latter will be
related to the chemical potential of the dual theory, as we
will discuss later in this work.
The ansatz in Eqs. (6)–(8) leads to static charged black

holes enjoying SOð3Þ symmetry. It is a very general
ansatz for gravity backgrounds describing 4D nonconfor-
mal fluids at finite temperature and density. Conformal
symmetry breaking in the 4D fluid, characterized by the
trace anomaly, will be a consequence of a deformation due
to a 4D scalar operator O (dual to ϕ).
Plugging the ansatz [Eqs. (6)–(8)] into the field equa-

tions (2)–(4) leads to the following independent equations:

ζ00ðzÞ
ζðzÞ −

4

9
ϕ0ðzÞ2 ¼ 0; ð9Þ

ζ0ðzÞ
ζðzÞ −

A00
t ðzÞ

A0
tðzÞ

¼ 0; ð10Þ

d
dz

ðζðzÞ−3f0ðzÞÞ − A0
tðzÞ2
ζðzÞ ¼ 0; ð11Þ

where the prime denotes a derivative with respect to z, and
there is an extra field equation involving the dilaton
potential:

VðϕÞ ¼ 12ζ0ðzÞ2fðzÞ − 3ζ0ðzÞf0ðzÞζðzÞ

−
4

3
fðzÞζðzÞ2ϕ0ðzÞ2 þ 1

2
ζðzÞ4A0

tðzÞ2: ð12Þ

We will solve the equations for the functions ζðzÞ, fðzÞ,
AtðzÞ, and VðϕÞ for a given dilaton profile ϕðzÞ. In
particular, when solving the differential equation (9), one
finds the scale factor ζðzÞ for a given dilaton profile ϕðzÞ.
This differential equation is linear in ζ and admits analytic
solutions when the dilaton is given by a power-law ansatz.
In this work, we consider the quadratic ansatz:

ϕðzÞ ¼ kz2; ð13Þ

with k being a positive constant to be fixed later. It is
important to mention that the dilaton in Eq. (13) fulfills the
IR criterion established in Refs. [64,65] for a good dilaton
profile, leading, for instance, to confinement in the dual
gauge theory as well as linear Regge trajectories for scalar
and tensor glueballs [63,65]. Note that in this work we take
into account the dilaton backreaction in the geometry.3

The quadratic ansatz for the dilaton [Eq. (13)] corre-
sponds to a dual relevant operator of conformal dimension
2. For the case of zero temperature and zero chemical
potential, corresponding to f ¼ 1 and At ¼ 0, one finds
that the dilaton potential in Eq. (12) can be expanded4 at
small ϕ as VðϕÞ ¼ 12 − ð4=3Þm2ϕ2, withm2 ¼ −4. This is
compatible with the AdS=CFT dictionary m2 ¼ ΔðΔ − 4Þ,
with Δ ¼ 2 being the conformal dimension of the 4D
operator O. Near the boundary, the source and the vacuum
expectation value (VEV) coefficients have nonzero values,
both equal to k. This corresponds to a Dirichlet condition in
the UV that fixes the source coefficient and an IR condition
that fixes the VEV coefficient.
An alternative procedure in EMD holography consists of

providing an ansatz for the dilaton potential VðϕÞ and then
solving the EMD equations in order to find ϕðzÞ, ζðzÞAtðzÞ,
and fðzÞ. Considering an ansatz for the dilaton potential
that enjoys the same IR and UVasymptotics chosen in this
work would lead to the same thermodynamics and phase
diagram.5

It is by now well understood that the deformation of AdS
space due to a dilaton field ϕ in 5D is dual to the
deformation of a 4D CFT due to a scalar operator O. In
the 4D theory, the deformation can be written asR
d4xϕ0hOi, where ϕ0 and hOi are the coupling and

VEV of the scalar operator, respectively. Conformal sym-
metry breaking due to the scalar operator is described by
the Ward identity Tμ

μ ¼ ϕ0ð4 − ΔÞhOi for the trace of the
stress-energy tensor [66]. This Ward identity is reminiscent
of the QCD trace anomaly [30,63]; see also Ref. [67]. The
parameter Δ is the conformal dimension of the scalar

2We work in a convenient frame, where the metric is written in
terms of a function ζðzÞ and the blackening factor fðzÞ [63].

3This is in contrast with phenomenological soft-wall models,
where backreaction is not taken into account.

4Note that the dilaton mass saturates the Breitenlohner-
Freedman bound.

5The approach of providing an ansatz for the dilaton potential
is useful for investigating holographic renormalization, but in
general the background solutions are not analytic.
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operator O. For the quadratic ansatz in Eq. (13), we easily
find that Δ ¼ 2 (relevant operator), whereas ϕ0 and hOi are
both proportional to k. We therefore expect a nonvanishing
trace anomaly and therefore the explicit breaking of
conformal symmetry. In this work, we will show that this
is the case even at finite temperature and density. However,
we will find a very special point in the phase diagram where
the trace anomaly vanishes and conformal symmetry is
restored. This is the critical point (the point where the
critical line ends in the phase diagram). The vanishing of
the trace anomaly at this point indicates the presence of a
nontrivial CFT. Later in this work, we will describe the
thermodynamics near this special point.

C. Solving the EMD equations

In principle, for any given dilaton profile, ϕðzÞ, one can
solve Eqs. (9), (10), and (11) for the unknown functions
ζðzÞ, fðzÞ, and AtðzÞ, either analytically or numerically,
with the constraint that the background must asymptoti-
cally approach a charged AdS black hole in the UV
(z → 0), which corresponds on the boundary to a gauge
theory at finite temperature and density.
In this subsection, we solve Eqs. (9), (10), and (11) for

the particular case of a quadratic dilaton profile [Eq. (13)].

1. Solution for ζðzÞ
The differential equation in Eq. (9) is second order and

linear in ζðzÞ. For the quadratic dilaton profile ϕðzÞ ¼ kz2,
the equation can easily be solved, and we impose the
condition ζðzÞ ¼ z at small z to obtain an asymptotically
AdS space. The solution reads

ζðzÞ ¼ z0F1

�
5

4
;
k2z4

4

�
; ð14Þ

where 0F1ða; zÞ is the confluent hypergeometric function.
This solution can also be written as

ζðzÞ ¼ Γ
�
5

4

��
3

k

�
1=4 ffiffiffi

z
p

I1
4

�
2

3
kz2
�
; ð15Þ

where ΓðxÞ is the usual gamma function and IαðxÞ is the
modified or hyperbolic Bessel function of the first kind.
Note that the function ζðzÞ admits an expansion in the

regime kz2 ≪ 1:

ζðzÞ ¼ z

�
1þ 4

45
ðkz2Þ2 þ 8

3465
ðkz2Þ4 þ � � �

�
: ð16Þ

In Fig. 1, we display the behavior of ζðzÞ as a function of
z, for some choices of the parameter k. Note that for the
choice k ¼ 0, one recovers the AdS solution, since in this
particular case ζðzÞ ¼ z.

2. Solution for the gauge field component AtðzÞ
Now, we proceed to solve the differential equation (10)

for the time component At of the Maxwell field Aμ. Its
general solution can be written as

AtðzÞ ¼ c2 − c3

Z
z

0

ζðyÞdy; ð17Þ

where c2 and c3 are integration constants, and ζðyÞ
is the scale factor found in Eq. (14). One can fix c2 and
c3 by imposing the regularity condition at the horizon
Atðz ¼ zhÞ ¼ 0, so that the norm jjAtðzÞjj ¼ gttjAtj2 is well
defined, and the AdS=CFT dictionary Atðz ¼ 0Þ ¼ μ,
where μ is the chemical potential of the dual gauge theory.
Using these conditions, the solution for AtðzÞ takes the
form

AtðzÞ ¼ μ

R
zh
z ζðyÞdyR zh
0 ζðyÞdy ¼ μ

�
1 −

C2ðzÞ
C2ðzhÞ

�
; ð18Þ

where we have introduced the function

C2ðzÞ ¼
Z

z

0

ζðyÞdy: ð19Þ

In the UV (z → 0), AtðzÞ should reduce to

AtðzÞ ¼ μ

�
1 −

�
z
zh

�
2
�
; ð20Þ

which is the solution corresponding to the Reissner-
Nordström (RN) AdS black brane [58]. Indeed, if we

k = 0

k = 0.2 GeV2

k = 0.4 GeV2

k = 0.6 GeV2

0 1 2 3 4
0

1

2

3

4

5

z

(z)

FIG. 1. Behavior of the warp factor ζðzÞ from Eq. (14) or
Eq. (15), as a function of z for some values of k, expressed in
GeV2. For k ¼ 0, one recovers the AdS solution. The greater the
value of k, the greater the departure of ζðzÞ from the pure AdS
solution for large z. For small z, all solutions coalesce to the AdS
solution.
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expand the integrand ζðyÞ around y ¼ 0 up to linear order
in Eq. (18) and integrate the result, we find Eq. (20).
The potential AtðzÞ couples to the charge density

operator jt ¼ q̄γtq at the boundary. The interaction term
hjtiAtð0Þ is identified with the term ρμ in the grand
canonical ensemble. Therefore, the quark density ρ can
be obtained from the holographic dictionary

ρ ¼ hjti ¼ δS
δAt

¼ −σ
�

1

ζðzÞ ∂zAt

�
z¼ϵ

; ð21Þ

where σ ¼ ð16πG5Þ−1. We have defined the boundary at
z ¼ ϵ, and we take in the end the limit ϵ → 0. Plugging the
solution (18) into Eq. (21), we find

ρðzh; μÞ ¼
σ

C2ðzhÞ
μ: ð22Þ

The quark density ρ depends linearly on μ and has a
nontrivial dependence in zh. It is finite already, so it does
not require any renormalization procedure.

3. Solution for the horizon function f ðzÞ
Now, we perform the last and most important step, which

is solving Eq. (11) for the horizon function fðzÞ. Plugging
in the solution for AtðzÞ, cf. Eq. (18), one can write the
solution for fðzÞ in a formal way as

fðzÞ ¼ 1 −
C4ðzÞ
C4ðzhÞ

þ μ2

C4ðzhÞC2ðzhÞ2
½C4ðzhÞC6ðzÞ

− C4ðzÞC6ðzhÞ�; ð23Þ

where the C4 and C6 functions are given by

C4ðzÞ ¼
Z

z

0

ζðyÞ3dy; ð24Þ

C6ðzÞ ¼
Z

z

0

C2ðyÞζðyÞ3dy; ð25Þ

and C2ðzÞ is given by Eq. (19). The integration constants
were chosen in order to satisfy the conditions fð0Þ ¼ 1
(AdS asymptotics) and fðzhÞ ¼ 0 (horizon property). In
Fig. 2, we show the profile of the horizon function fðzÞ as a
function of z for μ ¼ 0 and μ ≠ 0. Note that the functions
CnðzÞ have dimension ½Length�n.
Note that in the regime kz2 ≪ 1, the functions above

admit the following expansions:

C2ðzÞ ¼
z2

2

�
1þ 4

135
ðkz2Þ2 þOðkz2Þ4

�
;

C4ðzÞ ¼
z4

4

�
1þ 2

15
ðkz2Þ2 þOðkz2Þ4

�
;

C6ðzÞ ¼
z6

12

�
1þ 8

45
ðkz2Þ2 þOðkz2Þ4

�
: ð26Þ

These expansions will be useful later.
From this point, we will set the value of constant

k ¼ 0.18 GeV2. This choice leads at T ¼ 0 to the appro-
priate value for the ρ-meson mass [68,69].
In Fig. 2, one can see, in the case of finite chemical

potential, the presence of two horizons: the inner and the
outer. This is characteristic of charged black holes. The first
one is nonphysical, and the second one is the physical
horizon, which satisfies the inequality

f0ðzhÞ < 0; ð27Þ

which implies a constraint between the C functions to be
described in the next section.
Finally, as a consistency check, in the UV we should

obtain the corresponding fðzÞ for a charged AdS black
brane solution. Indeed, one can check that6

fðz → 0Þ ¼ 1 −
�
1þ μ̄2

3

��
z
zh

�
4

þ μ̄2

3

�
z
zh

�
6

; μ̄ ≔ μzh:

ð28Þ

Therefore, in the UV we recover the horizon function fðzÞ
associated with the RN AdS5 black brane.

= 0

= 1 GeV

Inner 

Horizon
Outer Horizon

0.0 0.5 1.0 1.5 2.0

−2

−1

0

1

z

f(z)

FIG. 2. Behavior of fðzÞ from Eq. (23) as a function of z for
zero and finite chemical potential μ. We set zh ¼ 1 GeV−1. The
black dots represent the outer and the inner horizons.

6This expression is equivalent to Eq. (60) of Ref. [58] for the
case γ2 ¼ 3 that corresponds to taking the Maxwell coupling to
be equal to the gravitational coupling, as we did.
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III. THERMODYNAMICS

In this section, we study the thermodynamics of our
holographic model consisting of 5D asymptotically AdS
charged black branes coupled to a scalar field in the grand
canonical ensemble.

A. The black hole entropy

The black hole entropy S is related to the horizon area by
the Bekenstein-Hawking formula

S ¼ A
4G5

¼ 4πσ

ζ3ðzhÞ
; ð29Þ

where we use the relation G5 ¼ 1=ð16πσÞ. The constant σ
will later be fixed by the Stefan-Boltzmann law at high
temperatures.
Since the function ζðzhÞ monotonically increases with

zh, the entropy is a decreasing function of zh. We plot
in Fig. 3 the entropy in our model (blue curve) compared
with the entropy of the pure charged AdS black brane
(red curve).

B. The black hole temperature

In this section, we present a systematic description of the
temperature of charged black branes dual to nonconformal
plasmas. We obtain general expressions in terms of a
general scale factor ζðzÞ, related to a general dilaton profile
ϕðzÞ, and then we present numerical results for the profile
in Eq. (14), obtained as a solution of the EMD equations in
the case of the quadratic dilaton profile ϕðzÞ ¼ kz2.
The analysis starts with the Hawking formula [70] for the

black hole (BH) temperature:

T ¼ jf0ðzhÞj
4π

: ð30Þ

This formula arises from the requirement of smoothness of
the metric in dτ and dz near the horizon radius z ¼ zh,
where τ is the imaginary time with period β ¼ 1=T.
Below, we describe the temperature T as a function of the

horizon radius zh and the chemical potential μ. First, we
describe the simpler case μ ¼ 0, and then the full result for
finite μ.

1. Zero density μ= 0

For zero chemical potential, the horizon function in
Eq. (23) reduces to

fðzÞ ¼ 1 −
C4ðzÞ
C4ðzhÞ

; ð31Þ

with C4ðzÞ defined in Eq. (24). The temperature becomes

Tμ¼0ðzhÞ ¼
ζðzhÞ3

4π
R zh
0 ζðyÞ3dy ; ð32Þ

and we will be interested in the solution [Eq. (14)] for ζðzÞ.
As explained in the previous section, in the conformal case
we have ζðzÞ ¼ z, and for μ ¼ 0, the horizon function
reduces to fðzÞ ¼ 1 − z4=z4h, which corresponds to the
usual AdS BH with a flat horizon (Poincaré coordinates). In
the nonconformal case, we have an AdS deformation due to
the dilaton ϕðzÞ ¼ kz2 controlled by an IR mass scale

ffiffiffi
k

p
.

In Fig. 4, using Eq. (32), we show the behavior of
Tμ¼0ðzhÞ (temperature vs horizon radius at μ ¼ 0) for the
numerical solution. Note that the temperature Tμ¼0ðzhÞ
presents a minimum value, Tmin ≃ 144 MeV, above which
one can distinguish two black hole phases [57,71]:
(1) Large BH: Tμ¼0ðzhÞ decreases as zh increases (sta-

ble phase).
(2) Small BH: Tμ¼0ðzhÞ increases as zh increases (unsta-

ble phase).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

zh(GeV−1)

S(GeV3)

FIG. 3. Entropy S ðGeV3Þ as a function of zh (GeV−1), from
Eq. (29) for σ ¼ 1. The blue curve represents the result for
k ¼ 0.18 GeV2, while the red curve represents the result for
k ¼ 0, corresponding to the RN AdS5 black brane.

Tmin

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

zh (GeV−1)

T (GeV)

= 0

FIG. 4. Temperature T (GeV) as a function of zh (GeV−1) for
μ ¼ 0 and k ¼ 0.18 GeV2 from Eq. (32). The blue and red curves
represent the physical large BH and the nonphysical small BH,
respectively. The black dot represents the minimum temperature.
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The two branches for TðzhÞ are depicted by blue and red
curves. The blue curve represents the large BH that was
present already in the case k ¼ 0, whereas the red curve
represents the emergence of an unphysical small BH due to
conformal symmetry breaking. The BH solutions exist only
above Tmin, which is related to the IR mass scale

ffiffiffi
k

p
.

The stability/instability of the BH phases is based on the
free energy for each case. One can show that the free energy
is smaller for the large BH than the small BH, as will be
clear later on.

Analytic approximation for the temperature.—In the
regime kz2h ≪ 1, we can expand Eq. (14) in powers of
kz2 so that Eq. (32) becomes

Tμ¼0ðzhÞ ¼
1

πzh

�
1þ 2

15
ðkz2hÞ2 þOðkz2hÞ4

�
: ð33Þ

We can truncate Eq. (33) to estimate the minimum
temperature. From the condition T 0

μ¼0ðz�hÞ ¼ 0, we find

z�h ≈
51=4

21=4
ffiffiffi
k

p ; Tmin ¼ Tðz�hÞ ≈
4

3π

21=4

51=4

ffiffiffi
k

p
: ð34Þ

For k ¼ 0.18 GeV2, we obtain z�h ¼ 2.96 GeV−1 and
Tmin ¼ 0.143 GeV. These values are quite close to the
numerical results z�h ¼ 2.92 GeV−1 and Tmin ¼ 0.144 GeV
found from the exact solution. The inverse of the temper-
ature in Eq. (33) takes the form

βμ¼0ðzhÞ ¼
1

Tμ¼0ðzhÞ
¼ πzh

1þ 2
15
ðkz2hÞ2 þOðkz2hÞ4

: ð35Þ

This expression looks similar to the analytic expression
found in the case of an AdS BH in global coordinates [70].

2. Finite density: μ ≠ 0

Now, we consider the effect of finite density, which
corresponds to turning on the chemical potential μ. We will
find that having nonzero μ allows for a new small-BH
solution that is stable or metastable and therefore competes
with the large BH.
In the case of finite chemical potential μ, we use the

general expression in Eq. (23) for the horizon function
fðzÞ, and the temperature T in Eq. (30) becomes

Tðzh; μÞ ¼
ζ3ðzhÞ

4πC4ðzhÞ
�
1 − μ2

�
C4ðzhÞ
C2ðzhÞ

−
C6ðzhÞ
C2ðzhÞ2

��
≡ aðzhÞ½1 − μ2bðzhÞ�: ð36Þ

From Eqs. (29) and (36), we find the relation

TS ¼ σ

�
1

C4

þ μ2

C4

�
C6

C2
2

−
C4

C2

��
; ð37Þ

where the C’s depend only on the horizon radius zh.
Note that the constraint on the horizon function (27) is

equivalent to the physical fact that the temperature is non-
negative—i.e., T ≥ 0—or, similarly, it implies that the BPS
bound, given by

1 − μ2bðzhÞ ≥ 0; ð38Þ

must be satisfied. For extremal BHs or BPS BHs (T ¼ 0),
we have the saturation of the BPS bound above—i.e.,

1 − μ2bðzhÞ ¼ 0: ð39Þ

In the UV, one can show, by expanding the temperature
[Eq. (36)] around zh → 0, that it reduces to the RN AdS5
temperature, given by

T ¼ 1

πzh

�
1 −

μ̄2

6

�
; ð40Þ

where μ̄ ¼ μzh. Note that the condition T ≥ 0 implies
that 0 ≤ μzh ≤

ffiffiffi
6

p
.

In Fig. 5, we display the temperature T as a function of
the horizon radius zh for different values of the chemical
potential μ using the formula in Eq. (36).
From the figure, we see that the effect of a finite chemical

potential on the curves TðzhÞ is to bring a new small-BH
solution (large zh). Later in this work, we will conclude that
this new BH solution is physical (stable or metastable) and
will compete with the large-BH solution, leading to a first-
order thermodynamic transition. As the chemical potential
increases, the unphysical small BH will disappear, and the
physical small BH will end up merging with the large BH at
sufficiently large μ. We will see that this transition is very
similar to the van der Waals–Maxwell liquid-gas transition.

= 0

= 0.05 GeV

= 0.1 GeV

= 0.225 GeV

= 0.3 GeV

1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

zh (GeV−1)

T (GeV)

FIG. 5. Temperature T (GeV) as a function of zh (GeV−1), from
Eq. (36), for k ¼ 0.18 GeV2 and different values of μ.

ALFONSO BALLON-BAYONA et al. PHYS. REV. D 102, 126003 (2020)

126003-8



One can distinguish four different scenarios for TðzhÞ:
(i) μ ¼ 0; (ii) μ < μc; (iii) μ ¼ μc; and (iv) μ > μc, where μc

is the critical chemical potential where the unphysical small
BH disappears and the physical small BH merges with the
large BH.
These scenarios are displayed in Fig. 6. In all the plots, the

large BH is depicted by a blue curve, whereas the unphysical
and physical small BHs are depicted by red and green
curves, respectively. The second plot in Fig. 6 shows the
appearance of a local minimum and maximum for the
temperature, Tmin and Tmax, respectively. The third plot
corresponds to the critical case μ ¼ μc ≈ 0.225 GeV, where
the unphysical small BH disappears. This corresponds
to the situation where Tmin ¼ Tmax ¼ Tc ≈ 0.13 GeV and
zh ¼ zch ≈ 3.47 GeV−1. Later in the paper, we will analyze
the grand canonical potential and many other thermo-
dynamic quantities in order to describe the phase diagram
T vs μ.

Analytic approximation for the temperature.—In the
regime kz2h ≪ 1, the functions a and b, defined in
Eq. (36), can be expanded as

aðzhÞ ¼
1

πzh

�
1þ 2

15
ðkz2hÞ2 þOðkz2hÞ4

�
;

bðzhÞ ¼
z2h
6

�
1þ 2

27
ðkz2hÞ2 þOðkz2hÞ4

�
: ð41Þ

Plugging these expansions into Eq. (36), we find the
following expansion for the temperature:

Tðzh; μÞ ¼
1

πzh

�
1þ 2

15
ðkz2hÞ2 þOðkz2hÞ4

�

×

�
1 −

1

6
μ2z2h

�
1þ 2

27
ðkz2hÞ2 þOðkz2hÞ4

��
:

ð42Þ

This expansion suggests the following analytic approxi-
mation:

Tanðzh;μÞ ¼
1

πzh

�
1þ 2

15
k2z4h

��
1−

1

6
μ2z2h

�
1þ 2

27
k2z4h

��
:

ð43Þ

Imposing simultaneously the conditions ∂zhTanðzch; μcÞ ¼ 0

and ∂2
zhTanðzch; μcÞ ¼ 0, we find

zch ¼
1.57ffiffiffi

k
p ; μc ¼ 0.573

ffiffiffi
k

p
; Tc

an ¼ 0.295
ffiffiffi
k

p
: ð44Þ

For k ¼ 0.18 GeV2, we obtain

Tmin
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FIG. 6. BH temperature T as a function of the horizon radius zh for the scenarios μ ¼ 0 (upper-left panel), μ < μc (upper-right panel),
μ ¼ μc ¼ 0.225 GeV (lower-left panel), and μ > μc (lower-right panel). The blue, red, and green curves represent the physical large BH,
unphysical small BH, and physical small BH, respectively.
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zch ¼ 3.69 GeV−1; μc ¼ 0.244 GeV;

Tc
an ¼ 0.125 GeV: ð45Þ

These values are close to the numerical results

zch ¼ 3.47 GeV−1; μc ¼ 0.225 GeV;

Tc ¼ 0.13 GeV ð46Þ
obtained from the exact solution. The inverse of the
temperature in Eq. (43) takes the form

βanðzh; μÞ ¼
1

Tanðzh; μÞ
¼ πzh

½1þ 2
15
k2z4h�½1 − 1

6
μ2z2hð1þ 2

27
k2z4hÞ�

: ð47Þ

Both formulas (43) and (47) provide good approximations
for the full numerical solution in the regime zh < zch. In that
regime, these formulas lead to curves very similar to those
of Figs. 5 and 7. Interestingly, the formula in Eq. (47) is
similar to the expression found in Ref. [19] for the RN
AdS5 BH in global coordinates.

C. Analogy between the nonconformal plasma
transition and the van der Waals–Maxwell

liquid-gas transition

We plot in Fig. 7 the inverse of the temperature β ¼ 1=T
as a function of zh for different values of μ. The vertical
lines correspond to the physical BPS bounds for the
horizon radius given in Eq. (38). The transition from
μ < μc to μ > μc is reminiscent of the liquid-gas transition
described by the van der Waals model. This analogy was

already observed in Refs. [19,20] for the case of a charged
AdS BH in global coordinates and works as follows: The
quantities β ¼ 1=T and 1=zh in the nonconformal plasma
transition play the role of the pressure P and the volume V
in the liquid-gas transition. Furthermore, the chemical
potential μ in the nonconformal plasma transition plays
the role of the temperature T in the liquid-gas transition.
Then the curves at fixed μ in Fig. 7 are the analog of
isothermal curves in the liquid-gas transition.
We will confirm this analogy later in this work when we

describe the final T-μ phase diagram. We will find a critical
line, associated with a first order transition, ending on a
critical point, just as happens in the P-T diagram for the van
der Waals–Maxwell liquid-gas transition. As suggested in
Refs. [19,20], the similarity between the transition of
nonconformal plasmas and the liquid-gas transition indi-
cates the possibility of a description of the critical regime in
terms of catastrophic theories [72–74]. Later in this work,
we will provide a universal description of the thermody-
namics near the critical point that will allow us to establish
a more concrete relation between the near-criticality regime
of nonconformal plasmas and the catastrophe theories of
type A3.

D. Reconstructing the grand canonical potential

Here, we consider the grand canonical ensemble where
the chemical potential μ is kept fixed. In this case, in order
to study the thermodynamics of the nonconformal plasmas,
dual to the large and small BHs in our holographic model,
we need to compute the grand canonical potential Ω.
In holography, the grand canonical potential is usually
obtained by evaluating the Euclidean on-shell action
[Eq. (1)] together with the appropriate boundary terms—
namely, the Gibbons-Hawking term and counterterms.
In this work, we will reconstruct the grand canonical

potential using the results for the Bekenstein-Hawking
entropy [Eq. (29)], the temperature [Eq. (36)], and the first
law of thermodynamics, which, in the grand canonical
ensemble, reads

dΩ ¼ −pdV − SdT −Qdμ: ð48Þ
In addition, we have the thermodynamic identity Ω ¼
E − TS − μQ, where E is the energy, T is the temperature,
given by Eq. (36), S is the entropy, given by Eq. (29), μ the
chemical potential, andQ the charge. Furthermore, we also
have the relation Ω ¼ −pV, where p is the pressure and
V ≡ V3, the volume over R3.
From now on, we will fix the volume V to 1 so that the

first law in Eq. (48) reduces to

dΩ ¼ −SdT −Qdμ; ð49Þ
and we have Ω ¼ −p. The quantities Ω, S, and Q now are
interpreted as the potential, entropy, and charge densities.
Likewise, E now represents the energy density.

= 0
c
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c
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FIG. 7. Plot of β ¼ 1=T as a function of 1=zh for the different
scenarios described in Fig. 6. The figure is analogous to the P vs
V diagram in the liquid-gas transition described by the van der
Waals model. The curves at fixed μ correspond to isothermal
curves in the liquid-gas transition. The vertical lines represent the
BPS bounds, obtained in Eq. (38).
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We found in the previous section that the temperature
was a function of the horizon radius zh and the chemical
potential μ. This function can be written as

Tðzh; μÞ ¼ aðzhÞ½1 − μ2bðzhÞ�: ð50Þ

Then the differential dT takes the form

dT ¼ ∂T
∂zh dzh þ

∂T
∂μ dμ; ð51Þ

with

∂T
∂zh ¼ a0ðzhÞ − μ2½a0ðzhÞbðzhÞ þ aðzhÞb0ðzhÞ�;
∂T
∂μ ¼ −2μaðzhÞbðzhÞ: ð52Þ

From the first law in Eq. (49), we obtain

dΩ ¼ −S
∂T
∂zh dzh −

�
S
∂T
∂μ þQ

�
dμ: ð53Þ

This means that we can recast the grand canonical potential
as a function of the variables zh and μ. In the case of the RN
AdS5 black brane, it was found that [58]

Ωðzh; μÞ ¼ −σ
�
z−4h þ 1

3
μ2z−2h

�
≡ −ARNðzhÞ − BRNðzhÞμ2; ð54Þ

where we have introduced the functions ARNðzhÞ and
BRNðzhÞ. We expect to recover the result in Eq. (54) in
the absence of the dilaton field, which means in our model
setting the parameter k to zero.
Now, we will reconstruct the grand canonical potential.

The reconstruction method presented here should work for
any 5D static charged black brane solution with R3

symmetry arising from EMD theory. In that case, one
can choose coordinates where the metric is entirely
described in terms of the scale factor ζðzÞ and the horizon
function fðzÞ, both functions of the radial coordinate z
solely. In turn, the temperature T will be a function of zh
and μ with the general form given in Eq. (36). As a proof of
principle, we will recover the RN AdS5 black brane
solution in Eq. (54) for the case k ¼ 0, when the
Einstein-Maxwell-dilaton theory reduces to the Einstein-
Maxwell theory (the dilaton term vanishes and the potential
becomes the cosmological constant).
The first step in the reconstruction method is taking the

following ansatz for the grand canonical potential:

Ωðzh; μÞ ¼ −AðzhÞ − μ2BðzhÞ: ð55Þ

Then the differential dΩ takes the form

dΩ ¼ −½A0ðzhÞ þ μ2B0ðzhÞ�dzh − 2μBðzhÞdμ: ð56Þ

Comparing Eqs. (53) and (56), we arrive at the following
identities:

− A0ðzhÞ − μ2B0ðzhÞ

¼ ∂Ω
∂zh ¼ −S

∂T
∂zh

¼ −SðzhÞa0ðzhÞ þ μ2SðzhÞ½a0ðzhÞbðzhÞ þ aðzhÞb0ðzhÞ�
ð57Þ

and

−2μBðzhÞ ¼
∂Ω
∂μ ¼ −S

∂T
∂μ −Q

¼ 2μSðzhÞaðzhÞbðzhÞ −Q: ð58Þ

From Eq. (57), we find trivial first-order differential
equations for the functions AðzhÞ and BðzhÞ. Integrating
these equations from infinity to zh, we arrive at the relations

AðzhÞ¼
Z

zh

∞
SðzÞa0ðzÞdzþA∞;

BðzhÞ¼−
Z

zh

∞
SðzÞ½a0ðzÞbðzÞþaðzÞb0ðzÞ�dzþB∞; ð59Þ

where A∞ ¼ Aðzh → ∞Þ and B∞ ¼ Bðzh → ∞Þ are inte-
gration constants. The procedure described above is
equivalent to using directly the prescription

Ωðzh; μÞ ¼ −
Z

zh

∞
SðzÞ∂zTðz; μÞ þΩ∞ðμÞ ð60Þ

with

Ω∞ðμÞ ¼ Ωðzh → ∞; μÞ ¼ −A∞ − B∞μ
2: ð61Þ

The integration constants A∞ and B∞ are associated with
the renormalization scheme dependence of the dual theory.
In the limit k → 0, we want to recover the potential in
Eq. (54) corresponding to the RN AdS5 black brane, up to a
constant. We therefore fix B∞ ¼ 0 and will fix A∞ by the
requirement Ω ≤ 0 at μ ¼ 0. We will require that the grand
potential Ω vanish at zh ¼ zhmin or, equivalently, at
T ¼ Tmin ≃ 144 MeV, as in Ref. [75]. It turns out that
BðzhÞ is non-negative, so from Eq. (55) we see that
negativity of Ω at μ ¼ 0 guarantees negativity at finite
μ. In general, the integration constant A∞ is a function of
the parameter k, responsible for conformal symmetry
breaking. For the undeformed background—i.e, k ¼ 0—
the criterion would correspond to fixing A∞ ¼ 0, since for
this case Tmin ¼ 0 and zhmin → ∞. Below, we describe this
limiting case in more detail.
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In the case k ¼ 0, the EMD theory reduces to the EM
theory (with a cosmological contant term). The entropy
[Eq. (29)] and temperature [Eq. (36)] of the charged black
brane solutions reduce to

SRN ¼ 4πσ

z3h
; ð62Þ

TRNðzh; μÞ ¼
1

πzh

�
1 −

1

6
μ2z2h

�
¼ aRNðzhÞ½1 − μ2bRNðzhÞ�;

ð63Þ

where we use the expansions in Eqs. (16) and (42).
Plugging these results into our formula for the grand
canonical potential [Eq. (60)], performing the integral in
z, and setting the integration constants A∞ and B∞ to 0, one
easily finds the result in Eq. (54) for the RN AdS5 black
brane, as promised. We remark that the result in Eq. (54)
was found using holographic renormalization, and there-
fore it is an important check for our formula (60) in the case
k ¼ 0. We remark, however, that our formula (60) should
be valid in the more general case of nonzero k. For more
details on the thermodynamics in the case k ¼ 0, see
Appendix A. It is worth mentioning that in the case
k ¼ 0, the trace anomaly E − 3p vanishes even at finite
temperature and density, and therefore the 4D fluid enjoys
conformal symmetry. This is also shown in Appendix A.
We have described in this subsection a procedure for

reconstructing the grand canonical potential Ω from the
knowledge of the Bekenstein-Hawking entropy and the first
law of thermodynamics. This method is physically well
grounded, and as a proof of concept we have recovered the
RN AdS5 black brane solution for the case k ¼ 0. In
Appendix B, we describe an alternative method using an
auxiliary potential that simplifies the thermodynamic
relations.

E. Extracting other thermodynamic quantities

The thermodynamic quantity Q can be interpreted as the
charge density in the grand canonical ensemble. From
Eq. (58), we find the relation

Q ¼ 2μ½BðzhÞ þ SðzhÞaðzhÞbðzhÞ�

¼ 2μ

Z
zh

∞
S0ðzÞaðzÞbðzÞ≡ dðzhÞμ: ð64Þ

It turns out that this charge density will be similar but not
equal to the holographic charge density, obtained in
Eq. (22). This has to do with the presence of the small
unstable BH in the regime of intermediate zh, as described
in the previous section. The small unstable BH leads to an
unphysical increasing behavior for the temperature when
increasing zh, which means decreasing the entropy. This is
in contrast with the physical situation at small and large zh,

where the temperature decreases for increasing zh (decreas-
ing entropy).
With the expressions for the grand canonical potential Ω

and the charge density Q, one can compute the energy
density E using the thermodynamic relation

E ¼ Ωþ TSþ μQ: ð65Þ

Another important thermodynamic quantity is the trace
anomaly, which measures the breaking of conformal
symmetry, and is given by

hTa
ai ¼ E − 3p ¼ 4Ωþ TSþ μQ: ð66Þ

We finish this section by describing the global and local
stability conditions. The condition of thermodynamic
stability corresponds to the minimum of the grand canoni-
cal potential Ω, which is expressed by the following
conditions:

ðδΩÞT;μ ¼ 0; ðδ2ΩÞT;μ ≤ 0: ð67Þ

These are the global stability conditions [31]. Furthermore,
we must also require the local stability of the grand
canonical potential against small fluctuations, which is
equivalent to demanding the positivity of the determinant of
the Hessian matrix, given by the second derivatives of the
grand canonical potential with respect to the temperature T
and chemical potential μ as

H ¼
 

− ∂2Ω
∂T2 − ∂2Ω

∂μ∂T
− ∂2Ω

∂T∂μ − ∂2Ω
∂μ2

!
¼
 ∂S

∂T
∂S
∂μ

∂S
∂μ

∂Q
∂μ

!
: ð68Þ

Therefore, det H ≥ 0 implies�∂S
∂T
�

V;μ

�∂Q
∂μ
�

V;T
−
�∂S
∂μ
�

2

≥ 0: ð69Þ

Since the entropy S does not depend on μ explicitly, we
have �∂S

∂T
�

V;μ

�∂Q
∂μ
�

V;T
≥ 0; ð70Þ

which can be further simplified to

χCV

T
≥ 0; ð71Þ

where CV is the specific heat at constant volume and χ is
the charge susceptibility, and they are defined by

CV ¼ T

�∂S
∂T
�

V;μ
; χ ¼

�∂Q
∂μ
�

V;T
: ð72Þ
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Thus, one can conclude that the local thermodynamic
stability condition—i.e., the positivity of the Jacobian of
the Hessian matrix H—implies the positivity of the
response functions CV and χ.
Later in this work, we will investigate the response

functions CV and χ near the critical regime. We will find
that these quantities diverge at the critical point, and wewill
extract the corresponding critical exponents for a family
of charged asymptotically AdS BHs arising from EMD
equations.

IV. NUMERICAL RESULTS: THERMODYNAMIC
OBSERVABLES

Here, we present our numerical results for the thermo-
dynamic observables relevant for investigating the
approach to the criticality in our model. We remind the
reader that we have chosen the background of a quadratic
dilaton ϕðzÞ ¼ kz2 leading to the scale factor ζðzÞ in
Eq. (14). The temperature as a function of the horizon
radius zh and chemical potential μ was obtained in Eq. (36)
with the functions CnðzÞ defined in Eqs. (19), (24), and
(25). The entropy as a function of zh was obtained in
Eq. (29).
In all results presented in this section, the dilaton

constant k is set to k ¼ 0.18 GeV2. We will see later, in
Sec. VI, that the thermodynamic quantities can be recast in
a form that is independent of the value of k. In particular,
we will see that the value of k can be set by a fit in the limit
μ → 0 to the deconfinement temperature obtained in lattice
SUðNcÞ gauge theories.
Below, we present our results for the grand canonical

potential, entropy density, specific heat, speed of sound,
charge density, charge susceptibility, and the trace anomaly.
We will use those results to arrive at the T-μ phase diagram.
We will always distinguish between three possible phases:
(1) Unstable phase: The phase of the nonconformal

plasma where the specific heat is negative. This
phase is therefore nonphysical.

(2) Metastable phase: The phase of the nonconformal
phase where the specific heat is positive, but it does
not correspond to the ground state (minimum) of the
grand canonical potential. This phase is therefore
physical, but it is not thermodynamically favored.

(3) Stable phase: The phase of the nonconformal plasma
where the specific heat is positive and also corre-
sponds to the ground state (minimum) of the grand
canonical potential. This phase is therefore physical,
and it is thermodynamically favored.

In our model, it turns out that there will be one unstable
phase and two physical phases that compete with each
other. The unstable phase is the nonphysical small BH,
described in the previous section, where the temperature is
an increasing function of the horizon radius (and therefore a
decreasing function of the entropy). The physical phases
will correspond to a large BH and a small BH, where the

temperature is a decreasing function of the horizon radius
(increasing function of the entropy), as described in the
previous section. We will see that the physical large and
small BHs will compete with each other and the BH phase,
where the grand canonical potential is minimum will be
thermodynamically favored (stable). The other BH phase
will be in a metastable state.
In all the figures presented in this section, we will

represent the unphysical small BH by a dashed red line. The
physical large BH will be represented by a solid blue line
when it is in a stable state and by a dashed blue line when it
is in a metastable state. Similarly, the physical small BH
will be depicted by a solid green line when it is in a stable
state and by a dashed green line when it is in a meta-
stable state.
As regards the gravitational constant σ, one can fix it by

the relation [71]

σ ¼ M3
PN

2
c ¼

1

45π2
N2

c; ð73Þ

where MP is the Planck mass and Nc is the number of
colors of the dual non-Abelian gauge theory. The pre-
scription (73) for σ allows us to reproduce the Stefan-
Boltzmann law P ¼ ðπ2=45ÞN2

cT4 for the non-Abelian
plasma in the regime of very high temperatures [71].

A. Grand canonical potential

The grand canonical potential Ω was reconstructed in
Eq. (60) using the results for the temperature and entropy.
The integration constant B∞ in Eq. (61) was set to zero for
consistency, while the integration constant A∞ can be fixed
by requiring the vanishing of Ω at T ¼ Tmin when μ ¼ 0.
We find that A∞ ≈ 6.38 × 10−6 guarantees the property
Ω ≤ 0 at μ ¼ 0. As explained in the previous section, this
also guarantees the property Ω ≤ 0 at any finite value of μ.
Figure 8 shows the behavior of the grand canonical

potential (density) Ω, in units of GeV4N−2
c , against the

temperature T, in MeV, for different values of the chemical
potential μ. The first plot (upper-left panel) shows the
variation of Ω with respect to T for μ ¼ 0. In that case, we
only have the large BH (blue curve) and the unphysical
small BH (red curve). When we turn on the chemical
potential—i.e., μ¼ 50MeV in Fig. 8 (upper-right panel)—
a new solution appears that corresponds to the physical
small BH (green curve). Note the appearance of the
swallowtail, which is a main feature in the thermodynam-
ics. The swallowtail indicates a competition between two
physical phases, which in our framework are the large BH
(blue curve) and the physical small BH (green curve). This
is a clear signal of a first-order transition, and the
intersection point between the blue and green curves will
correspond to the transition temperature. This will be
confirmed later in this section from the analysis of the
entropy density.
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There are also two interesting points in the second plot
of Fig. 8 (upper-right panel): one represents the border
between the blue and red curves, while the other repre-
sents the border between the red and green curves. These
points correspond to the local Tmin and local Tmax
described in Fig. 6 where two secondary transitions take
place: (i) transition from the metastable large BH to the
unstable small BH (blue-red transition), and (ii) transition
from the unstable small BH to the metastable small BH
(red-green transition). Later in this section, we analyze
the entropy density and specific heat, and we will
conclude that these secondary transitions are second-order
transitions.
When the value of the chemical potential is increased

further, the swallowtail shrinks. As soon as the chemical
potential reaches a critical value, μ ¼ μc (lower-left panel
in Fig. 8), the swallowtail disappears; the only remaining
phases are the large BH (blue curve) and the physical small
BH (green curve). The unphysical small BH is now
represented by a (red) dot which lies at the border between
the physical BHs. For μ ≫ μc (lower-right panel in Fig. 8),
the large BH and small physical small BH have merged
smoothly into a single curve. We will interpret this as a
crossover transition later in this section.
As a final remark, when describing phase transitions, in

the end, one is only interested in the stable solutions, that
correspond to the ground state (minimum) of the grand

canonical potential. These solutions are identified with
thick blue and green solid lines in Fig. 8.

B. Entropy density

In this subsection, we describe the entropy density in our
EMD holographic model. We display in Fig. 9 the entropy
density S, in units of GeV3 N−2

c as a function of the
temperature T, in units of MeV, for different values of the
chemical potential μ. We remind the reader that the entropy
was obtained previously in Eq. (29) as a monotonic
function of the horizon radius zh. The nontrivial depend-
ence on T, for fixed μ, is obtained considering a parametric
plot for the functions Tðzh; μÞ and SðzhÞ.
Figure 9 displays the following results for the entropy

density: (i) At μ ¼ 0 (upper-left panel), there are only two
phases: the physical large BH and the nonphysical small
BH, represented by the blue and the red curves, respec-
tively. The entropy density increases with T for the large
BH and decreases with T for the nonphysical small BH.
(ii) As soon as one turns on μ, there are three BH phases,
now including a physical small BH (green curve)
(μ ¼ 50 MeV for the upper-right panel). The entropy
density for the physical small BH starts at T ¼ 0 and
increases with T. (iii) Increasing the value of μ, these three
phases still coexist, but the nonphysical small BH shrinks
until it completely disappears for μ ¼ μc ¼ 225 MeV
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FIG. 8. The grand canonical potential Ω as a function of the temperature T for fixed values of the chemical potential. Upper-left panel:
μ ¼ 0. Upper-right panel: μ ¼ 50 MeV. Lower-left panel: μ ¼ μc ¼ 225 MeV. Lower-right panel: μ ¼ 500 MeV. The dashed red line
represents the small nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid
(dashed) green line represents the small physical BH in a stable (metastable) state. The solid vertical line marks for μ < μc the
temperature where a first-order phase transition takes place.
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(lower-left panel). At that value, the two physical solutions
(blue and green curves) merge. (iv) For larger values of μ,
the physical large BH and small BHs have become a single
phase with an entropy that increases with T and starts at
T ¼ 0 (μ ¼ 500 MeV for the lower-right panel).
As a final remark, when describing phase transitions, in

the end, one is only interested in the stable solutions, that
correspond to the ground state (minimum) of the grand
canonical potential. These solutions are identified with
thick blue and green solid lines in Fig. 9.

C. Specific heat and speed of sound

Now we present our results for the specific heat CV and
the speed of sound cs. The specific heat CV is defined by

CV ¼ T

�∂S
∂T
�

μ

¼ −T
�∂2Ω
∂T2

�
μ

; ð74Þ

which can also be written as

CV ¼ S
∂ ln S
∂ lnT : ð75Þ

In Fig. 10, we present the behavior of the specific heat
CVðTÞ, in units of GeV3 N−2

c as a function of the

temperature T, in units of MeV, for different values of
the chemical potential μ.
For μ ¼ 0 (upper-left panel), there are only two BH

phases: the physical large BH (blue curve), and the
nonphysical small BH (red curve). The specific heat is
positive for the physical large BH and negative for the
nonphysical small BH. The latter clearly signalizes insta-
bility. At the minimum temperature Tmin, the specific heat
displays an infinite peak (vertical line in the plot), signify-
ing the transition from the stable large BH to the unstable
small BH.
For small chemical potential—e.g., μ ¼ 50 MeV (upper-

right panel)—note the appearance of the physical small-BH
phase (green curve) and the shrinking of the nonphysical
small-BH phase (red curve). This time, the specific heat
displays two infinite peaks, signifying two transitions:
(i) from the stable large BH to the unstable small BH
(blue to red), and (ii) from the unstable small BH to the
stable (or metastable) small BH (red to green).
At the critical chemical potential, μc ¼ 225 MeV (lower-

left panel), one sees the extinction of the nonphysical small-
BH phase and the merging of the physical large and small
BHs. There is still a finite peak indicating the transition
between these two phases. Note that both phases are
characterized by a positive specific heat. The distinguished
peak fades out as μ increases further away from μc. In the
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FIG. 9. The BH entropy density as a function of the temperature T for fixed values of the chemical potential. Upper-left panel: μ ¼ 0.
Upper-right panel: μ ¼ 50 MeV. Lower-left panel: μ ¼ μc ¼ 225 MeV. Lower-right panel: μ ¼ 500 MeV. The red dashed line
represents the small nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid
(dashed) green line represents the small physical BH in a stable (metastable) state. The vertical solid line for μ < μc (inset) marks the
temperature where a first-order phase transition takes place.
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last plot (lower-right panel), we have μ ¼ 500 MeV, there
is no peak at all, and the two physical BHs have already
merged into a single continuous curve.
The squared speed of sound c2s is usually defined by the

thermodynamic relation

c2s ¼
S
CV

: ð76Þ

Using the result for CV given in Eq. (75), one can write the
squared speed of sound in terms of the temperature and the
entropy:

c2s ¼
∂ lnT
∂ ln S : ð77Þ

Figure 11 shows the squared speed of sound c2s (dimen-
sionless) as a function of the temperature T (in MeV) for
increasing values of the chemical potential μ, from μ ¼ 0 to
μ ¼ 500 MeV. For μ ¼ 0 (upper-left panel), once again
there are only two BHs, the physical large BH (blue curve)
and the nonphysical small BH (red curve). For the physical
large BH, c2s is positive, and therefore the speed of sound is
real. In contrast, for the nonphysical small BH, c2s is
negative, and the speed of sound becomes imaginary.

For a small value of the chemical potential—e.g., μ ¼
50 MeV (upper-right panel)—one can already see the
appearance of a small physical BH (green curve), and c2s
now displays a “ribbon bow” pattern. Note that c2s is
positive for the physical large BH (blue) and the physical
small BH (green), implying a real value for the speed of
sound, as expected. For μ ¼ μc ¼ 225 MeV (lower-left
panel), the “ribbon bow” shrinks until it becomes a single
point (red dot), and there remain only the two physical BH
phases (blue and green curves). For μ ≫ μc—e.g., μ ¼
500 MeV (lower-right panel)—the two physical BH phases
have already merged into a single continuous curve. It is
worth mentioning that, in all plots, the speed of sound for
the physical BH phase approaches the conformal value 1=3
at very high temperatures, as expected.7

As a final remark, when describing phase transitions, in
the end, one is only interested in the stable solutions, that
correspond to the ground state (minimum) of the grand
canonical potential. These solutions are identified with
thick blue and green solid lines in Figs. 10 and 11.
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FIG. 10. Specific heat CV as a function of the temperature T for fixed values of the chemical potential. Upper-left panel: μ ¼ 0. Upper-
right panel: μ ¼ 50 MeV. Lower-left panel: μ ¼ μc ¼ 225 MeV. Lower-right panel: μ ¼ 500 MeV. The red dashed line represents the
small nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid (dashed) green line
represents the small physical BH in a stable (metastable) state. The vertical solid line for μ < μc marks the temperature, where a first-
order phase transition takes place.

7For a more detailed discussion from the holographic per-
spective, see Refs. [76–78], and from a nonholographic approach,
see Refs. [79,80].
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D. Charge density and charge susceptibility

In Sec. III D, we obtained the following formula for the
charge density:

Qðzh; μÞ ¼ 2μ

Z
zh

∞
S0ðzÞaðzÞbðzÞ≡ dðzhÞμ: ð78Þ

We use this formula to evaluate the charge density in our
model. From the charge density, one can obtain the charge
susceptibility through the thermodynamic relation

χ ¼
�∂Q
∂μ
�

V;T
: ð79Þ

In our model, the thermodynamic quantities are functions
of the horizon radius zh and chemical potential μ. Note
that the dependence on the temperature T is implicit
on zh, so taking the derivative in Eq. (79) is not the best
way of extracting the charge susceptibility. We describe
in Appendix C how the charge susceptibility can be

obtained for nonconformal plasmas arising from the EMD
holography.
Figure 12 presents our numerical results for the

charge density for fixed values of the chemical potential.
In the following, in Fig. 13, the numerical results for the
charge susceptibility are presented, using the formula (C6),
obtained in Appendix C.
In the left panel of Fig. 12, one can see that the charge

density presents the same behavior as the entropy density
(see Fig. 9), showing that in the range μ < μc, we have the
three black hole branches—namely, the physical small
black hole (green curve), the nonphysical small black hole
(red curve), and the physical large black hole (blue curve).
The physical small black hole branch dominates in the low-
temperature regime, while the physical large black hole
branch dominates in the high-temperature regime. In
between, at a certain temperature, represented by a vertical
dashed line, the system undergoes a first-order phase
transition.
On the other hand, at the critical point, μ ¼ μc, in the

right panel of Fig. 12 nothing special happens, but one can
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FIG. 11. The squared speed of sound c2s as a function of the temperature T for fixed values of the chemical potential. Upper-left panel:
μ ¼ 0. Upper-right panel: μ ¼ 50 MeV. Lower-left panel: μ ¼ μc ¼ 225 MeV. Lower-right panel: μ ¼ 500 MeV. The red dashed line
represents the small nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid
(dashed) green line represents the small physical BH in a stable (metastable) state. The solid vertical line for μ < μc marks the
temperature where a first-order phase transition takes place.
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see a divergence in the charge susceptibility (lower-left
panel of Fig. 13), characterizing a second-order phase
transition.
Beyond the critical point—i.e., in the range μ > μc

[Figs. 12 (lower-middle panel) and 13 (lower-right panel)],
we have a analytic crossover, since the grand canonical
potential and its related quantities are analytic functions of
the temperature.
As a final remark, when describing phase transitions, in

the end, one is only interested in the stable solutions, that
correspond to the ground state (minimum) of the grand
canonical potential. These solutions are identified with
thick blue and green solid lines in Figs. 12 and 13.

E. Trace anomaly

As described in Sec. III D, the trace of the energy
momentum tensor takes the form

hTa
ai ¼ E − 3p ¼ 4Ωþ TSþ μQ: ð80Þ

A nonzero value for E − 3p signifies the breaking of
conformal symmetry. At μ ¼ 0, when the Maxwell term
is absent, the presence of the dilaton deforms the AdS
space, leading to a nonzero value for E − 3p. In our model,
the breaking of conformal symmetry at μ ¼ 0 will be

associated with the dilaton parameter k; namely, the trace
anomaly will be proportional to k2. In the absence of the
dilaton term—i.e., k ¼ 0—we recover the Einstein-
Maxwell action with the solution given by the charged
Reissner-Nördstrom AdS5 black hole, and E − 3p
vanishes—see, e.g., Ref. [58]. It turns out that the simulta-
neous presence of the dilaton and the Maxwell term lead to
a nonvanishing value for E − 3p at any point in the T-μ
phase diagram excepting one special point: the critical end
point (CEP). At the CEP, the trace anomaly E − 3p
vanishes and we therefore expect the restoration of con-
formal symmetry and the presence of a nontrivial CFT.
In Fig. 14, we present our numerical results for the trace

anomaly E − 3p. Interestingly, the region associated with
the unstable small-BH phase (red curves) always crosses
the axis where E − 3p ¼ 0. See, e.g., the plot for μ ¼ 0
(upper-left panel) or the plot for μ ¼ 50 MeV (upper-right
panel). In general, the region associated with the unstable
small BH is nonphysical, but in the critical regime ðμc; TcÞ
(lower-left panel) the unstable BH phase shrinks to a point
(red dot), and it becomes the limit of the physical BH
phases (blue and green curves). At that critical point, the
trace anomaly E − 3p vanishes, and therefore conformal
symmetry is restored. We conclude that we are reaching a
nontrivial conformal field theory (CFT) at the critical point.
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FIG. 12. The charge density Q as a function of the temperature T for fixed values of the chemical potential. Upper-left panel:
μ ¼ 50 MeV. Upper-right panel: μ ¼ μc ¼ 225 MeV. Lower panel: μ ¼ 500 MeV. The dashed red line represents the small
nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid (dashed) green
line represents the small physical BH in a stable (metastable) state. The solid vertical line for μ < μc marks the temperature where a first-
order phase transition takes place.
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Later in this work, we will evaluate the thermodynamics
near the critical point and extract the critical exponents in
order to learn more about this nontrivial CFT. For suffi-
ciently large values of μ > μc—e.g., μ ¼ 500 MeV (lower-
right panel)—the physical BHs have already merged into a
single continuous curve.
As a final remark, when describing phase transitions, in

the end, one is only interested in the stable solutions, that
correspond to the ground state (minimum) of the grand
canonical potential. These solutions are identified with
thick blue and green solid lines in Fig. 14.

F. The T-μ phase diagram

We finish this section by presenting the most important
result in this work: namely, the T-μ phase diagram.
But first, we remind the reader that in Fig. 6 we presented

a plot of the BH temperature T as a function of the horizon
radius zh for μ < μc (upper-right panel). In the left panel of
Fig. 15 we present the same plot, but this time distinguish
three regions:

Region I: 0 < T < Tmin,
Region II: Tmin < T < Tmax,
Region III: T > Tmax.
In region I, one can see only the physical small BH

(green curve). In region II, we have a coexistence of three
BH phases: the physical large BH (blue curve), the

nonphysical small BH (red curve), and the physical small
BH (green curve). In region III, the only possible phase is
the physical large BH (blue curve). The dashed horizontal
line represents the critical temperature T1st order, where a
first-order transition takes place between the physical BH
phases (green and blue curves). This critical temperature
lies above the minimum temperature Tmin and below the
maximum temperature Tmax. The right panel of Fig. 15
presents the phase diagram T-μ for the black hole phases,
displaying also the regions I, II, and III. The main feature of
the phase diagram is the first-order transition represented
by the black line. This is the transition between the physical
small BH (low temperature) and the physical large BH
(high temperature). The other interesting feature in the
phase diagram is the presence of two other transitions
taking place at Tmin and Tmax, represented by a blue and a
red curve, respectively. These are second-order transitions
between the physical BHs and the nonphysical BH: Tmin
(Tmax) corresponds to the transition between the physical
large (small) BH and the nonphysical small BH. Note that
the black, blue, and red curved lines converge to a single
point. This is the critical end point (CEP) in the T-μ phase
diagram, with coordinates Tc, μc, where the first-order
transition becomes second-order. For μ > μc, the unstable
small BH disappears, and there is a crossover transition
between the physical small BH and large BH.
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FIG. 13. The charge susceptibility χ as a function of the temperature T for fixed values of the chemical potential. Upper-left panel:
μ ¼ 0. Upper-right panel: μ ¼ 50 MeV. Lower-left panel: μ ¼ μc ¼ 225 MeV. Lower-right panel: μ ¼ 800 MeV. The dashed red line
represents the small nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid
(dashed) green line represents the small physical BH in a stable (metastable) state. The solid vertical line for μ < μc marks the
temperature where a first-order phase transition takes place.
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We present in Fig. 16 our final T-μ phase diagram,
obtained within our EMD holographic model. The black
line, black dot, and orange dashed line represent the
first-order transition, the critical point, and the cross-
over transition, respectively. The thermodynamic analysis

performed in this section confirms our previous result for
the critical point. Namely, the critical point in our holo-
graphic model is located at

ðμc; TcÞ ≃ ð225; 130Þ MeV: ð81Þ
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FIG. 14. The trace anomaly E − 3p as a function of the temperature T for fixed values of the chemical potential. Upper-left panel:
μ ¼ 0. Upper-right panel: μ ¼ 50 MeV. Lower-left panel: μ ¼ μc ¼ 225 MeV. Lower-right panel: μ ¼ 500 MeV. The dashed red line
represents the small nonphysical BH, the solid (dashed) blue line represents the large BH in a stable (metastable) state, and the solid
(dashed) green line represents the small physical BH in a stable (metastable) state. The solid vertical line for μ < μc marks the
temperature where a first-order phase transition takes place.
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V. THERMODYNAMICS NEAR
THE CRITICAL POINT

In this section, we will study the behavior of some
thermodynamic quantities near the critical point found in
this work. We will provide useful expansions for the
temperature and the grand canonical potential near the
critical point. These expansions will be useful for calculat-
ing other thermodynamic quantities near the critical point
and finding the critical exponents. Moreover, they shed
some light on the connection between the criticality found
in this work and the criticality usually described in
catastrophe theories, A3. This connection was originally
proposed in Refs. [19,20], and here we provide a more
concrete realization.
To simplify the presentation, we will omit units in this

section, but they can easily be obtained via dimensional
analysis.

A. Temperature near the critical point

The temperature is a function of two variables, the
horizon radius zh and the chemical potential μ. The explicit
form, found in Sec. III B, is conveniently written as

Tðzh; μÞ ¼ aðzhÞ − μ2aðzhÞbðzhÞ: ð82Þ

The critical point, ðzch; μcÞ ¼ ð3.466; 0.225Þ, was ob-
tained by imposing the conditions T10ðzch; μcÞ ¼ 0 and
T20ðzch; μcÞ ¼ 0, where we have introduced the notation

Tmnðzh; μÞ ¼
∂mþn

∂zmh ∂μn Tðzh; μÞ: ð83Þ

To investigate the physics near the critical point, we
consider the Taylor expansion

Tðzch þ δzh; μc þ δμÞ

¼ Tc þ Tc
01δμþ

1

2
Tc
02δμ

2 þ Tc
11δzhδμþ

1

2
Tc
21δz

2
hδμ

þ 1

2
Tc
12δzhδμ

2 þ 1

6
Tc
30δz

3
h þ � � � ; ð84Þ

where Tc ¼ Tðzch; μcÞ ¼ 0.1297 and Tc
mn ¼ Tmnðzch; μcÞ.

Note the absence of the pure δz and δz2 terms, because
the coefficients Tc

10 and Tc
20 vanish. Any term containing

powers δμ3 or higher is also absent because the coefficients
Tc
mn vanish when n > 2.
It will be sufficient to truncate the series expansion in

Eq. (84) at cubic order. From Eq. (82), we evaluate the other
coefficients and find

Tc
01 ≈ −0.1996; Tc

02 ≈ −0.8872; Tc
11 ≈ −0.2438;

Tc
21 ≈ −0.4113; Tc

12 ≈ −1.084; Tc
30 ≈ −0.107:

ð85Þ

From these results we are able to approximate the temper-
ature difference δT ¼ T − Tc by a polynomial of cubic
order in δz—i.e.,

δT ≈−δμð0.1996þ 0.4436δμÞ− ð0.2438þ 0.5418δμÞδμδz
− 0.2057δμδz2 − 0.0178δz3: ð86Þ

Alternatively, we can fix δT and δμ and find δz by solving
the cubic equation

0.0178δz3 þ 0.2057δμδz2 þ ð0.2438þ 0.5418δμÞδμδz
þ δμð0.1996þ 0.4436δμÞ þ δT ¼ 0: ð87Þ

The three roots z1h < z2h < z3h that solve the cubic equation
at finite 0 < μ < μc correspond to the stable (or metastable)
large BH, unstable small BH, and stable (or metastable)
small BH, respectively. In Fig. 17, we compare the temper-
ature Tðzh; μÞ obtained from the cubic approximation in
Eq. (86) against the full numerical result obtained in
Sec. III B. As expected, the analytic expansion (86)
provides a good approximation for the temperature near
the critical point—i.e., when μ and zh are near the critical
values μc and zch—and therefore T is near Tc.
The fact that the temperature T can be approximated near

the critical point by a cubic polynomial in zh strongly
suggests a possible connection between the critical behav-
ior of nonconformal plasmas arising from EMD equations
and the A3 catastrophic theory [72–74]. This connection
was originally suggested by the authors in Refs. [19,81] for
the case of RN AdSnþ1 BHs in global coordinates, which
are solutions with Sn−1 symmetry arising from the pure
Einstein-Maxwell theory.
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Second–order phase transition
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FIG. 16. The final T-μ phase diagram, obtained within our
EMD holographic model, presenting a critical line and the critical
point (black dot), which has the following coordinates: ðμc; TcÞ≃
ð225; 130Þ MeV.
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B. Grand canonical potential near the critical point

We want to describe the grand canonical potential Ω near
the critical point. The grand canonical potential is also a
function of two variables: the horizon radius zh and the
chemical potential. As was done for the temperature, we
introduce a simplified notation for the derivatives in zh and μ:

Ωmnðzh; μÞ ¼
∂mþn

∂zmh ∂μn Ωðzh; μÞ: ð88Þ

In Sec. III D, we provided a method for reconstructing the
grand canonical potentialΩ.We found that the potential takes
the form

Ωðzh; μÞ ¼ −AðzhÞ − μ2BðzhÞ; ð89Þ
with the functions AðzhÞ and BðzhÞ obtained from the
integrals in Eq. (59). Interestingly, it turns out that the
derivatives Ω10ðzch; μcÞ and Ω20ðzch; μcÞ vanish at the critical
point ðzch; μcÞ ¼ ð3.466; 0.225Þ.
To investigate the physics near the critical point, we

consider this time the Taylor expansion

Ωðzch þ δzh; μc þ δμÞ

¼ Ωc þ Ωc
01δμþ

1

2
Ωc

02δμ
2 þ Ωc

11δzhδμþ
1

2
Ωc

21δz
2
hδμ

þ 1

2
Ωc

12δzhδμ
2 þ 1

6
Ωc

30δz
3
h þ

1

4
Ωc

22δz
2
hδμ

2

þ 1

6
Ωc

31δz
3
hδμþ

1

24
Ωc

40δz
4
h þ � � � ; ð90Þ

where Ωc ¼ Ωðzch; μcÞ ≈ −1.197 × 10−5 and Ωc
mn ¼

Ωmnðzch; μcÞ. Note the absence of pure δz and δz2 terms
because the coefficients Ωc

10 and Ωc
20 vanish. Any term

containing powers δμ3 or higher is also absent, because the
coefficientsΩc

mn vanish when n > 2. This time a reasonable
approximation for the grand canonical potential can only be
found in the regime zh < zch truncating the series expansion
(90) at quartic order. From Eq. (89), we evaluate the
coefficients Ωc

mn and find

Ωc
01 ≈ −0.8406 × 10−4; Ωc

02 ≈ −3.736 × 10−4;

Ωc
11 ≈ 0.5256 × 10−4; Ωc

21 ≈ −0.2131 × 10−4;

Ωc
12 ≈ 2.336 × 10−4; Ωc

30 ≈ 0.234 × 10−4;

Ωc
22 ≈ −0.947 × 10−4; Ωc

31 ≈ 0.0403 × 10−4;

Ωc
40 ≈ −1.004 × 10−4: ð91Þ

From these results, we are able to approximate δΩ ¼ Ω −
Ωc by a polynomial of quartic order in δz—i.e.,

104δΩ ≈ −δμð0.8407þ 1.868δμÞ
þ ð0.5256þ 1.168δμÞδμδz
− ð0.1065þ 0.2367δμÞδμδz2
þ ð0.039þ 0.0067δμÞδz3 − 0.0418δz4: ð92Þ

In Fig. 18, we compare the grand canonical potential
Ωðzh; μÞ obtained from the quartic approximation in
Eq. (92) against the full numerical result obtained in
Sec. III. The analytic expansion (92) provides a reasonable
approximation for the potential in the regime zh < zch,
corresponding to the stable (or metastable) large BH and
the unstable small BH. It seems that polynomial expansions
like Eq. (92) are not sufficient to describe the regime zh > zch
associated with the stable (or metstable) small BH. This is
related to the rapid decrease in the curves of Fig. 18 at large
zh associated with the exponential decrease of the entropy.

C. Critical exponents

Having found the temperature and grand canonical
potential near the critical point, we can investigate the
behavior of other thermodynamic quantities near the
critical point. In this subsection, we will analyze the
specific heat and the charge susceptibility near the critical
point and find the corresponding critical exponents.
In this analysis, it is convenient to work with the

dimensionless quantities

ξ≡ zh − zch
zch

; u≡ μ − μc

μc
; t≡ T − Tc

Tc ;

ω≡Ω −Ωc

Ωc ; s≡ S − Sc

Sc
; q≡Q −Qc

Q
: ð93Þ

Armed with this notation, the temperature expansion in
Eq. (86) takes the form
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FIG. 17. Temperature as a function of the horizon radius zh
obtained from the analytic approximation in Eq. (86) and
compared with the full numerical result. The dashed (solid)
curves represent the analytic (numerical) results. The chemical
potential varies from μ ¼ 0 (black) to μ ¼ 0.3 (purple) in steps
of 0.1.
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tðξ; uÞ ≈ ð#þ #uÞuþ ð#þ #uÞuξþ #uξ2 þ #ξ3; ð94Þ

where the symbol # represents nonzero numerical coef-
ficients whose values are not important for this discussion.
The potential expansion in Eq. (92) becomes

ωðξ; uÞ ≈ ð#þ #uÞuþ ð#þ #uÞuξ − ð#þ #uÞuξ2
þ ð#þ #uÞξ3 þ #ξ4: ð95Þ

Since the entropy, obtained in Eq. (29), is a monotonically
decreasing function of zh, near the critical value zch, the
dimensionless entropy difference s, defined in Eq. (93), is
simply expanded as

sðξÞ ¼ #ξþ #ξ2 þ � � � : ð96Þ

Using the expansions in Eqs. (94), (95), and (96), we can
find the expansions for other thermodynamic quantities
near the critical point. We will describe below how we can
use these expansions to find the critical exponents asso-
ciated with the specific heat and the charge susceptibility.
We find that the charge density Q can be written as

QðzÞ ¼ dðzhÞμ; ð97Þ

with dðzhÞ being a decreasing function of zh. Then, near the
critical point, the dimensionless charge density difference
qðξ; uÞ, defined in Eq. (93), can be expanded as

qðξ; uÞ ¼ #ξþ #uþ #ξ2 þ #uξþ � � � : ð98Þ

1. Specific heat

We want to analyze the specific heat, defined by

CV ¼ S
∂ ln S
∂ lnT ; ð99Þ

near the critical point. We found in the previous section that
at the critical point, the specific heat diverges. In order to
find how the divergence scales with the temperature
difference t or chemical potential difference u, we first
rewrite Eq. (99) as

C−1
V ¼ S−1

∂ lnT
∂ ln S ¼ T−1 ∂T

∂S : ð100Þ

In terms of the dimensionless temperature and entropy
differences s and t, Eq. (100) takes the form

C−1
V ¼ #ð1þ tÞ−1 dt

ds
¼ #ð1þ tÞ−1

�
ds
dξ

�
−1 ∂t

∂ξ : ð101Þ

We are particularly interested in the vertical line μ ¼ μc in
the T-μ phase diagram. This corresponds to fixing the
dimensionless variable u to zero. Plugging the expansions
in Eqs. (96) and (98) into Eq. (101), we find

C−1
V ju¼0 ¼ #ξ2 þ � � � ¼ #t2=3 þ � � � : ð102Þ

This means that for μ ¼ μc, the specific heat diverges near
T ¼ Tc as

CVðT; μcÞ ∝ ðT − TcÞ−α; ð103Þ

with α ¼ 2=3. The power scaling in Eq. (103) for the
specific heat near the critical point was obtained from
expansions near the critical point that are not particular to
this model and should be valid in a general class of
holographic QCD models constructed from EMD theory.
The critical exponent α ¼ 2=3 is therefore universal for this
class of holographic models. The same critical exponent for
the specific heat was also found in Refs. [19,81] for the case
of a RN AdS BH in global coordinates.

2. Charge susceptibility

The charge susceptibility is obtained in Appendix C.
Here, we just recast the main result [Eq. (C6)] as

χ ¼
�∂T
∂zh
�

−1
�∂Q
∂μ

∂T
∂zh −

∂Q
∂zh

∂T
∂μ
�
: ð104Þ

Taking the inverse of Eq. (104) and writing the rhs in terms
of dimensionless thermodynamic differences, we obtain

χ−1 ¼ #
∂t
∂ξ
�
#
∂q
∂u

∂t
∂ξþ #

∂q
∂ξ

∂t
∂u
�
−1
: ð105Þ
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FIG. 18. Grand canonical potential Ω, as a function of the
horizon radius zh, obtained from the analytic approximation in
Eq. (92) and compared with the full numerical result. The dashed
(solid) curves represent the analytic (numerical) results. The
chemical potential varies from μ ¼ 0 (black) to μ ¼ 0.3 (purple)
in steps of 0.1.
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Again, we are particularly interested in the case μ ¼ μc,
corresponding to a vertical line in the T-μ phase diagram.
Using the expansions in Eqs. (94) and (98) and setting the
dimensionless difference u to zero, we obtain

χ−1 ¼ #ξ2 þ � � � ¼ #t2=3 þ � � � : ð106Þ

Then at μ ¼ μc, the charge susceptibility diverges near the
critical point T ¼ Tc according to the scaling

χðT; μcÞ ∝ ðT − TcÞ−γ; ð107Þ

with γ ¼ 2=3. Interestingly, the critical exponent found for
the charge susceptibility is equal to the one found for the
specific heat. We remark that these results were obtained
from expansions for the thermodynamic quantities that
should be valid for a general class of nonconformal plasmas
arising from EMD holography. We conclude that the
critical exponents α ¼ 2=3 for the specific heat and γ ¼
2=3 for the charge susceptibility are universal in this class
of holographic models.

VI. COMPARING OURMODEL TO SUðNcÞ GAUGE
THEORIES IN THE LIMIT μ → 0

In this work, we have described the phase diagram of a
nonconformal plasma using a holographic model based on
Einstein-Maxwell-dilaton theory. We have obtained the
corresponding T-μ phase diagram, which is characterized
by a critical line at low μ ending on a critical point
at ðTc; μcÞ.
The critical line at low μ corresponds to a first-order

transition for the nonconformal plasma. In particular, in the
limit μ → 0, the first-order transition takes place at a
temperature Tc ≈ 0.149 GeV for k ¼ 0.18 GeV2, as shown
in Fig. 16. In fact, what really matters in our model is the
dimensionless temperature

Tcffiffiffi
k

p ¼ 0.354: ð108Þ

Our model only depends on one parameter—namely, the
dimensionful constant k appearing on the quadratic ansatz
for the dilaton field ϕðzÞ ¼ kz2. For concreteness, we
choose the value k ¼ 0.18 GeV2 that leads to a mass for
the ρ meson close to the experimental value mρ ¼
0.775 GeV [68,69]. We remark, however, that the result
in Eq. (108) is independent of the choice of k because it is a
dimensionless quantity.
Our results for the phase diagram strongly suggest an

interpretation of EMD holography in terms of the thermo-
dynamics of large-Nc QCD, dominated by the dynamics of
pure SUðNcÞ Yang-Mills theory. A similar conclusion was
found in a recent work [82]. In fact, the first-order transition
found in this paper in the limit μ → 0 can be interpreted in
terms of the deconfinement transition found in SUðNcÞ

Yang-Mills theories in the limit of large Nc. The order
parameter for this transition is the entropy that, in the limit
μ → 0, jumps from zero to a finite value at the critical
temperature Tc.

8

In SUðNcÞ lattice gauge theories, the critical temperature
for the deconfinement transition can be described by the
empirical formula [85]

Tc=
ffiffiffi
σ

p ¼ 0.5949ð17Þ þ 0.458ð18Þ=N2
c; ð109Þ

where σ is the string tension. Choosing the phenomeno-
logical value for the string tension

ffiffiffi
σ

p ¼ 0.44 GeV [86],
one finds Tc ≈ 0.262 GeV. We can reproduce this result in
our model by fixing the parameter k as follows:

k ¼
�

Tc

0.354

�
2

≈ 0.548 GeV2: ð110Þ

It is very interesting to compare the thermodynamic
properties of our model in the limit μ → 0 against the
results obtained in SUðNcÞ lattice gauge theories. Below
we present a quantitative comparison for the pressure, trace
anomaly, and latent heat in our model against the results
obtained in Ref. [87] for different values of Nc. We will
compare only dimensionless quantities, since they are
independent of the choice of k.

A. Pressure

The pressure is related to the grand canonical potential
by the relation p ¼ −Ω. We will be interested in the
dimensionless ratio

3p
N2

cT4
¼ −

3Ω
N2

cT4
: ð111Þ

As described in Sec. IV, the pressure was normalized to
recover the Stefan-Boltzmann result for a non-Abelian
plasma in the limit of very high temperatures. Particularly,
the dimensionless ratio in Eq. (111) reaches the value
3π2=ð45Þ in that limit.
Using our formulas in Eq. (60) for the grand canonical

potential and Eq. (36) for the temperature, we can evaluate
the dimensionless ratio in Eq. (111) at any value of μ and T.
In Fig. 19, we compare our results in the limit μ → 0
against the results obtained in Ref. [87] for lattice SUðNcÞ
Yang-Mills theories. The figure displays the dimensionless
ratio in Eq. (111) as a function of the dimensionless
temperature T=Tc, where Tc is the deconfinement temper-
ature (at μ ¼ 0). The black, blue, and red dots with error
bars represent the lattice results for Nc ¼ 3, Nc ¼ 5, and
Nc ¼ 8, respectively. The orange dots represent our results,

8The transition is quite similar to a Hawking-Page transition
between a thermal and a black hole solution, as described, for
example, in Refs. [71,83,84].
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and the green dashed line represents the Stefan-Boltzmann
limit. From the figure, we conclude that our results for the
pressure are consistent with the lattice results in the limit of
large Nc.

B. Trace anomaly

In QCD, the breaking of conformal symmetry is
described by the trace anomaly, which is the VEV of the
trace of the energy-momentum tensor. At finite μ and T, it
takes the form

hTa
ai ¼ E − 3p ¼ 4Ωþ TSþ μQ: ð112Þ

In lattice QCD, this quantity is also known as the
interaction measure, denoted by Δ. We are interested in
the dimensionless ratio

Δ̃≡ Δ
N2

cT4
¼ E − 3p

N2
cT4

: ð113Þ

In Fig. 20, we compare our results for the trace anomaly
against the results obtained in Ref. [87] for lattice SUðNcÞ
Yang-Mills theories. The figure displays the dimensionless
ratio in Eq. (113) as a function of the dimensionless
temperature T=Tc, where Tc is the deconfinement temper-
ature (at μ ¼ 0). Again, the black, blue, and red dots with
error bars represent the lattice results for Nc ¼ 3, Nc ¼ 5,
and Nc ¼ 8, respectively, while the orange dots represent
our results. Interestingly, the dimensionless trace anomaly
in our model behaves very similarly to the corresponding
quantity in lattice SUðNcÞ Yang-Mills theories. Parti-
cularly, both quantities display a peak near the deconfine-
ment temperature Tc and decrease quickly for temperatures
lower than Tc. We note, however, a small discrepancy in the
regime of high temperatures. We suspect that this is related

to the fact that in our model we considered a dilaton field
that is always quadratic in the radial coordinate. In more
realistic holographic models for QCD, this ansatz is slightly
modified in order to account for the conformal dimension
of the gluon condensate—see, e.g., Ref. [63]. As a final
comment regarding Fig. 20, notice that the trace anomaly is
always non-negative when μ → 0. However, we have
shown in Sec. IV that in our model the trace anomaly at
finite μ suffers a transition to negative values at low
temperatures—see Fig. 14. In particular, the critical point
in the T-μ phase diagram corresponds to the case where the
trace anomaly vanishes.

C. Latent heat

Lastly, we estimate the latent heat for the deconfinement
transition in the limit μ → 0 and compare our estimate
against the lattice result found in Ref. [87] for SUðNcÞ
Yang-Mills theories. The latent heat is defined by

Lh ≡ TcΔSðTcÞ; ð114Þ
where ΔS is the entropy jump at the deconfinement
temperature Tc. We are interested in the dimensionless ratio

L̃h ≡ Lh

N2
cT4

c
: ð115Þ

In the limit μ → 0, we find in our model

L̃h ≈ ð0.788Þ4: ð116Þ
This can be compared to the lattice estimate

L̃h ≈ ð0.759� 19Þ4 ð117Þ
found in Ref. [87] in the limit of large Nc. We conclude that
in our model, the latent heat associated with the deconfine-
ment transition in the limit μ → 0 almost agrees with the

FIG. 19. The dimensionless ratio 3P=ðN2
cT4Þ, associated with

the pressure, as a function of the dimensionless temperature T=Tc
in the limit μ → 0 compared against the SUðNcÞ lattice results
obtained in Ref. [87]. The thin dashed line represents the Stefan-
Boltzmann limit 3π2=ð45Þ.
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FIG. 20. The dimensionless ratio ðE − 3pÞ=ðN2
cT4Þ, associated

with the trace anomaly, as a function of the dimensionless
temperature T=Tc in the limit μ → 0 compared against the
SUðNcÞ lattice results obtained in Ref. [87].
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value obtained in lattice SUðNCÞ Yang-Mills theories;
although our result is very close to the lattice result, it
does not fall within the error interval.

VII. CONCLUSIONS AND DISCUSSIONS

In this work, we have analytically constructed asymp-
totically AdS charged black brane solutions from five-
dimensional EMD theory and used the gauge/gravity
duality to map these solutions to four-dimensional non-
conformal plasmas at finite temperature and density. For
the dilaton field, we considered a quadratic profile con-
sistent with the confinement criterion in the IR. We have
studied the thermodynamics in the grand canonical ensem-
ble (fixed T and μ) and the critical behavior of those
nonconformal plasmas. We have also shown, through the
behavior of several thermodynamic quantities, that this
system displays a variety of phenomena and a rich phase
structure such as first-order, second-order, and continuous
phase transitions depending on the value of the chemical
potential μ. These properties are intimately connected with
dual phase transitions between different branches of
charged BHs.
At μ ¼ 0, we found one large and one small BH phase,

with the large BH branch in a stable phase (positive specific
heat) and the small BH branch always unstable (negative
specific heat). For 0 < μ < μc, we showed that besides the
large BH branch, which dominates in the high-temperature
regime, there are two small BH branches. One of them is
stable or metastable (low-temperature regime), while the
other is always unstable. We described how the competition
between the stable (or metastable) small and large BHs
leads to a first-order phase transition from the low-temper-
ature regime to the high-temperature regime. The first-order
transition occurs until we reach the critical point at μ ¼ μc,
where it becomes second order and we find a power-law
behavior for the specific heat and the charge susceptibility
as T → Tc. The corresponding critical exponents were also
computed, and we found α ¼ γ ¼ 2

3
, with α (γ) being the

critical exponent associated with the specific heat (charge
susceptibility).
It is well known that any quantum field theory that

displays a critical point in the phase diagram should enjoy
scale invariance at that point [88]. This can be seen by
considering correlation functions near the critical point.
The correlation functions are characterized by a length
scale known as the correlation length ξ, which is the
maximum length at which the degrees of freedom affect
each other. From dimensional arguments, the inverse of the
correlation length can be interpreted as the characteristic
mass scale of the system. A universal result in the theory of
phase transitions is that as we approach the critical point,
the correlation length diverges. Then the characteristic
mass scale of the system vanishes, which in turn implies
that the system is scale invariant. The scale invariance
indicates the presence of a conformal field theory, usually

associated with a nontrivial fixed point in the renormaliza-
tion group [89].
In this work we have confirmed the restoration of

conformal symmetry at the critical point by evaluating
the thermal trace anomaly E − 3p and showing that it
indeed vanishes at the critical point, as shown in Fig. 14.
For larger values of chemical potential—i.e., for μ > μc—
we showed that the phase transition becomes continuous,
with the thermodynamic observables displaying a smooth
behavior as we vary the temperature. These results were
summarized in Fig. 16, where we presented our final phase
diagram in the T-μ plane.
The thermodynamic quantities presented in Secs. IV and

V were obtained for a fixed value of the model parameter
k—namely, k ¼ 0.18 GeV2, motivated by the meson spec-
troscopy. We remark, however, that dimensionless ratios of
thermodynamic quantities are independent of the choice of
k. In Sec. VI, we defined dimensionless ratios for the
pressure, trace anomaly, and latent heat (dividing by a
suitable power of the temperature). In the limit μ → 0 we
compared our results with the lattice results of SUðNcÞ
Yang-Mills theories and found that our model is consistent
with SUðNcÞ Yang-Mills theories in the large-Nc limit.
We showed in Sec. VI that the critical temperature
for the deconfinement transition in lattice SUðNcÞ Yang-
Mills theories can be used to fix k—namely, for Tc ≈
0.262 GeV we find k ¼ 0.548 GeV2.
It is noteworthy that the phase transitions of nonconfor-

mal plasmas found in this work showed some similarities
with the van der Waals–Maxwell liquid-gas transition. We
found a very similar phase diagram structure, consisting of
a critical line, associated with a first-order phase transition,
ending in a critical point from which we have a continuous
phase transition. We elaborated on the analogy between
these systems, mapping the temperature and horizon radius
of charge BHs to the pressure and volume in the van der
Waals model. We also provided some connections and
analogies with the A3 catastrophic theory from the thermo-
dynamic analysis near the critical point. It is fascinating to
observe that two very distinct systems, a gravitational one
and a liquid-gas one, share the same qualitative features and
behaviors.
Finally, we have developed a consistent and systematic

method for reconstructing the thermodynamic potential
from the entropy density and temperature by using the first
law of thermodynamics, which does not require performing
any holographic renormalization procedure. It would be
interesting to extend the analysis done in this paper through
the holographic renormalization lens [90,91] in order to
show the equivalence between the two approaches. It would
also be interesting to extend the Maxwell term in the EMD
action considered in this work to the nonlinear DBI or
tachyon-DBI action to make contact with other holographic
approaches, such as VQCD [92]. We leave these problems
for future work.
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Note added.—Recently, Ref. [93] appeared on arXiv
proposing a holographic QCD model that also leads to
criticality in the T-μ phase diagram. Although the critical
point in Ref. [93] is located in a different position, our
universal analysis near the critical point should also apply
to the model of Ref. [93].

APPENDIX A: THERMODYNAMICS OF AdS/RN
BHs: LOW- AND HIGH-TEMPERATURE

EXPANSIONS

When one turns off the scalar field, by setting k ¼ 0, one
should recover the results for the AdS/RN solution. Indeed,
for k ¼ 0, we have that the temperature T [Eq. (36)] and
entropy S [Eq. (29)] are given by

T ¼ 6 − μ2z2h
6πzh

; S ¼ 4πσ

z3h
; ðA1Þ

where σ ¼ M3
PN

2
cV3. Here, we are using the units from

Ref. [71] in which

ðMPlÞ3 ¼
1

45π2
; ðA2Þ

where l is the AdS radius. From now on, we will not
explicitly write the factor of N2

c.
One can express the horizon position zh in terms of the

temperature T and the chemical potential μ as

zh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6μ2 þ 9π2T2

p
− 3πT

μ2
: ðA3Þ

Therefore, the entropy density, along with its low- and high-
temperature expansions, respectively, can be expressed as
functions of (T, μ):

sðT; μÞ ¼ 4μ6

45πð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6μ2 þ 9π2T2

p
− 3πTÞ3

; ðA4Þ

sðT; μÞ ¼
ffiffi
2
3

q
μ3

135π
þ μ2T

45
þOðT2Þ; ðA5Þ

sðT; μÞ ¼ 4π2T3

45
þ 2μ2T

45
þO

�
1

T

�
: ðA6Þ

The specific heat can be obtained as

CV ¼ T
∂S
∂T : ðA7Þ

Its expansions for μ ≫ T and μ ≪ T are given by,
respectively,

CV ¼ μ2T
45

þOðT2Þ; ðA8Þ

CV ¼ 4π2T3

15
þ 2μ2T

45
þO

�
1

T2

�
: ðA9Þ

The speed of sound, in turn, can be obtained as

c2s ¼
S
CV

: ðA10Þ

Its expansions for μ ≫ T and μ ≪ T are given by,
respectively,

c2s ¼
ffiffi
2
3

q
μ

3πT
þOðTÞ; ðA11Þ

c2s ¼
1

3
þO

�
1

T

�
: ðA12Þ

The grand canonical potential ΩðT; μÞ can be
expressed as

ΩðT; μÞ ¼ −
μ6ð3μ2 þ 6π2T2 − 2πT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6μ2 þ 9π2T2

p
Þ

45π2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6μ2 þ 9π2T2

p
− 3πTÞ4

;

ðA13Þ

where we use Eqs. (54) and (A3). Its expansions for μ ≫ T
and μ ≪ T are given by, respectively,

ΩðT; μÞ ¼ −
μ4

540π2
þOðTÞ; ðA14Þ

ΩðT; μÞ ¼ −
π2T4

45
−
μ2T2

45
þO

�
1

T

�
: ðA15Þ

From Eq. (78), one can obtain the charge density as a
function of zh, and by using Eq. (A3) we obtain it as a
function of ðT; μÞ, which reads
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Q ¼ 2μ5

45π2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6μ2 þ 9π2T2

p
− 3πTÞ2

: ðA16Þ

Its expansions for μ ≫ T and μ ≪ T are given by,
respectively,

Q ¼ μ3

135π2
þOðTÞ; ðA17Þ

Q ¼ 2 μT2

45
þO

�
1

T

�
: ðA18Þ

The charge susceptibility χ can be easily obtained from
the above expansions by deriving with respect to μ while
keeping T constant.
Finally, the trace anomaly is

hTa
ai ¼ 4Ωþ Tsþ μQ: ðA19Þ

Using the above formulas for sðμ; TÞ, Ωðμ; TÞ, and
Qðμ; TÞ, one can verify that the trace anomaly for the
AdS/RN black brane vanishes:

hTa
ai ¼ 0: ðA20Þ

APPENDIX B: ALTERNATIVE METHOD
FOR RECONSTRUCTING THE GRAND

CANONICAL POTENTIAL

We start with the following ansatz for the grand
canonical potential:

Ωðzh; μÞ ¼ −AðzhÞ − μ2BðzhÞ: ðB1Þ
Now, we define the auxiliary potential:

Ω̃≡Ωþ TS

¼ −AðzhÞ þ SðzhÞaðzhÞ − μ2½BðzhÞ þ SðzhÞaðzhÞbðzhÞ�
≡DðzhÞ − μ2EðzhÞ: ðB2Þ

The differential of Ω̃ takes the form

dΩ̃ ¼ ½D0ðzhÞ − μ2E0ðzhÞ�dzh − 2μEðzhÞdμ: ðB3Þ
We identify this differential with

dΩ̃¼TdS−Qdμ

¼S0ðzhÞTðzh;μÞdzh−Qðzh;μÞdμ
¼½S0ðzhÞaðzhÞ−μ2S0ðzhÞaðzhÞbðzhÞ�dzh−Qðzh;μÞdμ:

ðB4Þ

Therefore, we find the differential equations

D0ðzhÞ ¼ S0ðzhÞaðzhÞ;
E0ðzhÞ ¼ S0ðzhÞaðzhÞbðzhÞ; ðB5Þ

as well as the relation

2μEðzhÞ ¼ Qðzh; μÞ: ðB6Þ

Solving the differential equations in Eq. (B5), we find
DðzhÞ and EðzhÞ, and from Eq. (B2) we obtain the
functions AðzhÞ and BðzhÞ so that we can reconstruct the
grand canonical potential in Eq. (B1). The procedure
described in this Appendix is equivalent to the one
described in Sec. III D. The advantage of this alternative
procedure is that we arrive at simpler thermodynamic
relations.

APPENDIX C: EXTRACTING THE
CHARGE SUSCEPTIBILITY

Here we use the notation

Xmn ¼
∂mþnX
∂zmh ∂μn ðC1Þ

for any thermodynamic quantity X.
In Sec. III D, we found that the charge density can be

written as

Qðzh; μÞ ¼ 2μ

Z
zh

∞
S0ðzÞaðzÞbðzÞ≡ dðzhÞμ: ðC2Þ

This expression was obtained from the thermodynamic
relations involving the derivatives of the temperature and
grand canonical potential.
Since the charge density Q is a function of zh and μ, the

differential takes the form

dQ ¼ Q10dzh þQ01dμ: ðC3Þ
Considering the charge density as a function of T and μ, we
get instead

dQ ¼ ΣdT þ χdμ

¼ ΣT10dzh þ ðΣT01 þ χÞdμ: ðC4Þ
Identifying the differentials in Eqs. (C3) and (C4), we find
the relations

Q10 ¼ ΣT10;

Q01 ¼ ΣT01 þ χ: ðC5Þ
From these relations, we extract the charge susceptibility

χ ¼ Q01 −
Q10T01

T10

: ðC6Þ
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