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Old dualities and new anomalies
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We revisit the question whether the worldsheet theory of a string admits a global O(d, d) symmetry. We
consider the truncation of the target space theory in which fields are independent of d coordinates, which is
O(d, d,R) invariant. The worldsheet theory is not O(d, d, R) invariant, unless it is truncated by setting
winding and center-of-mass momenta to zero. We prove consistency of this truncation and give a
manifestly O(d, d, R) invariant action, generalizing a formulation due to Tseytlin by including all external
and internal target space fields. It is shown that, due to chiral bosons, this symmetry is anomalous. The
anomaly is cancelled by a Green-Schwarz mechanism that utilizes the external B-field.
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I. INTRODUCTION

T-duality is a property of string theory that emerges upon
quantizing the string on a toroidal background. Naturally,
there have been numerous papers addressing the question to
which extent and in which sense the T-duality group O(d, d),
either in its discrete or continuous version, is a duality or
symmetry of the (classical or quantum) worldsheet theory
(see [1-18] for an incomplete list of references). We never-
theless come back to this issue, partly motivated by recent
developments on the interplay of higher-derivative ' cor-
rections and O(d, d, R) invariance of the target space theory,
both in conventional [19,20] and in double field theory
formulations [21-26]. We will first identify a certain con-
sistent truncation of the worldsheet theory of the bosonic
stringinwhich O(d, d, R) isamanifest symmetry classically,
and second argue that this symmetry becomes anomalous
quantum mechanically due to the worldsheet scalars being
chiralbosons. This in turn implies that a Green-Schwarz-type
mechanism is required in close analogy to anomaly cancel-
lation in heterotic string theory.

We begin by asking the following: Is the (classical or
quantum) string worldsheet theory O(d, d) invariant, either
under the discrete or continuous group? The first relevant
observation here is that in the Hamiltonian formulation of the
worldsheet theory, for arbitrary backgrounds, a “generalized
metric” H,,y emerges that combines the metric and B-field
into an O(d, d) matrix. However, as we will review, this does
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not mean that the worldsheet theory has a locally realized
O(d,d) symmetry in general. A genuine O(d,d) duality
invariance is usually only expected to emerge on toroidal
backgrounds. Suppose then that the target space is a torus in
which a classical string propagates. Is the worldsheet theory
O(d, d) invariant? It is not, because there are winding modes
that are discrete, due to the topology of the torus, while the
center-of-mass momenta, which should pair up with the
winding modes into an O(d, d) multiplet, are continuous.
One could constrain the momenta by hand to be discrete, but
there seems to be no physical justification for doing so.
Similarly, one could promote the winding numbers to
dynamical fields (functions of worldsheet coordinates),
but then one is no longer dealing with a theory of strings
since the worldsheet scalars are not well-defined maps on the
torus preserving the torus boundary conditions. Rather, the
proper O(d, d, Z) emerges when quantizing the worldsheet
theory, because then the momenta are quantized, hence
naturally pairing up with the discrete winding numbers.
More precisely, the O(d, d, Z) is then a duality (T-duality) in
which a change of background leads to a physically equiv-
alent theory in which momentum and winding is exchanged.

The above is standard textbook folklore of string theory,
but here we will revisit the issue from a slightly different
point of view. We start from the observation that when one
truncates the target space theory by taking all fields to be
independent of d coordinates (for instance, by restricting to
the massless fields for Kaluza-Klein compactification on a
torus 7%) a global O(d,d,R) symmetry emerges.1 If we
now couple a classical string to this theory (in the same way

"This symmetry is in fact a consequence of the O(d,d,Z)
duality that target space closed string theory exhibits, since in the
truncation both the usual massive Kaluza-Klein modes and their
dual “winding” Kaluza-Klein modes disappear, so that the theory
loses all memory of the torus topology, thereby enhancing
0(d,d,Z) to O(d,d,R).

Published by the American Physical Society


https://orcid.org/0000-0003-1627-7285
https://orcid.org/0000-0003-2719-7344
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.126002&domain=pdf&date_stamp=2020-12-01
https://doi.org/10.1103/PhysRevD.102.126002
https://doi.org/10.1103/PhysRevD.102.126002
https://doi.org/10.1103/PhysRevD.102.126002
https://doi.org/10.1103/PhysRevD.102.126002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

BONEZZI, DIAZ-JARAMILLO, and HOHM

PHYS. REV. D 102, 126002 (2020)

that one may couple a point particle to Einstein gravity)
does the combined system have an O(d, d,R) symmetry?
We will show that in general it does not, not even under the
discrete subgroup, but that there is such a symmetry if one
truncates also the worldsheet theory by setting winding and
center-of-mass momenta to zero. This makes sense since it
reflects the truncation of the target space theory. Note that
this truncation only refers to the internal sector (the
coordinate directions on which the target space fields no
longer depend), and so the string still has a nontrivial
dynamics thanks to the external space. As one of our
technical results we establish consistency of this truncation,
for which the worldsheet action takes the manifestly
O(d, d,R) invariant form

1
dra
+ € (B,,0,X" 0X" — AMO,Y 05X")]

S =

/ 26|V =hh? g,,0,X" ;X"

1
t / d*[D,YMD,Y,; — uD,YMD,Y

— eHynD, YD, Y], (1.1)
where X* and Y™ are the embedding scalars for the external
and internal space, respectively, and g,,, B,,, .A,,M and
Hyn are target space fields depending only on X.
Moreover, we defined the covariant derivative
D YM = 9,YM + AM(X)9, X" (1.2)

with worldsheet coordinates ¢* = (r,0). This action is
manifestly O(d,d,R) invariant, with M, N =1,...,2d
being fundamental O(d,d,R) indices. In particular, the
internal scalars Y™ are doubled, but the above action is
equivalent to the standard sigma model action in this
truncation, since the second-order field equations imply,
through integration and gauge fixing, first-order duality
relations. The above action generalizes a reformulation of
the worldsheet action due to Tseytlin [1,2] by including all
external and internal target space fields that survive the
truncation, in particular the external B-field that turns out to
be instrumental for the Green-Schwarz mechanism. The
above Lagrangian, which provides an action principle for
equations of motion given by Maharana and Schwarz in
[6], was also given by Schwarz and Sen in [27] and
revisited recently in [28]. The action is indeed invariant
under two-dimensional diffeomorphisms and Weyl trans-
formations, albeit not manifestly so, since the worldsheet
coordinates have been split in the second line, where ¢ and
u are the components of the worldsheet metric 4,4, defined
by e = v/—hh;} and u = h, h;}. We will give a careful
analysis of the nonmanifest two-dimensional diffeomor-
phism invariance and of the complete Virasoro constraints.
The results above apply to the classical worldsheet
theory. As the second main point of this paper we then

turn to its quantization and point out that since the
worldsheet scalars are chiral (self-dual) bosons, the
O(d,d,R) symmetry of the classical theory is expected
to be anomalous. More precisely, it is technically and
conceptually easier to work in a frame formulation, based
on the coset space O(d,d,R)/SO(d,R); x SO(d,R)g,
where it is the gauge group SO(d,R); x SO(d,R) that
becomes anomalous. The presence of anomalies is con-
firmed independently by the recent result that in the target
space theory the O(d, d, R) symmetry, or alternatively the
SO(d,R),; x SO(d, R), symmetry, requires a deformation
at order o [19,20], which from the point of view of the
worldsheet theory cancels the anomaly via the Green-
Schwarz mechanism. This state of affairs mimics heterotic
string theory, for which the worldsheet theory is anomalous
due to the presence of chiral fermions, which gives a
worldsheet interpretation of the Green-Schwarz mechanism
[29,30]. In the present context we prove that the one-loop
effective action W defined in terms of (1.1) by

eiWIg.BAE] — 7-1 /DYeiS (1.3)

transforms under SO(d,R); x SO(d,R), to lowest order
as

4 —;—ﬂ/tr(dxl A Q) —;—ﬂ/tr(dz AQ).  (1.4)

Here E is a frame field for M,y and Q and Q are the
(composite) SO(d,R); x SO(d,R), connections. This
anomaly is cancelled by assigning the following trans-
formation to the B-field:

a/

/
5,B,, = %tr(aley]) - Zr(8,20,).

: (1.5)

We also discuss and establish various other features
regarding the quantum consistency of the worldsheet
theory, including absence of gravitational anomalies
[31], see also [32,33].

This paper is organized as follows. In Sec. II we review
and clarify the Hamiltonian formulation of the worldsheet
theory for strings with a toroidal target space. In particular,
we introduce the proper truncation in which O(d, d, R) will
be made a manifest symmetry of the classical action. In
Sec. III we turn to the coupling of the worldsheet theory to
the target space string theory and display the worldsheet
action and equations of motion in a manifestly O(d, d, R)
invariant form. Then, in Sec. IV, we show the presence of
anomalies and the need to invoke a Green-Schwarz
mechanism. We close with a brief conclusion and outlook
section. In two Appendixes we perform a careful analysis
of the diffemorphism invariance of the worldsheet theory,
which is no longer manifest, and show that there are no
gravitational anomalies.
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II. CLASSICAL STRING ON A TORUS

In this section we study the dynamics of a classical
closed string on a toroidal target space 79, representing the
compact part of a D = d + n dimensional spacetime with d
Abelian isometries, and we shall focus for the moment on
the dynamics along those directions alone. In particular, we
consider the string coordinate embeddings X’ (o, 7) coupled
to background fields G;; and B;; in the Polyakov sigma
model

S=—

/d26[\/ —hh“ﬁaaxiaﬂXjGij+€aﬂ8{1Xi8/3XjBij],

4ra
(2.1)

where the worldsheet metric 4,5 has Minkowski signature
(=, +) and €”! = —1. The compact space arises upon
identifying x' ~ x' + 2zL, where L' := v/o/w' with integer
winding numbers w' € Z. Correspondingly, the allowed
boundary conditions for the closed string worldsheet fields
read (we use o € [0, 27])

AXi(7) = X'(2z,7) — X'(0,7) = 2L, Ahg(7) = 0.

(2.2)

The classical configuration space of the closed string is thus
split by boundary conditions into the direct sum of disjoint
topological sectors, labeled by the winding vector L’. The
noncompact case is covered by setting L' = 0. In view of
the boundary conditions (2.2) one can separate the winding
sector as

Xi(o', T) = Lig + Xi(d, ’l') = Lic + Zx;'l(,r)eina’

nezZ

(2.3)

since the shifted field obeys AX’ = 0. Let us mention that
the variational principle with the action (2.1) is well
defined, since neither h,, 9,X° nor X' have winding
contributions.

A. Hamiltonian formulation

We now turn to the Hamiltonian formulation, which
turns out to be useful for identifying the symmetries. The
first step is to find the momenta conjugate to X':

I |1
-G

pP—_
2rad |e

. (X —uX’)+ B, X" |, (24)

ij

where, as usual, a dot (prime) denotes a derivative with
respect to 7(o), and we defined the components of the
worldsheet metric (that will become Hamiltonian Lagrange
multipliers) via

Q/u>—-e* u 1 /-1 u
haﬂ:_< >, ha/)’:—< ) 2).
e u 1 eQ\ u e*—-u

(2.5)

The total Hamiltonian consists entirely of first class
constraints, as it should be in any diffeomorphism invariant
theory. The action can then be written as

S = /d%[P,-Xi —e¢H —uN], (2.6)
where
N = PX",
1 y ; y
H = 5 |:27Z'a/GUPlPJ - 2leBijin
1 ! s

——(G-BG™'B), X"X7|. 2.7
el )y 27)

Naturally, upon integrating out P; by solving its own
equations of motion and back-substituting into the action
one recovers the Polyakov action (2.1). The functions in
(2.7) are phase space constraints (also referred to as
Virasoro constraints) that are the canonical generators of
worldsheet diffeomorphisms, being the Hamiltonian coun-
terparts of the traceless worldsheet stress-energy tensor 7' 5.
We notice that the third degree of freedom of the metric 4,
its overall conformal factor Q, drops out of the action. In
Hamiltonian language, conformal gauge corresponds to
gauge fixing ¢ = 1 and u = 0.

Both Hamiltonian constraints can be put in a formally
O(d, d) invariant form by defining

o ( 9, )
- 2JT(Z/Pi '

as well as the O(d,d) invariant metric 7,y and the
generalized metric H .y,

0 &/ (G=BG™'B);; ByGY
'lMN-( >, HMN—( .. >

(2.8)

5ij 0 —G”‘Bkj GY
(2.9)
The functions in (2.7) can now be written as
_ 1 M 7N _ 1 M 7N 21

Although the Hamiltonian thus takes a formally O(d, d)
invariant form, the full action is not obviously O(d, d)
invariant. First, the O(d, d) vector ZM in (2.8) is defined in
terms of derivatives of the fundamental field X’ and hence it
is not clear whether there is a locally realized O(d, d)
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symmetry even for the Hamiltonian terms. Second, the
“symplectic current” P;X' is part of the action and not
manifestly invariant.

In order to elucidate the above issues, we will work
explicitly with Fourier modes defined as

Xi(o.0)=Lio+ Y (D), Pifo.t) =Y pul0)e™.

nez nez

D= e,(@)e".  ulor)= u, ().

nez nez

(2.11)

where we recalled (2.3). Here we assume the reality
conditions ¢}, = ¢_, for all modes @, := (xi,, pi,, €, ty,).
The action (2.6) then reads

S = 2ﬂ/ er[pi,,)'ci_n —e_H,—u_,N,.

nez

(2.12)

Before giving the explicit expression for the modes H,, and
N, of the Virasoro constraints, let us introduce Fourier
modes for the O(d, d) vector ZM as

ZM(o,7) =LY (7) + ZZQ” (7)e, where
n#0

inxi (7)

M _
Zi(0)= <zm'p,-n <r>>’ n#0

LM(z)= <2na'1;?iio (z) > .

At this point one can perform an invertible field redefinition
by setting

(2.13)

27d p,(7) = inX;,(z), n#0, (2.14)

that corresponds to defining dual coordinates X;(c,7)
via [1]

27 P; = 0,X,. (2.15)
Integration of (2.15) gives
Xi(0,7) = 2z pjo(t)o + Fio(7) + Ziin(f)eim’, (2.16)

n#0

which introduces a zero mode ¥;, of X; that does not appear
in the original action, and for which it is not clear that it can
become part of an O(d, d) multiplet. Moreover, note that
the dual fields X; do not describe a closed string winding
around a “dual torus,” since their boundary conditions are
not constant nor labeled by integers, and so in general the
X; cannot combine with the X into an irreducible O(d, d)
representation. Nonetheless, from (2.13) and (2.14) one can
still define the O(d, d) nonzero modes

XM () = (ff’(f) ) n#0, (2.17)

and LY (7) as in (2.13).

Next, we rewrite the Virasoro constraints in terms of
these Fourier modes. While the general Hamiltonian form
of the action given above is valid for arbitrary backgrounds
G;; and B;;, we here focus on the torus and assume that the
backgrounds are constant. The modes of the Virasoro
constraints then take the formally O(d, d) covariant form

= Zj:g, [2inxf‘fLN =) k(n- k)xf,ffxﬁy_kl . n#0,
k

MMN |y MmN 2y My N
= LY LY + kX" X
NO 471'0/[ ; ¢ _l’

H, = Z’fl’ [21 XMLN — Zk n—k)X¥xN kl n#0,
Hy = TN | g RRXMXN, 2.18
O 4ndd +Z (2.18)

while the symplectic term can be recast in the form

Zﬂ/dr[pioico ,r]MNZmX Xﬁ/n}
n#0

Even though the nonzero modes X¥ can transform under
an arbitrary O(d,d) rotation as XM = QM XN the
momentum-winding vector LM in general breaks the
boundary conditions under O(d,d): if we parametrize

the Q matrix as
@' j a
ﬂzj Vi

one has L' = w';L/ + 2ma/a'/ p (7). The a transformation
in particular yields a nonacceptable boundary condition for
the duality-rotated coordinate X". Even if one is only
interested in transforming classical solutions, where
pio(tr) = k; is constant, the discreteness of L, that
descends purely from topology, is violated by k; € R?
for a general O(d, d) rotation, even in the discrete subgroup
0(d,d, Z). As mentioned in the Introduction, one could
truncate the spectrum by hand by taking the components
Pio = k; to be integers, thus mimicking the quantization
condition that, however, is not part of the original classical
theory. In contrast, at the quantum level the eigenvalues of
2 \/— ”
and so it is only here that one obtains the well-known
T-duality group O(d,d, Z).

It seems thus that neither the classical action nor the
classical solutions of the closed string are invariant under
O(d,d). However, one can try to focus on a particular

(2.19)

(2.20)
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subsector of the classical theory: to begin with, we shall
restrict the analysis to the topological sector with zero
winding, i.e., L' = 0. Classical solutions are also labeled
by a constant center-of-mass momentum p;, = k;, and
we will restrict our discussion to the class of zero
momentum solutions, p;y = 0. Clearly, this subclass of
solutions is closed under continuous O(d, d, R) rotations,
since LM = 0 is invariant.

Some comments are now in order: first of all, restricting
to string solutions with vanishing center-of-mass momen-
tum looks quite unphysical. However, one has to keep in
mind that in the full theory (to which we shall turn in the
next section) the compact space is only part of the entire
spacetime. In fact, the low-energy effective field theory,
that displays the O(d, d, R) symmetry, precisely consists of
fields that do not probe the internal space. In particular, they
have zero Kaluza-Klein momenta and, obviously, cannot
display winding. In this respect, it seems natural to consider
the string dynamics restricted to zero winding and internal
momentum as the suitable probe for the low-energy
spacetime field theory.

B. Truncated dynamics and consistency

In order to restrict the space of classical solutions to zero
winding and center-of-mass momentum, one can consider
the truncated action obtained by setting L' = 0 and p,y = 0
in (2.12):

1 . .
= 27;/ dr { inXMX oy — e H,—u_ N, |,
nez 77,'(1
(2.21)
with truncated Virasoro modes
- ”MN oD _k(n=bXYXL,
keZ
HMN
= k(n XMXN 2.22
4”(1 é n—k* ( )

The above action, which is manifestly O(d, d, R) invariant,
can be rewritten in local form as

S = d*6[0,XM0, Xy — eHyn0,X10,XN

drol

—ud,X"9,X,]. (2.23)
This is Tseytlin’s original proposal, but with two-
dimensional diffeomorphism invariance left intact (albeit
in a nonmanifest form). Taking X™(2z,7) = X™(0,7)
automatically sets both winding and center-of-mass
momentum to zero, since 2zd’ p;y = 5= 02” ded,X; = 0.
The equations of motion for the nonzero modes XM (or,
which is the same, x!, and p;,) as well as the Virasoro

constraints coincide with the original ones obtained from
(2.6) or (2.12) upon choosing the solution p,; = 0. On the
other hand, one has to be more careful with the zero modes
X} neither x}, nor X, appear in the action (2.23), that
indeed has the obvious gauge symmetry 6XM = EM (7).
While this is fine for X;,, for which it is just a redundancy of
the field redefinition 2za’ P; = 0,X,, it is not equivalent for
xf) that does possess a nontrivial equation of motion in the
original theory. We view the reduced action (2.23) as
providing the dynamics for the nonzero modes X and
then establish that this is a consistent truncation of the full
worldsheet theory. To this end we have to show that once a
solution is provided for the nonzero modes (modulo
worldsheet diffeomorphisms), we can embed it into a
solution of the full theory. This means that we have to
give x, in terms of the untruncated fields so that the
complete equations of motion of the original theory are
satisfied.

Let us then study the original field equation for the zero
mode x)(z). Generally, the second-order Lagrangian equa-
tions of motion are equivalent to the two sets of
Hamiltionian equations obtained by varying with respect
to P; and X', respectively. The former equation can be
obtained by inverting the definition of canonical momenta
2.4),

X' = uX’ + eGU(2na' P, — By X¥).  (2.24)
The equation for the zero mode x{,(z) can then be obtained
by integrating over o,

xp(2) = Vi(x),

where from (2.24) we notice that V' is naturally the upper
component of the O(d, d) vector

(2.25)

VM (z) = < ‘V/Eg > - % /0 " dolud, XM + eHMN, X,

(2.26)

The Hamiltonian equation obtained by varying with respect
to X' reduces for the zero modes to p;, = 0, since the
functions (2.7) are independent of x{, (they depend only on
X"). Thus, these equations are trivially satisfied for
Pio = 0, and so we only have to worry about Eq. (2.25).
Given a solution to the field equations derived from (2.23)
(that leave the zero modes completely undetermined), one
can directly integrate (2.25):

(1) = xi + A Tavi(?). (2.27)

This is the embedding into the full theory, which by
construction satisfies the equations of motion. Note that
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we could use the lower component of (2.26) to similarly
define a function X,y(7), but there is no need to do so since
such a dynamical variable does not appear in the original
theory.

III. GENERAL WORLDSHEET ACTION
A. Kaluza-Klein split

In this section we are going to consider the more
general sigma model of a closed string propagating on a
target (D = d + n)-dimensional spacetime characterized
by d Abelian isometries. We will choose coordinates
= (x*,y"), with u=0,...,n—1 and i=1,...,d such that
all spacetime fields are independent of y’, being the isometry
directions, either compact or not. The n-dimensional space-
time field content consists of [6] the following:

(i) the n-dimensional metric, dilaton and Kalb-Ramond

fields g,,, ¢ and B,,,
(i) 2d Abelian gauge fields forming an O(d, d) vector:

A ()
Ay

which originate from the off-diagonal components

of the higher dimensional metric Gﬁ,; and B-

field B;;,
(iii) @ scalar fields G;; and B;; originating from the

internal components of (A}ﬁ,; and Eﬁ ;- that organize

into the O(d, d) valued generalized metric H .
The reduced n-dimensional effective field theory action

reads [6]

(3.1)

1 _ 1 )
SFT:W/\d X/ —ge 29 [R+48ﬂ¢8”¢—EHWpH””

1 1
- ZHMNF”DMfMUN + g(?ﬂHMNﬁ”HMN} s (32)

where n-dimensional spacetime indices are raised with the
inverse metric ¢*’. The Abelian field strength is given by

FuM=0,AM-0,AM, (3.3)

while the three-form curvature H,, needs an Abelian
Chern-Simons modification compared to the naive form
H = dB:

H,y, = 30,B,, —3A,M0, A, (3.4)
where the O(d, d) indices have been contracted with the
invariant metric 77,,y. The effective action (3.2) is invariant
under n-dimensional diffeomorphisms, as well as two-form
gauge transformations &;B,, = 0,{, — 0,{,. Invariance
under the U(1)* gauge transformations 5,4, = 9,4"

requires the additional transformation of the B-field
5/13”,, - %F”UMJM.

The sigma model describing the coupling of the string to
the spacetime fields is most easily written in terms of the
(n + d)-dimensional field content as’

Sstring = -

! / d*6[V=hh" G, ;(X)

drd
+ e‘lﬁgﬁﬁ(X)}aaf(ﬁﬁﬁf(ﬁ. (35)
The worldsheet fields split as Xt = (X, Y"), and it has
been made explicit that the spacetime fields do not depend
on Y'. The X* coordinates obey periodic boundary con-
ditions, X*(2z,7) = X*(0, 7), while the Y'(c, 7) in princi-
ple have winding contributions. However, in light of the
discussion in the previous section, we shall restrict our
discussion from the beginning to the sector with zero
winding, i.e., Y/(2z,7) = Y(0,7).

The (n + d)-dimensional fields are related to the
n-dimensional ones by the usual Kaluza-Klein dictionary:

G =9 +ALGijA£, Gui= GijA/Cv Gij =Gy,
Gv=gv, G'=-gvAl. GU=GU+AlgvAl. (3.6)
as well as

B, =B, —Al A +AlByAlL

Bﬂi :A#l_Bl]Al]U Bl] :BU (37)
Using the reduction ansatz (3.6) and (3.7) directly in the
Lagrangian action (3.5) leads to a quite unintelligible mess.
In the last section we have seen that the appearance of
manifest O(d,d) invariance crucially relies on the
Hamiltonian formalism. This suggests that the same should
happen in the present context. We shall thus rewrite the
action (3.5) in Hamiltonian form. In terms of (n + d)-
dimensional fields this does not require any different
computation compared to (2.4) and (2.6), thus giving for
the momenta

~ 1 1 A, ;\ﬁ Aﬁ/ A Ai;/
P =57 [;Gﬁ”(x —uX")+ By X" |, (3.8)
with e and u given as in (2.5), and
Sstring = /dzo_[pﬁ)}.ﬁ —eH - ll./\/] (39)

The Virasoro constraints A/ and H are also given by the
same expressions as in (2.7), except that all quantities such

*For the moment we will ignore the coupling to the dilaton,
since it is a higher order effect in «'.
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as G and B are replaced by hatted quantities G and B.
Splitting the symplectic term and the A constraint is trivial,
since they do not contain spacetime fields:

A ,'\ﬁ . ..
PX" =prXx"+PY,
. 1
N =P,0,X" + P,0,Y' = P,0,X" + WZMZM,
(3.10)

where we recalled the vector Z¥ defined in (2.8). The
challenge is to express H in terms of n-dimensional fields
by using (3.6) and (3.7). After a tedious computation the final
result can be expressed in a manifest O(d, d) invariant form:

= dnd {gﬂyHuHu - 29#‘/16/1”]—[”80_)(”

+ (g/w + gA”BllﬂBow)aaXMaGXD
+ HMN(ZM + AﬂMaUX”)(ZN + AuNaaXy)}’ (31 1)

where
1
M, :=270 Py = AMZy, Buy=Bu+5AM Ay (3.12)

The Virasoro constraints N and H are clearly O(d,d)
invariant, modulo the issue of zero modes discussed in
the previous section, that we will revisit in the present
context.

There is no reason to keep the noncompact sector in
Hamiltonian form. We shall thus eliminate the momenta P,
by their equations of motion:

2na' P, = e‘lgm)o(” + B,,0,X" + AMZy.
X 1= 9,X" — ud, X", (3.13)

and recast the action (3.9) in the mixed form

1 1 o o )
Sstring == Q/JZG [ZgWX”X” + (B”,,G‘,X” +A”MZM)X”
—g G0, XP0, XY + 210! P,Y —gzMzM

—gHMN(ZM +AMO XY (ZN + AND,XY) | .

(3.14)

B. Zero mode truncation

As discussed in the previous section, the formal O(d, d)
invariance of the Virasoro constraints H and A is broken
by the zero mode p; =5- [3*doP; even in the zero
winding sector. Moreover, the symplectic term p;,y; is
another O(d, d) breaking term. Following the discussion in

the previous section, we shall thus truncate the action’ by
projecting out the conjugate pair of zero modes. In order to
do this, we set

2ma P; = 0,Y;, (3.15)
that is an invertible field redefinition for the nonzero
modes, and at the same time sets p,y = 0 upon taking
Y,(2z,7) = ¥,(0,7). By using (3.15) one has Z¥ = 9, Y™
and the truncated symplectic current can be written in
manifestly O(d, d) invariant form:

|
/ d*c2nd' P;Y' = 5 / d’60,YM0.Y,,. (3.16)

Before using (3.15) in (3.14), let us discuss spacetime
gauge invariances. n-dimensional diffeomorphisms are a
manifest invariance, upon using

5 XM = —&(X),  5:D(X) = LD(X) + 5:X,D(X),

(3.17)

where @ generically denotes spacetime fields, and we
recalled that, when considering target space fields on the
worldsheet, one has to add the extra term in (3.17) to
account for the explicit dependence on X* (o, 7). Invariance
under two-form gauge transformations 6;B,, = 20}, is
also standard. The situation is more subtle for the vector
gauge symmetries 5;.4," = 9,4". The upper component
5Aj, = 9,A" is a remnant of (n + d)-dimensional diffeo-
morphisms. This already fixes the transformation for the
internal worldsheet coordinates: §;Y' = —4'(X). In order to
preserve O(d, d), one is led to demand 6,Y; = —1;, so that

§YM = —M(X). (3.18)

In terms of internal momenta, the lower component gives
1

o,P;, = —ma,,i,-, that can also be derived by its on-shell
expression (3.8) for f# = i. This transformation preserves
the solution space with p;, = 0, since §;p;y = 0.

Following [6] we introduce the gauge-invariant
derivative

D YM = 0, YM + AM(X)0, X", (3.19)

which indeed obeys §;(D,Y™) = 0. The action (3.14), with
truncated zero modes according to (3.15), can be finally
written as’

*In order to ensure equivalence with the original action, one
has to keep track of the y}, equation of motion, which will be done
in the following.

“Recall that e and u are defined in terms of hep as e = V—=hh;}
and u = h, h;}.
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1
4ra

S = / d?6[V —hh g,,0,X" 05 X"
+ € (B,,0,X"0sX* — AMD,Y ) 05X")]

+

yy— / d*s[D,YMD.Y, —uD,YMD, Y,

- EHMNDGYMD”YN]. (320)
Not only is O(d, d) manifestly realized, but all terms in the
action are gauge invariant under the vector symmetries. For
the two terms involving the B-field and the bare vector A,
one has to check that

1
8;AMEPD,Y 05 X1 = 0,0 + 5,1M;fﬂy’”eaﬁaa)(ﬂaﬂxv,
(3.21)

which exactly cancels the nonstandard transformation
0,B,, = %f WM Ay of the B-field, thus proving invariance
of the action under the spacetime gauge symmetries. The
O(d, d) symmetric action (3.20) also has a manifest zero
mode local symmetry under

6=YY(0,7) = EM(7), (3.22)
that will be used to show equivalence with the (truncated)
original sigma model.

Having found the final form (3.20) of the action, let us
now show that it provides a consistent truncation of the
original theory. To this end we have to determine the zero
mode y} in terms of the untruncated fields so that the
original equations of motion are satisfied. The i-component
of (3.8) gives

1 . . R
27[(1’Pi = EG”<DTY] - MDGYJ) + BijDGYJ —Am@(,X”
(3.23)

upon using the Kaluza-Klein ansatz (3.6), (3.7) and the

definition (3.19) of D, Y. As mentioned above, this also

confirms the transformation law 6, P; = — ﬁ d,7; under the

vector gauge symmetries. Inverting (3.23) and integrating
over o one obtains the original equation for the zero mode y{:

yo(r) = V(1) (3.24)
with
1 [2=
VM(7) = 3 A do[uD, Y™ + ¢eHMND, Yy — A,M0 X",
(3.25)

where (3.15) has been used to ensure p,;, = 0. Integration of
(3.24) then determines y} (7) in terms of the untruncated fields
consistent with the equations of motion. One may also verify

that (3.24) is invariant under the spacetime gauge symmetry.
We note that only the last term above has a nontrivial
transformation under U(1), explicitly

, 1 [z , 1 f[2z ..
V= —— de0 N0 XV = —— dol'. 3.26
) 5 A 00,0, ZT[A o ( )

T

This ensures gauge invariance of (3.24), given that yj =
5 J¢" doY'and 8, Y' = —2'(X). Similarly to the simpler case
discussed in the previous section, one could also fix the
(arbitrary) function y;, by supplementing the action (3.20)
with the manifestly O(d, d) and spacetime gauge invariant
extra equation

Yy =M. (3.27)
The extra condition (3.27) can be viewed as a gauge fixing
condition for the Z¥ symmetry (3.22). In this respect, the
solutions of (3.20) can be embedded into solutions of the
original sigma model, up to gauge equivalence.

We end this section by examining the field equations
obtained from the action (3.20). The Y field equations are
given by a total ¢ derivative:

9,ID,YM —uD, Y™ — eHMND_ Y] = 0, (3.28)
which makes explicit that the action (3.20) does not
determine the dynamics of the zero modes Y¥ (7).
According to (3.28), the quantity in brackets can be an
arbitrary function of 7, say C¥(z), depending on the =-
gauge. It is easy to see that the CM(z) corresponding to the
gauge choice (3.27) is CM = 0, yielding

D YM —uD Y™ — eHMND Y\ =0, (3.29)
that in conformal gauge (e, u) = (1,0) takes the form of a
covariantized self-duality relation:
D M = e,/ HMNDyY . (3.30)
The first-order equation (3.29) is physically equivalent to
the gauge invariant variational equation (3.28). However, it
should be kept in mind that it can be used only when
discussing pure on-shell properties in a fixed ¥ gauge,
and not otherwise.

The field equations for X* resulting from the action
(3.20) read

1
9 (V2XY + T3, VXAV XP) = 2 e [0, X OpX " H,

+20,X*DyYM F ]
1

+ \/—__hd,X”}'WM [D:Yy = uD,Yy — eHynD, Y]
e

N

8, HynDY" D, YN =0, (3.31)
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where &% :=

ﬁe"ﬂ , and V,, denote worldsheet covariant

derivatives built from £,4. In conformal gauge, and using
the E-gauge yielding the first-order equation (3.29), this
reduces to a result of Maharana and Schwarz [6]:

1
9 (OX¥ 4+ T4 ,0°X20,X7) — 3 €0, X 0sX*H,,;
+ 20, X*DgYMF ]

1
- Za#HMNDaYMDaYN — 0, (332)
where we used again the first-order duality relation (3.30) to
recast the last term in a manifestly Lorentz invariant form.
Finally, the equations of motion of the worldsheet metric,
obtained by varying with respect to e and u, are given by

58 1 °o o
—s H = i (€729, X" X" + §,,0,X"0, X"
+ HyunDoYM D, YV,
58 1 Lo y "
=5 =N = i 2e7'g,,X*0,X" + D,Y™D,Y ],

(3.33)

where X# = 0, X — ud, X*.

In the whole discussion so far we glossed over the fate
of worldsheet diffeomorphisms. In an Appendix we exam-
ine this issue in great detail and provide the explicit
realization of diffeomorphism symmetry in the action
(3.20). In particular, we prove that the diffeomorphism
transformations,

5§Xﬂ = éaaaxﬂ7
SeYM = £ 9, Y — & [D,YM — uD Y™ — eHMVD, Y ).
(3.34)

are an off-shell invariance of the action.

IV. ANOMALIES

In the previous sections we have constructed the man-
ifestly O(d, d) invariant worldsheet sigma model (3.20).
Worldsheet diffeomorphism invariance is not manifest, but
it is extensively discussed in Appendix A, as is the
cancellation of gravitational anomalies.

The sigma model (3.20) seems a good starting point to
perform worldsheet perturbation theory in an O(d,d)
covariant way, to all orders in o'. However, from the
analysis of the low-energy spacetime theory, it has been
recently found [19,20] that the B-field acquires a nontrivial
transformation under O(d, d) at first order in o'. This is
reminiscent of the original Green-Schwarz mechanism [34]
in type I or heterotic string theory. Similarly to the heterotic
worldsheet theory that contains chiral fermions in both the

gravitational and gauge sectors, the O(d, d) sigma model
(3.20) is defined in terms of chiral bosons a la Floreanini-
Jackiw [35]. This suggests that the novel O(d, d) Green-
Schwarz mechanism found in [19] can also be explained in
terms of worldsheet anomalies, as we will show here.

A. Framelike worldsheet action

In this section we will focus on the Y sector of the sigma
model. The aim is to exhibit two-dimensional anomalies
that underlie the O(d,d) Green-Schwarz deformation.
Since the o deformation of [19] does not involve the
Kaluza-Klein gauge fields A, we will set them to zero
and focus on the action

1

S, —
V' dnd

/ d*6[0,YM0,Y 1y — Han (X)0,YMO,YN].
(4.1)

It is convenient to rewrite this action in terms of a frame
formalism, which we briefly introduce now. The general-
ized metric can be written in terms of frame fields as
[7,36,37]

Hyn (x) = Ep* (x)hapEn®(x). (4.2)

where we have introduced the frame field E,”, and a
SO(d) x SO(d) constant metric /1,3. The O(d, d) invariant
metric 77,,y, on the other hand, can be written as

My = Ex (X)napEn" (%), (4.3)
where 7745 has the same numerical form as 7,,y. This choice
implies that the frame field itself is an O(d, d) matrix. In the
following we will use #*8 and 7,5 to raise and lower flat
indices. Denoting the inverse vielbein by E4™, such that
EAE\N =6, and E,ME,? = 5,8, the raising and
lowering of indices is then consistent with taking inverses:

EM = nagn™NEN". (4.4)
Furthermore, h,p satisfies the constraints s, Phep =
4p and " Bh,p = 0. In this formalism one has in addition
to rigid O(d,d) transformations local SO(d) x SO(d)
transformations:

8, Ep" (x) = —iBA(x)EMB(x),

SIEAM (x) = 24" (x) Eg™ (x), (4.5)
where the parameters A4% obey the SO(d) x SO(d)
condition A4“hgc =0 and the O(d.d) condition
Aa“npyc = Aap) =0. The SO(d) x SO(d) preserving
condition on A can be conveniently rewritten as
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Aach€p 4 Apch®s = Aach®p — hCadcp = [A, h]up = 0,

where we used h = AT as a matrix.

In the following it will be important to separate irre-
ducible SO(d) x SO(d) representations from any tensor
with indices A, B = 1, ..., 2d. This can be achieved by use
of projection operators

HI;?:B = ((3AB :l: ]’lAB), (47)

N[ =

which, thanks to the constraints stated after (4.4), are
orthogonal and obey I12 = I1,, the completeness relation
1 =11, 4 I_ and TrII, = d. This allows us to decompose
an arbitrary vector V4 as

vA=VvA +vA=VvVAq VA (4.8)
where we shall denote by A an index projected via I1, and
A an index projected by I1_. This way A and A indices carry
the (d,0) and (0, d) representations of SO(d) x SO(d),
respectively. Higher tensors decompose analogously. For
instance, the gauge parameter 1,5 decomposes as

Aag = AaB + 453 (4.9)

with /1(@) =0, /1<ﬁ) =0, where the vanishing of the
off-diagonal components 1,z and 13, follows since

[4,T1.] = 0 by (4.6). This fact makes it manifest that the
gauge group is only SO(d) x SO(d).

Let us finally define the (composite) gauge fields for
the SO(d) x SO(d) gauge symmetry. We start from the
Maurer-Cartan form

w

uAB = EAMayEMB = _WﬂBA7 (4'10)

that can be decomposed into connections Q,4p of
SO(d) x SO(d):

Quap = (H+W;4H+)AB + (H—WMH—)AB = Quap + Qmﬁ’
(4.11)

satisfying Q,ap) = 0, Qa5 = 0, and a tensor P4 in the
(d, d) representation:

Puap = LW, IL) 45 + (TILW, I, ) a5 = Puag + Puagp,

where P, 5 = —P,5 1. More precisely, the transformation
properties under (4.5) are

61Quap = —Dyudap = —(0uap + [Qp- A ap)
610,25 = —Dulap = —(Oulap + (O Alap).

81Puss = aPuc + 25 Puac (4.13)
or, without splitting, 6,045 = =D, s and 6,P up =
[A, P,]sp- Finally, the Maurer-Cartan form obeys the zero
curvature identity dW + W? = 0, which gives rise to the
Bianchi identities

Ruzx = a;th/ - aqu + [Q;u Qv] = _[PWPD]’

where we used matrix notation.

After this review of the frame formalism we now return
to the worldsheet theory (4.1). We perform the field
redefinition that flattens the worldsheet fields Y:

YM = E,M(X)YA. (4.15)
The worldsheet derivatives 9,Y" then become
D YM = E\M(D,YA + W ALYE) = EJMD, YA, (4.16)

where we introduced the pullback Wz := 0,X*W 4 and
the hatted covariant derivative

DYA = 9, YA + WARYE =D, YA+ PARYE,  (4.17)

that differs from the SO(d) x SO(d) covariant derivative
D,, which is defined by this equation, by the above
coupling to P,4p. The action (4.1) can thus be written as

1

S =
Y dndd

/ oD, YAD,Y , — hypyD,YAD,YB].  (4.18)

The zero-mode symmetry 6zYM = =M, with 9,2 =0,
now turns into

5=YA =E4,  where D,24 = 0. (4.19)
By means of the projectors I1, one can split Y* into
SO(d) x SO(d) representations: Y4 = YA + Y4 under
which the action decomposes as

1 ~ N .
Sy =5 / LolD,YAD_Y, + D, YD, vy
T

1
" 2na

+ (DY + P gYB) (D, Y5 + P i cYO)], (4.20)

/

/ d*((D, YA+ PARYE)(D_Y, + P_,cY©)

with Do =1 (D, +D,). Under a local SO(d)x SO(d)
transformation,
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5, Y4 = M ,(X)YE, (4.21)

the hatted derivatives f),,YA transform covariantly, i.e.,

8,(D,Y*) = 24D, YE. (4.22)
It is thus clear that the action (4.18) is invariant under
(spacetime) local SO(d) x SO(d), provided one transforms
simultaneously Y4 and W4E.

We now turn to a general discussion of potential
anomalies in this model, which will be computed explicitly
in the next subsection. It must first be emphasized that the
above invariance under SO(d) x SO(d) is not a genuine
symmetry of the worldsheet theory, since the background
fields (target space fields) need to be transformed as well.
Nonetheless, it is an important consistency condition that
any two configurations of target space fields that are gauge
equivalent (from the target space point of view) give rise to
equivalent worldsheet theories. It is this property that may
become anomalous. This is precisely analogous to heterotic
string theory where the coupling to target space Yang-Mills
gauge fields is quantum-mechanically inconsistent unless
the Green-Schwarz mechanism is invoked [29].

While the SO(d) x SO(d) is not a genuine symmetry of
the worldsheet theory, one can derive consequences from
this invariance property:

oS . 1 P
(4.23)
where we assumed that the Y’s are on-shell: ;;\ =0, and
we have defined
a oS
T4y = 4nd SWAB” (4.24)

which reads in components

jAB - AD YB]’ jf\B = _Y[A(brYB] _2hB]C®aYC)'

(4.25)

While the 7%, are not conserved SO(d) x SO(d) currents
the relation (4.23) implies the projected “‘conservation” law

HﬁcnﬁD(@aja)CD =0, TP (@aja)a) =0, (4.26)

or, using manifest SO(d) x SO(d) indices,
D,J3p+ PaAC«TéB - PaBCj(éA =
D, T8+ PuaCT %y — PasCT %5 = (4.27)

One can explicitly verify that (4.27) holds upon using the
equation of motion

D (D, YA — A pD,Y8) = 0. (4.28)
Despite (4.27) not being a standard conservation law, the
above result shows that the free theory (where W,‘jB is set to
zero) does have conserved SO(d) x SO(d) currents j§p

and jo=:
Jas==Yudo¥s. Jap=—Yu(0:=20,)Yy.
S ==Ya0, e, jor=-Ya(0:+20,)Yp, (4.29)

obeying the usual conservation law 9, ji = 0, 0yj%= = 0.

This emergence of conserved currents can be understood
most clearly in the original form of the action (4.1). In the
free limit H,;y reduces to a constant (its background
value), which is invariant under a global SO(d) x
SO(d), hence giving rise to conserved Noether currents,
given by (4.29).

In order to employ the above action for a perturbative
quantum field theory treatment let us inspect the linearized
coupling to W45

; 1
Sy = 2m agyéa_ Yo+ 0p¥ 0. Yz 4+ 5 WilJGy
+O(W?)
1
zzm, i a YAD_Y, + 8,YA0 Vit QAB o

+5 QAB“ 1 pAt

5 (4.30)

} + O(W?),

which involves the usual interaction term of gauge field and
current, but also a coupling to P4%, through the (d,d)

tensor tz 3 defined as
r _ vBa vA A B,
téB =Y?0,Y2 -Y20,Y
9 = YB(9, —20,)YA - YA(D, +20,)YE.  (4.31)

In a perturbative treatment of the above action, one splits
the “external” coordinate fields X*(z, o) into a background
X} plus fluctuations 7# while, for the present purpose, the
Y4 can be treated as purely quantum. Among others, the
action (4.30) produces the worldsheet vertices
WAB(X0)0,X,J55(Y) and 9, W2AB(Xo)n#Dn*J55(Y). In
principle, these two can combine with the vertex
H,.,,(X0)e?0,X0pn*n*, arising from the expansion of
Js B in (3.20), to produce a two-loop contribution of the
schematic form

o 0 XG0 Xy[H e (W A dW),,,]. (4.32)
Its divergent part contributes to the p-functional of
the metric g,,, thus modifying the Einstein equation
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R, =%1H,/°H,,, + - - by the above o« correction. This is
analogous to the correction underpinning the original
Green-Schwarz deformation [38] that results in the redefi-
nition H - H + % (03(A) — w3(w)). In the present case,
the structure (4.32) matches with the o’ deformation found
in [19].

Let us now discuss the appearance of potential anomalies
in a little more detail. Focusing on the Q-dependent part of
(4.32), the very existence and the precise structure of
the correction is determined by the one-loop two-point
functions

AB .CD
(Ja~Jg ),

ISIRS]

(2% J5")- (4.33)
In the standard heterotic string context, the Green-Schwarz
deformation is driven by the worldsheet chiral anomaly: the
components J%° of the gauge current and J* of the Lorentz
current vanish identically in the classical theory, due to the
chiral nature of the fermions A and y*. The chiral anomaly,
however, gives rise to nonvanishing two-point functions
(JJ_) at one-loop that are ultimately responsible for the
Green-Schwarz deformation.

The situation for the model (4.30) is not exactly the
same, but quite similar. Indeed, none of the currents (4.29)
vanish identically, but half of them are classically trivial:
when written in light-cone coordinates, one has

AE—yA(p, —20_)yE, AE_ylag_yBl,
A
+

JAB=YWA©20, —0_)YB. (4.34)
Let us recall that the free-field equations 9,0_Y4 =0,
0,0.Y A — (0 imply the chirality conditions _Y4 = 0 and
0 +YA = 0 except for the zero-modes Y4 (z). These, how-
ever, are pure gauge, thanks to the free-field symmetry
65Y4 = EA(z), and can be fixed to zero. This shows that,
upon gauge fixing, the classical currents obey

[Is+]

; (4.35)

Focusing on the left-moving sector, at the quantum level the

. . AB .CD, . . .
two-point function (j7~j77) is certainly nonvanishing,
which implies that the classical relations (4.35) cannot
hold. Indeed, the naive Ward identities read

CD AB, \.CD
(P)jz=(=p)) + P+ (=" (P)j5~(=p)) = 0.

(PJEP(=p)) + p- (722 (P)FP(=p)) = 0. (4.36)
so that, if (j_j, ) =0 continues to hold, they cannot be

satisfied, leading to an anomaly. In the following we will
provide a scheme that ensures j_ =0 in all two-point

functions, so that the above shows that 0_j, = 0 cannot be
satisfied if (j,j,) is nonzero.

B. Anomalies of Floreanini-Jackiw

We will now confirm the existence of an anomaly by
computing the above two-point functions. It is sufficient to
focus on the free part of the action, which consists of d left-
moving and d right-moving so-called Floreanini-Jackiw
bosons. Focusing first on the left-moving sector we con-
sider the action

1
= a 4.37
S =5 | E0- 40 (4.37)
where a = 1,...,d. Here we have changed notation to

emphasize that the following holds generally for the
Floreanini-Jackiw model. The action is invariant under
rigid SO(d) transformations given by

St = 2% ¢y, (4.38)

where indices are lowered and raised with the SO(d) metric
0., and its inverse, respectively. The Noether currents
associated with SO(d) are given by

. 1 a Lo
JE=—glogh, =410, -20_)¢",  (4.39)
and are conserved, obeying 9, j* + 0_j* = 0, thanks to
the field equation

0,0_¢* = (0, —0_)0_¢p* = 0. (4.40)
Here and in what follows we shall denote the light-cone
coordinates by x* =7+ ¢, so that 0, =1 (9, £ 0,).
The action and the field equations are Lorentz invariant,
with ¢¢ transforming in a nonstandard way °:

1" = wxT (0, — 0_)P* = wxt0,p",  (4.41)
in contrast with the scalar transformation
Srp = w(xTd, —x~0_)p. (4.42)

Under a Lorentz transformation, a standard one-form A,
transforms as

S AL =w(xT0, —x"0_)AL t wAy,  (4.43)

The action actually has the much larger symmetry
St = EV(xH)0,9* + £ (1)0_¢p%, where &' and &~ are arbitrary
functions of their arguments. This is a manifestation of the
infinite-dimensional conformal symmetry in two dimensions.
Note that the “second Lorentz symmetry” with & (7) = Az is
trivial in the “chiral gauge” 0_¢“ = 0 that we shall employ and
hence this symmetry will not play any role in what follows.
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while the above current transforms according to

51j% = wxT (0, — d_)j,

L% = oxt (0, = 0)j + wji +0j.  (4.44)

To be more precise, the above Lorentz invariance is
present if the theory is defined on the plane, i.e., on two-
dimensional Minkowski space, but we should recall that for
the string we defined the theory on the cylinder, where
7 € R and o € [0, 2x]. The fields can then be expanded in
Fourier modes:

P(z.0) = _¢a(r)e™,

nez

(@n)" =2, (445)

Since the Lorentz transformations (4.41) depend explicitly
on o they do not respect the periodicity conditions, and so
there are no well-defined Lorentz transformations for the
Fourier modes. Thus, on the cylinder Lorentz invariance is
lost. It is also important to note that the action (4.37) does
not contain the zero-mode ¢ (7). This is reflected in the
7-local symmetry
6:p"(z,0) = E%(x), (4.46)

that shifts ¢ by an arbitrary function, while leaving the
nonzero modes ¢ inert.

Upon gauge fixing ¢§(z) =0, the field equation is
equivalent to the chirality condition 0_¢* = 0, showing
that one can consider the on-shell equivalent current

. . 1
=00 =gl (44T)

Notice that the above current j%° transforms as a chiral one-
form, i.e.,
5L = 5.j4 = oxt 0, j% + wjib,  (4.48)
only on-shell, upon using d_¢* = 0.
By using the mode expansion (4.45) one can rewrite the
free action as

1 .
= 2_01/ drz[in¢a"¢in - n2¢an¢in]- (449)

n#0

Upon decomposing the ¢; into two sets (i.e., upon picking
a polarization) this action can be brought immediately
into Hamiltonian form, with the first term taking the
standard pg form. It is then straightforward to perform
canonical quantization, leading to the equal-time commu-
tation relations

/

[ %, m] = géubéiﬁ»m’ n,m ?é 09 (450)
m

with the usual notation 6,,, = 6,,,. We assume from
now on that the zero-mode has been gauge fixed to zero.
Ordinary creation-annihilation operators are defined as

n " n.,.
A% = \[;‘qﬁin, AY = \/gqb n>0, (451

and obey
[A9, A}] = 5906, (4.52)

The mode expansion of the quantum fields ¢“ can thus be
written as

a(1,6) = 3 g/A;“rei"ff A%(7)e~i"7),  (4.53
d)();\/;(() +Ag(r)e™?).  (4.53)

This allows us to compute the equal-time commutator for
the ¢“ fields:

[¢%(z,01), " (z,0,)] = =27 i5c(0) — 0,), (4.54)
with
() = o 3 L i (4.55)
2miizgn ’ '
obeying
€(x) =6(x) — i, e(x) = —e(—x). (4.56)
2z

This clearly shows that the theory is nonlocal in o, given
that two fields at separated points do not commute at
equal times.

The quantum Hamiltonian can be read off from (4.49) as

1
H=5 > 02y (4.57)

n#0
and allows one to compute the Heisenberg equation:
¢ = ilH. ] = ings. (4.58)

This leads to the on-shell expansion

00 /
p(z0) = \/%Al;“em* T AGeT),(4.59)
n=1

showing that the spectrum contains purely left-moving
massless excitations. With the above expansion one can
compute the Feynman propagator:
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A®(z,0) = (0]T{¢"(z.0)¢"(0,0)}|0) = &'6""A(z. 0),

A < i%e—tmﬁ + 9 ) i % einx*) ,
n= n

=1

(4.60)
that can be represented as
AQ) = /de et (4.61)
X)) =— - )
4z k_k, + ie’
where we denoted x* = (r,0), k, = (w,n) and
+o0
/ Pk = / doy . (4.62)
- n#0

The currents (4.39) do not suffer from ordering ambi-
guities at the quantum level, due to antisymmetrization
in the SO(d) indices. We can thus consider j* = 0 and
j4 =L ¢lad, " as quantum operators and use the on-
shell expansion (4.59) to compute the only nonvanishing
two-point function

G (x = y) = (OIT {4 (x)j4 () }0).

Writing the time-ordered product explicitly we have

()|0) +0(z — 71)
(4.64)

(4.63)

G = 0(r — 1,)(0]j4 (x) j§
x (015 ()47 (x)[0).

where x* = (71,0,) and y* = (1,,0,). We then focus on
the first factor and use the mode expansion to obtain

<O|jib(x)jid(y)|0> _ Z Z <0|A —z(n+m)x+A;r)[cA:r]d]ei(P+q))~+|0>
=~ \ np
n.m=1 p,q=1
= 30 D e e (5,5, = 5,5)
n.m=1 p,qg=1 p
Z(§acsbd — gbegad Z 1 ) emintm)(xT—yT)
e 3 G
1
5 (5ac5bd 5bc5ad)F(x+ _ y+>7 (465)
1
where we defined F(x) = - S[1+ e log(1 — e7)]. (4.69)
(=17
F(x)= ) (ﬂ - 1>e—f<n+m>x. (4.66) , . o
w1 \ 72 In order to write the two-point function in momentum

In order to evaluate this function one can perform the sums
on n and m separately. By using

inz”—zi—l -
dz1—-z (1-2)%

- g(z) = —log(1 - z),
(4.67)

one obtains

F(x)=- z=e,  (4.68)

o (@t los(1-2))

or

space, it is more useful to rewrite the double sum in
(4.66) as

0 co N-1
Zf(n,m)zz f(n,N—=n), (4.70)
n,m=1 N=2 n=1
with N = n + m, yielding’
= f: f(N)emiNx, (4.71)
N=1
with
N-1 N
£ =X (5 -2) = Np) #1200 -1, @72)
n=1

®The sum over N can be extended to N = 1 since f(1) = 0.
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where y(x) = % is the digamma function and y the
Euler-Mascheroni constant. It should be mentioned that
rewriting (4.70) is not ambiguous, in that both forms of the
series converge to the same function F(x), that is regular
for x # 0.

The full two-point function can thus be written as

G () = 3 (5726 — 57°5%4)[0(e) F(x")
00 F(~x*)]

1
= 5 (58 = 8 5)G (). (4.73)

At this point one can use (4.71), together with the integral
representation for the step function:

—iwt

i
Otr)=x— [ d , 4.74
(+7) 271/ 6Oa):l:ie ( )

in order to obtain the correlator in momentum space:

&x .
G++(p) = / (277:)2 e_lp“X G++(x)

= s lPr(wllon]) +7) = 2+ 2sign(py)

(4.75)

where sign(x) is the sign function with sign(0) = 0.

The above is a straightforward computation of the two-
point functions (that does not require a regularization
scheme), establishing that they are nonzero, as it should
be for any two-point function of (anti-)Hermitian operators.
By the argument around (4.36) this proves that the Ward
identities are violated, hence establishing the presence
of an anomaly. However, it is not easy to interpret the
corresponding effective action and hence to compute its
(anomalous) transformation. We therefore turn to the more
conventional Feynman diagram computation that does
require a regularization scheme. As is customary also for
chiral fermions we change gears by doing the computation
on the plane, as opposed to the cylinder, which has the
advantage that one regains Lorentz invariance. According to
general lore, an anomaly does not depend on the topology
[39], and so this should not affect the invariant result.

We shall thus consider the action (4.37) on the plane and
couple it to two-dimensional gauge fields A%®, promoting
SO(d) to a local symmetry:

1

SigAl =5

/ d’xD,¢*D_¢,,, (4.76)

where D g% := 0,¢% + A% ¢, and under a local SO(d)
rotation §;,A%" = —D,A%. In order to keep track of index
contractions, it is useful to introduce the matrix

0 1
g = (1 O), where a = (—, 1),  (4.77)

so that the above action can be recast in the form

1

S p—
4ol

/ Pxg Doy Db, (4.78)

that allows one to write the cubic and quartic vertices as

$1= =50 | EIAL B0

Sy = ‘éd/dzxg“/iAg“Aﬁcb¢a¢b. (4.79)
We define the one-loop effective action for A% by

oWl — 71 /D¢eis[¢.A] = (ei(S:+52)), (4.80)

where Z is the free ¢-path integral normalization and we
denote averages by (...). We focus on the quadratic part of

WIA], that is given by

Wy [A] = %<S§>conn. + <S4>

NWQW

(4.81)
By using the propagator
W) = Lo [ f am)
X =— R E— .
Y 4r k_ky + ie
and the Fourier representation
A% (x) = / d*ke'® A% (k) (4.83)

the effective action W,[A] can be written in the form

W2[A]:—;L/dngaygﬂﬁA?b(P)Ha/;(P)A(sab(—P)- (4.84)

The polarization tensor IT,;(p) reads
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Ha/i(p) =~ 5

where the integrand has manifest symmetry in the exchange
ka < (p a ka)'

We regularize the integral over k_ by inserting a factor
ek This allows us to compute the integral by closing
the contour in the complex k_ plane. Although this
regulator is not Lorentz invariant, it does not affect the
anomaly. The remaining integral over k; suffers from
infrared divergences, appearing as fé” | dk—kl‘. This is to be
expected from a two-dimensional massless scalar on the
infinite plane, while this divergence disappears on the
cylinder, due to the discrete spatial momentum. We will
thus regulate the k; integral by introducing an infrared
cutoff u, substituting f(‘)p ! with / ”“’1‘. The various compo-
nents of the polarization tensor read

M, (p) = —2m§ log(|p1|/p) =2,

m__(p) = —2m%10g<|pl|/m,

I (p) = 2xilog(|p:|/u), (4.86)

yielding the effective action

T

Walal =% [ @ p{ 4 o) ol ) =24
AP (p)” =togIpal/) A (~p)

2P () ol Aw(-p) | (@8)

To recast the above expression in the more familiar light-
cone basis one can substitute A%® = A4® — A% and sim-
ilarly p; = p. — p_. Before computing the gauge variation
of (4.87), we shall notice that the term A%” %A_ab differs
from A% ’;—fA_ab by a purely local term, implying that one
can use the latter to compute the anomaly.

To lowest order in A%® one has §;A%"(p) = —ip,A®(p),
finally yielding the anomalous variation

5, W,[A] = ~2zi / P pt(p)p s A_up(—p) + O(A2)

(4.88)

that is Lorentz invariant and structurally the same as the
one due to a chiral fermion. As usual, in order to establish
that (4.88) is a genuine anomaly, one has to consider adding
to the effective action all possible local counterterms. Since

l/dk dk (2k(1 - pa)(Zk/; — pﬁ) — 29(1/)’[/(_161 + (p_ _ k—)(pl _ k])]
) 1 ic ic £
ki(pr = k) (k- +k_1)(k— —pP-= Pl_k1>

(4.85)

(4.88) is Lorentz invariant, the only local counterterm that
can change it is

AWM = a [ @pAL(P)Awl-p).  (459)

leading to

5,(Wy + AW,) = —i / P A (p)[(27 + @) pyA_p(—p)

+ap_Aiu(=p)l- (4.90)

The above result shows that no value of @ can make the
effective action gauge invariant, thus establishing that
(4.88) is a genuine anomaly. We shall choose the value
a = —r, in order to have a purely parity-violating anoma-
lous variation. Defining

WST(A] = W,[A] - 2 / P pAL (p)A_ap(—p).  (491)

with W,[A] given by (4.87), we finally obtain, using

8 WAl =—in / d*pA®®(p)[p+A_ap(—=p) = P-A (=)
1

1
= / dPxd e O, AL . (4.92)

C. Green-Schwarz deformation

After computing the SO(d) anomaly due to left-moving
Floreanini-Jackiw bosons we can now apply the result to
the worldsheet sigma model (3.20). The action for the
“internal” Y sector (4.20) reads

Sy / d*o[(D, YA + P\AgYE)(D_Y, + P_,cY©)

" 27d
+ (D1YA + PIAQYE)(D-&-Y;\ + P+AgY£)]’ (4.93)

with D, YA = 8,YA + 037V, D,YA =09,Y* + 0By

and we recall that Q, = 9,X*Q, and P, = 0,X"P, are

the pullbacks of the background fields.

Our goal is to investigate the one-loop effective action

(still depending on the X* worldsheet fields and back-
ground fields Q, and P,) generated by integrating out

the internal fields (Y4, Y4). We first focus on the case
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Pf;‘B = 0, where one can see that the above action reduces
to the sum of a left-moving FJ action (4.76) with gauged
SO(d), and an analogous right-moving action with gauged
SO(d),. By just replacing ¢¢ — YA, A% — Q4% one
obtains an effective action W,[Q, Q] whose anomalous
SO(d), x SO(d)y variation is given, to lowest order, by

W,[Q, 0] = ﬂ/dzxﬂAge ) Q

~ % / Pxizpe0,08F.  (4.94)

where the right-moving contribution can be obtained by a
computation analogous to the one presented in the previous
subsection.

We can now examine the effect of the P, tensor on the
full effective action W,[Q, Q, P]. Due to the orthogonality
of the two SO(d) groups, the only contribution of P,, to the
quadratic effective action W, has to be of the form

/ PkPA” (k)G (k) Py 5(—k). (4.95)

Since the gauge transformation of the P tensor is §;P,4 5 =
EAQP”QB + lBCPﬂéC, the variation of (4.95), if nonvanish-
ing, cannot contribute to linear order in the background
fields. This shows that, to lowest order in the fields, the
anomalous variation of W[Q, O, P] is given by (4.94), that
can be written in form language as

_ 1 1 _
5,;W[0,0,P] = S—/tr(d/l A Q) —S—/tr(dl A Q).

T T

(4.96)

Since the above result already satisfies the Wess-Zumino
consistency conditions [6,,,6,,|W = &y, ,,)W, (4.96) does
not receive higher order contributions in Q and P, and gives
the full anomaly. Let us mention that in cosmological
settings, where the “external” coordinates X* reduce to
time X° = 7, one has dQ“ = do® A do”8,10410,0¢" =0
and the anomaly is not present.

The above anomalous variation, if not canceled, implies
that gauge-equivalent background fields (from the target
space perspective) lead to inequivalent worldsheet sigma
models, which is not acceptable. Fortunately, in the same
spirit of the original Green-Schwarz mechanism [29], the
anomaly (4.96) can be canceled by postulating a suitable
transformation for the B-field. We recall from (3.20) that
the action involving the Kalb-Ramond field reads

Sp = 4ﬂa,/d2xe Bp. (4.97)

where B, denotes the pullback of B, . At this point, simple
inspection of (4.96) determines that the anomaly can be
canceled by assigning to the B-field the transformation law

/ /
5,78 =S u(dn Q) =T u(dln Q).  (4.98)
Remarkably, this is exactly the transformation found in [19]
from the low-energy target space analysis, thus showing
that its emergence in the worldsheet theory stems from the
anomalies of two-dimensional chiral bosons.

As a final comment, the form (4.96) of the SO(d), x
SO(d)y anomaly shows that the diagonal SO(d) subgroup
remains unbroken. This also agrees with the analysis of
[19] and is to be expected, since the diagonal SO(d) is the
geometric subgroup of SO(d), x SO(d).

V. CONCLUSIONS AND OUTLOOK

In this paper we have revisited the issue of making
the T-duality group O(d,d) a manifest symmetry of the
worldsheet action of (bosonic) string theory. We have
identified a consistent truncation with global O(d, d, R)
invariance, in which the target space fields are independent
of d coordinates while the worldsheet scalars have zero
(internal) momentum and winding. This truncation may be
thought of as the zero-mass sector for a Kaluza-Klein
compactification on a d-dimensional torus, but the top-
ology is no longer relevant—precisely because of the
truncation to zero momentum and winding. As such, this
worldsheet theory is applicable to any setting with d
Abelian isometries, be they compact or not, in particular
to cosmological backgrounds, as employed in [40]. We
have displayed the proper manifestly O(d, d, R) invariant
worldsheet action that includes all target space fields that
survive the truncation.

As the second main point of this paper we have shown
that the SO(d); x SO(d)g local frame transformations are
anomalous, as to be expected given the presence of chiral
bosons. This suggests that a Green-Schwarz mechanism is
needed in which the (external) B-field, which is a singlet in
the classical theory, transforms nontrivially under these
symmetries, in line with recent findings in the target space
theory when higher oder & corrections are included
[19,20]. This result has a direct bearing on any attempts
to determine the target space equations directly in
0(d, d, R) invariant form by computing the beta functions
of a suitable O(d,d,R) invariant worldsheet theory, a
program that was initiated in [10-12]. It will then be
important to revisit this program in light of the present
results, in particular to develop precise computational rules
that allow one, in principle, to determine the equations to
arbitrary orders in «'. In this respect, one of the main
difficulties in using this formalism is the lack of manifest
two-dimensional Lorentz invariance. It would then be
interesting to investigate the proposal, made in [2], of
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modifying the functional measure of the chiral bosons as
D¢ — D¢p(detd,)"/?. This formally relates the path inte-
gral of the Floreanini-Jackiw bosons to the one of chiral
fermions, which is manifestly Lorentz invariant.

A manifestly O(d, d, R) invariant procedure to compute
the beta functions may be particularly fruitful in the
cosmological setting, which is significantly simplified
since the external dimensions are reduced to (cosmic)
time, and where a complete classification of all duality
invariant @ corrections has been found recently [40]. It
remains to fix a finite number of free parameters at each
order in o/, and one may hope that this could eventually be
achieved by a worldsheet computation using the results
given here.

Let us finally mention that while the general phenome-
non for which we provide here a worldsheet interpretation
was first discovered in double field theory [21,23], none of
our findings depend directly on double field theory. They
are a feature of a standard string theory formulation.
Nevertheless, the most enticing extension of this frame-
work would of course be to a full-fledged double field
theory. In the truncation invoked here there is a clear
separation of dimensions along which the fields may vary
(external) and of dimensions along which the fields are
constant (internal), with the O(d, d, R) acting exclusively
on the latter. This truncation is explicitly O(d,d,R)
invariant to all orders in ¢, as follows by general arguments
[41] and explicit computations [40,42], and so there should
be a worldsheet conformal field theory construction giving
these target space equations. However, a genuine double
field theory would go beyond this by having fields that
in addition depend on doubled internal coordinates,
corresponding to the scalar fields Y, subject to the
level-matching constraint (that now does assume a torus
background) and obeying a novel algebra [43]. The results
obtained here may help to illuminate some issues that arise
when trying to define this theory explicitly.
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APPENDIX A: WORLDSHEET
DIFFEOMORPHISMS

Here we derive various nonstandard realizations of
worldsheet diffeomorphisms, which in our formulation
are not manifest. In particular, we show that in the
Hamiltonian picture they are generated by the Virasoro
constraints, as to be expected. More importantly, we also
show that the ¥;, introduced by a nonlocal field redefinition
27 P; = 0,Y;, admit local diffeomorphism transforma-
tions. Finally, we show that diffeomorphism invariance,

despite its nonstandard realization, implies energy-momen-
tum conservation in the standard form.

1. Equivalence between Lagrangian
and Hamiltonian diffeomorphisms

Let us start from the sigma model action (3.5), i.e.,

1

4rad

S, = / d*[V~hh G, ;(X)

+ €aﬂBﬁg<X)]aaj\(ﬁ8ﬂj\(ﬁ, (Al)
where here and in the following the subscript L refers
to “Lagrangian,” as opposed to H which will refer to
“Hamiltonian.” Diffeomorphism and Weyl transformations
take the familiar form

Ophes = f’laghap + 25(a§’1hﬁ>,1 + 2wheg,

5 X = &9, X", (A2)

Using the parametrization (2.5) for the metric one finds

5L = 0,(Q&%) + 20,

Spe = £"0qe + e[0:E" — 0,87 — 2u0,&7],

Sput = E*0uu + 0,87 + ul0,87 = 0,8°] = 9,87 u? + €7,
(A3)

which is awkward, since the basis (e, u, Q) is adapted to the
Hamiltonian formulation.

We will now determine the Hamiltonian form of the
diffeomorphisms, which are generated via Poisson brackets
from the Virasoro constraints. The Hamiltonian action
associated to (Al) was given in (2.6), except that now
we would have to replace all indices by hatted indices,
referring to the totality of internal and external components.
However, here we will not be concerned with the split into
“external” X* and “internal” Y’, and so in order not to
overburden the notation, we shall drop all hats from our
formulas in what follows. In particular, X* and P,, stand for
(n + d)-dimensional phase space variables, G,, and B,
denote the spacetime metric and B-field in (n + d) dimen-
sions and, finally, capital indices M =1,...,2(d + n)
denote O(d + n,d + n) tensors.

The fundamental Poisson brackets are

{X*(01). P,(02)} = 816(0) — 02). (Ad)
The simple form of the constraints in terms of O(D, D)
quantities in (2.10) suggests to use the covariant Poisson
brackets

{ZM(61). ZN(03)} = 272N, 6(0) — 05),  (AS5)

along with
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{Zu(01), ®(X(02))} =

for X-dependent fields, where it is understood that d*®(X) =

local constraint algebra:

{N(01).N(o2)} = (61)Zun(02)0,,6(01 — 02),

{N(o1). H(oy)} = (61)ZN(02) Hyn(02)9,,6(0

{H(o1), H(or)} = ZM(Ul)HMP(Ul)HPN

2nd

where we can reduce Z”0pHyy = 0,X"0, Hyn = 05 Hyy-
Given the local form (A7), the constraint algebra, adopting
the formalism in Refs. [14,44], is most easily read in terms
of the smeared constraints

N(a) = /O ¥ doa(o)N (o),

(A8)
for which the first-class property becomes apparent:
{N(a)), N(@)} = N([a1, o)),
{N(a), H(e)} = H([a€]),
{H(e1), H(e2)} = N([er, &2]), (A9)

with square brackets denoting one-dimensional Lie
brackets, i.e.,

(a1, ] := 1 0pr — 20,01 (A10)

One can choose a diagonal basis for N and H by using the
projectors I3y := 3 (nyn = Hygy) [Which can be quickly
verified to be prOJectors thanks to H,y being an O(D, D)
element]:

1

(N =H) =Ty z"zY. (Al

The Hamiltonian algebra (A9) then takes the manifest
diff; @ bdiff; form:

{Hyi(ay), He(ap)} = Hy([ay, &),

{H(a),H_(p)} = 0. (A12)

The smeared constraints (A8) can be used to determine
the Hamiltonian gauge transformations of the phase space
fields. Taking Poisson brackets one finds

=27 0P (X)5(0,

1—02)—

(62)Z"(0,)0,,6(0

(A6)

- 52)

0. Using (AS5) and (A6) it is indeed simple to compute the

(61)0pHun(01)Z"(61)Z" (01)6(01 — 0,),

| = 02), (A7)

5uX! = {X*,N(a) + H(e)} = ad, X" + eHFyZV,
6P, ={P,.N(a) +H(€)}
1
= 8 aP + €H/4N 768”HMNZMZN,

(A13)

that are the Hamiltonian version of diff, transformations.
Finally, requiring invariance of the Hamiltonian action
under the above local transformations determines the
transformation law of the corresponding Hamiltonian
gauge fields e and u:

dye = 0,¢ — [e, €],

(A14)

[u,e] —[e,a], byu=0,a—[u,a]—

where again square brackets denote one-dimensional Lie
brackets.

The transformation laws (A13) and (Al14) have to be
compared with their Lagrangian counterpart (A3) and
Oy X¥ = £*0,X*. Defining the Lagrangian transformation
o, P, for momenta may seem counterintuitive, but it is
simply determined by considering the transformation of

Pldg — oL

- = 5o as a given function of Lagrangian variables, i.e.,

1 [
=G (0.XY = u0,X") + B, 0,X" |,

1
P ”ag = /
2rna |e

(A15)

that, obviously, is just the on-shell value of the Hamiltonian
momentum. Using the transformation law of P}fg to define
o, P, ensures that such transformations commute with
integrating out momenta.

The simplest way to determine the transformation law of
Plag is to view it as the 7 component of the two-dimensional
vector density

b3 (A16)

a
u

1
= — 2”0/ [\/ —hh ﬂGﬂyﬁ/}X + € ﬂBmﬁﬂX ],

that transforms as
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8.y = Oy(&nf) — Dpeom. (A17)
thus yielding
Op XH = E%0,XH,
0P, =&0.P,+0,(E7P,) +0,& <uP + ﬁeHMNZA) .
(A18)

At this point, the final ingredient to prove equivalence
of the Lagrangian diff, transformations (A18) with the
canonical ones (A13), are the Hamiltonian field equations

Sy

opP,
oS

1

= 0.X" — ud, X" — eH*yZV,

EHﬂNZN

@,’HMNZMZN. (A19)

e

4ra
Inspection of the transformation laws (A13) and (A18)
allows us to determine the relation between the canonical

gauge parameters (a, €) and the geometric vector field &%,
namely

€= ef’, a = E% + uf. (A20)
With the above redefinition we can finally establish the
explicit equivalence between two-dimensional diffeomor-

phisms and canonical gauge transformations as

5SH 5SH
oyXt = o Xt — & ——, ouP, =6.P, T
H L 4 5P, H Py +& SXi
(SHe = (SLE, 5HM = 5LM. (AZI)

The extra terms in 5 X* and 6P, are indeed of the trivial

ij 88 5S

form 8¢’ = p with g antisymmetric. This kind of

local transformatlons is not related to any genuine gauge
redundancy, and can be safely ignored.

2. Locality and O(d .d) invariance of diffeomorphisms

After proving equivalence of Lagrangian diffeomor-
phisms (A18) and Hamiltonian gauge transformations
(A13) for the general sigma model in (n + d) dimensions,
we shall now study the split X# = (X¥,Y?) between
external and internal sectors.

First of all, let us reinstate the original notation, with
hatted symbols denoting (n + d)-dimensional fields, and
rewrite the Lagrangian and Hamiltonian transformations:

1
+ 0, <uP 5 eHMNZN> (A22)

and

SpXt = ad, X" + e?il’A‘NZN,

5HA;¢:86[A,, S ,,N] yP —— €0y 2" 2.

(A23)

Let us also remind the reader that the O(d + n,d + n)
vector ZM is given by

(25
B 27[a/i)ﬁ '

and the O(d + n,d + n) generalized metric is defined in
terms of Gﬁg and Bﬁ,;. R
Upon splitting the phase space variables as X =
(X*,Y") and P, = (P,,P;), we recall that our action
(3.20) is purely Lagrangian in the noncompact sector.
The diffeomorphism transformations thus act as usual:
oXt = £%0,X*, the on-shell momentum P, is given by

(A24)

2nad' P, = 719, X" + B,,0,X* + AMZy,

Xt = 0. XV — ud, X*, (A25)
according to (3.13), and no further investigation is required.

For the internal (Y', P;) sector, we choose the
Hamiltonian form (A23) over the Lagrangian one (A22),
a choice that we will motivate at the end of this section.
According to (A23), the transformations for the phase
space variables Y’ and P; are given by

8Y' = ad, Y + Sﬂiﬁ,zﬁ,

5P; = 0, |aP; + —— eHz 7V |, (A26)

1
2na
where, crucially, the last term of (A23) vanishes in the
transformation of P;, thanks to O,®(X) =0 for any
spacetime field. This last fact implies the most important

property we were after: P; transforms as a total ¢ derivative
under diffeomorphisms.7 This allows us to implement the

field redefinition 2za’P; = 0,Y; without introducing

"This also implies that the center-of-mass truncation p,;, = 0 is
diffeomorphism invariant.

126002-20



OLD DUALITIES AND NEW ANOMALIES

PHYS. REV. D 102, 126002 (2020)

nonlocalities in the transformations. Indeed, consistently
with (A26), we can write

5Y' = ad,Y' + ey 72V,

8Y; = ad,¥; + eH 3 ZV. (A27)
At this point, O(d,d) invariance may look manifest.
However, despite the simple-looking form, the decompo-
sition of the O(d + n,d + n) generalized metric in terms
of O(d,d) covariant n-dimensional fields is somewhat
involved, see [45]. Upon using the Kaluza-Klein decom-
position (3.6), (3.7), as well as (A24) and (A25), we find,
after a straightforward but tedious computation

42N = HiyD,YM — 7 AL(9, X" — ud,X*),
H

== HZ'MD(;Y - e_lAﬂ,»(aTX” - u@UX”). (A28)
This establishes the diffeomorphism transformations of the
double coordinates Y™ in a manifestly local and O(d, d)
covariant form:

SYM = a0, Y™ + e[HMVD,Y y — e AM (0, X" — ud,X")).
(A29)

Recalling the relation (A20) between the Hamiltonian
gauge parameters (a,¢) and the Ddiff, vector &% it is
possible to rewrite the above transformation law in a more
illuminating form:

M — g9, YM — &[D.YM —uD, Y™ — eHMND, Y \].
(A30)

The above transformation law reduces to the standard one,
oYM = £29,YM ‘upon using the self-duality relation (3.29).
However, (A30) provides the correct off-shell diff, trans-
formation in the general case. To summarize, the action
(3.20) is invariant under the worldsheet diffeomorphisms

5§XM — faa X” tha/j — Vaé:ﬂ + Vﬁfa,
S YM = £29,YM — £ DM, (A31)
where we defined the “self-duality vector”
DM := D.YM —uD, YM — eHMND, Yy, (A32)

and we recall that the transformation law (A3) of e and u is
just determined by their definition

(A33)

Invariance of (3.20) under (A31) is assured by the general
reasoning leading to (A30), but it can also be checked
directly by using

55@1‘4 &0, o E[0.DM — ud, D"
- EHMNa(;@N]. (A34)

The variations (A34) can also be used to check that the
algebra of diffeomorphisms closes off-shell, even with the
extra term, according to the usual Lie bracket:
£, = E|0pEs — B0pE0.

[552’551] = 5512’ (A35)

The zero mode shift symmetry (3.22)

8=YM(0,7)=EM(7), 6=X*(0,7)=0, bzhyy(0,7)=0,

(A36)

commutes with diffeomorphisms: [d;, 6z] = 0. However,
the gauge fixing condition (3.27) is not diff, invariant off-
shell. The easiest way to see this is to notice that (3.27) can
be written as

1 2r
— doD" =0,

A37
o (A37)

and its variation under a diffeomorphism is given by

2r
0

2
- / dolE70, DM + £ (ud, DM + eHIND, D),
0

(A38)

that vanishes only on-shell, by noting that the Y field
equation (3.28) is just 9, = 0. This is not in contra-
diction with our claim, namely that the string theory
described by (3.20) is classically equivalent to the truncated
sector of the original sigma model, meaning that the
equivalence holds at the level of the space of classical
solutions.

3. Energy-momentum tensor
and conformal symmetry

We will now derive consequences of diffeomorphism
invariance such as energy-momentum conservation. The
diffeomorphism invariance of the action (3.20) can be
expressed as

oS oS oS
/d2 [ Sz + §§e+ Seu| =0,

507 = (A39)
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where we grouped the “matter fields” as ¢* = (X*, YM).
By evaluating (A39) for on-shell configurations of the
matter fields, i.e., 2 50 95— (), one obtains

/dza — ed,a+ 0,eq)

+ N (0;a — ud,a — ed e + d,e€)] =0,  (A40)
where we used (Al4). The functions H = — % and
N = —% are given by

= ind [e” gm,X”X + G 0,X"0,X"
=+ HMNDO'YMDUYNL
1 o
N = ; [2e—1g,wX”8(,X” + DGYMDGYM], (A41)

where X# = 0. X* — ud,X*. Since (A40) holds for arbitrary
€ and a, we obtain the energy-momentum conservation law
in arbitrary gauge:

0,H = ,(eN + uH) + d,uH + 0,eN,

ON = 0,(eH + uN) + 0,uN + 0,eH. (A42)

Since diffeomorphism invariance can be used to fix
the metric components e and u, one is mostly interested
in studying the model (3.20) in conformal gauge, that
corresponds to e =1 and u = 0. The action (3.20) then
reduces to

See = 4m 07XH 9, X"
+ €(B,,0,X"0sX" — AMD,Y 05X")]
d*s[D,YMD.Y; — HynD, YYD, YV].

4ra
(A43 )

This has to be supplemented with the Virasoro constraints
H = 0, N' = 0. In conformal gauge it is useful to introduce
light-cone worldsheet coordinates ¢* := 7 + ¢, for which

one has
0L = : (0, £9,) _ !
ifz T o) ’7+—* 27
1
Nt = -2, €™ =2, €4 = —5- (A44)

The Virasoro constraints can then be expressed in the more
familiar form 7., = 0, defined by

T++ = E(Hc.g. + Nc.g.)
1 1
= g <gﬂy8+X"8+X" + EH&NDO.YMDGYN> s
T__:= ”(Hc.g - Nc.gA)

1 1
== (g,w@_X”@_X” - EH;M,DGYMDJYN) . (A45)

where the O(d,d) projectors are as in (All) and
D,=D,.—-D_.

Conformal symmetry of the gauge fixed action (A43) is
easily established as the global remnant of diffeomor-
phisms that preserve the conformal gauge choice. From
the transformation law (A14) one has the conditions
d,a=0

5e|conf = 06— 5u|conf =0a—-0,e=0

(A46)

to preserve the conformal gauge. Since in this gauge
Hamiltonian and Lagrangian parameters coincide,
&% = (e, a), one can easily see that the conditions (A46)
are equivalent to the usual analyticity

0_&H =0, 0.8 =0. (A47)
The diffeomorphism transformations (A31) give directly
the conformal transformations leaving (A43) invariant:

Ocont X" = §+8+Xﬂ + & 0_XH,

5coanM = §+8+YM + é_a—YM - (§+ + é:_)
x MyD YN + 11 D_Y"], (A48)

for analytic parameters &t (o), £ (67). Moreover, the

usual diff, algebra (A35) ensures that conformal trans-

formations form two commuting copies of the classical

Virasoro (Witt) algebra.

As a final remark, we notice that the conservation law
(A42) reduces in conformal gauge to analyticity of the
energy-momentum tensor:

0_T,., =0, 0. T__=0, (A49)
despite the nonstandard contributions from the Y sector.
In fact, we shall also notice that the self-duality relation
(3.29), that is DM =0, can be written in conformal
gauge as

Iy D:YY = 0. (A50)
If (A50) is imposed, both the conformal transformations
of Y™ and the Y contribution to the stress-energy tensor
assume the standard form
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Bconf.YM = §+6+YM + 5_6—YM’
1 1
T, = v <9;4uaiX”6¢X” + iHMNDiYMDi YN>,
(A51)

but one should always keep in mind that (A50) is not a
variational equation.

APPENDIX B: CANCELLATION OF
GRAVITATIONAL ANOMALIES

In this Appendix we verify explicitly that for the model
carrying d left-moving and d right-moving chiral bosons
the gravitational anomalies cancel. To this end we compute
the one-loop effective action for the gravitational field and
establish that gravitational anomalies can be canceled
without spoiling O(d,d) invariance. For simplicity we
consider the theory defined by the action (3.20) for the
case of vanishing gauge fields, A, =0, and constant
generalized metric: 9,Hyy = 0. The Y-sector decouples
from the X-sector and reduces to the sum of left and right
Floreanini-Jackiw actions coupled to gravity [46—48]:

SlY.ex] = o [ Pald, (0~ e 0 Vi
+80Y%(87_e—80)YRM]? (Bl)
where we used the O(d, d) projectors to define
YM =M, YV, Y¥ .=1M,yVN (B2)

and introduced e, := u + e. The action (B1) is invariant
under two-dimensional diffeomorphisms acting as

S YN =e 0,YM,  5.YM = 0,YM,

Spey = 06L —e 0,6y +e,.0,ey, (B3)
where the parameters ¢, = a &+ € are given by
ey =& e’ (B4)

in terms of the usual vector field £&*. The action is also
invariant under two separate zero-mode local symmetries:
5s¥¥(0.7) =EM(),  8:Y¥(o.7) =EY(r). (BS)
In order to compute the one-loop effective action for the
gravitational field we start by shifting the gravity fields as
e, =1+¢,, e_.=—-1-¢_, (B6)
so that ¢4 = 0 in conformal gauge. The action (B1) then
splits into a quadratic part and an interaction term, allowing
for a well-defined perturbative treatment:

1
Ara / sz[aaYﬁ/I(aT - 8zf)YLM

+ 80Y§/[(81 + aG)YRM]
,/dQG[(p_aaYR -0,Yg
dra
- ¢+86YL ) a{TYL]
=S¥, 0] + Sg[Yr, 0],

S[YJ/&] =

+

(B7)

where the dot denotes contraction of O(d, d) indices with
nuy- Since the action is the sum of independent left and
right terms, the path integral8 factorizes:

oWlosl = 71 / DY, DY oS-l — eWilo JoWilo ] (BS)

We will thus focus on the left part of the effective action
W, [p.], that can be written as the quantum average

eiWL[(p+] — ZZI /DYLeiSL[YL’¢+] - <e—mfd26(ﬂ+agY1‘-85YL>7
(B9)

and just present the result for We[¢p_].

Due to the zero-mode symmetry (B5), the kinetic
operator 9,(0, — d,) is not invertible. Gauge fixing (B5)
with appropriate boundary conditions at asymptotic times
[46] yields a trivial path integral for the zero-mode Y% (7).
The above path integral is thus understood as [ DY, over
the nonzero mode part of Y¥ only:

Y¥(0,7) =YY (0,7) — Y} (2), (B10)
whose propagator is well defined and given by
(Y (x)YY(y)) = —47ra’iHMN/@eik'(x—y)k_+ 1
L L + (2”)2 kl k2 _ ieﬂ
(B11)

where the momentum k, := (w, n), with discrete n € Z in
the o direction, and the “integration” measure is defined by

/ [d2k] = /_ :° da);.

We have also changed notation by denoting the worldsheet
coordinates as x* = (r, 0), in order not to confuse ¢* with
the spatial component o.

Equipped with the propagator (B11) we can compute
W || up to quadratic order:

(B12)

*We fix the normalization Z to be the free Y-path integral, so
that W[0] = 0.
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Wilp,] = idA / dxp(x) - id/ d*x

d*>y d’p .
ip-(x=y) I
< [ o e e ()I(p).
(B13)
with the tadpole A and the bubble diagram /(p) defined by
B / (k] kik,
) )k —ie’

I(p) = /[dzk] kljlgg (m(; i-l)k()l;i—:fr)'

(B14)

We regulate the frequency integrals [see (B12)] by inserting
a factor of ¢/ This is sufficient to make I( p) finite, while
a divergent contribution has still to be subtracted from the
zero-point energy A. Although the regulator manifestly
breaks Lorentz symmetry, we will be only interested in the
nonlocal part of the effective action, that is not affected by
changing the regularization scheme. The finite results for
the above diagrams are

. . 3
l It py— P
A=——, I = - B15
487 (p) 24 p_ ( )
which allows us to write the effective action as
143 [€0+]
d d &R +0
—_ d2 _ d2 1 1 3
a5, | TR0+ toe | dxes < 5 o+t O(e7)
d 3 +0
=— d2x¢+< + +>(p+ +local terms + O (g3, ).
967 _
(B16)

d 2% +0
W o] = 96—”/ dzx{€0+ <7+6 -

>(/’+ + - (%) qo_} +O(¢3)-

Genuine anomalies are the ones that cannot be canceled by
adding local counterterms (that reflect different regulariza-
tions) to the effective action. That is why we only need to
focus on the nonlocal part of W, above.

We can now compute the gauge transformation of the
effective action. Using the transformation law

Oep =20 €, — 018, + .00, (B17)

it is easy to see that the anomalous variation of (B16) is
given by

d
S Witlo ] = —E/JZX€+(63_ +0, )9y + O(¢?).

(B1S)

The term e_.0,¢. can be canceled by adding a local
counterterm proportional to ¢, — 1?2, but the term cubic
in 0, cannot be canceled and represents the genuine
gravitational anomaly (to lowest order in ¢ ) of the chiral
bosons Y¥ on the cylinder. The anomaly is the same
obtained on the plane from d left-moving Floreanini-
Jackiw bosons [47,49,50]. This ensures that adding the
contribution Wgle_] allows us to cancel the gravitational
anomaly completely.

To be more explicit, adding the contribution from the
right-moving fields Y¥ one obtains the full nonlocal
contribution:

(B19)

The gravitational anomaly of the above expression can indeed be canceled by adding a local counterterm that involves the
third degree of freedom of the worldsheet metric: the conformal factor Q. Denoting the deviation of Q from its flat space
value by ¢ :== Q — 1 one can add to (B19) a local counterterm AW/|¢p., ¢] and define the effective action as

3 3

d 0 c
Waloedl =go [ 0. S0t 050 420.0.0.0-~40(@p, +320.) + 400,09}
- +

d 0 KR .
+@/ dzx{%a—ffm +2¢, — % + V-5 - 20— 6/)2_} + O(fields?).

(B20)

One can check that the above effective action is invariant under diffeomorphisms (to lowest order in the fields, since we are
considering only the quadratic part of W) with transformations
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Sepp =20_e, — 018, + .01,
Oup_ = —20,6_ —@p_01e_ +€_01¢_,

1
o =06, —0_e_+ §a+ [p (e~ —€,) +2¢e ]

+ %6_[(p_(8_ — &) = 2¢e_] + O(field®). (B21)

Let us mention that the last line in (B20) is invariant by
itself and the tadpoles (linear terms) in ¢ just reflect the
nonzero Casimir energy on the cylinder, i.e., (T+.) # 0.

As it happens for ordinary scalars, the price to pay to
restore diffeomorphism invariance is the breakdown of
Weyl symmetry. While ¢, are exactly Weyl invariant,
8,0 = 2w + O(¢) and one readily obtains

d
S Wetto+. 9] = E/szw@&ﬁ_(ﬁ - P, —0%p)

+ Ofield?). (B22)

To lowest order in the fields this is
d
8o Weit @+, ] = 2 d*xvV-hwR,  (B23)

thus yielding the trace anomaly

(1e) = —< R

B (B24)

This confirms that the internal Y™ sector just contributes
to the trace anomaly with d units of both left and right
central charge. Indeed, including the n external ordinary
bosons X*, one has the requirement n + d =26 for
criticality.
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