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We revisit the question whether the worldsheet theory of a string admits a global Oðd; dÞ symmetry. We
consider the truncation of the target space theory in which fields are independent of d coordinates, which is
Oðd; d;RÞ invariant. The worldsheet theory is not Oðd; d;RÞ invariant, unless it is truncated by setting
winding and center-of-mass momenta to zero. We prove consistency of this truncation and give a
manifestly Oðd; d;RÞ invariant action, generalizing a formulation due to Tseytlin by including all external
and internal target space fields. It is shown that, due to chiral bosons, this symmetry is anomalous. The
anomaly is cancelled by a Green-Schwarz mechanism that utilizes the external B-field.
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I. INTRODUCTION

T-duality is a property of string theory that emerges upon
quantizing the string on a toroidal background. Naturally,
there have been numerous papers addressing the question to
which extent and inwhich sense theT-duality groupOðd; dÞ,
either in its discrete or continuous version, is a duality or
symmetry of the (classical or quantum) worldsheet theory
(see [1–18] for an incomplete list of references). We never-
theless come back to this issue, partly motivated by recent
developments on the interplay of higher-derivative α0 cor-
rections andOðd; d;RÞ invariance of the target space theory,
both in conventional [19,20] and in double field theory
formulations [21–26]. We will first identify a certain con-
sistent truncation of the worldsheet theory of the bosonic
string inwhichOðd; d;RÞ is amanifest symmetryclassically,
and second argue that this symmetry becomes anomalous
quantum mechanically due to the worldsheet scalars being
chiralbosons.This in turn implies that aGreen-Schwarz-type
mechanism is required in close analogy to anomaly cancel-
lation in heterotic string theory.
We begin by asking the following: Is the (classical or

quantum) string worldsheet theory Oðd; dÞ invariant, either
under the discrete or continuous group? The first relevant
observation here is that in theHamiltonian formulation of the
worldsheet theory, for arbitrary backgrounds, a “generalized
metric”HMN emerges that combines the metric and B-field
into anOðd; dÞmatrix. However, as wewill review, this does

not mean that the worldsheet theory has a locally realized
Oðd; dÞ symmetry in general. A genuine Oðd; dÞ duality
invariance is usually only expected to emerge on toroidal
backgrounds. Suppose then that the target space is a torus in
which a classical string propagates. Is the worldsheet theory
Oðd; dÞ invariant? It is not, because there arewindingmodes
that are discrete, due to the topology of the torus, while the
center-of-mass momenta, which should pair up with the
winding modes into an Oðd; dÞ multiplet, are continuous.
One could constrain themomenta by hand to be discrete, but
there seems to be no physical justification for doing so.
Similarly, one could promote the winding numbers to
dynamical fields (functions of worldsheet coordinates),
but then one is no longer dealing with a theory of strings
since theworldsheet scalars are notwell-definedmaps on the
torus preserving the torus boundary conditions. Rather, the
proper Oðd; d;ZÞ emerges when quantizing the worldsheet
theory, because then the momenta are quantized, hence
naturally pairing up with the discrete winding numbers.
More precisely, theOðd; d;ZÞ is then a duality (T-duality) in
which a change of background leads to a physically equiv-
alent theory inwhichmomentum andwinding is exchanged.
The above is standard textbook folklore of string theory,

but here we will revisit the issue from a slightly different
point of view. We start from the observation that when one
truncates the target space theory by taking all fields to be
independent of d coordinates (for instance, by restricting to
the massless fields for Kaluza-Klein compactification on a
torus Td) a global Oðd; d;RÞ symmetry emerges.1 If we
now couple a classical string to this theory (in the sameway*roberto.bonezzi@physik.hu-berlin.de
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1This symmetry is in fact a consequence of the Oðd; d;ZÞ
duality that target space closed string theory exhibits, since in the
truncation both the usual massive Kaluza-Klein modes and their
dual “winding” Kaluza-Klein modes disappear, so that the theory
loses all memory of the torus topology, thereby enhancing
Oðd; d;ZÞ to Oðd; d;RÞ.
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that one may couple a point particle to Einstein gravity)
does the combined system have an Oðd; d;RÞ symmetry?
We will show that in general it does not, not even under the
discrete subgroup, but that there is such a symmetry if one
truncates also the worldsheet theory by setting winding and
center-of-mass momenta to zero. This makes sense since it
reflects the truncation of the target space theory. Note that
this truncation only refers to the internal sector (the
coordinate directions on which the target space fields no
longer depend), and so the string still has a nontrivial
dynamics thanks to the external space. As one of our
technical results we establish consistency of this truncation,
for which the worldsheet action takes the manifestly
Oðd; d;RÞ invariant form

S ¼ −
1

4πα0

Z
d2σ½

ffiffiffiffiffiffi
−h

p
hαβgμν∂αXμ∂βXν

þ ϵαβðBμν∂αXμ∂βXν −Aμ
M∂αYM∂βXμÞ�

þ 1

4πα0

Z
d2σ½DσYMDτYM − uDσYMDσYM

− eHMNDσYMDσYN �; ð1:1Þ

where Xμ and YM are the embedding scalars for the external
and internal space, respectively, and gμν, Bμν, Aμ

M and
HMN are target space fields depending only on X.
Moreover, we defined the covariant derivative

DαYM ≔ ∂αYM þAμ
MðXÞ∂αXμ ð1:2Þ

with worldsheet coordinates σα ¼ ðτ; σÞ. This action is
manifestly Oðd; d;RÞ invariant, with M;N ¼ 1;…; 2d
being fundamental Oðd; d;RÞ indices. In particular, the
internal scalars YM are doubled, but the above action is
equivalent to the standard sigma model action in this
truncation, since the second-order field equations imply,
through integration and gauge fixing, first-order duality
relations. The above action generalizes a reformulation of
the worldsheet action due to Tseytlin [1,2] by including all
external and internal target space fields that survive the
truncation, in particular the external B-field that turns out to
be instrumental for the Green-Schwarz mechanism. The
above Lagrangian, which provides an action principle for
equations of motion given by Maharana and Schwarz in
[6], was also given by Schwarz and Sen in [27] and
revisited recently in [28]. The action is indeed invariant
under two-dimensional diffeomorphisms and Weyl trans-
formations, albeit not manifestly so, since the worldsheet
coordinates have been split in the second line, where e and
u are the components of the worldsheet metric hαβ, defined

by e ¼ ffiffiffiffiffiffi
−h

p
h−1σσ and u ¼ hτσh−1σσ . We will give a careful

analysis of the nonmanifest two-dimensional diffeomor-
phism invariance and of the complete Virasoro constraints.
The results above apply to the classical worldsheet

theory. As the second main point of this paper we then

turn to its quantization and point out that since the
worldsheet scalars are chiral (self-dual) bosons, the
Oðd; d;RÞ symmetry of the classical theory is expected
to be anomalous. More precisely, it is technically and
conceptually easier to work in a frame formulation, based
on the coset space Oðd; d;RÞ=SOðd;RÞL × SOðd;RÞR,
where it is the gauge group SOðd;RÞL × SOðd;RÞR that
becomes anomalous. The presence of anomalies is con-
firmed independently by the recent result that in the target
space theory the Oðd; d;RÞ symmetry, or alternatively the
SOðd;RÞL × SOðd;RÞR symmetry, requires a deformation
at order α0 [19,20], which from the point of view of the
worldsheet theory cancels the anomaly via the Green-
Schwarz mechanism. This state of affairs mimics heterotic
string theory, for which the worldsheet theory is anomalous
due to the presence of chiral fermions, which gives a
worldsheet interpretation of the Green-Schwarz mechanism
[29,30]. In the present context we prove that the one-loop
effective action W defined in terms of (1.1) by

eiW½g;B;A;E� ¼ Z−1
Z

DYeiS ð1:3Þ

transforms under SOðd;RÞL × SOðd;RÞR to lowest order
as

δλW ¼ 1

8π

Z
trðdλ ∧ QÞ − 1

8π

Z
trðdλ̄ ∧ Q̄Þ: ð1:4Þ

Here E is a frame field for HMN and Q and Q̄ are the
(composite) SOðd;RÞL × SOðd;RÞR connections. This
anomaly is cancelled by assigning the following trans-
formation to the B-field:

δλBμν ¼
α0

2
trð∂ ½μλQν�Þ −

α0

2
trð∂ ½μλ̄Q̄ν�Þ: ð1:5Þ

We also discuss and establish various other features
regarding the quantum consistency of the worldsheet
theory, including absence of gravitational anomalies
[31], see also [32,33].
This paper is organized as follows. In Sec. II we review

and clarify the Hamiltonian formulation of the worldsheet
theory for strings with a toroidal target space. In particular,
we introduce the proper truncation in whichOðd; d;RÞwill
be made a manifest symmetry of the classical action. In
Sec. III we turn to the coupling of the worldsheet theory to
the target space string theory and display the worldsheet
action and equations of motion in a manifestly Oðd; d;RÞ
invariant form. Then, in Sec. IV, we show the presence of
anomalies and the need to invoke a Green-Schwarz
mechanism. We close with a brief conclusion and outlook
section. In two Appendixes we perform a careful analysis
of the diffemorphism invariance of the worldsheet theory,
which is no longer manifest, and show that there are no
gravitational anomalies.
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II. CLASSICAL STRING ON A TORUS

In this section we study the dynamics of a classical
closed string on a toroidal target space Td, representing the
compact part of aD ¼ dþ n dimensional spacetime with d
Abelian isometries, and we shall focus for the moment on
the dynamics along those directions alone. In particular, we
consider the string coordinate embeddings Xiðσ; τÞ coupled
to background fields Gij and Bij in the Polyakov sigma
model

S¼−
1

4πα0

Z
d2σ½

ffiffiffiffiffiffi
−h

p
hαβ∂αXi∂βXjGijþϵαβ∂αXi∂βXjBij�;

ð2:1Þ

where the worldsheet metric hαβ has Minkowski signature
ð−;þÞ and ϵ01 ¼ −1. The compact space arises upon
identifying xi ∼ xi þ 2πLi, where Li ≔

ffiffiffiffi
α0

p
wi with integer

winding numbers wi ∈ Z. Correspondingly, the allowed
boundary conditions for the closed string worldsheet fields
read (we use σ ∈ ½0; 2π�)

ΔXiðτÞ ≔ Xið2π; τÞ − Xið0; τÞ ¼ 2πLi; ΔhαβðτÞ ¼ 0:

ð2:2Þ

The classical configuration space of the closed string is thus
split by boundary conditions into the direct sum of disjoint
topological sectors, labeled by the winding vector Li. The
noncompact case is covered by setting Li ¼ 0. In view of
the boundary conditions (2.2) one can separate the winding
sector as

Xiðσ; τÞ ¼ Liσ þ X̄iðσ; τÞ ¼ Liσ þ
X
n∈Z

xinðτÞeinσ; ð2:3Þ

since the shifted field obeys ΔX̄i ¼ 0. Let us mention that
the variational principle with the action (2.1) is well
defined, since neither hαβ, ∂αXi nor δXi have winding
contributions.

A. Hamiltonian formulation

We now turn to the Hamiltonian formulation, which
turns out to be useful for identifying the symmetries. The
first step is to find the momenta conjugate to Xi:

Pi ¼
1

2πα0

�
1

e
Gijð _Xj − uXj0 Þ þ BijXj0

�
; ð2:4Þ

where, as usual, a dot (prime) denotes a derivative with
respect to τðσÞ, and we defined the components of the
worldsheet metric (that will become Hamiltonian Lagrange
multipliers) via

hαβ ¼
Ω
e

�
u2 − e2 u

u 1

�
; hαβ ¼ 1

eΩ

�−1 u

u e2 − u2

�
:

ð2:5Þ

The total Hamiltonian consists entirely of first class
constraints, as it should be in any diffeomorphism invariant
theory. The action can then be written as

S ¼
Z

d2σ½Pi
_Xi − eH − uN �; ð2:6Þ

where

N ≔ PiXi0 ;

H ≔
1

2

�
2πα0GijPiPj − 2GikBkjPiXj0

þ 1

2πα0
ðG − BG−1BÞijXi0Xj0

�
: ð2:7Þ

Naturally, upon integrating out Pi by solving its own
equations of motion and back-substituting into the action
one recovers the Polyakov action (2.1). The functions in
(2.7) are phase space constraints (also referred to as
Virasoro constraints) that are the canonical generators of
worldsheet diffeomorphisms, being the Hamiltonian coun-
terparts of the traceless worldsheet stress-energy tensor Tαβ.
We notice that the third degree of freedom of the metric hαβ,
its overall conformal factor Ω, drops out of the action. In
Hamiltonian language, conformal gauge corresponds to
gauge fixing e ¼ 1 and u ¼ 0.
Both Hamiltonian constraints can be put in a formally

Oðd; dÞ invariant form by defining

ZM ≔
� ∂σXi

2πα0Pi

�
; ð2:8Þ

as well as the Oðd; dÞ invariant metric ηMN and the
generalized metric HMN ,

ηMN ¼
�

0 δi
j

δij 0

�
; HMN ¼

�ðG−BG−1BÞij BikGkj

−GikBkj Gij

�
:

ð2:9Þ

The functions in (2.7) can now be written as

N ¼ 1

4πα0
ηMNZMZN; H ¼ 1

4πα0
HMNZMZN: ð2:10Þ

Although the Hamiltonian thus takes a formally Oðd; dÞ
invariant form, the full action is not obviously Oðd; dÞ
invariant. First, the Oðd; dÞ vector ZM in (2.8) is defined in
terms of derivatives of the fundamental field Xi and hence it
is not clear whether there is a locally realized Oðd; dÞ
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symmetry even for the Hamiltonian terms. Second, the
“symplectic current” Pi

_Xi is part of the action and not
manifestly invariant.
In order to elucidate the above issues, we will work

explicitly with Fourier modes defined as

Xiðσ;τÞ¼Liσþ
X
n∈Z

xinðτÞeinσ; Piðσ;τÞ¼
X
n∈Z

pinðτÞeinσ;

eðσ;τÞ¼
X
n∈Z

enðτÞeinσ; uðσ;τÞ¼
X
n∈Z

unðτÞeinσ; ð2:11Þ

where we recalled (2.3). Here we assume the reality
conditions φ�

n ¼ φ−n for all modes φn ≔ ðxin; pin; en; unÞ.
The action (2.6) then reads

S ¼ 2π

Z
dτ
X
n∈Z

½pin _xi−n − e−nHn − u−nN n�: ð2:12Þ

Before giving the explicit expression for the modesHn and
N n of the Virasoro constraints, let us introduce Fourier
modes for the Oðd; dÞ vector ZM as

ZMðσ;τÞ¼LMðτÞþ
X
n≠0

ZM
n ðτÞeinσ; where

ZM
n ðτÞ¼

�
inxinðτÞ

2πα0pinðτÞ

�
; n≠0;

LMðτÞ¼
�

Li

2πα0pi0ðτÞ

�
: ð2:13Þ

At this point one can perform an invertible field redefinition
by setting

2πα0pinðτÞ≕ inx̃inðτÞ; n ≠ 0; ð2:14Þ

that corresponds to defining dual coordinates X̃iðσ; τÞ
via [1]

2πα0Pi ¼ ∂σX̃i: ð2:15Þ

Integration of (2.15) gives

X̃iðσ; τÞ ¼ 2πα0pi0ðτÞσ þ x̃i0ðτÞ þ
X
n≠0

x̃inðτÞeinσ; ð2:16Þ

which introduces a zero mode x̃i0 of X̃i that does not appear
in the original action, and for which it is not clear that it can
become part of an Oðd; dÞ multiplet. Moreover, note that
the dual fields X̃i do not describe a closed string winding
around a “dual torus,” since their boundary conditions are
not constant nor labeled by integers, and so in general the
X̃i cannot combine with the Xi into an irreducible Oðd; dÞ
representation. Nonetheless, from (2.13) and (2.14) one can
still define the Oðd; dÞ nonzero modes

XM
n ðτÞ ≔

�
xinðτÞ
x̃inðτÞ

�
; n ≠ 0; ð2:17Þ

and LMðτÞ as in (2.13).
Next, we rewrite the Virasoro constraints in terms of

these Fourier modes. While the general Hamiltonian form
of the action given above is valid for arbitrary backgrounds
Gij and Bij, we here focus on the torus and assume that the
backgrounds are constant. The modes of the Virasoro
constraints then take the formally Oðd; dÞ covariant form

N n ¼
ηMN

4πα0

�
2inXM

n LN −
X
k

kðn− kÞXM
k X

N
n−k

�
; n≠ 0;

N 0 ¼
ηMN

4πα0

�
LMLN þ

X
k

k2XM
k X

N
−k

�
;

Hn ¼
HMN

4πα0

�
2inXM

n LN −
X
k

kðn− kÞXM
k X

N
n−k

�
; n≠ 0;

H0 ¼
HMN

4πα0

�
LMLN þ

X
k

k2XM
k X

N
−k

�
; ð2:18Þ

while the symplectic term can be recast in the form

2π

Z
dτ

�
pi0 _xi0 þ

1

4πα0
ηMN

X
n≠0

inXM
n
_XN
−n

�
: ð2:19Þ

Even though the nonzero modes XM
n can transform under

an arbitrary Oðd; dÞ rotation as X0M
n ¼ ΩM

NXN
n , the

momentum-winding vector LM in general breaks the
boundary conditions under Oðd; dÞ: if we parametrize
the Ω matrix as

ΩM
N ¼

�
ωi

j αij

βij γi
j

�
; ð2:20Þ

one has L0i ¼ ωi
jLj þ 2πα0αijpj0ðτÞ. The α transformation

in particular yields a nonacceptable boundary condition for
the duality-rotated coordinate X0i. Even if one is only
interested in transforming classical solutions, where
pi0ðτÞ ¼ ki is constant, the discreteness of Li, that
descends purely from topology, is violated by ki ∈ Rd

for a generalOðd; dÞ rotation, even in the discrete subgroup
Oðd; d;ZÞ. As mentioned in the Introduction, one could
truncate the spectrum by hand by taking the components
pi0 ¼ ki to be integers, thus mimicking the quantization
condition that, however, is not part of the original classical
theory. In contrast, at the quantum level the eigenvalues of
the momentum zero mode p̂i0 take the discrete values

ni
2π

ffiffiffi
α0

p ,

and so it is only here that one obtains the well-known
T-duality group Oðd; d;ZÞ.
It seems thus that neither the classical action nor the

classical solutions of the closed string are invariant under
Oðd; dÞ. However, one can try to focus on a particular
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subsector of the classical theory: to begin with, we shall
restrict the analysis to the topological sector with zero
winding, i.e., Li ¼ 0. Classical solutions are also labeled
by a constant center-of-mass momentum pi0 ¼ ki, and
we will restrict our discussion to the class of zero
momentum solutions, pi0 ¼ 0. Clearly, this subclass of
solutions is closed under continuous Oðd; d;RÞ rotations,
since LM ¼ 0 is invariant.
Some comments are now in order: first of all, restricting

to string solutions with vanishing center-of-mass momen-
tum looks quite unphysical. However, one has to keep in
mind that in the full theory (to which we shall turn in the
next section) the compact space is only part of the entire
spacetime. In fact, the low-energy effective field theory,
that displays theOðd; d;RÞ symmetry, precisely consists of
fields that do not probe the internal space. In particular, they
have zero Kaluza-Klein momenta and, obviously, cannot
display winding. In this respect, it seems natural to consider
the string dynamics restricted to zero winding and internal
momentum as the suitable probe for the low-energy
spacetime field theory.

B. Truncated dynamics and consistency

In order to restrict the space of classical solutions to zero
winding and center-of-mass momentum, one can consider
the truncated action obtained by setting Li ¼ 0 and pi0 ¼ 0
in (2.12):

S0 ¼ 2π

Z
dτ
X
n∈Z

�
1

4πα0
inXM

n
_X−nM − e−nHn − u−nN n

�
;

ð2:21Þ

with truncated Virasoro modes

N n ¼ −
ηMN

4πα0
X
k∈Z

kðn − kÞXM
k X

N
n−k;

Hn ¼ −
HMN

4πα0
X
k∈Z

kðn − kÞXM
k X

N
n−k: ð2:22Þ

The above action, which is manifestlyOðd; d;RÞ invariant,
can be rewritten in local form as

S0 ¼ 1

4πα0

Z
d2σ½∂σXM∂τXM − eHMN∂σXM∂σXN

− u∂σXM∂σXM�: ð2:23Þ

This is Tseytlin’s original proposal, but with two-
dimensional diffeomorphism invariance left intact (albeit
in a nonmanifest form). Taking XMð2π; τÞ ¼ XMð0; τÞ
automatically sets both winding and center-of-mass
momentum to zero, since 2πα0pi0 ¼ 1

2π

R
2π
0 dσ∂σX̃i ¼ 0.

The equations of motion for the nonzero modes XM
n (or,

which is the same, xin and pin) as well as the Virasoro

constraints coincide with the original ones obtained from
(2.6) or (2.12) upon choosing the solution pi0 ¼ 0. On the
other hand, one has to be more careful with the zero modes
XM
0 : neither xi0 nor x̃i0 appear in the action (2.23), that

indeed has the obvious gauge symmetry δXM ¼ ΞMðτÞ.
While this is fine for x̃i0, for which it is just a redundancy of
the field redefinition 2πα0Pi ¼ ∂σX̃i, it is not equivalent for
xi0 that does possess a nontrivial equation of motion in the
original theory. We view the reduced action (2.23) as
providing the dynamics for the nonzero modes XM

n and
then establish that this is a consistent truncation of the full
worldsheet theory. To this end we have to show that once a
solution is provided for the nonzero modes (modulo
worldsheet diffeomorphisms), we can embed it into a
solution of the full theory. This means that we have to
give xi0 in terms of the untruncated fields so that the
complete equations of motion of the original theory are
satisfied.
Let us then study the original field equation for the zero

mode xi0ðτÞ. Generally, the second-order Lagrangian equa-
tions of motion are equivalent to the two sets of
Hamiltionian equations obtained by varying with respect
to Pi and Xi, respectively. The former equation can be
obtained by inverting the definition of canonical momenta
(2.4),

_Xi ¼ uXj0 þ eGijð2πα0Pj − BjkXk0Þ: ð2:24Þ

The equation for the zero mode xi0ðτÞ can then be obtained
by integrating over σ,

_xi0ðτÞ ¼ ViðτÞ; ð2:25Þ

where from (2.24) we notice that Vi is naturally the upper
component of the Oðd; dÞ vector

VMðτÞ ¼
�
ViðτÞ
ṼiðτÞ

�
≔

1

2π

Z
2π

0

dσ½u∂σXM þ eHMN∂σXN �:

ð2:26Þ

The Hamiltonian equation obtained by varying with respect
to Xi reduces for the zero modes to _pi0 ¼ 0, since the
functions (2.7) are independent of xi0 (they depend only on
Xi0). Thus, these equations are trivially satisfied for
pi0 ¼ 0, and so we only have to worry about Eq. (2.25).
Given a solution to the field equations derived from (2.23)
(that leave the zero modes completely undetermined), one
can directly integrate (2.25):

xi0ðτÞ ¼ xi þ
Z

τ

0

dτ0Viðτ0Þ: ð2:27Þ

This is the embedding into the full theory, which by
construction satisfies the equations of motion. Note that
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we could use the lower component of (2.26) to similarly
define a function x̃i0ðτÞ, but there is no need to do so since
such a dynamical variable does not appear in the original
theory.

III. GENERAL WORLDSHEET ACTION

A. Kaluza-Klein split

In this section we are going to consider the more
general sigma model of a closed string propagating on a
target ðD ¼ dþ nÞ-dimensional spacetime characterized
by d Abelian isometries. We will choose coordinates
x̂μ̂¼ðxμ;yiÞ, with μ¼0;…;n−1 and i¼1;…;d such that
all spacetime fields are independent of yi, being the isometry
directions, either compact or not. The n-dimensional space-
time field content consists of [6] the following:

(i) the n-dimensional metric, dilaton and Kalb-Ramond
fields gμν, ϕ and Bμν,

(ii) 2d Abelian gauge fields forming an Oðd; dÞ vector:

Aμ
M ¼

� Ai
μ

Ãμi

�
ð3:1Þ

which originate from the off-diagonal components
of the higher dimensional metric Ĝμ̂ ν̂ and B-
field B̂μ̂ ν̂,

(iii) d2 scalar fields Gij and Bij originating from the
internal components of Ĝμ̂ ν̂ and B̂μ̂ ν̂, that organize
into the Oðd; dÞ valued generalized metric HMN .

The reduced n-dimensional effective field theory action
reads [6]

SFT ¼ 1

2κ2

Z
dnx

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ 4∂μϕ∂μϕ −

1

12
HμνρHμνρ

−
1

4
HMNF μν

MF μνN þ 1

8
∂μHMN∂μHMN

�
; ð3:2Þ

where n-dimensional spacetime indices are raised with the
inverse metric gμν. The Abelian field strength is given by

F μν
M ¼ ∂μAν

M − ∂νAμ
M; ð3:3Þ

while the three-form curvature Hμνρ needs an Abelian
Chern-Simons modification compared to the naive form
H ¼ dB:

Hμνρ ≔ 3∂ ½μBνρ� − 3A½μM∂νAρ�M; ð3:4Þ

where the Oðd; dÞ indices have been contracted with the
invariant metric ηMN . The effective action (3.2) is invariant
under n-dimensional diffeomorphisms, as well as two-form
gauge transformations δζBμν ¼ ∂μζν − ∂νζμ. Invariance
under the Uð1Þ2d gauge transformations δλAμ

M ¼ ∂μλ
M

requires the additional transformation of the B-field
δλBμν ¼ 1

2
F μν

MλM.
The sigma model describing the coupling of the string to

the spacetime fields is most easily written in terms of the
(nþ d)-dimensional field content as2

Sstring ¼ −
1

4πα0

Z
d2σ½

ffiffiffiffiffiffi
−h

p
hαβĜμ̂ ν̂ðXÞ

þ ϵαβB̂μ̂ ν̂ðXÞ�∂αX̂
μ̂∂βX̂

ν̂: ð3:5Þ

The worldsheet fields split as X̂μ̂ ¼ ðXμ; YiÞ, and it has
been made explicit that the spacetime fields do not depend
on Yi. The Xμ coordinates obey periodic boundary con-
ditions, Xμð2π; τÞ ¼ Xμð0; τÞ, while the Yiðσ; τÞ in princi-
ple have winding contributions. However, in light of the
discussion in the previous section, we shall restrict our
discussion from the beginning to the sector with zero
winding, i.e., Yið2π; τÞ ¼ Yið0; τÞ.
The (nþ d)-dimensional fields are related to the

n-dimensional ones by the usual Kaluza-Klein dictionary:

Ĝμν ¼ gμνþAi
μGijA

j
ν; Ĝμi ¼GijA

j
μ; Ĝij¼Gij;

Ĝμν ¼ gμν; Ĝμi¼−gμνAi
ν; Ĝij ¼GijþAi

μgμνA
j
ν; ð3:6Þ

as well as

B̂μν ¼ Bμν − Ai
½μÃν�i þ Ai

μBijA
j
ν;

B̂μi ¼ Ãμi − BijA
j
μ; B̂ij ¼ Bij: ð3:7Þ

Using the reduction ansatz (3.6) and (3.7) directly in the
Lagrangian action (3.5) leads to a quite unintelligible mess.
In the last section we have seen that the appearance of
manifest Oðd; dÞ invariance crucially relies on the
Hamiltonian formalism. This suggests that the same should
happen in the present context. We shall thus rewrite the
action (3.5) in Hamiltonian form. In terms of (nþ d)-
dimensional fields this does not require any different
computation compared to (2.4) and (2.6), thus giving for
the momenta

P̂μ̂ ¼
1

2πα0

�
1

e
Ĝμ̂ ν̂ð _̂Xν̂ − uX̂ν̂0 Þ þ B̂μ̂ ν̂X̂

ν̂0
�
; ð3:8Þ

with e and u given as in (2.5), and

Sstring ¼
Z

d2σ½P̂μ̂
_̂X
μ̂
− eH − uN �: ð3:9Þ

The Virasoro constraints N and H are also given by the
same expressions as in (2.7), except that all quantities such

2For the moment we will ignore the coupling to the dilaton,
since it is a higher order effect in α0.
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as G and B are replaced by hatted quantities Ĝ and B̂.
Splitting the symplectic term and theN constraint is trivial,
since they do not contain spacetime fields:

P̂μ̂
_̂X
μ̂ ¼ Pμ

_Xμ þ Pi
_Yi;

N ¼ Pμ∂σXμ þ Pi∂σYi ¼ Pμ∂σXμ þ 1

4πα0
ZMZM;

ð3:10Þ
where we recalled the vector ZM defined in (2.8). The
challenge is to express H in terms of n-dimensional fields
byusing (3.6) and (3.7).After a tedious computation the final
result can be expressed in a manifestOðd; dÞ invariant form:

H ¼ 1

4πα0
fgμνΠμΠν − 2gμλBλνΠμ∂σXν

þ ðgμν þ gλσBλμBσνÞ∂σXμ∂σXν

þHMNðZM þAμ
M∂σXμÞðZN þAν

N∂σXνÞg; ð3:11Þ

where

Πμ≔2πα0Pμ−Aμ
MZM; Bμν≔Bμνþ

1

2
Aμ

MAνM: ð3:12Þ

The Virasoro constraints N and H are clearly Oðd; dÞ
invariant, modulo the issue of zero modes discussed in
the previous section, that we will revisit in the present
context.
There is no reason to keep the noncompact sector in

Hamiltonian form. We shall thus eliminate the momenta Pμ

by their equations of motion:

2πα0Pμ ¼ e−1gμνX
∘
ν þ Bμν∂σXν þAμ

MZM;

X
∘
μ ≔ ∂τXμ − u∂σXμ; ð3:13Þ

and recast the action (3.9) in the mixed form

Sstring ¼
1

2πα0

Z
d2σ

�
1

2e
gμνX

∘
μX
∘
νþðBμν∂σXνþAμ

MZMÞX
∘
μ

−
e
2
gμν∂σXμ∂σXνþ2πα0Pi

_Yi−
u
2
ZMZM

−
e
2
HMNðZMþAμ

M∂σXμÞðZN þAν
N∂σXνÞ

�
:

ð3:14Þ

B. Zero mode truncation

As discussed in the previous section, the formal Oðd; dÞ
invariance of the Virasoro constraints H and N is broken
by the zero mode pi0 ¼ 1

2π

R
2π
0 dσPi even in the zero

winding sector. Moreover, the symplectic term pi0 _yi0 is
anotherOðd; dÞ breaking term. Following the discussion in

the previous section, we shall thus truncate the action3 by
projecting out the conjugate pair of zero modes. In order to
do this, we set

2πα0Pi ¼ ∂σỸi; ð3:15Þ

that is an invertible field redefinition for the nonzero
modes, and at the same time sets pi0 ¼ 0 upon taking
Ỹið2π; τÞ ¼ Ỹið0; τÞ. By using (3.15) one has ZM ¼ ∂σYM

and the truncated symplectic current can be written in
manifestly Oðd; dÞ invariant form:

Z
d2σ2πα0Pi

_Yi ¼ 1

2

Z
d2σ∂σYM∂τYM: ð3:16Þ

Before using (3.15) in (3.14), let us discuss spacetime
gauge invariances. n-dimensional diffeomorphisms are a
manifest invariance, upon using

δξXμ ¼ −ξμðXÞ; δξΦðXÞ ¼ LξΦðXÞ þ δξXμ∂μΦðXÞ;
ð3:17Þ

where Φ generically denotes spacetime fields, and we
recalled that, when considering target space fields on the
worldsheet, one has to add the extra term in (3.17) to
account for the explicit dependence on Xμðσ; τÞ. Invariance
under two-form gauge transformations δζBμν ¼ 2∂ ½μζν� is
also standard. The situation is more subtle for the vector
gauge symmetries δλAμ

M ¼ ∂μλ
M. The upper component

δAi
μ ¼ ∂μλ

i is a remnant of (nþ d)-dimensional diffeo-
morphisms. This already fixes the transformation for the
internal worldsheet coordinates: δλYi ¼ −λiðXÞ. In order to
preserve Oðd; dÞ, one is led to demand δλỸi ¼ −λ̃i, so that

δλYM ¼ −λMðXÞ: ð3:18Þ

In terms of internal momenta, the lower component gives
δλPi ¼ − 1

2πα0 ∂σλ̃i, that can also be derived by its on-shell
expression (3.8) for μ̂ ¼ i. This transformation preserves
the solution space with pi0 ¼ 0, since δλpi0 ¼ 0.
Following [6] we introduce the gauge-invariant

derivative

DαYM ≔ ∂αYM þAμ
MðXÞ∂αXμ; ð3:19Þ

which indeed obeys δλðDαYMÞ ¼ 0. The action (3.14), with
truncated zero modes according to (3.15), can be finally
written as4

3In order to ensure equivalence with the original action, one
has to keep track of the yi0 equation of motion, which will be done
in the following.

4Recall that e and u are defined in terms of hαβ as e ¼ ffiffiffiffiffiffi
−h

p
h−1σσ

and u ¼ hτσh−1σσ .
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S ¼ −
1

4πα0

Z
d2σ½

ffiffiffiffiffiffi
−h

p
hαβgμν∂αXμ∂βXν

þ ϵαβðBμν∂αXμ∂βXν −Aμ
MDαYM∂βXμÞ�

þ 1

4πα0

Z
d2σ½DσYMDτYM − uDσYMDσYM

− eHMNDσYMDσYN �: ð3:20Þ

Not only is Oðd; dÞ manifestly realized, but all terms in the
action are gauge invariant under the vector symmetries. For
the two terms involving the B-field and the bare vectorAμ

M

one has to check that

δλAμ
MϵαβDαYM∂βXμ ¼ ∂αvα þ

1

2
λMF μν

Mϵαβ∂αXμ∂βXν;

ð3:21Þ
which exactly cancels the nonstandard transformation
δλBμν ¼ 1

2
F μν

MλM of the B-field, thus proving invariance
of the action under the spacetime gauge symmetries. The
Oðd; dÞ symmetric action (3.20) also has a manifest zero
mode local symmetry under

δΞYMðσ; τÞ ¼ ΞMðτÞ; ð3:22Þ
that will be used to show equivalence with the (truncated)
original sigma model.
Having found the final form (3.20) of the action, let us

now show that it provides a consistent truncation of the
original theory. To this end we have to determine the zero
mode yi0 in terms of the untruncated fields so that the
original equations of motion are satisfied. The i-component
of (3.8) gives

2πα0Pi ¼
1

e
GijðDτYj − uDσYjÞ þ BijDσYj − Ãμi∂σXμ

ð3:23Þ
upon using the Kaluza-Klein ansatz (3.6), (3.7) and the
definition (3.19) of DαYM. As mentioned above, this also
confirms the transformation law δλPi ¼ − 1

2πα0 ∂σλ̃i under the
vector gauge symmetries. Inverting (3.23) and integrating
overσ one obtains the original equation for the zeromodeyi0:

_yi0ðτÞ ¼ ViðτÞ; ð3:24Þ

with

VMðτÞ ¼ 1

2π

Z
2π

0

dσ½uDσYM þ eHMNDσYN −Aμ
M∂τXμ�;

ð3:25Þ

where (3.15) has been used to ensure pi0 ¼ 0. Integration of
(3.24) thendeterminesyi0ðτÞ in termsof theuntruncatedfields
consistentwith the equations ofmotion. Onemay also verify

that (3.24) is invariant under the spacetime gauge symmetry.
We note that only the last term above has a nontrivial
transformation under Uð1Þ, explicitly

δλVi ¼ −
1

2π

Z
2π

0

dσ∂μλ
i∂τXμ ¼ −

1

2π

Z
2π

0

dσ _λi: ð3:26Þ

This ensures gauge invariance of (3.24), given that yi0 ¼
1
2π

R
2π
0 dσYi and δλYi ¼ −λiðXÞ. Similarly to the simpler case

discussed in the previous section, one could also fix the
(arbitrary) function ỹi0 by supplementing the action (3.20)
with the manifestly Oðd; dÞ and spacetime gauge invariant
extra equation

_YM
0 ¼ VM: ð3:27Þ

The extra condition (3.27) can be viewed as a gauge fixing
condition for the ΞM symmetry (3.22). In this respect, the
solutions of (3.20) can be embedded into solutions of the
original sigma model, up to gauge equivalence.
We end this section by examining the field equations

obtained from the action (3.20). The Y field equations are
given by a total σ derivative:

∂σ½DτYM − uDσYM − eHMNDσYN � ¼ 0; ð3:28Þ

which makes explicit that the action (3.20) does not
determine the dynamics of the zero modes YM

0 ðτÞ.
According to (3.28), the quantity in brackets can be an
arbitrary function of τ, say CMðτÞ, depending on the Ξ-
gauge. It is easy to see that the CMðτÞ corresponding to the
gauge choice (3.27) is CM ¼ 0, yielding

DτYM − uDσYM − eHMNDσYN ¼ 0; ð3:29Þ

that in conformal gauge ðe; uÞ ¼ ð1; 0Þ takes the form of a
covariantized self-duality relation:

DαYM ¼ ϵα
βHMNDβYN: ð3:30Þ

The first-order equation (3.29) is physically equivalent to
the gauge invariant variational equation (3.28). However, it
should be kept in mind that it can be used only when
discussing pure on-shell properties in a fixed ΞM gauge,
and not otherwise.
The field equations for Xμ resulting from the action

(3.20) read

gμνð∇2Xν þ Γν
λρ∇αXλ∇αXρÞ − 1

2
εαβ½∂αXν∂βXλHμνλ

þ 2∂αXνDβYMF μνM�

þ 1ffiffiffiffiffiffi
−h

p ∂σXνF μν
M½DτYM − uDσYM − eHMNDσYN �

−
e

2
ffiffiffiffiffiffi
−h

p ∂μHMNDσYMDσYN ¼ 0; ð3:31Þ
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where εαβ ≔ 1ffiffiffiffiffi
−h

p ϵαβ, and ∇α denote worldsheet covariant

derivatives built from hαβ. In conformal gauge, and using
the Ξ-gauge yielding the first-order equation (3.29), this
reduces to a result of Maharana and Schwarz [6]:

gμνð□Xν þ Γν
λρ∂αXλ∂αXρÞ − 1

2
ϵαβ½∂αXν∂βXλHμνλ

þ 2∂αXνDβYMF μνM�

−
1

4
∂μHMNDαYMDαYN ¼ 0; ð3:32Þ

where we used again the first-order duality relation (3.30) to
recast the last term in a manifestly Lorentz invariant form.
Finally, the equations of motion of the worldsheet metric,

obtained by varying with respect to e and u, are given by

−
δS
δe

¼ H ¼ 1

4πα0
½e−2gμνX

∘
μX
∘
ν þ gμν∂σXμ∂σXν

þHMNDσYMDσYN �;

−
δS
δu

¼ N ¼ 1

4πα0
½2e−1gμνX

∘
μ∂σXν þDσYMDσYM�;

ð3:33Þ

where X
∘
μ ¼ ∂τXμ − u∂σXμ.

In the whole discussion so far we glossed over the fate
of worldsheet diffeomorphisms. In an Appendix we exam-
ine this issue in great detail and provide the explicit
realization of diffeomorphism symmetry in the action
(3.20). In particular, we prove that the diffeomorphism
transformations,

δξXμ ¼ ξα∂αXμ;

δξYM ¼ ξα∂αYM − ξτ½DτYM − uDσYM − eHMNDσYN �;
ð3:34Þ

are an off-shell invariance of the action.

IV. ANOMALIES

In the previous sections we have constructed the man-
ifestly Oðd; dÞ invariant worldsheet sigma model (3.20).
Worldsheet diffeomorphism invariance is not manifest, but
it is extensively discussed in Appendix A, as is the
cancellation of gravitational anomalies.
The sigma model (3.20) seems a good starting point to

perform worldsheet perturbation theory in an Oðd; dÞ
covariant way, to all orders in α0. However, from the
analysis of the low-energy spacetime theory, it has been
recently found [19,20] that the B-field acquires a nontrivial
transformation under Oðd; dÞ at first order in α0. This is
reminiscent of the original Green-Schwarz mechanism [34]
in type I or heterotic string theory. Similarly to the heterotic
worldsheet theory that contains chiral fermions in both the

gravitational and gauge sectors, the Oðd; dÞ sigma model
(3.20) is defined in terms of chiral bosons à la Floreanini-
Jackiw [35]. This suggests that the novel Oðd; dÞ Green-
Schwarz mechanism found in [19] can also be explained in
terms of worldsheet anomalies, as we will show here.

A. Framelike worldsheet action

In this section we will focus on the Y sector of the sigma
model. The aim is to exhibit two-dimensional anomalies
that underlie the Oðd; dÞ Green-Schwarz deformation.
Since the α0 deformation of [19] does not involve the
Kaluza-Klein gauge fields Aμ

M, we will set them to zero
and focus on the action

SY ¼ 1

4πα0

Z
d2σ½∂σYM∂τYM −HMNðXÞ∂σYM∂σYN �:

ð4:1Þ

It is convenient to rewrite this action in terms of a frame
formalism, which we briefly introduce now. The general-
ized metric can be written in terms of frame fields as
[7,36,37]

HMNðxÞ ¼ EM
AðxÞhABEN

BðxÞ; ð4:2Þ

where we have introduced the frame field EM
A, and a

SOðdÞ × SOðdÞ constant metric hAB. TheOðd; dÞ invariant
metric ηMN , on the other hand, can be written as

ηMN ¼ EM
AðxÞηABEN

BðxÞ; ð4:3Þ

where ηAB has the same numerical form as ηMN . This choice
implies that the frame field itself is anOðd; dÞmatrix. In the
following we will use ηAB and ηAB to raise and lower flat
indices. Denoting the inverse vielbein by EA

M, such that
EM

AEA
N ¼ δM

N and EA
MEM

B ¼ δA
B, the raising and

lowering of indices is then consistent with taking inverses:

EA
M ¼ ηABη

MNEN
B: ð4:4Þ

Furthermore, hAB satisfies the constraints hACηCDhCB ¼
ηAB and ηABhAB ¼ 0. In this formalism one has in addition
to rigid Oðd; dÞ transformations local SOðdÞ × SOðdÞ
transformations:

δλEM
AðxÞ ¼ −λBAðxÞEM

BðxÞ;
δλEA

MðxÞ ¼ λA
BðxÞEB

MðxÞ; ð4:5Þ

where the parameters λA
B obey the SOðdÞ × SOðdÞ

condition λðAChBÞC ¼ 0 and the Oðd; dÞ condition
λðACηBÞC ¼ λðABÞ ¼ 0. The SOðdÞ × SOðdÞ preserving
condition on λ can be conveniently rewritten as
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λAChCB þ λBChCA ¼ λAChCB − hCAλCB ¼ ½λ; h�AB ¼ 0;

ð4:6Þ

where we used h ¼ hT as a matrix.
In the following it will be important to separate irre-

ducible SOðdÞ × SOðdÞ representations from any tensor
with indices A; B ¼ 1;…; 2d. This can be achieved by use
of projection operators

ΠA
�B ¼ 1

2
ðδAB � hABÞ; ð4:7Þ

which, thanks to the constraints stated after (4.4), are
orthogonal and obey Π2

� ¼ Π�, the completeness relation
1 ¼ Πþ þ Π− and TrΠ� ¼ d. This allows us to decompose
an arbitrary vector VA as

VA ¼ VAþ þ VA
− ¼ VA þ VĀ; ð4:8Þ

where we shall denote by A an index projected via Πþ and
Ā an index projected byΠ−. This way A and Ā indices carry
the ðd; 0Þ and ð0; dÞ representations of SOðdÞ × SOðdÞ,
respectively. Higher tensors decompose analogously. For
instance, the gauge parameter λAB decomposes as

λAB ¼ λAB þ λAB; ð4:9Þ

with λðABÞ ¼ 0; λðABÞ ¼ 0, where the vanishing of the
off-diagonal components λA B̄ and λĀ B follows since
½λ;Π�� ¼ 0 by (4.6). This fact makes it manifest that the
gauge group is only SOðdÞ × SOðdÞ.
Let us finally define the (composite) gauge fields for

the SOðdÞ × SOðdÞ gauge symmetry. We start from the
Maurer-Cartan form

WμAB ≔ EA
M∂μEMB ¼ −WμBA; ð4:10Þ

that can be decomposed into connections QμAB of
SOðdÞ × SOðdÞ:

QμAB ≔ ðΠþWμΠþÞAB þ ðΠ−WμΠ−ÞAB ¼ QμAB þQμAB;

ð4:11Þ

satisfying QμðABÞ ¼ 0, QμðABÞ ¼ 0, and a tensor PμAB in the
ðd; dÞ representation:

PμAB ≔ ðΠþWμΠ−ÞAB þ ðΠ−WμΠþÞAB ¼ PμA B̄ þ PμĀ B;

ð4:12Þ

where PμĀ B ¼ −PμB Ā. More precisely, the transformation
properties under (4.5) are

δλQμAB ¼ −DμλAB ≔ −ð∂μλAB þ ½Qμ; λ�ABÞ;
δλQμAB ¼ −DμλAB ≔ −ð∂μλAB þ ½Qμ; λ�ABÞ;
δλPμA B̄ ¼ λA

CPμC B̄ þ λB̄
C̄PμA C̄; ð4:13Þ

or, without splitting, δλQμAB ¼ −DμλAB and δλPμAB ¼
½λ; Pμ�AB. Finally, the Maurer-Cartan form obeys the zero
curvature identity dW þW2 ¼ 0, which gives rise to the
Bianchi identities

Rμν ≡ ∂μQν − ∂νQμ þ ½Qμ; Qν� ¼ −½Pμ; Pν�;
D½μPν� ≡ ∂ ½μPν� þ ½Q½μ; Pν�� ¼ 0; ð4:14Þ

where we used matrix notation.
After this review of the frame formalism we now return

to the worldsheet theory (4.1). We perform the field
redefinition that flattens the worldsheet fields YM:

YM ¼ EA
MðXÞYA: ð4:15Þ

The worldsheet derivatives ∂αYM then become

∂αYM ¼ EA
Mð∂αYA þWα

A
BYBÞ ¼ EA

MD̂αYA; ð4:16Þ

where we introduced the pullback WαAB ≔ ∂αXμWμAB and
the hatted covariant derivative

D̂αYA ≔ ∂αYA þWα
A
BYB ¼ DαYA þ Pα

A
BYB; ð4:17Þ

that differs from the SOðdÞ × SOðdÞ covariant derivative
Dα, which is defined by this equation, by the above
coupling to PαAB. The action (4.1) can thus be written as

SY ¼ 1

4πα0

Z
d2σ½D̂σYAD̂τYA − hABD̂σYAD̂σYB�: ð4:18Þ

The zero-mode symmetry δΞYM ¼ ΞM, with ∂σΞM ¼ 0,
now turns into

δΞYA ¼ ΞA; where D̂σΞA ¼ 0: ð4:19Þ

By means of the projectors Π� one can split YA into
SOðdÞ × SOðdÞ representations: YA ¼ YA þ YĀ under
which the action decomposes as

SY ¼ 1

2πα0

Z
d2σ½D̂σYAD̂−YA þ D̂σYĀD̂þYĀ�

¼ 1

2πα0

Z
d2σ½ðDσYA þ Pσ

A
B̄Y

B̄ÞðD−YA þ P−A C̄Y
C̄Þ

þ ðDσYĀ þ Pσ
Ā
BYBÞðDþYĀ þ PþĀ CY

CÞ�; ð4:20Þ

with D� ¼ 1
2
ðDτ �DσÞ. Under a local SOðdÞ × SOðdÞ

transformation,
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δλYA ¼ λABðXÞYB; ð4:21Þ

the hatted derivatives D̂αYA transform covariantly, i.e.,

δλðD̂αYAÞ ¼ λABD̂αYB: ð4:22Þ

It is thus clear that the action (4.18) is invariant under
(spacetime) local SOðdÞ × SOðdÞ, provided one transforms
simultaneously YA and WAB

α .
We now turn to a general discussion of potential

anomalies in this model, which will be computed explicitly
in the next subsection. It must first be emphasized that the
above invariance under SOðdÞ × SOðdÞ is not a genuine
symmetry of the worldsheet theory, since the background
fields (target space fields) need to be transformed as well.
Nonetheless, it is an important consistency condition that
any two configurations of target space fields that are gauge
equivalent (from the target space point of view) give rise to
equivalent worldsheet theories. It is this property that may
become anomalous. This is precisely analogous to heterotic
string theory where the coupling to target space Yang-Mills
gauge fields is quantum-mechanically inconsistent unless
the Green-Schwarz mechanism is invoked [29].
While the SOðdÞ × SOðdÞ is not a genuine symmetry of

the worldsheet theory, one can derive consequences from
this invariance property:
Z

d2σ

�
δS

δWAB
α

D̂αλ
AB

�
¼ −

1

4πα0

Z
d2σ½λABD̂αJ α

AB� ¼ 0;

ð4:23Þ
where we assumed that the Y’s are on-shell: δS

δYA ¼ 0, and
we have defined

J α
AB ≔ 4πα0

δS
δWAB

α
; ð4:24Þ

which reads in components

J τ
AB¼−Y ½AD̂σYB�; J σ

AB¼−Y ½AðD̂τYB�−2hB�CD̂σYCÞ:
ð4:25Þ

While the J α
AB are not conserved SOðdÞ × SOðdÞ currents

the relation (4.23) implies the projected “conservation” law

ΠACþ ΠBDþ ðD̂αJ αÞCD¼0; ΠAC
− ΠBD

− ðD̂αJ αÞCD¼0; ð4:26Þ
or, using manifest SOðdÞ × SOðdÞ indices,

DαJ α
AB þ PαA

C̄J α
C̄ B − PαB

C̄J α
C̄ A ¼ 0;

DαJ α
Ā B̄

þ PαĀ
CJ α

C B̄ − PαB̄
CJ α

C Ā
¼ 0: ð4:27Þ

One can explicitly verify that (4.27) holds upon using the
equation of motion

D̂σðD̂τYA − hABD̂σYBÞ ¼ 0: ð4:28Þ

Despite (4.27) not being a standard conservation law, the
above result shows that the free theory (whereWAB

μ is set to
zero) does have conserved SOðdÞ × SOðdÞ currents jαAB
and jα

AB
:

jτAB¼−Y ½A∂σYB�; jσAB¼−Y ½Að∂τ−2∂σÞYB�;

jτ
AB

¼−Y ½Ā∂σYB̄�; jσ
AB

¼−Y ½Āð∂τþ2∂σÞYB̄�; ð4:29Þ

obeying the usual conservation law ∂αjαAB ¼ 0, ∂αjαAB ¼ 0.
This emergence of conserved currents can be understood
most clearly in the original form of the action (4.1). In the
free limit HMN reduces to a constant (its background
value), which is invariant under a global SOðdÞ×
SOðdÞ, hence giving rise to conserved Noether currents,
given by (4.29).
In order to employ the above action for a perturbative

quantum field theory treatment let us inspect the linearized
coupling to WAB

μ

SY ¼ 1

2πα0

Z
d2σ

�
∂σYA∂−YA þ ∂σYĀ∂þYĀ þ 1

2
WAB

α JαAB

�

þOðW2Þ

¼ 1

2πα0

Z
d2σ

�
∂σYA∂−YA þ ∂σYĀ∂þYĀ þ 1

2
QAB

α jαAB

þ 1

2
QAB

α jα
AB

þ 1

2
PAB̄
α tαA B̄

�
þOðW2Þ; ð4:30Þ

which involves the usual interaction term of gauge field and
current, but also a coupling to PAB

μ , through the ðd; dÞ
tensor tαA B̄ defined as

tτA B̄ ¼ YB̄∂σYA − YA∂σYB̄;

tσA B̄ ¼ YB̄ð∂τ − 2∂σÞYA − YAð∂τ þ 2∂σÞYB̄: ð4:31Þ

In a perturbative treatment of the above action, one splits
the “external” coordinate fields Xμðτ; σÞ into a background
Xμ
0 plus fluctuations πμ while, for the present purpose, the

YA can be treated as purely quantum. Among others, the
action (4.30) produces the worldsheet vertices
WAB

μ ðX0Þ∂αX
μ
0J

α
ABðYÞ and ∂μWAB

ν ðX0Þπμ∂απ
νJαABðYÞ. In

principle, these two can combine with the vertex
HμνλðX0Þϵαβ∂αX

μ
0∂βπ

νπλ, arising from the expansion ofR
Σ B in (3.20), to produce a two-loop contribution of the
schematic form

α0∂αX
μ
0∂αXν

0½Hμ
λσtrðW ∧ dWÞνλσ�: ð4:32Þ

Its divergent part contributes to the β-functional of
the metric gμν, thus modifying the Einstein equation
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Rμν ¼ 1
4
Hμ

λσHνλσ þ � � � by the above α0 correction. This is
analogous to the correction underpinning the original
Green-Schwarz deformation [38] that results in the redefi-
nition H → H þ α0

4π ðω3ðAÞ − ω3ðωÞÞ. In the present case,
the structure (4.32) matches with the α0 deformation found
in [19].
Let us now discuss the appearance of potential anomalies

in a little more detail. Focusing on the Q-dependent part of
(4.32), the very existence and the precise structure of
the correction is determined by the one-loop two-point
functions

hjAB
α jCD

β i; hjĀ B̄
α jC̄ D̄

β i: ð4:33Þ

In the standard heterotic string context, the Green-Schwarz
deformation is driven by the worldsheet chiral anomaly: the
components Jabþ of the gauge current and Jμν− of the Lorentz
current vanish identically in the classical theory, due to the
chiral nature of the fermions λa and ψμ. The chiral anomaly,
however, gives rise to nonvanishing two-point functions
hJþJ−i at one-loop that are ultimately responsible for the
Green-Schwarz deformation.
The situation for the model (4.30) is not exactly the

same, but quite similar. Indeed, none of the currents (4.29)
vanish identically, but half of them are classically trivial:
when written in light-cone coordinates, one has

jABþ ¼Y ½Að∂þ−2∂−ÞYB�; jAB− ¼Y ½A∂−YB�;

jĀB̄þ ¼−Y ½Ā∂þYB̄�; jĀB̄− ¼Y ½Āð2∂þ−∂−ÞYB̄�: ð4:34Þ

Let us recall that the free-field equations ∂σ∂−YA ¼ 0,
∂σ∂þYĀ ¼ 0 imply the chirality conditions ∂−YA ¼ 0 and
∂þYĀ ¼ 0 except for the zero-modes YA

0 ðτÞ. These, how-
ever, are pure gauge, thanks to the free-field symmetry
δΞYA ¼ ΞAðτÞ, and can be fixed to zero. This shows that,
upon gauge fixing, the classical currents obey

jAB
− ¼ 0; ∂−j

AB
þ ¼ 0;

jĀ B̄þ ¼ 0; ∂þjĀ B̄
− ¼ 0: ð4:35Þ

Focusing on the left-moving sector, at the quantum level the

two-point function hjAB
þ jCD

þ i is certainly nonvanishing,
which implies that the classical relations (4.35) cannot
hold. Indeed, the naive Ward identities read

p−hjAB
þ ðpÞjCD

þ ð−pÞi þ pþhjAB
− ðpÞjCD

þ ð−pÞi ¼ 0;

pþhjAB
− ðpÞjCD

− ð−pÞi þ p−hjAB
þ ðpÞjCD

− ð−pÞi ¼ 0; ð4:36Þ

so that, if hj−jþi ¼ 0 continues to hold, they cannot be
satisfied, leading to an anomaly. In the following we will
provide a scheme that ensures j− ¼ 0 in all two-point

functions, so that the above shows that ∂−jþ ¼ 0 cannot be
satisfied if hjþjþi is nonzero.

B. Anomalies of Floreanini-Jackiw

We will now confirm the existence of an anomaly by
computing the above two-point functions. It is sufficient to
focus on the free part of the action, which consists of d left-
moving and d right-moving so-called Floreanini-Jackiw
bosons. Focusing first on the left-moving sector we con-
sider the action

S ¼ 1

2πα0

Z
d2x∂−ϕ

a∂σϕa; ð4:37Þ

where a ¼ 1;…; d. Here we have changed notation to
emphasize that the following holds generally for the
Floreanini-Jackiw model. The action is invariant under
rigid SOðdÞ transformations given by

δϕa ¼ λabϕb; ð4:38Þ

where indices are lowered and raised with the SOðdÞmetric
δab and its inverse, respectively. The Noether currents
associated with SOðdÞ are given by

jab− ¼ 1

α0
ϕ½a∂−ϕ

b�; jabþ ¼ 1

α0
ϕ½að∂þ − 2∂−Þϕb�; ð4:39Þ

and are conserved, obeying ∂þjab− þ ∂−jabþ ¼ 0, thanks to
the field equation

∂σ∂−ϕ
a ¼ ð∂þ − ∂−Þ∂−ϕ

a ¼ 0: ð4:40Þ

Here and in what follows we shall denote the light-cone
coordinates by x� ¼ τ � σ, so that ∂� ¼ 1

2
ð∂τ � ∂σÞ.

The action and the field equations are Lorentz invariant,
with ϕa transforming in a nonstandard way 5:

δLϕ
a ¼ ωxþð∂þ − ∂−Þϕa ¼ ωxþ∂σϕ

a; ð4:41Þ

in contrast with the scalar transformation

δLφ ¼ ωðxþ∂þ − x−∂−Þφ: ð4:42Þ

Under a Lorentz transformation, a standard one-form Aα

transforms as

δLA� ¼ ωðxþ∂þ − x−∂−ÞA� � ωA�; ð4:43Þ

5The action actually has the much larger symmetry
δϕa ¼ ξ1ðxþÞ∂1ϕ

a þ ξ−ðτÞ∂−ϕ
a, where ξ1 and ξ− are arbitrary

functions of their arguments. This is a manifestation of the
infinite-dimensional conformal symmetry in two dimensions.
Note that the “second Lorentz symmetry” with ξ−ðτÞ ¼ λτ is
trivial in the “chiral gauge” ∂−ϕ

a ¼ 0 that we shall employ and
hence this symmetry will not play any role in what follows.
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while the above current transforms according to

δLjab− ¼ ωxþð∂þ − ∂−Þjab− ;

δLjabþ ¼ ωxþð∂þ − ∂−Þjabþ þ ωjabþ þ ωjab− : ð4:44Þ

To be more precise, the above Lorentz invariance is
present if the theory is defined on the plane, i.e., on two-
dimensional Minkowski space, but we should recall that for
the string we defined the theory on the cylinder, where
τ ∈ R and σ ∈ ½0; 2π�. The fields can then be expanded in
Fourier modes:

ϕaðτ; σÞ ¼
X
n∈Z

ϕa
nðτÞeinσ; ðϕa

nÞ� ¼ ϕa
−n: ð4:45Þ

Since the Lorentz transformations (4.41) depend explicitly
on σ they do not respect the periodicity conditions, and so
there are no well-defined Lorentz transformations for the
Fourier modes. Thus, on the cylinder Lorentz invariance is
lost. It is also important to note that the action (4.37) does
not contain the zero-mode ϕa

0ðτÞ. This is reflected in the
τ-local symmetry

δξϕ
aðτ; σÞ ¼ ξaðτÞ; ð4:46Þ

that shifts ϕa
0 by an arbitrary function, while leaving the

nonzero modes ϕa
n inert.

Upon gauge fixing ϕa
0ðτÞ ¼ 0, the field equation is

equivalent to the chirality condition ∂−ϕ
a ¼ 0, showing

that one can consider the on-shell equivalent current

jab− ¼ 0; jabþ ¼ 1

α0
ϕ½a∂þϕb�: ð4:47Þ

Notice that the above current jabα transforms as a chiral one-
form, i.e.,

δLjab− ¼ 0; δLjabþ ¼ ωxþ∂þjabþ þ ωjabþ ; ð4:48Þ

only on-shell, upon using ∂−ϕ
a ¼ 0.

By using the mode expansion (4.45) one can rewrite the
free action as

S ¼ 1

2α0

Z
dτ
X
n≠0

½inϕan
_ϕa
−n − n2ϕanϕ

a
−n�: ð4:49Þ

Upon decomposing the ϕa
n into two sets (i.e., upon picking

a polarization) this action can be brought immediately
into Hamiltonian form, with the first term taking the
standard p _q form. It is then straightforward to perform
canonical quantization, leading to the equal-time commu-
tation relations

½ϕa
n;ϕb

m� ¼
α0

m
δabδnþm; n;m ≠ 0; ð4:50Þ

with the usual notation δnþm ≔ δnþm;0. We assume from
now on that the zero-mode has been gauge fixed to zero.
Ordinary creation-annihilation operators are defined as

Aa
n ≔

ffiffiffiffi
n
α0

r
ϕa
−n; A†a

n ≔
ffiffiffiffi
n
α0

r
ϕa
n; n > 0; ð4:51Þ

and obey

½Aa
n; A

†b
m � ¼ δabδnm: ð4:52Þ

The mode expansion of the quantum fields ϕa can thus be
written as

ϕaðτ; σÞ ¼
X∞
n¼1

ffiffiffiffi
α0

n

r
ðA†a

n ðτÞeinσ þ Aa
nðτÞe−inσÞ: ð4:53Þ

This allows us to compute the equal-time commutator for
the ϕa fields:

½ϕaðτ; σ1Þ;ϕbðτ; σ2Þ� ¼ −2πα0iδabϵðσ1 − σ2Þ; ð4:54Þ

with

ϵðxÞ ≔ 1

2πi

X
n≠0

1

n
einx; ð4:55Þ

obeying

ϵ0ðxÞ ¼ δðxÞ − 1

2π
; ϵðxÞ ¼ −ϵð−xÞ: ð4:56Þ

This clearly shows that the theory is nonlocal in σ, given
that two fields at separated points do not commute at
equal times.
The quantum Hamiltonian can be read off from (4.49) as

H ¼ 1

2α0
X
n≠0

n2∶ϕanϕ
a
−n∶ ð4:57Þ

and allows one to compute the Heisenberg equation:

_ϕa
n ¼ i½H;ϕa

n� ¼ inϕa
n: ð4:58Þ

This leads to the on-shell expansion

ϕaðτ; σÞ ¼
X∞
n¼1

ffiffiffiffi
α0

n

r
ðA†a

n einx
þ þ Aa

ne−inx
þÞ; ð4:59Þ

showing that the spectrum contains purely left-moving
massless excitations. With the above expansion one can
compute the Feynman propagator:
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Δabðτ; σÞ ¼ h0jTfϕaðτ; σÞϕbð0; 0Þgj0i ¼ α0δabΔðτ; σÞ;

Δðτ; σÞ ¼
�
θðτÞ

X∞
n¼1

1

n
e−inx

þ þ θð−τÞ
X∞
n¼1

1

n
einx

þ
�
;

ð4:60Þ

that can be represented as

ΔðxÞ ¼ i
4π

Z
d2k

eik·x

k−k1 þ iϵ
; ð4:61Þ

where we denoted xα ¼ ðτ; σÞ, kα ¼ ðω; nÞ and
Z

d2k ≔
Z þ∞

−∞
dω

X
n≠0

: ð4:62Þ

The currents (4.39) do not suffer from ordering ambi-
guities at the quantum level, due to antisymmetrization
in the SOðdÞ indices. We can thus consider jab− ¼ 0 and
jabþ ¼ 1

α0 ϕ
½a∂þϕb� as quantum operators and use the on-

shell expansion (4.59) to compute the only nonvanishing
two-point function

Gab;cd
þþ ðx − yÞ ≔ h0jTfjabþ ðxÞjcdþ ðyÞgj0i: ð4:63Þ

Writing the time-ordered product explicitly we have

Gab;cd
þþ ¼ θðτ1 − τ2Þh0jjabþ ðxÞjcdþ ðyÞj0i þ θðτ2 − τ1Þ

× h0jjcdþ ðyÞjabþ ðxÞj0i; ð4:64Þ
where xα ¼ ðτ1; σ1Þ and yα ¼ ðτ2; σ2Þ. We then focus on
the first factor and use the mode expansion to obtain

h0jjabþ ðxÞjcdþ ðyÞj0i ¼
X∞
n;m¼1

X∞
p;q¼1

ffiffiffiffiffiffiffi
mq
np

r
h0jA½a

n A
b�
me−iðnþmÞxþA†½c

p A†d�
q eiðpþqÞyþj0i

¼
X∞
n;m¼1

X∞
p;q¼1

ffiffiffiffiffiffiffi
mq
np

r
e−iðnþmÞxþþiðpþqÞyþδc½aδb�dðδnpδmq − δmpδnqÞ

¼ 1

2
ðδacδbd − δbcδadÞ

X∞
n;m¼1

�
m
n
− 1

�
e−iðnþmÞðxþ−yþÞ

¼ 1

2
ðδacδbd − δbcδadÞFðxþ − yþÞ; ð4:65Þ

where we defined

FðxÞ ≔
X∞
n;m¼1

�
m
n
− 1

�
e−iðnþmÞx: ð4:66Þ

In order to evaluate this function one can perform the sums
on n and m separately. By using

X∞
n¼1

zn ¼ z
1 − z

;
X∞
n¼1

nzn ¼ z
d
dz

1

1 − z
¼ z

ð1 − zÞ2 ;

X∞
n¼1

1

n
zn ¼ gðzÞ;

dg
dz

¼
X∞
n¼1

zn−1 ¼ 1

1 − z
→ gðzÞ ¼ − logð1 − zÞ;

ð4:67Þ

one obtains

FðxÞ ¼ −
z

ð1 − zÞ2 ðzþ logð1 − zÞÞ; z ¼ e−ix; ð4:68Þ

or

FðxÞ ¼ −
1

ðeix − 1Þ2 ½1þ eix logð1 − e−ixÞ�: ð4:69Þ

In order to write the two-point function in momentum
space, it is more useful to rewrite the double sum in
(4.66) as

X∞
n;m¼1

fðn;mÞ ¼
X∞
N¼2

XN−1

n¼1

fðn;N − nÞ; ð4:70Þ

with N ¼ nþm, yielding6

FðxÞ ¼
X∞
N¼1

fðNÞe−iNx; ð4:71Þ

with

fðNÞ ¼
XN−1

n¼1

�
N
n
− 2

�
¼ N½ψðNÞ þ γ�− 2ðN − 1Þ; ð4:72Þ

6The sum over N can be extended to N ¼ 1 since fð1Þ ¼ 0.
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where ψðxÞ ¼ Γ0ðxÞ
ΓðxÞ is the digamma function and γ the

Euler-Mascheroni constant. It should be mentioned that
rewriting (4.70) is not ambiguous, in that both forms of the
series converge to the same function FðxÞ, that is regular
for x ≠ 0.
The full two-point function can thus be written as

Gab;cd
þþ ðxÞ ¼ 1

2
ðδacδbd − δbcδadÞ½θðτÞFðxþÞ

þ θð−τÞFð−xþÞ�

¼ 1

2
ðδacδbd − δbcδadÞGþþðxÞ: ð4:73Þ

At this point one can use (4.71), together with the integral
representation for the step function:

θð�τÞ ¼ � i
2π

Z
dω

e−iωτ

ω� iϵ
; ð4:74Þ

in order to obtain the correlator in momentum space:

GþþðpÞ ≔
Z

d2x
ð2πÞ2 e

−ipαxαGþþðxÞ

¼ i
4πp−

½p1ðψðjp1jÞ þ γÞ − 2p1 þ 2signðp1Þ�;

ð4:75Þ

where signðxÞ is the sign function with signð0Þ ¼ 0.
The above is a straightforward computation of the two-

point functions (that does not require a regularization
scheme), establishing that they are nonzero, as it should
be for any two-point function of (anti-)Hermitian operators.
By the argument around (4.36) this proves that the Ward
identities are violated, hence establishing the presence
of an anomaly. However, it is not easy to interpret the
corresponding effective action and hence to compute its
(anomalous) transformation. We therefore turn to the more
conventional Feynman diagram computation that does
require a regularization scheme. As is customary also for
chiral fermions we change gears by doing the computation
on the plane, as opposed to the cylinder, which has the
advantage that one regains Lorentz invariance. According to
general lore, an anomaly does not depend on the topology
[39], and so this should not affect the invariant result.
We shall thus consider the action (4.37) on the plane and

couple it to two-dimensional gauge fields Aab
α , promoting

SOðdÞ to a local symmetry:

S½ϕ; A� ¼ 1

2πα0

Z
d2xD1ϕ

aD−ϕa; ð4:76Þ

where Dαϕ
a ≔ ∂αϕ

a þ Aab
α ϕb and under a local SOðdÞ

rotation δλAab
α ¼ −Dαλ

ab. In order to keep track of index
contractions, it is useful to introduce the matrix

gαβ ≔
�
0 1

1 0

�
; where α ¼ ð−; 1Þ; ð4:77Þ

so that the above action can be recast in the form

S ¼ 1

4πα0

Z
d2xgαβDαϕ

aDβϕa; ð4:78Þ

that allows one to write the cubic and quartic vertices as

S3 ¼ −
1

2πα0

Z
d2xgαβAab

α ϕa∂βϕb;

S4 ¼
1

4πα0

Z
d2xgαβAca

α Aβc
bϕaϕb: ð4:79Þ

We define the one-loop effective action for Aab
α by

eiW½A� ¼ Z−1
Z

DϕeiS½ϕ;A� ¼ heiðS3þS4Þi; ð4:80Þ

where Z is the free ϕ-path integral normalization and we
denote averages by h…i. We focus on the quadratic part of
W½A�, that is given by

ð4:81Þ

By using the propagator

hϕaðxÞϕbðyÞi ¼ iα0

4π
δab

Z
d2k

eik·ðx−yÞ

k−k1 þ iϵ
ð4:82Þ

and the Fourier representation

Aab
α ðxÞ ¼

Z
d2keik·xAab

α ðkÞ ð4:83Þ

the effective action W2½A� can be written in the form

W2½A�¼−
i
4

Z
d2pgαγgβδAab

γ ðpÞΠαβðpÞAδabð−pÞ: ð4:84Þ

The polarization tensor ΠαβðpÞ reads
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ΠαβðpÞ ¼ −
1

2

Z
dk−dk1

ð2kα − pαÞð2kβ − pβÞ − 2gαβ½k−k1 þ ðp− − k−Þðp1 − k1Þ�
k1ðp1 − k1Þðk− þ iϵ

k1
Þðk− − p− − iϵ

p1−k1
Þ ; ð4:85Þ

where the integrand has manifest symmetry in the exchange
kα ↔ ðpα − kαÞ.
We regularize the integral over k− by inserting a factor

eiδk−k1 . This allows us to compute the integral by closing
the contour in the complex k− plane. Although this
regulator is not Lorentz invariant, it does not affect the
anomaly. The remaining integral over k1 suffers from

infrared divergences, appearing as
R jp1j
0

dk1
k1
. This is to be

expected from a two-dimensional massless scalar on the
infinite plane, while this divergence disappears on the
cylinder, due to the discrete spatial momentum. We will
thus regulate the k1 integral by introducing an infrared

cutoff μ, substituting
R jp1j
0 with

R jp1j
μ . The various compo-

nents of the polarization tensor read

Π11ðpÞ ¼ −2πi
p1

p−
½logðjp1j=μÞ − 2�;

Π−−ðpÞ ¼ −2πi
p−

p1

logðjp1j=μÞ;

Π−1ðpÞ ¼ 2πi logðjp1j=μÞ; ð4:86Þ

yielding the effective action

W2½A� ¼−
π

2

Z
d2p

�
Aab
− ðpÞp1

p−
½logðjp1j=μÞ− 2�A−abð−pÞ

þAab
1 ðpÞp−

p1

logðjp1j=μÞA1abð−pÞ

− 2Aab
1 ðpÞ logðjp1j=μÞA−abð−pÞ

�
: ð4:87Þ

To recast the above expression in the more familiar light-
cone basis one can substitute Aab

1 ¼ Aabþ − Aab
− and sim-

ilarly p1 ¼ pþ − p−. Before computing the gauge variation
of (4.87), we shall notice that the term Aab

−
p1

p−
A−ab differs

from Aab
−

pþ
p−

A−ab by a purely local term, implying that one
can use the latter to compute the anomaly.
To lowest order in Aab

α one has δλAab
α ðpÞ ¼ −ipαλ

abðpÞ,
finally yielding the anomalous variation

δλW2½A� ¼ −2πi
Z

d2pλabðpÞpþA−abð−pÞ þOðA2Þ

ð4:88Þ

that is Lorentz invariant and structurally the same as the
one due to a chiral fermion. As usual, in order to establish
that (4.88) is a genuine anomaly, one has to consider adding
to the effective action all possible local counterterms. Since

(4.88) is Lorentz invariant, the only local counterterm that
can change it is

ΔW2½A� ¼ α

Z
d2pAabþ ðpÞA−abð−pÞ; ð4:89Þ

leading to

δλðW2 þ ΔW2Þ ¼ −i
Z

d2pλabðpÞ½ð2π þ αÞpþA−abð−pÞ

þ αp−Aþabð−pÞ�: ð4:90Þ

The above result shows that no value of α can make the
effective action gauge invariant, thus establishing that
(4.88) is a genuine anomaly. We shall choose the value
α ¼ −π, in order to have a purely parity-violating anoma-
lous variation. Defining

Weff
2 ½A� ≔ W2½A� − π

Z
d2pAabþ ðpÞA−abð−pÞ; ð4:91Þ

with W2½A� given by (4.87), we finally obtain, using
ϵþ− ¼ 2,

δλWeff
2 ½A�¼−iπ

Z
d2pλabðpÞ½pþA−abð−pÞ−p−Aþabð−pÞ�

¼ 1

4π

Z
d2xλab½∂þAab

− −∂−Aabþ �

¼ 1

8π

Z
d2xλabϵαβ∂αAab

β : ð4:92Þ

C. Green-Schwarz deformation

After computing the SOðdÞ anomaly due to left-moving
Floreanini-Jackiw bosons we can now apply the result to
the worldsheet sigma model (3.20). The action for the
“internal” Y sector (4.20) reads

SY ¼ 1

2πα0

Z
d2σ½ðD1YA þ P1

A
B̄Y

B̄ÞðD−YA þ P−A C̄Y
C̄Þ

þ ðD1YĀ þ P1
Ā
BYBÞðDþYĀ þ PþĀ CY

CÞ�; ð4:93Þ

with DαYA ¼ ∂αYA þQAB
α YB, DαYĀ ¼ ∂αYĀ þQAB

α YB̄

and we recall that Qα ¼ ∂αXμQμ and Pα ¼ ∂αXμPμ are
the pullbacks of the background fields.
Our goal is to investigate the one-loop effective action

(still depending on the Xμ worldsheet fields and back-
ground fields Qμ and Pμ) generated by integrating out

the internal fields ðYA; YĀÞ. We first focus on the case
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PA B̄
α ¼ 0, where one can see that the above action reduces

to the sum of a left-moving FJ action (4.76) with gauged
SOðdÞL and an analogous right-moving action with gauged

SOðdÞR. By just replacing ϕa → YA, Aab
α → QAB

α one
obtains an effective action W2½Q; Q̄� whose anomalous
SOðdÞL × SOðdÞR variation is given, to lowest order, by

δλ;λ̄W2½Q; Q̄� ¼ 1

8π

Z
d2xλABϵαβ∂αQ

AB
β

−
1

8π

Z
d2xλABϵ

αβ∂αQAB
β ; ð4:94Þ

where the right-moving contribution can be obtained by a
computation analogous to the one presented in the previous
subsection.
We can now examine the effect of the Pα tensor on the

full effective action W2½Q; Q̄; P�. Due to the orthogonality
of the two SOðdÞ groups, the only contribution of Pα to the
quadratic effective action W2 has to be of the form

Z
d2kPA B̄

α ðkÞGαβðkÞPβA B̄ð−kÞ: ð4:95Þ

Since the gauge transformation of the P tensor is δλPμA B̄ ¼
λA

CPμC B̄ þ λB̄
C̄PμA C̄, the variation of (4.95), if nonvanish-

ing, cannot contribute to linear order in the background
fields. This shows that, to lowest order in the fields, the
anomalous variation of W½Q; Q̄; P� is given by (4.94), that
can be written in form language as

δλ;λ̄W½Q; Q̄; P� ¼ 1

8π

Z
trðdλ ∧ QÞ − 1

8π

Z
trðdλ̄ ∧ Q̄Þ:

ð4:96Þ

Since the above result already satisfies the Wess-Zumino
consistency conditions ½δλ1 ; δλ2 �W ¼ δ½λ2;λ1�W, (4.96) does
not receive higher order contributions inQ and P, and gives
the full anomaly. Let us mention that in cosmological
settings, where the “external” coordinates Xμ reduce to
time X0 ¼ t, one has dQab ¼ dσα ∧ dσβ∂αt∂βt∂tQab

t ≡ 0

and the anomaly is not present.
The above anomalous variation, if not canceled, implies

that gauge-equivalent background fields (from the target
space perspective) lead to inequivalent worldsheet sigma
models, which is not acceptable. Fortunately, in the same
spirit of the original Green-Schwarz mechanism [29], the
anomaly (4.96) can be canceled by postulating a suitable
transformation for the B-field. We recall from (3.20) that
the action involving the Kalb-Ramond field reads

SB ¼ −
1

4πα0

Z
d2xϵαβBαβ; ð4:97Þ

where Bαβ denotes the pullback of Bμν. At this point, simple
inspection of (4.96) determines that the anomaly can be
canceled by assigning to the B-field the transformation law

δλ;λ̄B ¼ α0

2
trðdλ ∧ QÞ − α0

2
trðdλ̄ ∧ Q̄Þ: ð4:98Þ

Remarkably, this is exactly the transformation found in [19]
from the low-energy target space analysis, thus showing
that its emergence in the worldsheet theory stems from the
anomalies of two-dimensional chiral bosons.
As a final comment, the form (4.96) of the SOðdÞL ×

SOðdÞR anomaly shows that the diagonal SOðdÞ subgroup
remains unbroken. This also agrees with the analysis of
[19] and is to be expected, since the diagonal SOðdÞ is the
geometric subgroup of SOðdÞL × SOðdÞR.

V. CONCLUSIONS AND OUTLOOK

In this paper we have revisited the issue of making
the T-duality group Oðd; dÞ a manifest symmetry of the
worldsheet action of (bosonic) string theory. We have
identified a consistent truncation with global Oðd; d;RÞ
invariance, in which the target space fields are independent
of d coordinates while the worldsheet scalars have zero
(internal) momentum and winding. This truncation may be
thought of as the zero-mass sector for a Kaluza-Klein
compactification on a d-dimensional torus, but the top-
ology is no longer relevant—precisely because of the
truncation to zero momentum and winding. As such, this
worldsheet theory is applicable to any setting with d
Abelian isometries, be they compact or not, in particular
to cosmological backgrounds, as employed in [40]. We
have displayed the proper manifestly Oðd; d;RÞ invariant
worldsheet action that includes all target space fields that
survive the truncation.
As the second main point of this paper we have shown

that the SOðdÞL × SOðdÞR local frame transformations are
anomalous, as to be expected given the presence of chiral
bosons. This suggests that a Green-Schwarz mechanism is
needed in which the (external) B-field, which is a singlet in
the classical theory, transforms nontrivially under these
symmetries, in line with recent findings in the target space
theory when higher oder α0 corrections are included
[19,20]. This result has a direct bearing on any attempts
to determine the target space equations directly in
Oðd; d;RÞ invariant form by computing the beta functions
of a suitable Oðd; d;RÞ invariant worldsheet theory, a
program that was initiated in [10–12]. It will then be
important to revisit this program in light of the present
results, in particular to develop precise computational rules
that allow one, in principle, to determine the equations to
arbitrary orders in α0. In this respect, one of the main
difficulties in using this formalism is the lack of manifest
two-dimensional Lorentz invariance. It would then be
interesting to investigate the proposal, made in [2], of
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modifying the functional measure of the chiral bosons as
Dϕ → Dϕðdet ∂1Þ1=2. This formally relates the path inte-
gral of the Floreanini-Jackiw bosons to the one of chiral
fermions, which is manifestly Lorentz invariant.
A manifestly Oðd; d;RÞ invariant procedure to compute

the beta functions may be particularly fruitful in the
cosmological setting, which is significantly simplified
since the external dimensions are reduced to (cosmic)
time, and where a complete classification of all duality
invariant α0 corrections has been found recently [40]. It
remains to fix a finite number of free parameters at each
order in α0, and one may hope that this could eventually be
achieved by a worldsheet computation using the results
given here.
Let us finally mention that while the general phenome-

non for which we provide here a worldsheet interpretation
was first discovered in double field theory [21,23], none of
our findings depend directly on double field theory. They
are a feature of a standard string theory formulation.
Nevertheless, the most enticing extension of this frame-
work would of course be to a full-fledged double field
theory. In the truncation invoked here there is a clear
separation of dimensions along which the fields may vary
(external) and of dimensions along which the fields are
constant (internal), with the Oðd; d;RÞ acting exclusively
on the latter. This truncation is explicitly Oðd; d;RÞ
invariant to all orders in α0, as follows by general arguments
[41] and explicit computations [40,42], and so there should
be a worldsheet conformal field theory construction giving
these target space equations. However, a genuine double
field theory would go beyond this by having fields that
in addition depend on doubled internal coordinates,
corresponding to the scalar fields YM, subject to the
level-matching constraint (that now does assume a torus
background) and obeying a novel algebra [43]. The results
obtained here may help to illuminate some issues that arise
when trying to define this theory explicitly.
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APPENDIX A: WORLDSHEET
DIFFEOMORPHISMS

Here we derive various nonstandard realizations of
worldsheet diffeomorphisms, which in our formulation
are not manifest. In particular, we show that in the
Hamiltonian picture they are generated by the Virasoro
constraints, as to be expected. More importantly, we also
show that the Ỹi, introduced by a nonlocal field redefinition
2πα0Pi ¼ ∂σỸi, admit local diffeomorphism transforma-
tions. Finally, we show that diffeomorphism invariance,

despite its nonstandard realization, implies energy-momen-
tum conservation in the standard form.

1. Equivalence between Lagrangian
and Hamiltonian diffeomorphisms

Let us start from the sigma model action (3.5), i.e.,

SL ¼ −
1

4πα0

Z
d2σ½

ffiffiffiffiffiffi
−h

p
hαβĜμ̂ ν̂ðXÞ

þ ϵαβB̂μ̂ ν̂ðXÞ�∂αX̂
μ̂∂βX̂

ν̂; ðA1Þ

where here and in the following the subscript L refers
to “Lagrangian,” as opposed to H which will refer to
“Hamiltonian.” Diffeomorphism and Weyl transformations
take the familiar form

δLhαβ ¼ ξλ∂λhαβ þ 2∂ðαξλhβÞλ þ 2ωhαβ;

δLX̂
μ̂ ¼ ξα∂αX̂

μ̂: ðA2Þ

Using the parametrization (2.5) for the metric one finds

δLΩ ¼ ∂αðΩξαÞ þ 2ωΩ;

δLe ¼ ξα∂αeþ e½∂τξ
τ − ∂σξ

σ − 2u∂σξ
τ�;

δLu ¼ ξα∂αuþ ∂τξ
σ þ u½∂τξ

τ − ∂σξ
σ� − ∂σξ

τ½u2 þ e2�;
ðA3Þ

which is awkward, since the basis ðe; u;ΩÞ is adapted to the
Hamiltonian formulation.
We will now determine the Hamiltonian form of the

diffeomorphisms, which are generated via Poisson brackets
from the Virasoro constraints. The Hamiltonian action
associated to (A1) was given in (2.6), except that now
we would have to replace all indices by hatted indices,
referring to the totality of internal and external components.
However, here we will not be concerned with the split into
“external” Xμ and “internal” Yi, and so in order not to
overburden the notation, we shall drop all hats from our
formulas in what follows. In particular, Xμ and Pμ stand for
(nþ d)-dimensional phase space variables, Gμν and Bμν

denote the spacetime metric and B-field in (nþ d) dimen-
sions and, finally, capital indices M ¼ 1;…; 2ðdþ nÞ
denote Oðdþ n; dþ nÞ tensors.
The fundamental Poisson brackets are

fXμðσ1Þ; Pνðσ2Þg ¼ δμνδðσ1 − σ2Þ: ðA4Þ

The simple form of the constraints in terms of OðD;DÞ
quantities in (2.10) suggests to use the covariant Poisson
brackets

fZMðσ1Þ; ZNðσ2Þg ¼ 2πα0ηMN∂σ1δðσ1 − σ2Þ; ðA5Þ

along with
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fZMðσ1Þ;ΦðXðσ2ÞÞg ¼ −2πα0∂MΦðXÞδðσ1 − σ2Þ ðA6Þ

for X-dependent fields, where it is understood that ∂̃μΦðXÞ≡ 0. Using (A5) and (A6) it is indeed simple to compute the
local constraint algebra:

fN ðσ1Þ;N ðσ2Þg ¼ 1

2πα0
ZMðσ1ÞZMðσ2Þ∂σ1δðσ1 − σ2Þ;

fN ðσ1Þ;Hðσ2Þg ¼ 1

2πα0
ZMðσ1ÞZNðσ2ÞHMNðσ2Þ∂σ1δðσ1 − σ2Þ −

1

4πα0
ZPðσ1Þ∂PHMNðσ1ÞZMðσ1ÞZNðσ1Þδðσ1 − σ2Þ;

fHðσ1Þ;Hðσ2Þg ¼ 1

2πα0
ZMðσ1ÞHMPðσ1ÞHP

Nðσ2ÞZNðσ2Þ∂σ1δðσ1 − σ2Þ; ðA7Þ

where we can reduce ZP∂PHMN ¼∂σXμ∂μHMN ¼∂σHMN .
Given the local form (A7), the constraint algebra, adopting
the formalism in Refs. [14,44], is most easily read in terms
of the smeared constraints

NðαÞ ≔
Z

2π

0

dσαðσÞN ðσÞ; HðϵÞ ≔
Z

2π

0

dσϵðσÞHðσÞ;

ðA8Þ

for which the first-class property becomes apparent:

fNðα1Þ; Nðα2Þg ¼ Nð½α1; α2�Þ;
fNðαÞ; HðϵÞg ¼ Hð½α; ϵ�Þ;

fHðϵ1Þ; Hðϵ2Þg ¼ Nð½ϵ1; ϵ2�Þ; ðA9Þ

with square brackets denoting one-dimensional Lie
brackets, i.e.,

½α1; α2� ≔ α1∂σα2 − α2∂σα1: ðA10Þ

One can choose a diagonal basis for N andH by using the
projectors Π�

MN ≔ 1
2
ðηMN �HMNÞ [which can be quickly

verified to be projectors thanks to HMN being an OðD;DÞ
element]:

H� ≔
1

2
ðN �HÞ ¼ 1

4πα0
Π�

MNZ
MZN: ðA11Þ

The Hamiltonian algebra (A9) then takes the manifest
diff1 ⊕ diff1 form:

fH�ðα1Þ; H�ðα2Þg ¼ H�ð½α1; α2�Þ;
fHþðαÞ; H−ðβÞg ¼ 0: ðA12Þ

The smeared constraints (A8) can be used to determine
the Hamiltonian gauge transformations of the phase space
fields. Taking Poisson brackets one finds

δHXμ ¼ fXμ; NðαÞ þHðϵÞg ¼ α∂σXμ þ ϵHμ
NZN;

δHPμ ¼ fPμ; NðαÞ þHðϵÞg

¼ ∂σ

�
αPμ þ

1

2πα0
ϵHμNZN

�
−

1

4πα0
ϵ∂μHMNZMZN;

ðA13Þ

that are the Hamiltonian version of diff2 transformations.
Finally, requiring invariance of the Hamiltonian action
under the above local transformations determines the
transformation law of the corresponding Hamiltonian
gauge fields e and u:

δHe ¼ ∂τϵ − ½u; ϵ� − ½e; α�; δHu ¼ ∂τα − ½u; α� − ½e; ϵ�;
ðA14Þ

where again square brackets denote one-dimensional Lie
brackets.
The transformation laws (A13) and (A14) have to be

compared with their Lagrangian counterpart (A3) and
δLXμ ¼ ξα∂αXμ. Defining the Lagrangian transformation
δLPμ for momenta may seem counterintuitive, but it is
simply determined by considering the transformation of
Plag
μ ≡ ∂L

∂ _Xμ as a given function of Lagrangian variables, i.e.,

Plag
μ ¼ 1

2πα0

�
1

e
Gμνð∂τXν − u∂σXνÞ þ Bμν∂σXν

�
; ðA15Þ

that, obviously, is just the on-shell value of the Hamiltonian
momentum. Using the transformation law of Plag

μ to define
δLPμ ensures that such transformations commute with
integrating out momenta.
The simplest way to determine the transformation law of

Plag
μ is to view it as the τ component of the two-dimensional

vector density

παμ ≔ −
1

2πα0
½

ffiffiffiffiffiffi
−h

p
hαβGμν∂βXν þ ϵαβBμν∂βXν�; ðA16Þ

that transforms as
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δLπ
α
μ ¼ ∂βðξβπαμÞ − ∂βξ

απβμ; ðA17Þ

thus yielding

δLXμ ¼ ξα∂αXμ;

δLPμ ¼ ξτ∂τPμþ ∂σðξσPμÞþ ∂σξ
τ

�
uPμþ

1

2πα0
eHμNZN

�
:

ðA18Þ

At this point, the final ingredient to prove equivalence
of the Lagrangian diff2 transformations (A18) with the
canonical ones (A13), are the Hamiltonian field equations

δSH
δPμ

¼ ∂τXμ − u∂σXμ − eHμ
NZN;

δSH
δXμ ¼ −∂τPμ þ ∂σ

�
uPμ þ

1

2πα0
eHμNZN

�

−
e

4πα0
∂μHMNZMZN: ðA19Þ

Inspection of the transformation laws (A13) and (A18)
allows us to determine the relation between the canonical
gauge parameters ðα; ϵÞ and the geometric vector field ξα,
namely

ϵ ¼ eξτ; α ¼ ξσ þ uξτ: ðA20Þ

With the above redefinition we can finally establish the
explicit equivalence between two-dimensional diffeomor-
phisms and canonical gauge transformations as

δHXμ ¼ δLXμ − ξτ
δSH
δPμ

; δHPμ ¼ δLPμ þ ξτ
δSH
δXμ ;

δHe ¼ δLe; δHu ¼ δLu: ðA21Þ

The extra terms in δHXμ and δHPμ are indeed of the trivial
form δφi ¼ μij δS

δφj with μij antisymmetric. This kind of

local transformations is not related to any genuine gauge
redundancy, and can be safely ignored.

2. Locality and Oðd;dÞ invariance of diffeomorphisms

After proving equivalence of Lagrangian diffeomor-
phisms (A18) and Hamiltonian gauge transformations
(A13) for the general sigma model in (nþ d) dimensions,
we shall now study the split X̂μ̂ ¼ ðXμ; YiÞ between
external and internal sectors.
First of all, let us reinstate the original notation, with

hatted symbols denoting (nþ d)-dimensional fields, and
rewrite the Lagrangian and Hamiltonian transformations:

δLX̂
μ̂ ¼ ξα∂αX̂

μ̂;

δLP̂μ̂ ¼ ξτ∂τP̂μ̂ þ ∂σðξσP̂μ̂Þ

þ ∂σξ
τ

�
uP̂μ̂ þ

1

2πα0
eĤμ̂ N̂Ẑ

N̂

�
; ðA22Þ

and

δHX̂
μ̂ ¼ α∂σX̂

μ̂ þ ϵĤμ̂
N̂Ẑ

N̂ ;

δHP̂μ̂ ¼ ∂σ

�
αP̂μ̂ þ

1

2πα0
ϵĤμ̂ N̂Ẑ

N̂

�
−

1

4πα0
ϵ∂ μ̂ĤM̂ N̂Ẑ

M̂ẐN̂ :

ðA23Þ

Let us also remind the reader that the Oðdþ n; dþ nÞ
vector ẐM̂ is given by

ẐM̂ ¼
� ∂σX̂

μ̂

2πα0P̂μ̂

�
; ðA24Þ

and the Oðdþ n; dþ nÞ generalized metric is defined in
terms of Ĝμ̂ ν̂ and B̂μ̂ ν̂.
Upon splitting the phase space variables as X̂μ̂ ¼

ðXμ; YiÞ and P̂μ̂ ¼ ðPμ; PiÞ, we recall that our action
(3.20) is purely Lagrangian in the noncompact sector.
The diffeomorphism transformations thus act as usual:
δXμ ¼ ξα∂αXμ, the on-shell momentum Pμ is given by

2πα0Pμ ¼ e−1gμνX
∘
ν þ Bμν∂σXν þAμ

MZM;

X
∘
μ ≔ ∂τXμ − u∂σXμ; ðA25Þ

according to (3.13), and no further investigation is required.
For the internal ðYi; PiÞ sector, we choose the

Hamiltonian form (A23) over the Lagrangian one (A22),
a choice that we will motivate at the end of this section.
According to (A23), the transformations for the phase
space variables Yi and Pi are given by

δYi ¼ α∂σYi þ ϵĤi
N̂ Ẑ

N̂ ;

δPi ¼ ∂σ

�
αPi þ

1

2πα0
ϵĤiN̂ Ẑ

N̂

�
; ðA26Þ

where, crucially, the last term of (A23) vanishes in the
transformation of Pi, thanks to ∂iΦðXÞ ¼ 0 for any
spacetime field. This last fact implies the most important
property we were after: Pi transforms as a total σ derivative
under diffeomorphisms.7 This allows us to implement the
field redefinition 2πα0Pi ¼ ∂σỸi without introducing

7This also implies that the center-of-mass truncation pi0 ¼ 0 is
diffeomorphism invariant.
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nonlocalities in the transformations. Indeed, consistently
with (A26), we can write

δYi ¼ α∂σYi þ ϵĤi
N̂ Ẑ

N̂ ;

δỸi ¼ α∂σỸi þ ϵĤiN̂ Ẑ
N̂ : ðA27Þ

At this point, Oðd; dÞ invariance may look manifest.
However, despite the simple-looking form, the decompo-
sition of the Oðdþ n; dþ nÞ generalized metric in terms
of Oðd; dÞ covariant n-dimensional fields is somewhat
involved, see [45]. Upon using the Kaluza-Klein decom-
position (3.6), (3.7), as well as (A24) and (A25), we find,
after a straightforward but tedious computation

Ĥi
N̂ Ẑ

N̂ ¼ Hi
MDσYM − e−1Ai

μð∂τXμ − u∂σXμÞ;
ĤiN̂ Ẑ

N̂ ¼ HiMDσYM − e−1Ãμið∂τXμ − u∂σXμÞ: ðA28Þ

This establishes the diffeomorphism transformations of the
double coordinates YM in a manifestly local and Oðd; dÞ
covariant form:

δYM ¼ α∂σYM þ ϵ½HMNDσYN − e−1Aμ
Mð∂τXμ − u∂σXμÞ�:

ðA29Þ

Recalling the relation (A20) between the Hamiltonian
gauge parameters ðα; ϵÞ and the diff2 vector ξα, it is
possible to rewrite the above transformation law in a more
illuminating form:

δYM ¼ ξα∂αYM − ξτ½DτYM − uDσYM − eHMNDσYN �:
ðA30Þ

The above transformation law reduces to the standard one,
δYM ¼ ξα∂αYM, upon using the self-duality relation (3.29).
However, (A30) provides the correct off-shell diff2 trans-
formation in the general case. To summarize, the action
(3.20) is invariant under the worldsheet diffeomorphisms

δξXμ ¼ ξα∂αXμ; δξhαβ ¼ ∇αξβ þ∇βξα;

δξYM ¼ ξα∂αYM − ξτDM; ðA31Þ

where we defined the “self-duality vector”

DM ≔ DτYM − uDσYM − eHMNDσYN; ðA32Þ

and we recall that the transformation law (A3) of e and u is
just determined by their definition

e ¼
ffiffiffiffiffiffi
−h

p

hσσ
; u ¼ hτσ

hσσ
: ðA33Þ

Invariance of (3.20) under (A31) is assured by the general
reasoning leading to (A30), but it can also be checked
directly by using

δξðDαYMÞ ¼ LξðDαYMÞ − ∂αðξτDMÞ;
δξDM ¼ ξα∂αDM − ξτ½∂τDM − u∂σDM

− eHMN∂σDN �: ðA34Þ

The variations (A34) can also be used to check that the
algebra of diffeomorphisms closes off-shell, even with the
extra term, according to the usual Lie bracket:

½δξ2 ; δξ1 � ¼ δξ12 ; ξα12 ¼ ξβ1∂βξ
α
2 − ξβ2∂βξ

α
1: ðA35Þ

The zero mode shift symmetry (3.22)

δΞYMðσ;τÞ¼ΞMðτÞ; δΞXμðσ;τÞ¼0; δΞhαβðσ;τÞ¼0;

ðA36Þ

commutes with diffeomorphisms: ½δξ; δΞ� ¼ 0. However,
the gauge fixing condition (3.27) is not diff2 invariant off-
shell. The easiest way to see this is to notice that (3.27) can
be written as

1

2π

Z
2π

0

dσDM ¼ 0; ðA37Þ

and its variation under a diffeomorphism is given by

δξ

�Z
2π

0

dσDM

�

¼
Z

2π

0

dσ½ξσ∂σDM þ ξτðu∂σDM þ eHMN∂σDNÞ�;

ðA38Þ

that vanishes only on-shell, by noting that the Y field
equation (3.28) is just ∂σDM ¼ 0. This is not in contra-
diction with our claim, namely that the string theory
described by (3.20) is classically equivalent to the truncated
sector of the original sigma model, meaning that the
equivalence holds at the level of the space of classical
solutions.

3. Energy-momentum tensor
and conformal symmetry

We will now derive consequences of diffeomorphism
invariance such as energy-momentum conservation. The
diffeomorphism invariance of the action (3.20) can be
expressed as

Z
d2σ

�
δS
δφA δξφ

A þ δS
δe

δξeþ
δS
δu

δξu

�
¼ 0; ðA39Þ
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where we grouped the “matter fields” as φA ≔ ðXμ; YMÞ.
By evaluating (A39) for on-shell configurations of the
matter fields, i.e., δS

δφA ¼ 0, one obtains

Z
d2σ½Hð∂τϵ − u∂σϵ − e∂σαþ ∂σeαÞ

þN ð∂τα − u∂σα − e∂σϵþ ∂σeϵÞ� ¼ 0; ðA40Þ

where we used (A14). The functions H ¼ − δS
δe and

N ¼ − δS
δu are given by

H ¼ 1

4πα0
½e−2gμνX

∘
μX
∘
ν þ gμν∂σXμ∂σXν

þHMNDσYMDσYN �;

N ¼ 1

4πα0
½2e−1gμνX

∘
μ∂σXν þDσYMDσYM�; ðA41Þ

where X
∘
μ ¼ ∂τXμ − u∂σXμ. Since (A40) holds for arbitrary

ϵ and α, we obtain the energy-momentum conservation law
in arbitrary gauge:

∂τH ¼ ∂σðeN þ uHÞ þ ∂σuHþ ∂σeN ;

∂τN ¼ ∂σðeHþ uN Þ þ ∂σuN þ ∂σeH: ðA42Þ

Since diffeomorphism invariance can be used to fix
the metric components e and u, one is mostly interested
in studying the model (3.20) in conformal gauge, that
corresponds to e ¼ 1 and u ¼ 0. The action (3.20) then
reduces to

Sc:g: ¼ −
1

4πα0

Z
d2σ½gμν∂αXμ∂αXν

þ ϵαβðBμν∂αXμ∂βXν −Aμ
MDαYM∂βXμÞ�

þ 1

4πα0

Z
d2σ½DσYMDτYM −HMNDσYMDσYN �:

ðA43Þ

This has to be supplemented with the Virasoro constraints
H ¼ 0,N ¼ 0. In conformal gauge it is useful to introduce
light-cone worldsheet coordinates σ� ≔ τ � σ, for which
one has

∂� ¼ 1

2
ð∂τ � ∂σÞ; ηþ− ¼ −

1

2
;

ηþ− ¼ −2; ϵþ− ¼ 2; ϵþ− ¼ −
1

2
: ðA44Þ

The Virasoro constraints can then be expressed in the more
familiar form T�� ¼ 0, defined by

Tþþ ≔ πðHc:g: þN c:g:Þ

¼ 1

α0

�
gμν∂þXμ∂þXν þ 1

2
Πþ

MNDσYMDσYN

�
;

T−− ≔ πðHc:g: −N c:g:Þ

¼ 1

α0

�
gμν∂−Xμ∂−Xν −

1

2
Π−

MNDσYMDσYN

�
; ðA45Þ

where the Oðd; dÞ projectors are as in (A11) and
Dσ ¼ Dþ −D−.
Conformal symmetry of the gauge fixed action (A43) is

easily established as the global remnant of diffeomor-
phisms that preserve the conformal gauge choice. From
the transformation law (A14) one has the conditions

δejconf ¼ ∂τϵ − ∂σα ¼ 0; δujconf ¼ ∂τα − ∂σϵ ¼ 0

ðA46Þ

to preserve the conformal gauge. Since in this gauge
Hamiltonian and Lagrangian parameters coincide,
ξα ¼ ðϵ; αÞ, one can easily see that the conditions (A46)
are equivalent to the usual analyticity

∂−ξ
þ ¼ 0; ∂þξ− ¼ 0: ðA47Þ

The diffeomorphism transformations (A31) give directly
the conformal transformations leaving (A43) invariant:

δconfXμ ¼ ξþ∂þXμ þ ξ−∂−Xμ;

δconfYM ¼ ξþ∂þYM þ ξ−∂−YM − ðξþ þ ξ−Þ
× ½ΠM

− NDþYN þ ΠMþND−YN �; ðA48Þ

for analytic parameters ξþðσþÞ, ξ−ðσ−Þ. Moreover, the
usual diff2 algebra (A35) ensures that conformal trans-
formations form two commuting copies of the classical
Virasoro (Witt) algebra.
As a final remark, we notice that the conservation law

(A42) reduces in conformal gauge to analyticity of the
energy-momentum tensor:

∂−Tþþ ¼ 0; ∂þT−− ¼ 0; ðA49Þ

despite the nonstandard contributions from the Y sector.
In fact, we shall also notice that the self-duality relation
(3.29), that is DM ¼ 0, can be written in conformal
gauge as

Π�
MND∓YN ¼ 0: ðA50Þ

If (A50) is imposed, both the conformal transformations
of YM and the Y contribution to the stress-energy tensor
assume the standard form
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δconf:YM ¼ ξþ∂þYM þ ξ−∂−YM;

T�� ¼ 1

α0

�
gμν∂�Xμ∂�Xν þ 1

2
HMND�YMD�YN

�
;

ðA51Þ

but one should always keep in mind that (A50) is not a
variational equation.

APPENDIX B: CANCELLATION OF
GRAVITATIONAL ANOMALIES

In this Appendix we verify explicitly that for the model
carrying d left-moving and d right-moving chiral bosons
the gravitational anomalies cancel. To this end we compute
the one-loop effective action for the gravitational field and
establish that gravitational anomalies can be canceled
without spoiling Oðd; dÞ invariance. For simplicity we
consider the theory defined by the action (3.20) for the
case of vanishing gauge fields, Aμ

M ¼ 0, and constant
generalized metric: ∂μHMN ¼ 0. The Y-sector decouples
from the X-sector and reduces to the sum of left and right
Floreanini-Jackiw actions coupled to gravity [46–48]:

S½Y; e�� ¼
1

4πα0

Z
d2σ½∂σYM

L ð∂τ − eþ∂σÞYLM

þ ∂σYM
R ð∂τ − e−∂σÞYRM�; ðB1Þ

where we used the Oðd; dÞ projectors to define

YM
L ≔ ΠMþNY

N; YM
R ≔ ΠM

− NYN ðB2Þ

and introduced e� ≔ u� e. The action (B1) is invariant
under two-dimensional diffeomorphisms acting as

δεYM
L ¼ εþ∂σYM

L ; δεYM
R ¼ ε−∂σYM

R ;

δεe� ¼ ∂τε� − e�∂σε� þ ε�∂σe�; ðB3Þ

where the parameters ε� ¼ α� ϵ are given by

ε� ¼ ξσ þ e�ξτ ðB4Þ

in terms of the usual vector field ξα. The action is also
invariant under two separate zero-mode local symmetries:

δΞYM
L ðσ; τÞ ¼ ΞM

L ðτÞ; δΞYM
R ðσ; τÞ ¼ ΞM

R ðτÞ: ðB5Þ

In order to compute the one-loop effective action for the
gravitational field we start by shifting the gravity fields as

eþ ¼ 1þ φþ; e− ¼ −1 − φ−; ðB6Þ

so that φ� ¼ 0 in conformal gauge. The action (B1) then
splits into a quadratic part and an interaction term, allowing
for a well-defined perturbative treatment:

S½Y;φ�� ¼
1

4πα0

Z
d2σ½∂σYM

L ð∂τ − ∂σÞYLM

þ ∂σYM
R ð∂τ þ ∂σÞYRM�

þ 1

4πα0

Z
d2σ½φ−∂σYR · ∂σYR

− φþ∂σYL · ∂σYL�
¼ SL½YL;φþ� þ SR½YR;φ−�; ðB7Þ

where the dot denotes contraction of Oðd; dÞ indices with
ηMN . Since the action is the sum of independent left and
right terms, the path integral8 factorizes:

eiW½φ��≔Z−1
Z

DYLDYReiS½Y;φ�� ¼eiWL½φþ�eiWR½φ−�: ðB8Þ

We will thus focus on the left part of the effective action
WL½φþ�, that can be written as the quantum average

eiWL½φþ� ¼ Z−1
L

Z
DYLeiSL½YL;φþ� ≕ he− i

4πα0
R

d2σφþ∂σYL·∂σYLi;

ðB9Þ

and just present the result for WR½φ−�.
Due to the zero-mode symmetry (B5), the kinetic

operator ∂σð∂τ − ∂σÞ is not invertible. Gauge fixing (B5)
with appropriate boundary conditions at asymptotic times
[46] yields a trivial path integral for the zero-mode YM

L0ðτÞ.
The above path integral is thus understood as

R
DȲL over

the nonzero mode part of YM
L only:

ȲM
L ðσ; τÞ ≔ YM

L ðσ; τÞ − YM
L0ðτÞ; ðB10Þ

whose propagator is well defined and given by

hȲM
L ðxÞȲN

L ðyÞi ¼ −4πα0iΠMNþ

Z ½d2k�
ð2πÞ2 e

ik·ðx−yÞ kþ
k1

1

k2 − iϵ
;

ðB11Þ

where the momentum kα ≔ ðω; nÞ, with discrete n ∈ Z in
the σ direction, and the “integration” measure is defined by

Z
½d2k� ≔

Z þ∞

−∞
dω

X
n≠0

: ðB12Þ

We have also changed notation by denoting the worldsheet
coordinates as xα ¼ ðτ; σÞ, in order not to confuse σα with
the spatial component σ.
Equipped with the propagator (B11) we can compute

WL½φþ� up to quadratic order:

8We fix the normalization Z to be the free Y-path integral, so
that W½0� ¼ 0.
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WL½φþ� ¼ idΔ
Z

d2xφþðxÞ − id
Z

d2x

×
Z

d2y
ð2πÞ2

d2p
ð2πÞ2 e

ip·ðx−yÞφþðxÞφþðyÞIðpÞ;

ðB13Þ

with the tadpole Δ and the bubble diagram IðpÞ defined by

Δ ≔
Z ½d2k�

ð2πÞ2
k1kþ
k2 − iϵ

;

IðpÞ ≔
Z

½d2k� k1kþ
k2 − iϵ

ðp1 þ k1Þðpþ þ kþÞ
ðpþ kÞ2 − iϵ

: ðB14Þ

We regulate the frequency integrals [see (B12)] by inserting
a factor of eiϵ

0ω. This is sufficient to make IðpÞ finite, while
a divergent contribution has still to be subtracted from the
zero-point energy Δ. Although the regulator manifestly
breaks Lorentz symmetry, we will be only interested in the
nonlocal part of the effective action, that is not affected by
changing the regularization scheme. The finite results for
the above diagrams are

Δ ¼ −
i

48π
; IðpÞ ¼ −

iπ
24

p3
1 − p1

p−
ðB15Þ

which allows us to write the effective action as

WL½φþ�

¼ d
48π

Z
d2xφþþ

d
96π

Z
d2xφþ

�∂3
1þ∂1

∂−

�
φþþOðφ3þÞ

¼ d
96π

Z
d2xφþ

�∂3þþ∂þ
∂−

�
φþþ local termsþOðφ3þÞ:

ðB16Þ

Genuine anomalies are the ones that cannot be canceled by
adding local counterterms (that reflect different regulariza-
tions) to the effective action. That is why we only need to
focus on the nonlocal part of WL above.
We can now compute the gauge transformation of the

effective action. Using the transformation law

δεφþ ¼ 2∂−εþ − φþ∂1εþ þ εþ∂1φþ; ðB17Þ

it is easy to see that the anomalous variation of (B16) is
given by

δεWn:l:
L ½φþ� ¼ −

d
24π

Z
d2xεþð∂3þ þ ∂þÞφþ þOðφ2þÞ:

ðB18Þ

The term εþ∂þφþ can be canceled by adding a local
counterterm proportional to φþ − 1

2
φ2þ, but the term cubic

in ∂þ cannot be canceled and represents the genuine
gravitational anomaly (to lowest order in φþ) of the chiral
bosons YM

L on the cylinder. The anomaly is the same
obtained on the plane from d left-moving Floreanini-
Jackiw bosons [47,49,50]. This ensures that adding the
contribution WR½φ−� allows us to cancel the gravitational
anomaly completely.
To be more explicit, adding the contribution from the

right-moving fields YM
R one obtains the full nonlocal

contribution:

Wn:l:½φ�� ¼
d

96π

Z
d2x

�
φþ

�∂3þ þ ∂þ
∂−

�
φþ þ φ−

�∂3
− þ ∂−

∂þ

�
φ−

�
þOðφ3

�Þ: ðB19Þ

The gravitational anomaly of the above expression can indeed be canceled by adding a local counterterm that involves the
third degree of freedom of the worldsheet metric: the conformal factor Ω. Denoting the deviation of Ω from its flat space
value by ϕ ≔ Ω − 1 one can add to (B19) a local counterterm ΔW½φ�;ϕ� and define the effective action as

Weff ½φ�;ϕ� ¼
d
96π

Z
d2x

�
φþ

∂3þ
∂−

φþ þ φ−
∂3−
∂þ

φ− þ 2φþ∂þ∂−φ− − 4ϕð∂2þφþ þ ∂2−φ−Þ þ 4ϕ∂þ∂−ϕ
�

þ d
96π

Z
d2x

�
φþ

∂þ
∂−

φþ þ 2φþ − φ2þ þ φ−
∂−
∂þ

φ− þ 2φ− − φ2−
�
þOðfields3Þ: ðB20Þ

One can check that the above effective action is invariant under diffeomorphisms (to lowest order in the fields, since we are
considering only the quadratic part of Weff ) with transformations
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δεφþ ¼ 2∂−εþ − φþ∂1εþ þ εþ∂1φþ;

δεφ− ¼ −2∂þε− − φ−∂1ε− þ ε−∂1φ−;

δϕ ¼ ∂þεþ − ∂−ε− þ 1

2
∂þ½φþðε− − εþÞ þ 2ϕεþ�

þ 1

2
∂−½φ−ðε− − εþÞ − 2ϕε−� þOðfield2Þ: ðB21Þ

Let us mention that the last line in (B20) is invariant by
itself and the tadpoles (linear terms) in φ� just reflect the
nonzero Casimir energy on the cylinder, i.e., hT��i ≠ 0.
As it happens for ordinary scalars, the price to pay to

restore diffeomorphism invariance is the breakdown of
Weyl symmetry. While φ� are exactly Weyl invariant,
δωϕ ¼ 2ωþOðϕÞ and one readily obtains

δωWeff ½φ�;ϕ� ¼
d

12π

Z
d2xωð2∂þ∂−ϕ − ∂2þφþ − ∂2

−φ−Þ

þOðfield2Þ: ðB22Þ

To lowest order in the fields this is

δωWeff ½φ�;ϕ� ¼
d
24π

Z
d2x

ffiffiffiffiffiffi
−h

p
ωR; ðB23Þ

thus yielding the trace anomaly

hTα
αi ¼ −

d
12

R: ðB24Þ

This confirms that the internal YM sector just contributes
to the trace anomaly with d units of both left and right
central charge. Indeed, including the n external ordinary
bosons Xμ, one has the requirement nþ d ¼ 26 for
criticality.
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