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In the description of the AdSs/CFT, duality by an integrable system the scattering matrix for bound
states plays a crucial rdle: it was initially constructed for the evaluation of finite size corrections to the

planar spectrum of energy levels/anomalous dimensions by the thermodynamic Bethe ansatz, and more

recently it reappeared in the context of the gluing prescription of the hexagon approach to higher-point

functions. In this work we present a simplified form of this scattering matrix and we make its pole structure

manifest. We find some new relations between its matrix elements and also present an explicit form for its

inverse. We finally discuss some of its properties including crossing symmetry. Our results will hopefully

be useful for computing finite-size effects, in particular for simplifying the complicated sum integrals

arising from the gluing of hexagons, as well as help towards understanding universal features of the

AdSs/CFT, scattering matrix.

DOI: 10.1103/PhysRevD.102.126001

I. INTRODUCTION

In the study of the AdS5/CFT, correspondence [1] the
problem of computing string energy levels or, in the dual
N = 4 super Yang-Mills theory (SYM), the planar anoma-
lous dimensions of gauge-invariant composite operators
has been related to an integrable system, namely an
extended and deformed version of the Heisenberg spin
chain [2]. The form of the S-matrix governing the scattering
of the excitations on this chain is constrained by symmetry
[3] up to one overall phase [4].

This integrable model is able to provide all orders in the
’t Hooft coupling A in the asymptotic regime of infinite spin
chain length. Finite size corrections have been addressed by
Liischer corrections [5] first and then, systematically, by the
thermodynamic Bethe ansatz (TBA) [6] which requires
taking into account the bound states of the theory. An
S-matrix for such bound states generalizing [3] was first
derived in [7] for bound states up to length two and then
extended to arbitrary bound states in [8] on grounds of Lie
algebra and Yangian symmetry [9]. It has a block diagonal
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structure with two equal 1 x 1 blocks called X, two equal
4 x 4 blocks Y and finally a 6 x 6 block named Z. In the
original work [8], X is given explicitly—it is essentially a
generalized hypergeometric ,F; function—but the other
blocks were only implicitly defined involving matrix
inverses that seemed hard to simplify. This in principle
poses an obstacle to Liischer-type computations which rely
on the explicit form of the S-matrix.

Recently, the computation of three-point functions in
N = 4 SYM became accessible to “integrability” methods
by the invention of the hexagon approach [10]. Here one
cuts the closed string world sheet into two hexagonal
patches; the gauge theory equivalent is cutting up Feynman
diagrams on the sphere into two halves. To obtain the full
quantum result these patches have to be glued together
again [10] by inserting complete sets of bound states on the
edges. Hence also in this context the scattering of bound
states is of prime importance.

Finally, higher point functions can apparently be com-
puted by hexagon tessellations, using the hexagon operator
of the three-point problem as an elementary patch and gluing
appropriately [11-13]. At weak coupling, the procedure is
technically involved already at one loop not at last because of
the complexity of the bound state S-matrix needed in the
gluing. Yet, in a recent attempt [14] on verifying and
extending existing work at five points [15] we noticed that
the bound state S-matrix had to be a much simpler object than
the original work [8] suggested. In this work we tackle the
program of simplifying the matrix. We are able to provide a
completely explicit writing in terms of relatively concise

Published by the American Physical Society
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objects. Moreover, we uncover some new structure between
the elements of the bound state S-matrix.

This paper has the following structure: First, we recall
the basic construction and results of [8]. After this we dis-
cuss our approach to simplifying the bound state S-matrix
and give compact expression for its components. Their pole
structure is clear from our new expressions. Finally we
discuss some discrete symmetries of the S-matrix and
crossing symmetry.

II. REVIEW OF BOUND STATE SCATTERING

Let us briefly review the construction of the bound-state
S-matrix as presented in [8]. The two-particle S-matrix S;,
has to commute with the symmetry of the problem:

J]21S12 :Sl2\ﬂ12' (1)
|

L9, L] = L9, — 65L°),
1
L9, Q%] = =60Q%, + 5 5;Q%,
i} 1
L. Q%] = 6,Q% — 5 85;Q°%,
{@am Qﬂb} - £ab8aﬂcy

{Q%, Q%) = 8L + G100 + 5

By setting C, C = 0 the algebra reduces to 31(2]2).
Yet, the key ingredient of the construction in [8] is the
Yangian of the centrally extended 81(2]2) [9]:

B. Hopf algebra

The Hopf algebra structure depends on a central element
U which is called the braiding element. It is used to deform
the coproduct of the Lie generators J in the following way:

AD)=J@1+UMQJ, (3)

where the weight [J] is defined by [L] = [[] = [H] = 0,
[Q) =-[@] =1 and [C] = -[C] = 2.

By requiring that the coproduct of the central elements is
cocommutative, one can derive a relation between the
braiding element and the central elements,

C:ég(uﬁ—l), C:%g(l—U_z)- (4)

Here J, the manifest symmetry of the S-matrix, spans a
subalgebra of the superconformal algebra psu(2,2|4)
given by two copies of 81(2|2); moreover, and crucially,
this algebra is centrally extended as discovered in [3] (see
also [16] from a derivation of the central extension from the
string worldsheet). Hence the algebra of interest will be the
centrally extended 81(2|2) of [3].

A. Lie superalgebra

There are two 81(2)’s, spanned by the generators
I]_“b,lf_“/; with 14, =%, =0, two sets of supercharges
Q%,, Q“ 4 and three central elements H, C, C. Latin letters
a,b,... =1, 2 run over the Grassmann even indices and
Greek letters a, 3, ... = 1, 2 run over the odd indices. The
nontrivial commutation relations are given by

[l]:aﬂ, |]~_75] - 52[[“5 - (Sgl]iyﬂ,
- 1
L, @] = Q% — 350

~ ~ _ 1~
7. @) = 570 + 5 550,.
{Qaa’ Qbﬂ} = £ab8aﬁ(_:,

1
S 8300H. (2)

C. Extended Yangian

In addition to the above elements J/, U € A, the Yangian

algebra Y is generated by level-one elements J. They obey
the conventional Yangian relations

[J]I’\’J‘]J} = I K,
with the structure constants f’/ . The only nontrivial part

of the Hopf algebra is the coproduct, since the remaining
Hopf algebra structures are readily derived from it.

AN =0 @1+UN®J

+ (=1)VIIK] %hf’,KJ]’[U[K] ® JK.

Let us spell out the coproduct of the supercharges Q7
since the rest follows by using the commutation relations

A A A h - -
A =09 ®@1+U®Q% +7 |07 L, -LUe 0, + U el -[Ue

1

_ _, 1
— &%, ® C+e7eyCUT @ Q% +5Q% @ H-SHU® Q% . (5)

2
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The coupling constant ¢ also takes the role of the
deformation parameter in the definition of the Yangian.
The bound state S-matrix is then by definition the
invertible operator that intertwines the usual and opposite
coproduct
A%P(J)S1, = SpA(d), AP = AollY,  (6)
for any generator J of the Yangian of centrally extended
31u(2|2) in the corresponding representation. Here the

opposite coproduct is defined by means of the graded
permutation operator I19.

D. Bound state representation

The K-particle bound state representation is spanned by
vectors that can be identified with monomials in variables
91’2 and W1,2

1.y, ) = 0705wy, (7)

such that K = ny + n, + n3 + ny. The variables 05, are
odd while the variables w, are even. Consequently we
have 0 < ny, < 1. The dual basis is given by

(ny,ny,ns, ny| = 835‘23731 83;8;1‘, (8)
such that the inner product is

(my, my, ms, my|ny, ny, ns, ny)

= 5m1,n15rn2,n25m3,n35m4,n4n1!nZ!n3!n4!' (9)

The algebra generators of centrally extended $1(2|2) are
then represented by differential operators of the form

1

1 -
LZ - Wbawa - E(SZwCaW[, L;),l - Qﬂaga - 5529},6@,
(10)
QZ = awbaga + bebaeaﬁeaawbv
Qz = Ceﬂawa + deabeﬂawb&ga. (11)

The supersymmetry generators depend on four parameters
a, b, c, d that are parametrized as

g g i xT
= /L b=— L (1-2 12
=\ 2" 2Ky( x—>’ (12)
[ g xt —x
d=,/=— . 13
2K iy (13)

The variables x* satisfy the following relations:

_ |9 T
2K xt°

CcC =

1 2K xt ,
Xt ——x"——=—, — =e'P. 14
xt - g X~ (14)
The representation parameter y is arbitrary as it can be
changed by rescaling single-particle states, and our results
will hold for general y. It is convenient to choose

y=+Vi(x"=x"U, (15)

which makes the representation unitary and provides it with
nice analytic properties [16]. [Multiplying y in (15) by a
function ¢'#(?) such that ¢(p) is a real analytic function
also yields a unitary representation.] Let us also introduce
the rapidity u and the rescaled rapidity v

1 1 1 '
uzz(x++x—++x_+x—_), v=—%u- (16)

The braiding factor is given by U = /x*/x™.

E. Two-particle basis

The two-particle S-matrix scatters states of the form
|my, my, my, my) Q |ny,ny, n3, ny). We will use the con-
vention that states from space one are labeled by integers
K, k, m and states from space two are labeled by K>, [, n.
Moreover, it is convenient to introduce
]_C:Kl—k—l, Z:Kz—l—l,

K, +K,
S B 17

ﬁl:Kl—m—l,

n=K,—-n—1, XK

We only need to restrict to the eigenspaces V, , of AL! and
AL}. The eigenvalues of AL} take values r = £1, +1, 0,
while AI]_% has eigenvalues £ = —XK, ..., XK. Let us label
the vectors that span these eigenstates by their eigenvalues
under these operators.

1. Case I
First, let us look at the vector space where r = %1
Vie={[1.0.kK) @ [1.0.L.0) ooy gy = {lk. )V},
(18)
k,1)(=11,
(19)

0,1,k k) ®

0’ 17 l’ 7> }2Lp=k+l—i€—7 = {

V—l,f - {

We only need to label the vectors |k, [)*!) by their ALl
eigenvalue since the eigenvalue of AL{ can be directly read
off from the labels k, [ in the state. The labels k, [ take the
values k =0,...K; —1 and [ =0,...K, — 1. In [8] these
vectors were labeled by IA, IB respectively.
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2. Case II

Second, we consider the subspaces with eigenvalues r = i%. The basis vectors of V, , are

Vie=A{[1,0,k,k) ®10,0,1,1+1),10,0,k,k + 1) ® [1,0,1,1),
11,0,k,k) @ |1,1,0—1,1),|1,1,k=1,k) ® |1,0,1, 1)} (20)
= k.0 e e 0 k05 @)
where £ =k +1—- XK — % We define V_i , analogously.
3. Case 111

Finally, there is the case when r = 0. Here, the basis vectors are
Vor = {|0,0,k,l_c+ H® |0,0,l,7+ 1), 0,0,k k+ D, 1,1- 1,7), 1,1,k k— 1)® |0,0,7+ 1, 1),
I1, 1,k k— 1 ® |1, 1,1, - 1>|1,0,l_c,k) ® |O,1,7+ 1,1-1)|0, 1k+1,k— 1) ® |1,0,7, I} (22)
=:{

Vectors from the different cases can be mapped to each other by using the supersymmetry generators. This can be exploited
to compute the bound state S-matrix from its defining intertwining property.

0 0 0 0 0 0
ke DO 1 00 1 D 1 D e, DO, 1k, 03 (23)

F. S-matrix

The S-matrix is defined up to a normalization factor. We choose our S-matrix to be normalized such that
S-10,0)*) = |0,0)=D), (24)
i.e., the scattering of highest weight fermionic states has eigenvalue one.

1. Case I S-matrix

The S-matrix restricted to the subspaces V., takes the simple form

ket
S k1)) =" X (o) k+ =)D, (25)
n=0
where v = v; — v, and
sz:F(Kz—l) I'v+6K+1) Tw+ZK-k-1I)
" T(K,-n)T(v-6K+1-1+n) T(v+2K)
Xi( k >< l ) I'Ki—q) T(w-6K+1+gq) (26)
‘\k—-q/\n—-q I(Ky—k=14+q)T(v-6K+1-¢q)"

|
Notice that X is purely of difference form and actually
coincides with the 81(2) universal R-matrix evaluated in
the symmetric representations [17].

symmetry it is possible to define four operators that relate

the four basis vectors |k, l>£1/ %) to the vector |k, 1)), In this
way, one can express the matrix ) in terms of X as follows:

2. Case II S-matrix

The S-matrix that describes the scattering of the fer-

AYK = BXK + B a4 BT (27)

mionic states from the subspaces V., can be obtained by
using the supersymmetry generators. By using Yangian

where A, A, are 4 x 4 matrices with some rather involved
components whose explicit form can be found in [8].
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3. Case III S-matrix

By similar arguments, the S-matrix restricted to V,, can
be obtained from Y/ with various shifted indices

Czlrcll _ Dyﬁl +D1ylrcl,l—l +D2yﬁ_l’l
+ DY D YR (28)

We again encounter complicated matrix inversion and
multiplication.

III. SIMPLIFYING X

Formula (26) for the X-matrix is rather concise.
However, this or any other writing conceals the pole
structure of the object, which is essential knowledge for

|

k+1

example for residue calculations arising from the gluing
procedure of the hexagon approach [14,15]. Furthermore,
X is a hypergeometric function and hence it obeys a
number of contiguity equations.

A. Pole decomposition

From the explicit expression (20), it is easy to see that the
only poles are at

v=—-2K—a, a=0,...  k+1, (29)
which are all in the complex plane. These are simple
poles, as we can make apparent in the following elegant

decomposition:

k1! k+1l—a N/ m n k+p\ [l+a-p
Xkl — 5k -1 l-n—a . 30
» (V) "+m!n!Z;( ) v+2K—k—l+az</}><a—/}>< I >< k (30)
a= p=0
The second sum can actually be performed and gives an expression in terms of ,F’5.
B. Recursion relations
From Yangian symmetry it can be shown that X satisfies the recursion relations [14]
Xﬁ+l'l:i (Fl—k)ﬁl Xﬁ7l+(ﬁ+1)(v+5K+l—n+l) k’il’ ’ (31)
klv+2K—-k—-1-1 v+2K—-k—-1-1 "
Py 1 (n = k)m oo, (n+D@=6K—-1l+n+1) 4 (32)
" klv-ZK+k+1+1"" v—XK+k+1+1 an
1 [m(v—6K—1+n) (a+1)(m—-1-1)
ki 2 k.l X5 33
l[v—kZK—k—l—l v+6K—k—-1-1""" (33)
yhi-1 1 mw+6K+1-n) .,  (n+1)(m —1=1) 4 (34)
Tl w=2K+k+1+1""  v—6K+k+1+1" "]

Here k etc. are defined in (17). Notice that the cases X’ ’,‘lil’l and X ],‘,'lil are each related by switching barred and unbarred
indices. From these relations we see that for fixed k, [ all X'-matrices with shifted indices can be brought into a standard

form Xﬁ'l,Xﬁil,....

Finally, by successively using (31) and (32) we obtain the following:

k.l
Xn—l -

C(m+)mE1)(v-6K—14+n+1) 4,

(a+1)m+1)(v+6K+1-n+1)

n+1

(n+Da(v+6K+1—-n)(v-6K—-1+n+1)

(a+1)(m+1)k=n+1)(v+6K+1-n+1)

ik — )

1

(k+Dk(v—2K+k+1+2)(v+ZK—k—-1-1)

+1)(v+6K+1—-n+1)

X

a+1)(m+1)k—n+1)(v+6K+1-n+1)
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From this we can also remove any X-matrix whose n index
is shifted by a negative integer. This can now be used to
compare different, possibly equivalent ways of writing the
other entries of the bound state S-matrix.

Moreover, we can recursively construct the X-matrix
starting from X" = 1 and raising the indices by making
use of these relations. For instance, using (31) we find

o0 Ki-1
O T y43K-1

K 5K + 1
L PHORE T pw (36)

XOO
0 +K,—11)+ZK—1 -

Since X% =0, we find
(37)

By repeating this argument we can derive any X'. We can
then use, for example, (32) to compute X%’ in terms of A%
and & ’5_” and work from there to general n.

C. Useful identities

It is clear that swapping barred and unbarred indices
should leave X" invariant and indeed

XK = kL (38)
We also have the symmetry property

XK xm
L = . (39)

M, |, m) (D

We note that the inverse of X'(v) is simply given by X'(—v),
1.€.,

k+1

> X)X (=) = 6 (40)
a=0

In what follows we will use the identities

(k—n)(v+ZK — k=) XX — k(Ky — m)xE™

+ (K —n)X =0, (41)
n—k)(v—2K + k+ DX (K = k) ak!
n—1 n—1

+n(K, — XM =0 (42)

which are also a consequence of Yangian symmetry.

IV. SIMPLIFYING Y
A. Factorizing in the presence of Zhukowski variables

With u# = u; + %%, we define'
xt+—=ut (43)
and so
(xF)? = xtut — 1. (44)
By way of example,

(xf —xg)(xf = x7) = (x{)? = x3x] —x{x]

o = (il = 1) — gt
— XXy +x3x5. (45)

To reverse this step is nontrivial: the expression on the
right-hand side of the last equation cannot be factored
without knowledge of the square root property of the x*
function defined by Eq. (43). In particular, algebraic
computing systems are able to factor polynomials in
variables like g, u™ that do not obey such relations, but
cannot easily be taught to apply rules like undoing (44).
On the other hand (the two =+ are independent),

1
of =) (1= g ) —wi—ui. 49

For a proof it suffices to expand the product and to use (43).
In a manner of speaking, the two factors on the left-hand
side are inverses of each other with respect to our fac-
torization issue, because the right-hand side only contains
variables that e.g., Factor[] in Mathematica can handle.
From (43) we abstract the two replacement rules

(xH)™ = ()7t — 1), neN (47)

and
(xzk)n N (xi)n—Z(xiui _ 1)’

n—1€eN. (48)

We can use the property to simplify the right-hand side of
(45): in a first step we multiply e.g., with the “inverse” of
EHEED

1
(xfut =1 =x3xf —xx3 +x5x2+)<1 —ﬁ>

X1 X

+ .+

xixy —1
(Tt 1 — =yt et RN )
= (xju 1 —x3x) —xix; +x3x7) e (49)

172

'As in [8] we use the “string scaling” which differs from that

of [2].
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upon which we use (47) to eliminate x|, x; from the

denominator. Multiplying out one obtains up to cubic
powers of x|, x7, on which now (48) is used repeatedly.
We obtain

1
(= =) = (o =)t =) (1= )
12

(50)

where the factorization of the left-hand side is easily
achieved by Factor[] because the result is by construction
multilinear in x|, x7, x5, x; (x7 does not occur in this
example.) Last, we have used (46) backwards to rewrite
u] —uy in terms of x|, x3. Canceling the last factor we
have shown the factorization of the right-hand side of (45)
as desired. To arrive at the same conclusion one can
alternatively use the “inverse” of x| — x3.

This procedure seems a little involved, but it gives a way of
factoring out any of x* — y* (& is again independent in the
two terms) or I — 1/(xy*): to test for the presence of such a
factor, one multiplies by its inverse and takes the steps
described above. If Factor(] is able to pull out ui — u3 we
have succeeded. One can also eliminate (positive or negative)
powers of x*, y* or factors like x| — x7, 1 — 1/(x{x7).

Admittedly, the method only works by ‘“shooting” in
that we have to try the inverse of any particular factor to detect
it. This is not much of an obstacle as long as an idea about the
form of the result exists. As we shall see, it is possible to deal
with more general polynomials of x*, y* in the same way.

1. Computing Y

Our first application of the technique concerns the
simplification of the ) matrix. From (27) we see that it
is defined by a matrix equation in which the matrix A has to
be inverted. Employing Kramer’s rule A~! = A*/Det(A)
we find that the entries of the adjoint matrix are poly-
nomials of up to seventh (total) order in the representation
parameters r, but maximally cubic in each of them. The
determinant in the denominator is

with a polynomial p = (u; —u3)?p,, +K2p11 + K1 Kypio+
K3 pa,, where the p; ; are maximally of overall order eight
in the representation parameters. Remarkably, p does not
depend on k, [, n, a first hint that it might be factorizable in
the way sketched above.

Indeed after some rewritings and running our factoriza-
tion scheme on that form of p we find

p ==t =)ot =) (1-==) (1 - 77 )
52

The greatest worry has disappeared: the denominator of the
Y matrix does not have a complicated dependence on the
coupling constant, we only see the bricks of the Beisert
S-matrix [3].

For the ensuing attempt on factoring ) it is perhaps not
necessary but surely convenient to appeal to the con-
tiguity equations (31)—(34) to reduce the right-hand side
of (27) to a different basis of A-matrices with index
shifts. The most concise formulas seem to arise choosing
{Xﬁ‘l,Xﬁ_l‘l,Xﬁ'ﬁl .

Intriguingly, in all entries of ), the coefficients of
{XE1 25N both acquire the same x*, y*-dependent
coefficient,” followed by different albeit simple rational
functions of v, K|, K», k, [, n. We will state these in a form
where the contiguity relations are used to reintroduce

another instance of X—X" 5’_’]1 to be precise—in order to
eliminate ou from the coefficients. These expressions are

strikingly simple.

B. Simplified scattering

The Y-matrix can be split into two different parts under
component-wise multiplication
5= VAL = OB, = WHOEDE (53)

The part Y depends only on the Zhukowski variables x*.
Recall that U; = \/x;/x; and y; is the representation

Det(A) = —(Ky = n)(Ky = m)p(u, K, Ky, 7) (51) parameter for the ith particle,
|
xf -y 1 5% Uy 0 (xf =x7) (5 =x3) iU, Uy
x-x; Uy x7—x3 1U, 1—x7xy Yir2
x| —le: " X —x%‘r U2 (x] —=x7)(x3—x3) 0
X7 =X, Y1 X7 =X, xpx; -1 7172
Y = 175 17X k L (54)
0 i 7172 578 g X = nU
1=x7x5 U, Uy a1 X —x; Uz
17 0 Ny N1
X xg -1 xf-x3 12 xf-x; Uy

*For V! this was already noticed in [14]. The expressions given in (A.6) in that article motivate the present study.
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while Y=Y, + Y, + Y5 only depends on X, v and

simple numerical factors 1 % 0 0
2
0 0 0 0 % 1 0 0 o
L L L_ 0 V= ' X&(57)
- VKK, o—K KK, il 1 3 KoK m n
=1 0 2K o (Xuor = ), (59) 0 Tkr ! X
I(K\—n —n Kyl-Kyn K,
®E 0 % O 0 YR
5v+k51< \/1& 0 \/ﬁ Notice that this form makes the pole structure explicit, in
_ 0 0 0 0 particular, it has no spurious poles. At this point it is also
h = 0 KKy=m) () Ky=m (X],‘,_l‘l - X fi’l), easy to see the coefficients of the fundamental S-matrix
VK K, VKK, appear since they simply correspond to the elements of Y.
0 0 0 % However, owing to the identity (41) we can actually
o simplify the explicit v dependence and write ) in the form
(56) of a compact matrix when n # k
|
oK) 0 0 0
VKK _
T k(kK_zn ] k 0 1
l — KZ Kl -k 0 -1
1 1(/;(—_1’: 1) -1 0
0 e | Ko 0 0
~ 1 K2 - l k - K 0
= ! ko (58)
Ky K> 0 0 ey 0
0 k(m — K5) ik KKym) (m - K»)
0 (Ky—k)m m -m
I(n—K
Z(Kl —I’l) 0 (n_Kl) (k—n])
K\ K, —m
0 0 0 o n(lliin )
n(l - Kj) 0 -n n
The three-vectors refer to the “basis” { X ﬁf‘ll , X ﬁ_"l, X ﬁ’l . d=x7x; — x1+ x2+ (59)

Equation (58) can be taken as a definition, valid when
n# k.

V. SIMPLIFYING Z

A. Factorization

Similar to the derivation of )/, in [8] the Z matrix is
found from a matrix equation (28) where ) is a 6 x 8 block
diagonal compilation of ) elements with index shifts
k=1, 1, n), (k, =1, n), k=1, 1, n—=1), (k, [ -1,
n — 1) and the matrices C, D depend on the representation
parameters and the various counters. The inverse of C
needed to compute Z is much simpler than that of A
discussed above. However, all components of (C)~! have
the denominator factor

which can hardly be a physical singularity of the S-matrix;
for once, in the residue calculation [14] the matrix elements
are “mirrror rotated” x; — 1/x7, x5 — 1/x and expanded
to leading order in the coupling constant, so that d yields a
singularity

&=} = 33 (K - K}
which would spoil any hope of obtaining a Taylor series. In
fact, upon explicitly evaluating the diagonal Z elements in
this kinematics and to leading order in g it was seen in [14]
that the singularity d’ generically cancels. Obviously one will
ask whether the original denominator d cancels from the full
Z matrix in the first place.

(60)
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In order to apply the factorization approach of Sec. IVA
we need to construct a multiplicative “inverse” of d. To this
end we write a general ansatz

1

€= Z Piju(u, v, Ky Ko) (x7) (63)7 (a7 ) (x3)'
i.jk1=0

(61)

whose product with d will also take the form

de = coono

de= " ciulu v, Ky Ky)(x7) () (x))F(x3)! (62)
i.j.k,1=0

upon employing (48). Imposing ¢;j; = 0:i +j+k+1>0
we obtain a set of 15 independent homogeneous equations on
the 16 coefficients p; ;. Up to overall rescalings, the solution
is unique. Choosing to scale up by the denominator we obtain
the coefficients p; ;. With this scaling

= (u™)* =2(u")*(v7)? + (v7)* = 2@ )2 () = 2(v7 )2 (") + (u7)?(v7) 2 (u?)? + (uh)?
+8u v utvt — (u v ut vt —u (v ut ot —u o (w3t = 2w ) (v)? = 2(v7)* (vF)?

+ ()07 (07)? =20t (01)? + ()2 @) (0h)? + (7)) (0" —woTu (o) + (1) (63)

As for the simpler factorization problems described above,
if multiplying e on any given polynomial and using the rule
(48) yields a factor ¢, we will have detected a factor d in
that polynomial. Finally, ¢ can be canceled against de in
the denominator.

To not overcharge Mathematica, itis helpful to decompose
the test polynomial, say, f in the same way as e in (61). The
product with e is best taken keeping the coefficients in both
polynomials abstract, leading to a decomposition of the type
S Piqj = rx for the decomposition of the result in terms
of the 16 “basis elements.” The dots stand for coefficients
expressed in terms of u®, v*.

To start on simplifying Z we reduce the problem to the
calculation of two coefficient matrices for X’ ﬁ'” X ﬁ’l using
the contiguity relations (31)—(34). This is imperative here:

|

2=

|

only in such a form do all entries in the coefficient matrices
factor out ¢y, upon multiplication by e. Barring for
Zlie{l..4} and Z;,Z% the computation is now as
for ): in any other component, the sixteen ry for Xﬁ_l'l
have a common—-at times fairly involved—polynomial
factor depending on v, K, K,, k, [, n, and the same
happens for those multiplying X%’. These two “long”
polynomials are in general distinct. The remaining simple
factors and the powers (x7)(x3)/(x])*(x)! are finally put
together and dealt with as sketched in Sec. IVA and its
application to ). Like it happens for ) we obtain the same
rational function of xi, in the coefficients of both Xs. To
illustrate these features we display the final expression for
Z3, which is the most concise example:

(x7 =x) (x5 —x3) (k[6a(k* + kI — mK| — kK, + KK, —kn + In) + In(K| + K)] prsy
(x7 —x3)(x] —x3) K K> (it + k+ 1)1 !
N (K, = k)[6i>(n — k) + di(k—n)(k+1— K, — K,) + In(K, + K,)] e (64)
KK, (50 + k + 1)1 ")
[
In the last formula 6it = v7 — v5 . The numerator factors in (Zﬁ’l)g =yt (Zﬁfrl)g,
the square brackets are essentially what we called the “lon
, ’ ¢ (255 = Ak — (24 )1, (65)

polynomials” above.

In the six special cases there are several different such
polynomials within either set of 16 r coefficients. For Z3,
Z% one straightforwardly sees that there are minimally two
x*, y* structures: a trivial one producing an isolated
instance of X, the other a problem similar to the simpli-
fication of ) and the more ordinary components of Z.
Indeed, such formulas were preempted in [14], Egs. (A.8),
(A.9):

With some hindsight and a lot of patience we could find a
similar split into two groups of terms also in the remaining
four cases, where it is far less obvious how the long
polynomials combine. Such a writing is, of course, not
unique.

The coefficients of the X’ matrices in (64) are generic in
the following sense: the K;K, denominator occurs in all
elements of the Zf, I € {1...4} block and the fermionic
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blocks have 1,17,/ (g/K,K,) while the {5,6} block shows
no such factor. Further, there is a simple pole 1/(5& + k + [)
and perhaps some other simple denominator factors without
Su. Last, for Zi,i€ {1...6},J € {1...4} the two long
polynomials are of order O(Su), O(éu?), respectively. For
Zi,J € {5,6} one finds O(6u®), O(6u?) instead. Excep-
tions to the latter rule of thumb are only Z3 and Z¢ whose
numerators are of order O (5u?), O(éu) and O (6u?), O(5u*),
respectively. We will not elaborate on these two somewhat
atypical cases in the following as they are given by Z3, Z¢
through (65).

Expressing X’ ﬁfsﬁ 9! by the contiguous X5, %! using
(31)—(34) we obtain coefficients resembling those in (64).
Conversely, can the )/, Z elements be cast into a simpler form
using more instances of X'? Scanning the range 6k, o/, 6n €
{=2...1} it is found that some of the index shifts with n =
ol are individually of the same form as (64): there is one
simple pole at o6&t +k+ [ or no pole in ou, and the
numerators of the two coefficients are of comparable order:

(6k, 61 = én) {o(su"), 0(6u*)} /(60 4 k+ 1)
(-2,0) {6, 6u} 1/(80 + k+ 1)
(=1.~1) {1.6u} 1/ (80 +k + 1)
(0,-2) {6u?, 51} /(80 + k + 1)
(=2.1) {6u?, 5u} 1
(-L.1) {6u, 1} 1
(0.-1) {1,6u} 1
(L.-2) {5u%. 513} 1
(L-1) {6u, 6u”} 1
Properties of the decomposition of (6k, 81) = X*to5+0l

in terms of Xﬁ'”, Xﬁ'l.

Other cases, especially when the range is extended to
larger shifts, introduce new types of poles in du.

Attempting to use, say, (64) in an analytic resummation
of residues as in [14] one would ideally want to construct a
form in which each X" is multiplied by simple factors that
can be absorbed into the defining ,F3. Leaving this
program to future work, we propose here to eliminate du
from the coefficients, which must already entail a simpli-
fication because a variable is suppressed. This is in fact
possible as long as n # k: with the notation of the table
above, we may use (—1, —1) to subtract out the pole in Su,
upon which also the order in du of the two long poly-
nomials decreases by one unit. Successively, (1, —1), (-1,
1), (0, —1) can be employed to subtract powers of du from
the higher to the lower orders. For instance,

|

Xkl Xk+£l I+b

Kl ki — ykl,
A - Ay = Ay ntb

k—+a,l+b
Xner ’

(rp —x))5 —x) 1
(x7 —x3)(x] —x3) K1 K

1
([[(Ky =k =1+ n))(=1,1) + [[(k + 1 — n)](0, 1)
[
[

=

+ [(Ky = 1)(Ky — k= [+ n)](—1,0)
+ (K2 = D) (k + 1= n)](0,0)) (66)

where we have written (-1, 0), (0, 0) for B N (U Y

order to write Z in terms of shifted ) elements it will prove

useful to trade (-1, 1), (1, —1) for (-2, 0), (0, —2) by the

five-term identity

= [k(Ky =k =1+ n)](—1,0) = [I(K, = n)](0,-1)
— (k- n)(K1 + Ky — 2k - 21 -2)](0,0)
—[(n+ 1)(Ky = 1= 1)](0. 1)
[(

+ (K =k = 1)(k+1=n+1)](1,0). (67)

B. Z from Y

After the appropriate simplifications, we found a very
compact and interesting way to define the Z block. It can
be expressed quadratically in the ) block by introducing a
wedge product so that we can write Z =) A ). On the
level of the basis vectors we identify

e D = k. )1 A kDY (68)
e Y = k. )Y A k. D) (69)
e, )3 = e, )17 A e, 1) (70)
e, )3 = [k, )5 A e, 1) (71)
) = [k DY A k1) (72)
e, )8 = ke, 1Y A [k, )Y (73)

W= (74)

1O [, ) A kD)
and the product acts on X" as

kY 2, DO A e, 1))

Xk 1.1 Xﬁl11 —Xk ll 1. (75)

Using (41) we always make sure that one of the ) factors has a X *=1! term and the other has a term X, k, H . This ensures
that any component of Z can be written as a linear combination of X%, Xk~ pkI21 - kL=l Because of the identities

n—1 > ““n-1

that X satisfies, it does not matter which ) factor has the Xﬁ'” term. From this we find the additional rules

126001-10



BOUND STATE SCATTERING SIMPLIFIED PHYS. REV. D 102, 126001 (2020)

P Yo I(Ky —n) Xﬁj,l—l (k—n)(v+EK—-k-1) 1 (76)
k(Kz—m) k(Kz—m)

ki1 ki k(Ky —m) P (k—n)(v+EK—k-1) e (77)
l(Kl—I’l) Z(Kl—n)

k,1—1
n—1 >

Recall that we can write ) as a three-vector with respect to the spanning system {x XA ’,‘,l} In particular, let

0
V)i = |
<1

and

X2
V)a=1]0

22

0 Xo 0 ¢ X a

- . < !
yi|- |0 =y +a5= || =|0 (78)
7] 2 21 1a 221p

The new symbol [|§ denotes a decomposition in terms of
{y’;{;‘f,y’;;,‘-lf,yﬁ-y} as is apparent from the middle
part of the last equation. The equality at the very right is
a nontrivial consequence of the form of Y and the pro-
perties of X’; so there are always two equivalent ways of
decomposing in terms of Y-elements with index shifts.
This seems to be a type of fusion relation in which the
scattering of two bosons is written as some sort of
composite scattering of fermions. At this point it is unclear
|

what the meaning of this observation is, but it hints at some
further structure of the bound state S-matrix. Under-
standing this property might be important, for example,
for potentially finding a universal R-matrix. It would be
interesting to understand the nature of the wedge product
and its nontrivial action on X.

As an example, let us work out (Z)1. Via the above

identification, we have |k, l>§0) ~ |k, 1>(10) Ak, l>§0) and
k, l>go) =~ [k, l>§°) Ak, l>g0). Thus

(2, =03 O =)3- (V)3 (79)
_ G-l (=)0 ) 1 { K Ki—k sz} . [Xﬁiﬂ —Xﬁ’} (80)
X7 — X3 12U, 1 —x7x3 nr2 VKK, VKK, " VKK,
— o ol B LA (- B R - 1)
(7 = x3)(1 = x7x3) Uyys | KKy KK,
17!
_ (XT _'xl_)(x;r _xg)z U2 1 (82)

(x7 = x3) (1 —x7x3) Uira VK K,

2

Since Y} = )3 = V3 = V3 = 0, we see that almost all components of Z are just given by one term. However, this is not
true for the diagonal elements Zf, where i = 1, 2, 3, 4 and Zg, Zg. As a consequence, these elements have two different

x* dependent prefactors.
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C. Results for Z

Following the decomposition of the wedge product, we can write

Z = Z]*Zl - 22*22,

where
Yivi 0 0 0 0 Y3l Yivl vivi o vivl vavl vlv:
0 Yivi 0 0 Vvi viv3 Yivi viv: Yivi Vi3 0
- 0 0 VYivy o 0 0 _— Yivl vivi vivl vivl vlvg
1 — s 2 —
0 0 0 ViV Y3 0 Y vivi viy; vy 0
0 Yvivi 0 vyl vivi vivd Yivi 0 vy o0 0
Yiv: Yav: 0 0 Vi Y3y} 0 0 Yiv{ ViV Yiv3
and
171 T o0 2
1;6 )
0 0 0 0 0 K.K,
v -1
v 11 L VKiK> ]2
0 3 0 2 o0 12
k(Ky—m) k(m—K,) —m
0 (Klfn)v(; 0 0 I(vg) K12(1K2
(K —k)vg ", g, m
®=njrg 13 w4 LVKK: |5
I(K;j—n) 74
( 2—'")03
0 0 0 0 0 0
(Ky=Dv,
_ (Ky—m)vg 4
Z| = 0 13 0 4
m—K, k(m—K,)
0 0 0 % Iy 0
”:rnsz m”/ikz
% 43 g 4y
3 3 073 (K, —n)
) ; . WK
0 VKK, 0 XK, v 0
K -k _1 o In=(1=m)vly,
KKy 12 KKy |3 v ds kvV/K K,
0o ¢ 0 74 0 2 072
k(Ky—m) k(K,—m) k(Ky—m) m=K,
(K1—n)vy (Ky—m)vy 0 0 VK K> vy
(K, —k)op, (K1 —K)vg km—(k—n)vl,, Un-k,
(Ki=njog 1 L(Ki=m)vg 1 3 WKk 4y vy 4o
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r 0 72 1 71 r 0 72
p KK, |
KK, 0 K. K,
K —k -1 1
vKiK; 11 L VKiKs |2 L VKIK> |
/ 73 B 1 73 B / 73
KK, KK, KK,
0 0 0
K,—I _1 Ky—1
LvEKiKy |2 LVKiKy |2 L VK. K, |
B 0 14 r 0 14 B 0 74
k k 1
KK, VK K, KK,
K —k K,k -1
LVEKIKy |1 L VKK |3 LVEKiIKy |1
Z=1 r 0 74 [X£=m73 [ o 74
K, K
k(K,—m) 122 Ky—m
VKK, 0 KK,
m(k—K,) n m
L VKiKy 11 L VKK, |2 VK Ky |
rl(K,—n) 73 I(K;—n) 73
vy vy
0 0
([(2_1)1);r (K2_1>1n
T
L % d2 Yo 4
l 4
KK,
0 0 0
o
KKy | 4

For conciseness, we have defined

(87)

K
vizviz, vE =i —vF

As we can see, Z; and Z%¢ cannot be very elegantly

expressed in terms of Xﬁi‘;’,‘ 1+ However, if we allow

for atypical index shifts then they 51mp11fy, too, since from
3u(2) invariance we can prove

(Zi)h = —(ZW5, (ZKHNe = —(20")3.
(Zht= (&0 (88)
and

(5= A (28 (2] A - (2

(255 = (51176

(89)
We have checked that these relations indeed hold.

We would like to stress again that the decomposition in
terms of X’ functions is not unique; one instance of (78) is

K. K> e
0 0 0
-1 -1
KiK: |4 KK ||
173
K K,
0 0 0
-1
KKy |4
0 74 Ki—n 71 l(n—K,) 1
KK kK Ky (m—K ;)

KK 0 0

1 " (n—k)(v,tkz)Jrk
K\K> |3 VKK | kK Ky (m=K;) d 5
14 I(n—K,) 7 3 (86)
0 kvar
Ko—
(e 0 0
m m)f_K?
KiKy 13 kg 4,
[(n—K,) 3
VA=
0 0 0
(;1—k)(1;;[K2)+k
KK (m—K,) d 5
1 4 0 2
Kk k(Ky,—m)
0 VKK, 0
-1 (n—=k) (v} —k(K,=1))
RiK: |4 VT B
[
4
0 _ _ 2
A I(Ki—n+1)
(Ki—n)vy = 0 (90)
(K =k vy —
(K:—”);J H(K2 l) 2

1

relevant to the bottom left corner of Z,. Consequently, there
are also several ways to express Z in terms of ).

VI. PROPERTIES

In this section we discuss some properties of the bound
state S-matrix. We will mainly generalize the properties that
were found for the fundamental S-matrix, along the lines as
they were formulated in [18].

A. Braiding and physical unitarity

Much like the S-matrix of the fundamental particle, the
bound-state S-matrix enjoys braiding unitarity,

Sio(uy, up) Sy (up, uy) = 1.

This provides us with a simple way to compute the inverse
S-matrix, which is important when describing the scattering
of particles in the antisymmetric representation.

©on

126001-13



M. DE LEEUW, B. EDEN, and A. SFONDRINI

PHYS. REV. D 102, 126001 (2020)

B. Generalized physical unitarity

If we started from a unitary representation of the
symmetry algebra, e.g., by picking y like in (15), the
S-matrix also enjoys generalized physical unitarity

Slz(MT,M§>TS12(M1,M2) = 1 (92)

Complex conjugation acts on the S-matrix parameters as

i
(x/f’i/kv v)" = <xl:<F’7k}’k’ _Uk>» (93)

where y is given by (15).

C. Symmetry

For y like in (15), we find that the S-matrix is symmetric:

Sz __Si
(Ala) ~ (BIB)’

(94)

This property is easy to prove from (39) and the explicit
form of Y and Z in terms of &. Thus, if we properly
normalize our states, then this reduces to the regular
relation ST = §.

D. Inversion

By combining the symmetry property and physical
unitarity we find that the inverse S-matrix may be com-
puted by sending

i
(XEs 7 0) = (xif,in,—vk)- (95)
k
Remarkably, this property holds for any 7.

E. Crossing

It is most convenient to define crossing symmetry
analogous to [18]. The charge conjugation transformation
then simply corresponds to the trivial automorphism

C-la.b,c,d) = i“tt+etd(—1)**+<|b a,d,c). (96)
The prefactor TP+t — jK is used for convenience. It
corresponds to the simple transformation that acts on the
variables that generate the bound state representation as
w; > elw,, 6, > €0y (97)
From this it is easy to see that
=1, Cecsc!'ec!=s. (98)

We the find the following crossing symmetry of the
S-matrix, written in components as

- A)®|B
(s~ (us, ”2))}52'@

<A|A> Cross C c ®B
~(C[C) (=D VAEDF(S ’”2))CEIA)>))®I‘D>) (99)
where [19]
iy B ML 5K —a
F:)c‘—)c‘l—xJr v—6K +a (100)
1 2 x7 2 a=1
and the crossing transformation is
1 U-U1t1
(7. U) = <x_i”—y ,5>. (101)

Upon properly normalizing our basis elements, the crossing
relation can now be brought to the standard form

(C® S (U™, up)(C' @ 1) = FS~'. (102)

F. Monodromy

We have that S is also invariant under the crossing (in the
same way) both variables, i.e.,

1 l]/l 1 l]/z
o) o (— 4. —.—% ). (103
( 1571542 }/2) X]i x.lq. xzi x% ( )

For a particular choice of y; = /i(x* —x7)U, see e.g.,
[16], this is precisely the crossing transformation. More
generally, this corresponds to crossing transformation on
x* combined with a redefinition of y which follows from a
local basis transformation.

VII. CONCLUSIONS

The construction of the bound state S-matrix in [8] is
complete, though not completely explicit: one is left to
work with certain matrix inverses which obfuscate for
instance the pole structure. The central obstruction to
simplification are the Zhukowsky variables x*, y* that
are root functions, which impede factorization if occurring
in rational functions. For the case at hand we solved this
problem introducing a concept of “inverse” (modulo
readily factorizable expressions) for certain combinations
of Zhukowsky variables.

Our results are split into a part containing Zhukowsky
variables, and with them the dependence of the bound state
scattering matrix on the ’t Hooft coupling 4, and another
one of hypergeometric type. The first factor is of the same
type as in the Beisert S-matrix for fundamental particles [3].
It has only physical singularities, e.g., poles like u™ — v~ or
u™; for once, the unphysical x7x; — x| x5 singularity of the
Z block is shown to cancel.

The hypergeometric parts depend on the various counters
and the rapidity difference, but not on A. Its ) blocks can be
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expressed by X elements with shifted counters, likewise
those of Z are written in terms of ), from where one can
regain a slightly more complicated form in terms of X. We
display completely explicit results for all parts on just a few
pages. There are only a few distinct coefficients in these
formulas; their appearance suggests that there may be a
unifying superspace form. In particular, we have found a
very suggestive relation between the ) and Z components
that hints at a fused structure.

Finally we have clarified several properties of the bound
state S-matrix such as crossing, inversion and braiding
unitarity.

The writing we chose was mainly motivated by brevity;
it is, of course, not unique. An open question is what
form will be most useful for residue calculations as
in [14,15] or alternative future approaches to multiple
gluings of hexagon tiles. It is worth noting that in that
context, one often twists the S-matrix by a unitary matrix
depending on the charges of each state; it is quite
straightforward to incorporate any such diagonal twist in
our construction.
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APPENDIX: NOTEBOOK

We have appended a Mathematica notebook with all the
components and relations of the S-matrix that are presented

here. In this appendix we will briefly explain the notation of
the notebook.
(i) The components of the S-matrix are called

(XM < smatxX[i, j][k, L, n], (A1)
(Vi))¥ < smatyli, jl[k, L, n], (A2)
(Z;)k < smatzli, j][k, I, n]. (A3)

(i) The basis vectors of the bound state representation
are denoted by

la, b, c,d) <> statela, b, c,d|. (A4)

(iii) States can be multiplied using CENTERDOT

|ay, by, ci.dy) ® |ag, by, c;, dy)
< statela;, by, ¢y, d|] - statelay, by, ¢, d).
(A5)

(iv) The S-matrix is then programmed as an operator
acting on such states as

Slay. by, ci.dy) @ |az, by, cp.dy)
< S[l,2][statelay, by, ¢, d,]

- statelas, by, ¢, d]], (A6)
which evaluates to give the correct components.

(v) In order to not deal with spurious poles in X, ), Z,
we send K — K + € and send € — 0 in the end. This
regulates combinatorial factors of the form K; — A
which sometimes naively result in a 0/0.

[1] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); S.
Gubser, 1. Klebanov, and A. Polyakov, Phys. Lett. B 428,
105 (1998); E. Witten, Adv. Theor. Math. Phys. 2, 253
(1998).

[2] D.E. Berenstein, J. M. Maldacena, and H.S. Nastase,
J. High Energy Phys. 04 (2002) 013; J. Minahan and
K. Zarembo, J. High Energy Phys. 03 (2003) 013; I. Bena,
J. Polchinski, and R. Roiban, Phys. Rev. D 69, 046002
(2004); N. Beisert, V. Dippel, and M. Staudacher, J. High
Energy Phys. 07 (2004) 075; N. Beisert and M. Staudacher,
Nucl. Phys. B727, 1 (2005).

[3] N. Beisert, Adv. Theor. Math. Phys. 12, 948 (2008).

[4] N. Beisert, B. Eden, and M. Staudacher, J. Stat. Mech.
(2007) P01021.

[5]1 M. Luscher, Commun. Math. Phys. 104, 177 (1986); 105,
153 (1986); J. Ambjorn, R. A. Janik, and C. Kristjansen,
Nucl. Phys. B736, 288 (2006).

[6] A.B. Zamolodchikov, Nucl. Phys. B342, 695 (1990); G.
Arutyunov and S. Frolov, J. High Energy Phys. 05 (2009)
068; N. Gromov, V. Kazakov, and P. Vieira, Phys. Rev. Lett.
103, 131601 (2009); D. Bombardelli, D. Fioravanti, and R.
Tateo, J. Phys. A 42, 375401 (2009).

[7]1 G. Arutyunov and S. Frolov, Nucl. Phys. B804, 90 (2008).

[8] G. Arutyunov, M. de Leeuw, and A. Torrielli, Nucl. Phys.
B819, 319 (2009).

[9] N. Beisert, Proc. Sci., SOLVAY2006 (2006) 002; M. de
Leeuw, J. High Energy Phys. 06 (2008) 085.

[10] B. Basso, S. Komatsu, and P. Vieira, arXiv:1505.06745.

126001-15


https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1088/1126-6708/2002/04/013
https://doi.org/10.1088/1126-6708/2003/03/013
https://doi.org/10.1103/PhysRevD.69.046002
https://doi.org/10.1103/PhysRevD.69.046002
https://doi.org/10.1088/1126-6708/2004/07/075
https://doi.org/10.1088/1126-6708/2004/07/075
https://doi.org/10.1016/j.nuclphysb.2005.06.038
https://doi.org/10.4310/ATMP.2008.v12.n5.a1
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://doi.org/10.1007/BF01211589
https://doi.org/10.1007/BF01211097
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/j.nuclphysb.2005.12.007
https://doi.org/10.1016/0550-3213(90)90333-9
https://doi.org/10.1088/1126-6708/2009/05/068
https://doi.org/10.1088/1126-6708/2009/05/068
https://doi.org/10.1103/PhysRevLett.103.131601
https://doi.org/10.1103/PhysRevLett.103.131601
https://doi.org/10.1088/1751-8113/42/37/375401
https://doi.org/10.1016/j.nuclphysb.2008.06.005
https://doi.org/10.1016/j.nuclphysb.2009.03.024
https://doi.org/10.1016/j.nuclphysb.2009.03.024
https://doi.org/10.1088/1126-6708/2008/06/085
https://arXiv.org/abs/1505.06745

M. DE LEEUW, B. EDEN, and A. SFONDRINI

PHYS. REV. D 102, 126001 (2020)

[11] B. Eden and A. Sfondrini, J. High Energy Phys. 10 (2017)
098.

[12] T. Fleury and S. Komatsu, J. High Energy Phys. 01 (2017)
130.

[13] B. Eden, Y. Jiang, M. de Leeuw, T. Meier, D. le Plat, and A.
Sfondrini, J. High Energy Phys. 11 (2018) 097.

[14] M. de Leeuw, B. Eden, D. 1. Plat, and T. Meier, Phys. Part.
Nucl. Lett. 17, 678 (2020); M. De Leeuw, B. Eden,
D. Le Plat, T. Meier, and A. Sfondrini, J. High Energy
Phys. 09 (2020) 039.

[15] T. Fleury and S. Komatsu, J. High Energy Phys. 02 (2018)
177.

[16] G. Arutyunov and S. Frolov, J. Phys. A 42, 254003
(2009).

[17] G. Arutyunov, M. de Leeuw, and A. Torrielli, J. High
Energy Phys. 05 (2009) 086.

[18] N. Beisert and M. de Leeuw, J. Phys. A 47, 305201
(2014).

[19] G. Arutyunov and S. Frolov, J. Phys. A 42, 425401
(2009).

126001-16


https://doi.org/10.1007/JHEP10(2017)098
https://doi.org/10.1007/JHEP10(2017)098
https://doi.org/10.1007/JHEP01(2017)130
https://doi.org/10.1007/JHEP01(2017)130
https://doi.org/10.1007/JHEP11(2018)097
https://doi.org/10.1134/S1547477120050258
https://doi.org/10.1134/S1547477120050258
https://doi.org/10.1007/JHEP09(2020)039
https://doi.org/10.1007/JHEP09(2020)039
https://doi.org/10.1007/JHEP02(2018)177
https://doi.org/10.1007/JHEP02(2018)177
https://doi.org/10.1088/1751-8113/42/25/254003
https://doi.org/10.1088/1751-8113/42/25/254003
https://doi.org/10.1088/1126-6708/2009/05/086
https://doi.org/10.1088/1126-6708/2009/05/086
https://doi.org/10.1088/1751-8113/47/30/305201
https://doi.org/10.1088/1751-8113/47/30/305201
https://doi.org/10.1088/1751-8113/42/42/425401
https://doi.org/10.1088/1751-8113/42/42/425401

