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3Université Paris-Saclay, CNRS/IN2P3, IJC Lab, 91405 Orsay Cedex, France

(Received 14 September 2020; accepted 13 November 2020; published 31 December 2020)

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a
spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four
dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of
modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized
expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding
expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for
the field in the Unruh state. The method is shown to work in the two-dimensional case where the results are
known.
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I. INTRODUCTION

The stress-energy tensor of a quantized field is an
extremely useful tool for studying quantum effects in
curved space because it takes both particle production
and vacuum polarization into account. It can be computed
in a background spacetime to obtain the energy density,
pressure, etc. for a quantum field in that spacetime. It can
also be used in the context of semiclassical gravity to
compute the backreaction of the quantum field on the
spacetime geometry.
For black holes in four-dimensional, 4D, spacetimes, the

full stress-energy tensor must be computed numerically.
This is a difficult task that has to date only been done
without other approximations for the cases of static spheri-
cally symmetric black holes [1–15] and the stationary Kerr
metric [16,17]. However, because of the difficulty involved,
to our knowledge, no one has numerically computed the
full stress-energy tensor for a quantized field in a 4D
spacetime in which a black hole forms from collapse. This
is important because there can be a significant difference
between the stress-energy tensor for a quantum field in a
2D versus a 4D spacetime such as that found for a massless
minimally coupled scalar field in an extreme Reissner-
Nordstrom spacetime [9,18].
In this paper we present a method to compute the renor-

malized stress-energy tensor, hinjTabjini, for a massless

minimally coupled scalar field in the case that a black hole
forms from the collapse of a spherically symmetric null
shell. This model has been previously used to derive the
Hawking effect [19,20], investigate how the stress-energy
tensor is affected by the production of a pair of particles
due to the Hawking effect [21], study some details of how
the spectrum and number of produced particles changes in
time during and after the collapse [22,23], and in 2D to
compute the stress-energy tensor for a massless minimally
coupled scalar field [20,24]. While this is not a realistic
model for collapse because the shell begins with an
infinite size, this is probably the simplest model to work
with that involves collapse in 4D to form a black hole.
Thus it is a reasonable first choice for the full numerical
computation of the stress-energy tensor of a quantized
field in a 4D spacetime in which a black hole forms from
collapse. Further, since the Hawking effect is independent
of how the black hole forms [25], and since it is expected
that the stress-energy tensor at late times will also be
independent of the formation process, studying how the
stress-energy tensor evolves in time and approaches its
late time behavior can provide insight into what is likely to
happen in a more realistic model.
The method we have developed works in the region

outside both the null shell and the event horizon. In the
region outside the shell, Birkhoff’s theorem ensures that the
metric is that for Schwarzschild spacetime (2.2). In the
region inside the shell the space is flat. Thus in both regions
the mode equation for the quantum field is separable and
inside the shell its solutions are known analytically. This
allows for a numerical computation of the stress-energy

*anderson@wfu.edu
†ghols18@wfu.edu
‡afabbri@ific.uv.es

PHYSICAL REVIEW D 102, 125035 (2020)

2470-0010=2020=102(12)=125035(26) 125035-1 © 2020 American Physical Society

https://orcid.org/0000-0002-9882-001X
https://orcid.org/0000-0003-2340-9338
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.125035&domain=pdf&date_stamp=2020-12-31
https://doi.org/10.1103/PhysRevD.102.125035
https://doi.org/10.1103/PhysRevD.102.125035
https://doi.org/10.1103/PhysRevD.102.125035
https://doi.org/10.1103/PhysRevD.102.125035


tensor for the field in which only ordinary differential
equations need to be solved numerically.
For the collapsing null shell model, the initial vacuum

state of the quantum field is well defined and the main
complication that occurs is due to the propagation of the
modes across the null shell surface. The crux of our method
involves the expansions of the in modes in terms of a
complete set of solutions to the mode equation in the region
outside the shell.
The stress-energy tensor for the quantum field is

obtained by expanding the quantum field in terms of a
complete set of modes. This expansion is substituted into
the formula for the stress-energy tensor of the correspond-
ing classical field and the expectation value is computed. If
the field is in the in vacuum state then the result is an
expression which involves sums and integrals over the
mode functions for the in state and their derivatives. After
the renormalization counterterms are subtracted off, the
resulting stress-energy tensor is finite and can be computed.
This is straightforward inside the null shell since the mode
functions are known analytically and for the in state, the
result is that the stress-energy tensor is equal to zero.
Outside the null shell and the event horizon the inmodes

do not assume a simple form in 4D. One approach to
computing them would be to use the analytically known
values for the modes inside the shell and on past null
infinity to provide initial data for a numerical integration of
the mode equation in the region exterior to the shell.
However, outside the shell the in modes will not factorize
into a product of a function that depends only on time and a
function that depends only on the radial coordinate r. Thus
the part of the mode equation that depends on both r and t
must be solved numerically.
We have developed an alternative method which

involves expanding each of the in modes in terms of a
complete set of modes in Schwarzschild spacetime. The
radial parts of these modes and the matching parameters
must be computed numerically. The mode matching has
been tested in the 2D case where there is no effective
potential in the mode equation. It has also been partially
tested for spherically symmetric modes in 4D both when
the effective potential is modeled as a delta function and
when the exact effective potential is used.
One advantage of the first method is that there are no

matching parameters. A disadvantage is that one must solve
a partial differential equation directly using numerical
techniques. Conversely the chief advantage of the method
developed here is that one only needs to numerically solve
the radial mode equation, which is an ordinary differential
equation. A second advantage is that the properties of the
solutions to this equation are well understood. One dis-
advantage of our method is that the formulas for the
matching parameters involve certain integrals that must
be computed numerically. A second disadvantage is that
the computation of the stress-energy tensor involves the

numerical computation of triple integrals rather than single
integrals over various products of the mode functions and
their derivatives. It is not obvious to us which approach is
more efficient. However, since no full numerical compu-
tation of the stress-energy tensor has been previously done
for a quantized scalar field in a 4D spacetime where a black
hole forms from collapse, we think the most important
thing is to develop one viable method to do the calculation
and that is what we present here.
When the expansions for the in modes are substituted

into the formula for the unrenormalized stress-energy
tensor one finds a combination of sums and integrals over
various combinations of the modes and their derivatives.
Renormalization of the stress-energy tensor can be accom-
plished by subtracting the corresponding expression that
occurs in Schwarzschild spacetime for the Unruh state [26],
adding that expression back and subtracting the renorm-
alization counterterms. The result is the sum of two finite
tensors. The first is the difference between the expressions
for the unrenormalized stress-energy tensors in the in
state and the Unruh state. The second is the renormalized
stress-energy tensor for the Unruh state. The latter has been
numerically computed for the masslesss minimally coupled
scalar field in [13,14]. Thus one can simply add that result
to the difference between the two stress-energy tensors to
obtain the full renormalized stress-energy tensor for the
scalar field in the in state in the collapsing null shell
spacetime. This type of renormalization scheme has been
used to compute the stress-energy tensors in Schwarzschild
spacetime in the Unruh state for the conformally coupled
massless scalar field [5,27] and for the massless spin 1 field
[5]. It has also been used to compute a late time approxi-
mation to hTtri for the case of a massive minimally coupled
scalar field in a spacetime consisting of a massive thin shell
that is initially static and then collapses to form a black
hole [28].
We have tested our method by numerically computing

the difference between the stress-energy tensor for the in
state in the collapsing null shell spacetime and the stress-
energy tensor for the Unruh state in 2D. The results are
compared with an analytic expression for the difference
obtained from previous analytic calculations of the stress-
energy tensor for the Unruh state [29] and the in vacuum
state for the collapsing null shell spacetime [20,24]. Our
results are in agreement with those calculations.
In Sec. II we introduce the collapsing null shell model

and then discuss the modes for a massless minimally
coupled scalar field in the null shell spacetime. A descrip-
tion of the method of computing the stress-energy tensor is
given in Sec. III. Various mode functions in Schwarzschild
spacetime that are used in the computation of the stress-
energy tensor are discussed in Sec. IV. In Sec. V general
expressions for the matching coefficients in the 4D case are
derived followed by examples where the matching method
is tested. Formulas needed for the computation of the
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stress-energy tensor in the 4D case are derived in the first
part of Sec. VI. In the second part, the difference between
the stress-energy tensor in the in vacuum state and the
Unruh state is numerically computed for the 2D case and
compared with the difference obtained from previous
analytic calculations. Section VII contains a summary of
our results. The appendixes contain some details of a proof
and some derivations that are used in the 2D examples in
Secs. V and VI. Throughout the paper, we use the sign
conventions of [30] and units are chosen such that
ℏ ¼ c ¼ G ¼ 1.

II. MASSLESS MINIMALLY COUPLED
SCALAR FIELD IN A SPACETIME

WITH A COLLAPSING NULL SHELL

A. Collapsing null shell model

We consider a model in which a spherically symmetric
black hole forms from the collapse of a null shell. Our
analysis of the spactime follows that in [20]. The metric
inside the shell is the flat space metric

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð2:1Þ
and, by Birkhoff’s theorem, the metric outside the shell is
the Schwarzschild metric

ds2 ¼ −
�
1 −

2M
r

�
dt2s þ

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2:

ð2:2Þ
The two metrics need to be matched along the trajectory
of the null shell. An obvious way to do this is to let the
angular coordinates be continuous across the shell along
with the radial coordinate r that is related to the area of a
two-sphere. Then the time coordinate is not continuous
across the shell trajectory which is why we distinguish in
the above metrics between the time coordinate t inside the
shell and the time coordinate ts outside the shell.
The actual matching is easier in terms of radial null

coordinates which can be defined inside the shell as

u ¼ t − r; ð2:3aÞ

v ¼ tþ r; ð2:3bÞ

and outside the shell as

us ¼ ts − r�; ð2:4aÞ

v ¼ ts þ r�; ð2:4bÞ

where

r� ¼ rþ 2M log

�
r − 2M
2M

�
ð2:5Þ

is the usual tortoise coordinate in Schwarzschild spacetime.
It is easiest to let v be continuous across the shell trajectory
which is denoted as v ¼ v0. The outgoing radial null
coordinate is then discontinuous across the shell trajectory
which is why it is denoted as u inside the shell and us
outside. The relationship between u and us is [20,21]

us ¼ u − 4M log

�
vH − u
4M

�
; ð2:6Þ

with

vH ≡ v0 − 4M: ð2:7Þ
Note that the value of the flat space coordinate u on the
event horizon is vH as can be seen from Fig. 1. Inverting,
one finds that [22]

u ¼ vH − 4MW

�
exp

�
vH − us
4M

��
; ð2:8Þ

withW the Lambert W function. A Penrose diagram for the
resulting spacetime is sketched in Fig. 1.

B. Massless minimally coupled scalar field

The type of quantum field we consider is a massless
minimally coupled scalar field which in a general space-
time satisfies the wave equation

□ϕ ¼ 0: ð2:9Þ

In the null shell spacetime the field can be expanded in
terms of a complete set of modes such that

ϕ ¼
X∞
l¼0

Xl
m¼−l

Z
∞

0

dω½aωlmfωlm þ a†ωlmf
�
ωlm�; ð2:10Þ

FIG. 1. Penrose diagram for a spacetime in which a null shell
collapses to form a spherically symmetric black hole. The vertical
line on the left corresponds to the surface r ¼ 0 which is also the
surface where u ¼ v. The trajectory of the shell (dashed blue
curve) is v ¼ v0. The horizon, Hþ, is the dotted red curve. Inside
the shell trajectory it corresponds to the surface u ¼ vH and
outside the shell trajectory it corresponds to us ¼ ∞.
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with aωlm an annihilation operator. The modes are sol-
utions to (2.9) which have the form

fωlm ¼ N
Yl;mðθ;ϕÞ

r
ψωlðτ; rÞ; ð2:11Þ

with N a normalization constant and τ ¼ t inside the shell
trajectory and τ ¼ ts outside. Inside the shell trajectory the
equation for ψωl is

−
∂2ψωl

∂t2 þ ∂2ψωl

∂r2 −
lðlþ 1Þ

r2
ψωl ¼ 0; ð2:12Þ

while outside the shell the equation is

−
∂2ψωl

∂t2s þ ∂2χωl
∂r2� −

�
1−

2M
r

��
2M
r3

þ lðlþ 1Þ
r2

�
ψωl ¼ 0:

ð2:13Þ

The in vacuum state is defined by requiring that on I−

ψ in
ωl ¼ e−iωv: ð2:14Þ

The modes must also be regular on the surface r ¼ 0 inside
the shell trajectory which implies that ψ in

ωl ¼ 0 there.
The normalization constant N is fixed using the scalar

product which is defined by the relation

ðf1; f2Þ ¼ −i
Z
Σ
dΣnμ½f1ðxÞ∂μ

↔
f�2ðxÞ�: ð2:15Þ

Here nμ is a future-directed unit vector orthogonal to the
spacelike (or null) hypersurface Σ and dΣ is the volume
element in Σ. The hypersurface Σ is taken to be a Cauchy
surface. To normalize the in modes it is easiest to use past
null infinity, I−, as the Cauchy surface. If the orthonormal
condition

ðfωlm; fω0l0m0 Þ ¼ δl;l0δm;m0δðω − ω0Þ ð2:16Þ

is imposed then it is straightforward to show that

N ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p : ð2:17Þ

For the modes in the in state in the region inside the null
shell trajectory

ψ in
ωl ¼ e−iωtχinωlðrÞ: ð2:18Þ

Substituting this into (2.12) gives

d2χinωl
dr2

¼ −
�
ω2 −

lðlþ 1Þ
r2

�
χωl: ð2:19Þ

The solution for which ψ in
ωl vanishes at r ¼ 0 is

ψ in
ωl ¼ Cle−iωtωrjlðωrÞ; ð2:20Þ

where Cl is a normalization constant and jl is a spherical
Bessel function. The condition (2.14) on I− fixes the value
of Cl. For example, for l ¼ 0, it is easy to show that C0 ¼
−2i and

ψ in
ω0 ¼ e−iωv − e−iωu: ð2:21Þ

In the region outside of the null shell trajectory v ¼ v0,
the in modes still have the boundary condition (2.14).
However, their other boundary condition is that ψ in

ωl and its
first derivatives must be continuous across v ¼ v0. The fact
that the time coordinates are different on either side of this
surface makes it impossible to have a solution of the form
ψ in
ωl ¼ e−iωtsχinωlðrÞ outside the null shell trajectory.

However, it is possible to write ψ in
ωl in terms of a complete

set of mode functions of the form ψωl ¼ e−iωtsχωlðrÞ
outside the null shell trajectory as is shown in Sec. V.

III. METHOD TO COMPUTE THE
STRESS-ENERGY TENSOR

The stress-energy tensor for the quantized massless
minimally coupled scalar field, hTabi, is to be computed
for the in vacuum state in the region outside the null shell
and outside the event horizon. The stress-energy tensor for
the classical field is

Tab ¼ ∂aΦ∂bΦ −
1

2
gabgcd∂cΦ∂dΦ: ð3:1Þ

To compute hinjTabjini, one can substitute (2.10) into (3.1),
use the complete set of modes for the in vacuum state finωlm,
and compute the expectation value. There are two things
which make this difficult. One is computing the modes
finωlm in the region outside the shell and the other is
renormalizing the stress-energy tensor. Our method to
compute the stress-energy tensor provides one way to
overcome these difficulties.
First, we renormalize by subtracting from the unrenor-

malized expression for the stress-energy tensor for the in
vacuum state, the unrenormalized stress-energy tensor for
the Unruh state. Since the renormalization counterterms are
local and thus do not depend on the state of the quantum
field, this quantity will be finite. Then we add back the
unrenormalized stress-energy tensor for the Unruh state and
then subtract from it the renormalization counter terms.
Schematically one can write

hinjTabjiniren ¼ ΔhTabi þ hUjTabjUiren;
ΔhTabi ¼ hinjTabjiniunren − hUjTabjUiunren: ð3:2Þ
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The quantity hUjTabjUiren has been numerically com-
puted for a massless minimally coupled scalar field in
Schwarzschild spacetime [13,14]. Thus what remains is to
compute the difference between the unrenormalized
expressions. To do that it is necessary to discuss the
computation of the mode functions for the quantum field
that are relevant for the in and Unruh states. It is worth
pointing out that the computation of hUjTabjUiren done in
[13,14] was done for pure Schwarzschild spacetime outside
the event horizon. However the computation we wish to do
for hinjTabjiniren is for the null shell spacetime outside both
the shell and the horizon. The reason that there is no
problem is that the renormalization counterterms are local
and so are the same in this part of the null shell spacetime as
they are in pure Schwarzschild spacetime.
Analytic expressions for the mode functions in the in

vacuum state, finωlm, inside the shell are given in (2.20).
However, it is not easy to continue these to the region
outside the shell because the time coordinate t and the right
moving radial null coordinate u are not continuous across
the shell. However, the known solutions inside the null
shell along with their behavior on I− can be used to fix the
initial data on a Cauchy surface in the null shell spacetime.
The Cauchy surface we consider here, consists of the part
of I− with v0 ≤ v < ∞ along with the trajectory of the null
shell. This initial data could be used for a numerical
calculation of the partial differential equation satisfied by
finωlm outside the shell. Alternatively, one can expand finωlm
in terms of a complete set of modes in the region outside the
shell and use the data on the Cauchy surface to determine
the matching coefficients.
Here we take a variation of the latter approach by

noting that the spacetime geometry outside the shell is
the Schwarzschild geometry. Because of this, it is possi-
ble to do the matching in the corresponding part of
Schwarzschild spacetime. The advantage of this is that
the matching can be to a complete set of modes in the
region outside the horizon in Schwarzschild spacetime.
These modes are well understood and straightforward to
work with numerically. The disadvantage is that the
relevant part of the Cauchy surface in the null shell space-
time discussed above does not form a Cauchy surface in the
Schwarzschild spacetime. This can be remedied by adding
a segment along the future horizon with −∞ < v ≤ v0. The
result is a Cauchy surface for the part of Schwarzschild
spacetime that is outside of the past and future horizons. It
is illustrated in Fig. 2. It is worth noting that the part of the
Cauchy surface on the future horizon is not causally
connected with the region outside the future horizon and
outside the surface v ¼ v0. The corresponding region in the
null shell spacetime is the region where we want to com-
pute the stress-energy tensor. Thus any initial data can be
used for the mode function finωlm on that surface so long as
finωlm is continuous at the point where the future horizon
intersects the part of the Cauchy surface with v ¼ v0.

IV. COMPLETE SETS OF MODE FUNCTIONS
IN SCHWARZSCHILD SPACETIME

In this paper we work with four complete sets of mode
functions for the part of Schwarzschild spacetime that is
outside both the past and future horizons. The frequencies
of all of the modes that we consider are taken to be
non-negative.

A. Modes used for the in state

To expand the modes for the in state in terms of a
complete set of modes in Schwarzschild spacetime we find
it most convenient to choose the complete sets of modes
that consists of the union of modes that are positive
frequency on the future horizon Hþ and zero on future
null infinity, Iþ (labeled by fH

þ
ωlm), and modes that are

positive frequency on Iþ and zero on Hþ (labeled by
fI

þ
ωlm). Both sets of modes are of the general form

ψωl ¼ e−iωtsχωlðrÞ; ð4:1Þ

with 0 ≤ ω < ∞. Substituting into (2.13) gives the radial
mode equation for Schwarzschild spacetime

d2χωl
dr2�

¼ −
�
ω2 −

�
1 −

2M
r

��
2M
r3

þ lðlþ 1Þ
r2

��
χωl:

ð4:2Þ

These modes are normalized on the Cauchy surface
consisting of Hþ and Iþ with the result (2.17).
It is useful to consider a different complete set of mode

functions of the form (4.1) which are defined by two
linearly independent solutions to the radial mode equa-
tion (4.2) with the properties

χ∞R → eiωr� ; r� → ∞; ð4:3aÞ

FIG. 2. Penrose diagram for Schwarzschild spacetime showing
the Cauchy surface used for matching the in modes in the null
shell spacetime to a complete set of modes in Schwarzschild
spacetime in the region outside the past and future horizons. The
Cauchy surface is denoted by the dashed red curve.
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χ∞L → e−iωr� ; r� → ∞: ð4:3bÞ

Near the event horizon they have the behaviors [31]

χ∞R → ERðωÞeiωr� þ FRðωÞe−iωr� ; r� → −∞; ð4:4aÞ

χ∞L → ELðωÞeiωr� þ FLðωÞe−iωr� ; r� → −∞; ð4:4bÞ

where ER, EL, FR, and FL are scattering parameters that
can be determined numerically. They satisfy the rela-
tion ERFL − ELFR ¼ 1.1

For the modes fH
þ

ωlm, on the future horizon ψHþ
ωl ¼ e−iωv

while ψHþ
ωl ¼ 0 on Iþ. The radial mode function which has

these properties is

χH
þ

ωl ¼ 1

FL
χ∞L : ð4:5Þ

This is easily verified by evaluating the resulting mode
function ψHþ

ωl on Hþ and Iþ. To see how this works
consider the behavior near Iþ:

ψHþ
ωl →

1

FL
e−iωv−ϵv → 0; v → ∞: ð4:6Þ

Here we have used a positive integrating factor ϵ to
explicitly show that this mode function vanishes on Iþ
where v ¼ ∞.
For the modes fI

þ
ωlm, on Hþ, ψIþ

ωl ¼ 0 while on Iþ,
ψIþ
ωl → e−iωus . The radial mode function which results in

these properties is

χI
þ

ωl ¼ χ∞R −
FR

FL
χ∞L : ð4:7Þ

B. Complete sets of modes used to define
the Unruh state

Before discussing the modes that can be used to define
the Unruh state, it is useful to consider a complete set of
mode functions that are positive frequency on either the
past horizon H− and vanish on I− (denoted by fH

−

ωlm) or
which vanish on H− and are positive frequency on I−

(denoted by fI
−

ωlm). For the modes fH
−

ωlm, on H−, ψH−

ωl ¼
e−iωus while ψH−

ωl ¼ 0 on I−. The radial mode function
which has these properties is [31]

χH
−

ωl ¼ χ∞R
ER

: ð4:8Þ

For the modes fI
−

ωlm, on H−, ψI−

ωl ¼ 0 while on I−,
ψI−

ωl → e−iωv. The radial mode functions which have these
properties is [31]

χI
−

ωl ¼ χ∞L −
EL

ER
χ∞R : ð4:9Þ

These modes are normalized on the Cauchy surface
consisting of H− and I− with the result (2.17).
The Unruh state in Schwarzschild spacetime consists of a

complete set of modes consisting of the modes fI
−

ωlm and
the modes (denoted by fKωlm) that on H− have the form

ψK
ωKl

¼ e−iωKU; ð4:10Þ

with

U ¼ −
e−κu

κ
: ð4:11Þ

Here κ ¼ ð4MÞ−1 is the surface gravity of the black hole
and 0 ≤ ωK < ∞. These modes vanish on I− and can be
normalized on the Cauchy surface that is the union between
H− and I− with the result that2

fKωlm ¼ Ylmffiffiffiffiffiffiffiffiffiffiffi
4πωK

p
r
ψK
ωl: ð4:12Þ

They can be expanded in terms of the fH
−

ωlm modes. The
result is given in (5.16) and (5.17).
Since the method used to compute the stress-energy

tensor involves subtracting the unrenormalized stress-
energy tensor for the Unruh state it is useful to write the
modes associated with this state, fH

−

ωlm and fI
−

ωlm, in terms
of fH

þ
ωlm and fI

þ
ωlm. The result is

fH
−

ωlm ¼ 1

ER
ðFRfH

þ
ωlm þ fI

þ
ωlmÞ; ð4:13aÞ

fI
−

ωlm ¼ 1

ER
ðfHþ

ωlm − ELfI
þ

ωlmÞ: ð4:13bÞ

V. MATCHING COEFFICIENTS

A. General formulas

In this section general formulas are derived for the
matching coefficients used in an expansion of the modes
of a massless minimally coupled scalar field for the in
vacuum state in the collapsing null shell spacetime in terms
of a complete set of modes in Schwarzschild spacetime in
the region outside the past and future horizons. These can
be used in the computation of the stress-energy tensor,
hinjTabjini, for the scalar field in the part of the collapsing
null shell spacetime that is outside of the shell and outside
of the event horizon.

1The subscripts r and l in [31] have been changed here to R
and L respectively.

2Here we use the entire surface H− which extends from U ¼
−∞ to U ¼ þ∞.
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The expansion of the in mode functions has the form

finωlm ¼
X∞
l0¼0

Xl0
m0¼−l0

Z
∞

0

dω0½AIþ
ωlmω0l0m0fI

þ
ω0l0m0

þ BIþ
ωlmω0l0m0 ðfIþ

ω0l0m0 Þ� þ AHþ
ωlmω0l0m0fH

þ
ω0l0m0

þ BHþ
ωlmω0l0m0 ðfHþ

ω0l0m0 Þ��: ð5:1Þ

The matching coefficients are found using the scalar
product in (2.15) and the orthonormality of the modes
fðIþ;HþÞ with respect to this scalar product. The result is

AðIþ;HþÞ
ωlmω0l0m0 ¼ ðfinωlm; fðI

þ;HþÞ
ω0l0m0 Þ; ð5:2aÞ

BðIþ;HþÞ
ωlmω0l0m0 ¼ −ðfinωlm; ðfðI

þ;HþÞ
ω0l0m0 Þ�Þ: ð5:2bÞ

For the Cauchy surface we consider, (2.15) reduces to
integrals of the formZ

du
Z

dΩr2∂u

↔
;

Z
dv

Z
dΩr2∂v

↔
: ð5:3Þ

On the hypersurfaces where these integrals are computed,
the following properties for spherical harmonics can be
used: Z

dΩYlmðθ;ϕÞY�
l0m0 ðθ;ϕÞ ¼ δl;l0δm;m0 ; ð5:4aÞ

Z
dΩYlmðθ;ϕÞYl0m0 ðθ;ϕÞ ¼ð−1Þmδl;l0δm;−m0 : ð5:4bÞ

As a result we can write

AðIþ;HþÞ
ωlmω0l0m0 ¼ δl;l0δm;m0AðIþ;HþÞ

ωω0l ; ð5:5aÞ

BðIþ;HþÞ
ωlmω0l0m0 ¼ ð−1Þmδl;l0δm;−m0BðIþ;HþÞ

ωω0l ; ð5:5bÞ

and

finωlm ¼ Ylm

r
ffiffiffiffiffiffi
4π

p
Z

∞

0

dω0ffiffiffiffiffi
ω0p ½AIþ

ωω0lψ
Iþ
ω0l þ BIþ

ωω0lðψIþ
ω0lÞ�

þ AHþ
ωω0lψ

Hþ
ω0l þ BHþ

ωω0lðψHþ
ω0lÞ��: ð5:6Þ

From this expression one can see that if, at small ω0, the
matching coefficients go like 1ffiffiffiffi

ω0p then there is an infrared

divergence in the integral and it is not obvious how to deal
with it. For this reason, we use integrations by parts in some
of the computations of the matching coefficients below to
avoid this difficulty. For Schwarzschild spacetime in 4D,
our results when substituted into (5.6) do not give infrared
divergences.
The contribution to the matching coefficients from the

three segments of the Cauchy surface in Fig. 2 are

AðIþ;HþÞ
ωω0l ¼ ðAðIþ;HþÞ

ωω0l ÞHþ þ ðAðIþ;HþÞ
ωω0l Þv0 þ ðAðIþ;HþÞ

ωω0l ÞI− ; ð5:7aÞ

ðAðIþ;HþÞ
ωω0l ÞHþ ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
v0

−∞
dvψ in

ωlðu ¼ vH; vÞ∂v

↔
½ψ ðIþ;HþÞ

ω0l ðus ¼ ∞; vÞ��; ð5:7bÞ

ðAðIþ;HþÞ
ωω0l Þv0 ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
duψ in

ωlðu; v0Þ∂u

↔
½ψ ðIþ;HþÞ

ω0l ðusðuÞ; v0Þ��; ð5:7cÞ

ðAðIþ;HþÞ
ωω0l ÞI− ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

v0

dvψ in
ωlðu ¼ −∞; vÞ∂v

↔
½ψ ðIþ;HþÞ

ω0l ðus ¼ −∞; vÞ��; ð5:7dÞ

and

BðIþ;HþÞ
ωω0l ¼ ðBðIþ;HþÞ

ωω0l ÞHþ þ ðBðIþ;HþÞ
ωω0l Þv0 þ ðBðIþ;HþÞ

ωω0l ÞI− ; ð5:8aÞ

ðBðIþ;HþÞ
ωω0l ÞHþ ¼ i

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
v0

−∞
dvψ in

ωlðu ¼ vH; vÞ∂v

↔
ψ ðIþ;HþÞ
ω0l ðus ¼ ∞; vÞ; ð5:8bÞ

ðBðIþ;HþÞ
ωω0l Þv0 ¼

i

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
duψ in

ωlðu; v0Þ∂u

↔
ψ ðIþ;HþÞ
ω0l ðusðuÞ; v0Þ; ð5:8cÞ

ðBðIþ;HþÞ
ωω0l ÞI− ¼ i

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
∞

v0

dvψ in
ωlðu ¼ −∞; vÞ∂v

↔
ψ ðIþ;HþÞ
ω0l ðus ¼ −∞; vÞ: ð5:8dÞ
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It is important to note that the integrals in (5.7b) and
(5.8b) are computed with the integrands evaluated on Hþ.
Since ψIþ

ω0l ¼ 0 on Hþ

ðAIþ
ωω0lÞHþ ¼ ðBIþ

ωω0lÞHþ ¼ 0: ð5:9Þ

On Hþ, ψHþ
ωl ¼ e−iωv. The part of the Cauchy surface in

Schwarzschild spacetime which is on Hþ has no counter-
part in the collapsing null shell spacetime and, as discussed
in Sec. III, is causally disconnected from the region outside

the collapsing null shell and outside the event horizon.
Thus the only restriction on the mode functions ψ in

ωl for this
surface is continuity at v ¼ v0. The simplest mode function
to use on this surface is then

ψ in
ωlðu ¼ vH; vÞ ¼ ψ in

ωlðu ¼ vH; v0Þ: ð5:10Þ

With this choice it turns out to be useful to write the
contribution to the matching coefficients from Hþ in
the form

ðAHþ
ωω0lÞHþ ¼ i

4π
ffiffiffiffiffiffiffiffi
ωω0p ψ in

ωlðvH; v0Þeiω
0v0 −

i
2π

ffiffiffiffiffi
ω0

ω

r
eiω

0v0

ω0 − iϵ
ψ in
ωlðvH; v0Þ; ð5:11aÞ

ðBHþ
ωω0lÞHþ ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p ψ in

ωlðvH; v0Þe−iω
0v0 þ i

2π

ffiffiffiffiffi
ω0

ω

r
e−iω0v0

ω0 þ iϵ
ψ in
ωlðvH; v0Þ; ð5:11bÞ

where for each integral an integration by parts has been
done and an integrating factor 0 < ϵ ≪ 1 has been included
to make the integrals converge.
The integrals in (5.7c) and (5.8c) are computed with

the integrands evaluated on the surface v ¼ v0. In this
case ψ in

ωl is given by (2.20) while analytic expressions for

ψIþ;Hþ
ωl are only known for the limits us → �∞. For

intermediate values of us these modes must be computed
numerically.
The integrals in (5.7d) and (5.8d) are computed with the

integrands evaluated on the surface I−. In this case ψ in
ωl is

given by (2.14). From (4.5) and (4.7) one can deduce that
on I−

ψHþ
ωl ¼ 1

FL
e−iωv;

ψIþ
ωl ¼ −

FR

FL
e−iωv: ð5:12Þ

To avoid infrared divergences in (5.6) it is useful to
subtract and then add back the quantity e−iωv0 from ψ in

ωl in
(5.7c) and (5.8c). Then after integrations by parts the
contributions from the surface v ¼ v0 can be written as

ðAHþ
ωω0lÞv0 ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p ψ in

ωlðvH; v0Þeiω
0v0 þ i

4π
ffiffiffiffiffiffiffiffi
ωω0p

F�
Lðω0;lÞ e

−iðω−ω0Þv0

þ i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½∂uψ

in
ωlðu; v0Þ�ψHþ�

ω0l ðusðuÞ; v0Þ; ð5:13aÞ

ðBHþ
ωω0lÞv0 ¼

i

4π
ffiffiffiffiffiffiffiffi
ωω0p ψ in

ωlðvH; v0Þe−iω
0v0 −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p

FLðω0;lÞ e
−iðωþω0Þv0

−
i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½∂uψ

in
ωlðu; v0Þ�ψHþ

ω0lðusðuÞ; v0Þ; ð5:13bÞ

ðAIþ
ωω0lÞv0 ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p F�

Rðω0;lÞ
F�
Lðω0;lÞ e

−iðω−ω0Þv0 − i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½ψ in

ωlðu; v0Þ − e−iωv0 �∂uψ
Iþ�
ω0l ðusðuÞ; v0Þ; ð5:13cÞ

ðBIþ
ωω0lÞv0 ¼

i

4π
ffiffiffiffiffiffiffiffi
ωω0p FRðω0;lÞ

FLðω0;lÞ e
−iðωþω0Þv0 þ i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½ψ in

ωlðu; v0Þ − e−iωv0 �∂uψ
Iþ
ω0lðusðuÞ; v0Þ: ð5:13dÞ

The modes on I− take on the simple forms (2.14) and (5.12). This makes it possible to evaluate the integrals for the
contributions to the matching parameters from that surface. After integrating by parts, we find

ðAHþ
ωω0lÞI− ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p

F�
Lðω0;lÞ e

−iðω−ω0Þv0 þ i
2π

ffiffiffiffiffi
ω0

ω

r
1

F�
Lðω0;lÞ

eiðω0−ωÞv0

ω0 − ωþ iϵ
; ð5:14aÞ
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ðBHþ
ωω0lÞI− ¼ i

4π
ffiffiffiffiffiffiffiffi
ωω0p

FLðω0;lÞ e
−iðωþω0Þv0 −

i
2π

ffiffiffiffiffi
ω0

ω

r
1

FLðω0;lÞ
e−iðωþω0Þv0

ω0 þ ω − iϵ
; ð5:14bÞ

ðAIþ
ωω0lÞI− ¼ i

4π
ffiffiffiffiffiffiffiffi
ωω0p F�

Rðω0;lÞ
F�
Lðω0;lÞ e

−iðω−ω0Þv0 −
i
2π

ffiffiffiffiffi
ω0

ω

r
F�
Rðω0;lÞ

F�
Lðω0;lÞ

e−iðω−ω0Þv0

ω0 − ωþ iϵ
; ð5:14cÞ

ðBIþ
ωω0lÞI− ¼ −

i

4π
ffiffiffiffiffiffiffiffi
ωω0p FRðω0;lÞ

FLðω0;lÞ e
−iðωþω0Þv0 þ i

2π

ffiffiffiffiffi
ω0

ω

r
FRðω0;lÞ
FLðω0;lÞ

e−iðωþω0Þv0

ω0 þ ω − iϵ
: ð5:14dÞ

Combining these results together, the general formulas for the matching coefficients are

AHþ
ωω0l ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
eiω

0v0

ω0 − iϵ
ψ in
ωlðvH; v0Þ þ

i
2π

ffiffiffiffiffi
ω0

ω

r
1

F�
Lðω0;lÞ

eiðω0−ωÞv0

ω0 − ωþ iϵ

þ i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½∂uψ

in
ωlðu; v0Þ�ψHþ�

ω0l ðusðuÞ; v0Þ; ð5:15aÞ

BHþ
ωω0l ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
e−iω

0v0

ω0 þ iϵ
ψ in
ωlðvH; v0Þ −

i
2π

ffiffiffiffiffi
ω0

ω

r
1

FLðω0;lÞ
e−iðωþω0Þv0

ω0 þ ω − iϵ

−
i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½∂uψ

in
ωlðu; v0Þ�ψHþ

ω0lðusðuÞ; v0Þ; ð5:15bÞ

AIþ
ωω0l ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
F�
Rðω0;lÞ

F�
Lðω0;lÞ

e−iðω−ω0Þv0

ω0 − ωþ iϵ
−

i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½ψ in

ωlðu; v0Þ − e−iωv0 �∂uψ
Iþ�
ω0l ðusðuÞ; v0Þ; ð5:15cÞ

BIþ
ωω0l ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
FRðω0;lÞ
FLðω0;lÞ

e−iðωþω0Þv0

ω0 þ ω − iϵ
þ i

2π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du½ψ in

ωlðu; v0Þ − e−iωv0 �∂uψ
Iþ
ω0lðusðuÞ; v0Þ: ð5:15dÞ

B. Expansions of modes for the
Unruh state

As discussed in Sec. III, our method for renormalizing
the stress-energy tensor involves subtracting the unrenor-
malized stress-energy tensor for the Unruh modes. Recall
these modes include the set of modes fKωlm that are positive
frequency on the past horizon with respect to the Kruskal
time coordinate along with the set of modes fI

−

ωlm that on
I− have ψωl ¼ e−iωv. Before subtracting the contribution
from the fI

−

ωlm modes we first write them in terms of fI
þ

ωlm

and fH
þ

ωlm using (4.13b).
For the contributions of the fKωlm modes we first write

down the Bogolubov transformation

fKωlm ¼
Z

∞

0

dω0½αKωω0lf
H−

ω0lm þ βKωω0lf
H−�
ω0lm�: ð5:16Þ

The coefficients can be obtained using the scalar product
(2.15) with a Cauchy surface consisting of the union of past
null infinity and the past horizon in Schwarzschild space-
time. Integrating over the angular coordinates one finds that
the Bogolubov coefficients can be written in the form (5.5)

with α replacing A and β replacing B. Integrating the
remaining integrals over us by parts one finds that3

αKωKω
0l ¼

1

2π

ffiffiffiffiffiffi
ω0

ωK

s
ð4MÞ1þi4Mω0

×
Z

0

−∞
dUKe−iωKUK ð−UKÞ−1−i4Mω0

¼ 1

2π

ffiffiffiffiffiffi
ω0

ωK

s
ð4MÞ1þi4Mω0 Γðδ− i4MωÞ

ð−iωK þ ϵÞ−i4Mω0 ; ð5:17aÞ

βKωKω
0l ¼ 1

2π

ffiffiffiffiffiffi
ω0

ωK

s
ð4MÞ1−i4Mω0

×
Z

0

−∞
dUKe−iωKUK ð−UKÞ−1þi4Mω0

¼ 1

2π

ffiffiffiffiffiffi
ω0

ωK

s
ð4MÞ1−i4Mω0 Γðδþ i4MωÞ

ð−iωK þ ϵÞi4Mω0 : ð5:17bÞ

3This calculation was originally done in [32] but note that there
is a mistake in the results. The expressions in that paper are
missing a factor of ð4MÞ�iω0

.
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Here δ and ϵ are integrating factors with 0 < δ ≪ 1 and
0 < ϵ ≪ 1. Note that the Bogolubov coefficients are
independent of the value of l. This is because the effective
potential vanishes on H− which is the surface where the
integrals are being computed. Then we use (4.13) to

express the modes fH
−;I−

ωlm in terms of the modes fðI
þHþÞ

ωlm .

C. 2D example

In this section we will illustrate the matching for the case
of a 2D spacetime which has a perfectly reflecting mirror at
r ¼ 0. The metric inside the shell is the flat space metric

ds2 ¼ −dt2 þ dr2; ð5:18Þ

and the metric outside the shell is the Schwarzschild metric

ds2 ¼ −
�
1 −

2M
r

�
dt2s þ

�
1 −

2M
r

�
−1
dr2: ð5:19Þ

The Penrose diagram is the same as in the 4D case as is the
definition of the radial null coordinates u, us, and v and the
relation between u and us.
The general form of the mode functions is

fω ¼ ψωffiffiffiffiffiffiffiffiffi
4πω

p : ð5:20Þ

There is no scattering for the massless minimally coupled
scalar field modes in 2D so

ER ¼ FL ¼ 1; EL ¼ FR ¼ 0: ð5:21Þ

Inside the shell the in modes are

ψ in
ω ¼ e−iωv − e−iωu: ð5:22Þ

In the region outside the shell the spacetime is the 2D
version of Schwarzschild spacetime and the modes are

ψIþ
ω ¼ ψH−

ω ¼ e−iωus ; ð5:23aÞ

ψHþ
ω ¼ ψI−

ω ¼ e−iωv: ð5:23bÞ

The expansion for the in modes is similar to the 4D case
except there are no parameters l and m related to the
spherical harmonics. Thus

finω ¼
Z

∞

0

dω0½AHþ
ωω0fH

þ
ω0 þ BHþ

ωω0 ðfHþ
ω0 Þ� þ AIþ

ωω0fI
þ

ω0

þ BIþ
ωω0 ðfIþ

ω0 Þ��: ð5:24Þ

The matching coefficients are given by substituting (5.21),
(5.22), and (5.23) into (5.15). It is then easy to show that

½BHþ
ω;ω0fH

þ�
ω0 �

ω0→−ω0 ¼ AHþ
ω;ω0fH

þ
ω0 ;

½BIþ
ω;ω0fI

þ�
ω0 �

ω0→−ω0 ¼ AIþ
ω;ω0fI

þ
ω0 ; ð5:25Þ

where the quantities on the right-hand side are to be
evaluated at ω0 < 0. As a result

finω ¼
Z

∞

−∞
dω0½AHþ

ωω0fH
þ

ω0 þ AIþ
ωω0fI

þ
ω0 �: ð5:26Þ

Because ψHþ
ω0 does not depend on u, the integral in (5.15a)

is trivial to evaluate and one finds that

AHþ
ωω0 ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
e−iðω−ω0Þv0

ω0 − iϵ
þ i
2π

ffiffiffiffiffi
ω0

ω

r
eiðω0−ωÞv0

ω0 − ωþ iϵ
:

ð5:27Þ

To see what the contribution to finω is from the fH
þ

ω

modes, first substitute (5.27) into the first two terms of
(5.24) along with (5.20) and (5.22) with the result

ðfinωÞHþ ¼ ie−iωv0

2π
ffiffiffiffiffiffiffiffiffi
4πω

p
Z

∞

−∞
dω0

�
eiω

0ðv0−vÞ
�
−

1

ω0 − iϵ
þ 1

ω0 − ωþ iϵ

��

¼ e−iωv0ffiffiffiffiffiffiffiffiffi
4πω

p θðv0 − vÞ þ e−iωvffiffiffiffiffiffiffiffiffi
4πω

p θðv − v0Þ: ð5:28Þ

We next consider the contribution of the fI
þ
modes. The matching coefficient in (5.15c) is

AIþ
ωω0 ¼ −

1

2π

ffiffiffiffiffi
ω0

ω

r Z
vH

−∞
due−iωueiω

0usðuÞ dus
du

¼ −
1

2π

ffiffiffiffiffi
ω0

ω

r Z
vH

−∞
due−iðω−ω0Þu

�
vH − u
4M

�
−i4Mω0�

1þ 4M
vh − u

�
: ð5:29Þ

Changing variables to x ¼ vH − u and performing an integration by parts gives
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AIþ
ωω0 ¼ i

2π

ffiffiffiffiffiffiffiffi
ωω0p

e−iðω−ω0ÞvH ð4MÞ1þi4Mω0

iðω0 − ωÞ þ ϵ

Z
∞

0

dxeiðω−ω0Þx−ϵxx−i4Mω0−1þδ

¼ i
2π

ffiffiffiffiffiffiffiffi
ωω0p

e−iðω−ω0ÞvHð4MÞ1þi4Mω0 Γðδ − i4Mω0Þ
½iðω0 − ωÞ þ ϵ�1−i4Mω0 : ð5:30Þ

Note that two integrating factors have been used with 0 < ϵ ≪ 1 and 0 < δ ≪ 1.

To find the contribution to finω from the fI
þ

ω modes, first substitute (5.30) into (5.26) with the result

ðfinωÞIþ ¼ i4M
ffiffiffiffi
ω

p

2π
ffiffiffiffiffiffi
4π

p e−iωvH
Z

∞

−∞
dω0eiω0ðvH−usÞð4MÞi4Mω0 Γðδ − i4Mω0Þ

½iðω0 − ωÞ þ ϵ�1−i4Mω0 : ð5:31Þ

Note that the denominator has an essential singularity in the
upper half ω0 plane while the Gamma function has simple
poles in the lower half plane at

ω0 ¼ −
iδ
4M

; ð5:32Þ

and

ω0 ¼ −
in
4M

; n ¼ 1; 2;… ð5:33Þ

In the complex plane at large jω0j Sterling’s approximation
gives

Γð−i4Mω0Þ ≈
ffiffiffiffiffiffi
2π

p
ei4Mω0

eð−i4Mω0−1=2Þ logð−i4Mω0Þ: ð5:34Þ

Using the usual change of variables ω0 ¼ Reiθ, with R > 0,
it is straightforward to show that the dominant contribution
to the integrand of (5.31) in the large R limit comes from
the factor e4MR sin θ logR and therefore one must close in the
lower half plane. This means there is no contribution from
the essential singularity but there is a contribution from
each pole of the Gamma function. At these poles it is
straightforward to show that

Γðδ − i4MωÞ → ð−1Þn
n!ðn − i4MωÞ ; n ¼ 0; 1; 2;…:

ð5:35Þ

Then

ðfinωÞIþ ¼ 4Mi
ffiffiffiffi
ω

pffiffiffiffiffiffi
4π

p e−iωvH
X∞
n¼0

ð−1Þn
n!

ðn − i4MωÞn−1

×

�
exp

�ðvH − usÞ
4M

��
n
: ð5:36Þ

Because the general solutions to the 2D mode equation in
Schwarzschild spacetime are of the form ψ ¼ gðusÞ þ hðvÞ
with g and h arbitrary functions, the exact solution for the in
modes is

ðfinωÞIþ ¼ −
e−iωuðusÞffiffiffiffiffiffiffiffiffi

4πω
p

¼ −
e−iωvHffiffiffiffiffiffiffiffiffi
4πω

p exp

�
i4MωW

�
exp

�ðvH − usÞ
4M

���
;

ð5:37Þ
where (2.8) has been used and WðzÞ is the Lambert W
function. To make a comparison between (5.36) and (5.37),
one needs to write the latter in terms of a series. This has
been done in [33]. An alternative derivation is given in
Appendix A. The result is

e−cWðzÞ ¼
X∞
n¼0

cðnþ cÞn−1
ðnÞ! ð−zÞn: ð5:38Þ

Taking c ¼ −4iMω and z ¼ expðvH−us
4M Þ in (5.38), one can

see that (5.37) and (5.36) are equivalent.

D. Delta function potential

In this section, we apply our matching method to the case
where the potential term in (4.2) is replaced by

V ¼ λδðr�Þ; ð5:39Þ

with λ a positive real constant. This can serve as a model for
the original potential which has a single peak and vanishes
at the horizon and infinity. The resulting mode equation can
be solved analytically and the solutions are simple enough
that the matching coefficients can be computed analytically.
Some of these matching coefficients will be used to
partially reconstruct the mode functions finωl in the case
that l ¼ 0.
For l ¼ 0 in 4D the inmodes inside the null shell take on

the particularly simple form (2.21). In the region outside the
shell the mode functions in the complete set with l ¼ 0
have the general form

fðH
þ;IþÞ

ω000 ¼ Y00

r
ffiffiffiffiffiffiffiffiffiffi
4πω0p ψ ðHþ;IþÞ

ω00 ; ψ ðHþ;IþÞ
ω00 ¼ e−iω

0tsχðH
þ;IþÞ

ω00 :

ð5:40Þ
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The radial parts of the modes satisfy the following
equation:

d2χ
dr2�

þ ðω2 − λδðr�ÞÞχ ¼ 0: ð5:41Þ

In the region where r� > 0, two linearly independent
solutions are

χ∞R ¼ eiωr� ; ð5:42aÞ

χ∞L ¼ e−iωr� : ð5:42bÞ

For r� < 0, χR and χL can be expressed in the following
way:

χ∞R ¼ EReiωr� þ FRe−iωr� ; ð5:43aÞ

χ∞L ¼ ELeiωr� þ FLe−iωr� . ð5:43bÞ

Imposing the continuity of the mode function and dis-
continuity of its first derivative in the usual way at the
spacelike curve r� ¼ 0, the following analytic expressions
are found for the scattering coefficients

ER ¼ 1þ iλ
2ω

; ð5:44aÞ

FR ¼ −
iλ
2ω

; ð5:44bÞ

EL ¼ F�
R ¼ iλ

2ω
; ð5:44cÞ

FL ¼ E�
R ¼ 1 −

iλ
2ω

: ð5:44dÞ

Then the mode functions that we are using for the matching
can be obtained from (4.5) and (4.7) with the result

ψHþ
ω00 ¼ θð−r�Þ

�
e−iω

0v þ
iλ
2

ðω0 − iλ
2
Þ e

−iω0us

�
þ θðr�Þ

ω0

ðω0 − iλ
2
Þ e

−iω0v; ð5:45aÞ

ψIþ
ω00 ¼ θð−r�Þ

ω0

ðω0 − iλ
2
Þ e

−iω0us þ θðr�Þ
� iλ

2

ðω0 − iλ
2
Þ e

−iω0v þ e−iω
0us

�
: ð5:45bÞ

To verify that the matching coefficients can be used to reconstruct the original mode functions for the case l ¼ 0

it is useful to break them up into contributions that come from the term proportional to e−iωv in (2.21) and the
term proportional to −e−iωu. In what follows we compute the matching coefficients for both terms but then focus only
on those that come from the term proportional to e−iωv. Substituting (5.45), and (5.44) into (5.15) one finds the matching
coefficients

AHþ
ωω00 ¼ ðAHþ

ωω00Þv þ ðAHþ
ωω00Þu;

ðAHþ
ωω00Þv ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
eiω

0v0

ω0 − iϵ
e−iωv0 þ i

2π

ffiffiffiffiffi
ω0

ω

r
ω0

ðω0 þ iλ
2
Þ

eiðω0−ωÞv0

ðω0 − ωþ iϵÞ ; ð5:46aÞ

ðAHþ
ωω00Þu ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
eiω

0v0

ω0 − iϵ
e−iωvH −

1

2π

ffiffiffiffiffi
ω

ω0

r Z
vH

−∞
due−iωu

�
θðr�Þ

ω0

ω0 þ iλ
2

eiω
0v0

þ θð−r�Þ
�
eiω

0v0 −
iλ
2

ω0 þ iλ
2

eiω
0usðuÞ

��
; ð5:46bÞ

AIþ
ωω00 ¼ ðAIþ

ωω00Þv þ ðAIþ
ωω00Þu;

ðAIþ
ωω00Þv ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
iλ
2

ðω0 þ iλ
2
Þ

e−iðω−ω0Þv0

ðω0 − ωþ iϵÞ ; ð5:47aÞ

ðAIþ
ωω00Þu ¼ −

1

2π

ffiffiffiffiffi
ω0

ω

r Z
vH

−∞
du

dusðuÞ
du

e−iωueiω
0usðuÞ

�
θðr�Þ þ θð−r�Þ

ω0

ω0 þ iλ
2

�
: ð5:47bÞ

Note that the relations (5.25) are satisfied by these matching coefficients so the relation (5.26) also holds. Thus
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ðfinω00Þv ¼
Z

∞

−∞
dω0½ðAHþ

ωω00ÞvfH
þ

ω000 þ ðAIþ
ωω00ÞvfI

þ
ω000�: ð5:48Þ

Substituting (5.46a), (5.47a), and (5.45) into (5.48) gives after some algebra

ðfinω00Þv ¼
Y00

r
ffiffiffiffiffiffiffiffiffi
4πω

p ½θð−r�ÞI1 þ θðr�ÞI2�;

I1 ¼ −
i
2π

e−iωv0
Z

∞

−∞
dω0

� iλ
2
eiω

0ðv0−usÞ

ðω0 − iϵÞðω0 − iλ
2
Þ þ

eiω
0ðv0−vÞ

ðω0 − iϵÞ −
ω0eiω0ðv0−vÞ

ðω0 þ iλ
2
Þðω0 − ωþ iϵÞ

�

¼ θðv0 − usÞe−iωv0 ½e−λ
2
ðv0−usÞ − 1� þ θðv0 − vÞe−iωv0

þ θðv − v0Þ
ðωþ iλ

2
Þ
�
iλ
2
e−iωv0e−

λ
2
ðv−v0Þ þ ωe−iωv

�
; ð5:49aÞ

I2 ¼ −
i
2π

e−iωv0
Z

∞

−∞
dω0

�
ω0eiω0ðv0−vÞ

ðω0 − iϵÞðω0 − iλ
2
Þ −

eiω
0ðv0−vÞ

ω0 − ωþ iϵ
þ

iλ
2
eiω

0ðv0−usÞ

ðω0 − ωþ iϵÞðω0 þ iλ
2
Þ
�

¼ θðv0 − vÞe−iωv0e−λ
2
ðv0−vÞ þ θðv − v0Þe−iωv

− θðus − v0Þ
iλ
2

ðωþ iλ
2
Þ ½−e

−iωv0e−
λ
2
ðus−v0Þ þ e−iωus �: ð5:49bÞ

It is easy to verify that (5.49) gives the correct values for ðfinω00Þv on the future horizon for v ≤ v0, on the null shell surface
v ¼ v0, and on past null infinity for v ≥ v0.

E. Partial analytic results for the matching coefficients in 4D for l= 0

Because of the simple form of the in modes for l ¼ 0 inside the null shell (2.21), it is possible to compute the matching
coefficients for the e−iωv part analytically. To do so we begin by substituting (2.21) into (5.15) with the result

AHþ
ωω00 ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
eiω

0v0

ω0 − iϵ
ðe−iωv0 − e−iωvHÞ þ i

2π

ffiffiffiffiffi
ω0

ω

r
1

F�
Lðω0; 0Þ

eiðω0−ωÞv0

ω0 − ωþ iϵ

−
1

2π

ffiffiffiffiffi
ω

ω0

r Z
vH

−∞
du e−iωuψHþ�

ω00 ðusðuÞ; v0Þ; ð5:50aÞ

BHþ
ωω00 ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
e−iω

0v0

ω0 þ iϵ
ðe−iωv0 − e−iωvHÞ − i

2π

ffiffiffiffiffi
ω0

ω

r
1

FLðω0; 0Þ
e−iðωþω0Þv0

ω0 þ ω − iϵ

þ 1

2π

ffiffiffiffiffi
ω

ω0

r Z
vH

−∞
du e−iωuψHþ

ω00ðusðuÞ; v0Þ; ð5:50bÞ

AIþ
ωω00 ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
F�
Rðω0; 0Þ

F�
Lðω0; 0Þ

e−iðω−ω0Þv0

ω0 − ωþ iϵ
þ i
2π

1ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du e−iωu∂uψ

Iþ�
ω00 ðusðuÞ; v0Þ; ð5:50cÞ

BIþ
ωω00 ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
FRðω0; 0Þ
FLðω0; 0Þ

e−iðωþω0Þv0

ω0 þ ω − iϵ
−

i
2π

1ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
du e−iωu∂uψ

Iþ
ω00ðusðuÞ; v0Þ: ð5:50dÞ

Note that the integrals have to be computed numerically
because the mode functions in Schwarzschild spacetime
must be computed numerically. However, because of the
simple form that ψ in

ω0 takes it is possible to separate the
matching coefficients into separate matching coefficients

for the part that goes like e−iωv inside the null shell and the
part that goes like e−iωu there. The matching coefficients for
e−iωv do not depend on the integrals. In what follows we
focus on these matching coefficients. Examination of (5.50)
gives for these coefficients
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ðAHþ
ωω00Þv ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
eiðω0−ωÞv0

ω0 − iϵ
þ i
2π

ffiffiffiffiffi
ω0

ω

r
1

F�
Lðω0; 0Þ

eiðω0−ωÞv0

ω0 − ωþ iϵ
; ð5:51aÞ

ðBHþ
ωω0lÞv ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
e−iðω0þωÞv0

ω0 þ iϵ
−

i
2π

ffiffiffiffiffi
ω0

ω

r
1

FLðω0; 0Þ
e−iðωþω0Þv0

ω0 þ ω − iϵ
; ð5:51bÞ

ðAIþ
ωω0lÞv ¼ −

i
2π

ffiffiffiffiffi
ω0

ω

r
F�
Rðω0; 0Þ

F�
Lðω0; 0Þ

e−iðω−ω0Þv0

ω0 − ωþ iϵ
; ð5:51cÞ

ðBIþ
ωω0lÞv ¼

i
2π

ffiffiffiffiffi
ω0

ω

r
FRðω0; 0Þ
FLðω0; 0Þ

e−iðωþω0Þv0

ω0 þ ω − iϵ
: ð5:51dÞ

These matching coefficients can be used to reconstruct
the part of the mode function which goes like e−iωv inside
the shell by substituting the expressions into (5.1). To check
them we shall compute the resulting integral on Hþ. Recall
that we are working in the exact Schwarzschild spacetime
rather than the null shell spacetime when we do the
matching. The same applies to the reconstruction. Thus
the results for the reconstruction for which v ≥ v0 also
apply to the null shell spacetime, but the results for v < v0
do not apply to the null shell spacetime.
Recall that the modes fI

þ
vanish on Hþ.

ðfinω00Þv ¼
Y00

r
ffiffiffiffiffiffiffiffiffi
4πω

p ðI1 þ I2Þ;

I1 ¼ −
i
2π

e−iωv0
Z

∞

0

dω0
�
eiðv0−vÞω0

ω0 − iϵ
−
e−iðv0−vÞω0

ω0 þ iϵ

�
;

ð5:52aÞ

I2 ¼
i
2π

e−iωv0
Z

∞

0

dω0
�

1

F�
Lðω0; 0Þ

e−iω
0ðv−v0Þ

ω0 − ωþ iϵ

−
1

FLðω0; 0Þ
eiω

0ðv−v0Þ

ω0 þ ω − iϵ

�
: ð5:52bÞ

If in the second term of I1 a change of variables is made
so that ω0 → −ω0 then one finds that

I1 ¼ −
i
2π

e−iωv0
Z

∞

−∞
dω0 e

iðv0−vÞω0

ω0 − iϵ
¼ e−iωv0θðv0 − vÞ;

ð5:53Þ

with θ the step function. It is thus clear that the initial
data on Hþ for −∞ < v < v0 does not affect the mode
functions on the part of the future horizon for which
v0 < v < ∞.
It can be shown from the properties of the scattering

coefficients given in [31], that FLðω0Þ ¼ F�
Lð−ω0Þ. Using

this identity and changing the variable of integration in the
second integral in the same way as was done for I1, one
obtains

ðfinω00Þv ¼
Y00e−iωv0

r
ffiffiffiffiffiffiffiffiffi
4πω

p θðv0 − vÞ

þ i

2π
ffiffiffiffiffiffiffiffiffi
4πω

p
Z

∞

−∞
dω0 e−iω

0v

F�
Lðω0; 0Þ

eiv0ðω0−ωÞ

ω0 − ωþ iϵ
:

ð5:54Þ

FIG. 3. The real (left) and the imaginary (right) parts of
ffiffiffiffi
4π
M

q
ðfinω00Þv on the future horizon have been plotted. In both plots,Mω ¼ 0.02

and v0
M ¼ 3. The plots clearly show that ðfinω00Þv is continuous at v ¼ v0.
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To compute this integral using complex integration tech-
niques one must know the singularity structure of 1

F�
L
which

is difficult since this scattering coefficient must be com-
puted numerically. However, one can at least test whether it
has one or more singularities in the complex plane by
assuming it does not and computing the integral. We will
call the result ftest because there is no guarantee that this
method will give the correct answer. The result of such an
integration is

ftest ¼ e−iωv0ffiffiffiffiffiffiffiffiffi
4πω

p θðv0 − vÞ þ e−iωv

F�
Lðω0; 0Þ ffiffiffiffiffiffiffiffiffi

4πω
p θðv − v0Þ:

Here complex integration has been performed using a
contour in the lower half of the complex plane. It is
obvious that at v ¼ v0, the continuity condition for
ðfinω00Þv is not satisfied so ftest ≠ ðfinω00Þv which implies
that 1

F�
Lðω0Þ has one or more singularities in the complex

plane.
Alternatively one can work with I2 in the form (5.52b),

use the relation ðω0 ∓ ω� iϵÞ−1 ¼∓ iπδðω0 ∓ ωÞ þ
ðω0 ∓ wÞ−1, and compute the principle value parts of the
integral numerically for v > v0. This has been done and
the result is shown in Fig. 3. It is clear from the plots in this
figure that on the future horizon ðfinω00Þv is continuous
at v ¼ v0.

VI. STRESS-ENERGY TENSOR

A. Method in 4D

For the massless minimally coupled scalar field the
classical stress-energy tensor in a general curved spacetime
is given in (3.1) and a renormalization expression for hTabi
is given in (3.2). To compute hTabi using (3.2) it is useful to
begin with the points split and to write the stress-energy
tensor in terms of derivatives of the Hadamard Green’s
function

Gð1Þðx; x0Þ ¼ hfϕðxÞ;ϕðx0Þgi: ð6:1Þ

We adopt the notation

ΔGð1Þðx;x0Þ¼ hinjfϕðxÞ;ϕðx0Þgjini−hUjfϕðxÞ;ϕðx0ÞgjUi;
ð6:2Þ

with jini representing the in vacuum state and jUi the
Unruh state. The corresponding difference in the stress-
energy tensors is then

ΔhTabi ¼
1

4
lim
x0→x

½ðgc0aΔGð1Þ
;c0;b þ gc

0
bΔG

ð1Þ
;a;c0 Þ − gabgcd

0ΔGð1Þ
;c;d0 �:
ð6:3Þ

Here the quantity gb
0

a parallel transports a vector from x0 to x
and is called the bivector of parallel transport [34]. To
leading order when the point separation is small

gb
0

a ¼ gba ¼ δba: ð6:4Þ

The subleading orders all vanish in the limit x0 → x. Since
there are no ultraviolet divergences in the quantity ΔhTabi
one can use (6.4) in (6.3) with the result

ΔhTabi ¼
1

4
½ lim
x0→x

ðΔGð1Þ
;a0;b þ ΔGð1Þ

;a;b0 Þ − gabgcd lim
x0→x

ΔGð1Þ
;c;d0 �;
ð6:5Þ

where a slight abuse of notation has been used for the
implied sum over d and d0 in the last term. It is important to
note that this expression is valid in both two and four
dimensions.
Expanding the field in terms of modes as in (2.10) one

finds for the in modes that

h0injfϕðxÞ;ϕðx0Þgj0ini ¼
X∞
l¼0

Xl
m¼−l

Z
∞

0

dω½finωlmðxÞðfinωlmðx0ÞÞ� þ finωlmðx0ÞðfinωlmðxÞÞ��: ð6:6Þ

The Unruh state in Schwarzschild spacetime consists of modes that are positive frequency with respect to the usual time
coordinate on I− along with modes that are positive frequency with respect to the Kruskal time coordinate on H− so that

hUjfϕðxÞ;ϕðx0ÞgjUi ¼
X∞
l¼0

Xl
m¼−l

�Z
∞

0

dωK½fKωKlm
ðxÞðfKωKlm

ðx0ÞÞ� þ fKωKlm
ðx0ÞðfKωKlm

ðxÞÞ��

þ
Z

∞

0

dω½fI−

ωlmðxÞðfI
−

ωlmðx0ÞÞ� þ fI
−

ωlmðx0ÞðfI
−

ωlmðxÞÞ��
�
: ð6:7Þ

The next step is to find expansions for these two-point functions in terms of the complete set of modes fðIþ;HþÞ that we
are using. For h0injfϕðxÞ;ϕðx0Þgj0ini one can substitute (5.1) into (6.6). This results in integrals of the form
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X∞
l¼0

Xl
m¼−l

Z
∞

0

dω
Z

∞

0

dω1

Z
∞

0

dω2f½AðHþ;IþÞfðHþ;IþÞ þ BðHþ;IþÞðfðHþ;IþÞÞ��

× ½ðAðHþ;IþÞÞ�ðfðHþ;IþÞÞ� þ ðBðHþ;IþÞÞ�fðHþ;IþÞ�g; ð6:8Þ

where the subscripts on the matching coefficients and mode
functions have been suppressed. For hUjfϕðxÞ;ϕðx0ÞgjUi
one can first substitute (5.16) and (5.17) into (6.7) to obtain

an expression in terms of fðH
−;I−Þ

ωlm . Then (4.13) can be used
to obtain an expression for hUjfϕðxÞ;ϕðx0ÞgjUi that

depends only on fðI
þ;HþÞ

ωlm .

B. 2D Example

In this section the method discussed above is tested
by using it to computing the stress-energy tensor for the
scalar field in the corresponding 2D spacetime where
the answer is known. The computation will be done in
the region v > v0 outside the null shell and outside the

horizon. From (5.28) it is clear that for v > v0 the
contribution from the fH

þ
ω0 modes to finω is

ðfinωÞHþ ¼ e−iωvffiffiffiffiffiffiffiffiffi
4πω

p ¼ fH
þ

ω : ð6:9Þ

Thus

finω ¼ fH
þ

ω þ
Z

∞

0

dω½AIþ
ωω0fI

þ
ω0 þ BIþ

ωω0 ðfIþ
ω0 Þ��; ð6:10Þ

with AIþ
ωω0 given in (5.30). Using the relation ΓðxÞ ¼ Γð1þxÞ

x
one obtains the form used for the numerical computations

AIþ
ωω0 ¼ −

1

2π

ffiffiffiffiffi
ω

ω0

r
ð4MÞi4Mω0

e−iðω−ω0ÞvH Γð1 − i4Mω0Þ
½−iðω − ω0Þ þ ϵ�1−i4Mω0 : ð6:11Þ

Then, using the relations (5.25) one finds

BIþ
ωω0 ¼ 1

2π

ffiffiffiffiffi
ω

ω0

r
ð4MÞ−i4Mω0

e−iðωþω0ÞvH Γð1þ i4Mω0Þ
½−iðωþ ω0Þ þ ϵ�1þi4Mω0 : ð6:12Þ

In what follows the superscript Iþ on the matching coefficients A and B will be suppressed.
Next, with the aim of finding the components of the stress-energy tensor using (6.5), we construct the Hadamard form of

Green’s function which in 2D is

Gð1Þðx; x0Þ ¼
Z

∞

0

dω½finωðxÞfin�ω ðx0Þ þ finωðx0Þfin�ω ðxÞ�: ð6:13Þ

Substituting (6.10) into (6.13) gives

Gð1Þðx; x0Þ ¼
Z

∞

0

dω

��
fH

þ
ω ðxÞ þ

Z
∞

0

dω1½Aωω1
fI

þ
ω1
ðxÞ þ Bωω1

fI
þ

ω1
� ðxÞ�

�

×

�
fH

þ�
ω ðx0Þ þ

Z
∞

0

dω2½A�
ωω2

fI
þ�

ω2
ðx0Þ þ B�

ωω2
fI

þ
ω2
ðx0Þ�

�

þ
�
fH

þ
ω ðx0Þ þ

Z
∞

0

dω1½Aωω1
fI

þ
ω1
ðx0Þ þ Bωω1

fI
þ�

ω1
ðx0Þ�

�

×
�
fH

þ�
ω ðxÞ þ

Z
∞

0

dω2½A�
ωω2

fI
þ�

ω2
ðxÞ þ B�

ωω2
fI

þ
ω2
ðxÞ�

��
: ð6:14Þ

Expanding the integrand of the integral over ω results in
three types of expressions: an integral consisting of pro-
ducts of the modes fH

þ
ω , which we call GA, another integral

which includes cross products between the modes fH
þ

ω and

fI
þ

ω , which we call GB, and finally an integral consisting of
products of the modes fI

þ
ω , which we called GC.

To renormalize we follow a procedure equivalent to that
outlined in Sec. VI A. We begin by subtracting off the
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integrals with the integrand evaluated in the large ω limit.
When we add them back, we get contributions that are
identical to those obtained for the Unruh state. We are not
quite subtracting off the Unruh modes because the large ω
solutions have a dependence on vH. However, when the
subtracted terms are added back and the integral over ω is
computed, then factors of δðω1 − ω2Þ and δðω1 þ ω2Þ are
obtained. Note that terms proportional to δðω1 þ ω2Þ

vanish. For the ones that do not vanish, once one integrates
over say ω2, the dependence on vH vanishes.
In Appendix B it is shown that when this method is

applied to Gð1Þðx; x0Þ, the ΔGA term vanishes. It is also
shown that, while theΔGB term does not vanish, it does not
contribute to the stress-energy tensor. As a result, the only
term that contributes to ΔhTabi is ΔGCðx; x0Þ which has
the form

ΔGCðx; x0Þ ¼
Z

∞

0

dω1

Z
∞

0

dω2f½fIþ
ω1
ðxÞfIþ�

ω2
ðx0Þ þ fI

þ
ω1
ðx0ÞfIþ�

ω2
ðxÞ�ΔI1

þ ½fIþ
ω1
ðxÞfIþ

ω2
ðx0Þ þ fI

þ
ω1
ðx0ÞfIþ

ω2
ðxÞ�ΔI2

þ ½fIþ�
ω1

ðxÞfIþ�
ω2

ðx0Þ þ fI
þ�

ω1
ðx0ÞfIþ�

ω2
ðxÞ�ΔI3

þ ½fIþ�
ω1

ðxÞfIþ
ω2
ðx0Þ þ fI

þ�
ω1

ðx0ÞfIþ
ω2
ðxÞ�ΔI4g; ð6:15Þ

with

ΔI1 ¼
Z

∞

0

dωfAωω1
A�
ωω2

−OðAωω1
A�
ωω2

Þg; ð6:16aÞ

ΔI2 ¼
Z

∞

0

dωfAωω1
B�
ωω2

−OðAωω1
B�
ωω2

Þg; ð6:16bÞ

ΔI3 ¼
Z

∞

0

dωfBωω1
A�
ωω2

−OðBωω1
A�
ωω2

Þg; ð6:16cÞ

ΔI4 ¼
Z

∞

0

dωfBωω1
B�
ωω2

−OðBωω1
B�
ωω2

Þg: ð6:16dÞ

Here O indicates the asymptotic behavior of the matching coefficients for ω ≫ ω1;2.
The integrals in (6.16) can be computed analytically. Substituting the explicit expression for A from (6.11) into (6.16a)

gives

ΔI1 ¼
1

4π2
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞi4Mðω1−ω2ÞeivHðω1−ω2ÞΓð1 − i4Mω1ÞΓð1þ i4Mω2ÞΔK1; ð6:17aÞ

ΔK1 ¼ lim
Λ→∞

ð−iÞi4Mω1ðiÞ−i4Mω2

��Z
Λ

0

dω
ω

ðω − ω1 þ iϵ1Þ1−i4Mω1ðω − ω2 − iϵ2Þ1þi4Mω2

−
Z

Λ

1

dωω−1þi4Mðω1−ω2Þ
�
−
Z

1

0

dωω−1þi4Mðω1−ω2Þ
�
: ð6:17bÞ

First we compute the indefinite integrals and evaluate them at the limits. Since ϵ1 and ϵ2 go to Oþ at the end of the
calculation, it is acceptable to add terms containing them to the exponents. The first indefinite integral is

ΔK1a ¼ ð−iÞi4Mω1ðiÞ−i4Mω2

Z
Λ

0

dω
ω

ðω − ω1 þ iϵ1Þ1−i4Mðω1−iϵ1Þðω − ω2 − iϵ2Þ1þi4Mðω2þiϵ2Þ

¼ ð−iÞi4Mω1ðiÞ−i4Mω2

�
−i

ðω − ω1 þ iϵ1Þi4Mðω1−iϵ1Þðω − ω2 − iϵ2Þ−i4Mðω2þiϵ2Þ

4Mðω1 − ω2 − iϵ1 − iϵ2Þ
�Λ
0

¼ −ið−iÞi4Mω1ðiÞ−i4Mω2

�ðΛ − ω1Þi4Mω1ðΛ − ω2Þ−i4Mω2

4Mðω1 − ω2Þ − iϵ1 − iϵ2

− ð−ω1Þi4Mω1ð−ω2Þ−i4Mω2

4Mðω1 − ω2 − iϵ1 − iϵ2Þ
�
: ð6:18Þ
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Note that after evaluating the integral at the limits, ϵ1 and ϵ2 are set to zero in the exponents because they have no effect
there. Also, each term is a combination of a principle value and a term proportional to δðω1 − ω2Þ, thus

ΔK1a ¼ e2πMðω1þω2Þ
�
−i

ðΛ − ω1Þi4Mω1ðΛ − ω2Þ−i4Mω2

4Mðω1 − ω2Þ
þ π

4M
δðω1 − ω2Þ

�

þ e−2πMðω1þω2Þ
�
i
ωi4Mω1

1 ω−i4Mω2

2

4Mðω1 − ω2Þ
−

π

4M
δðω1 − ω2Þ

�
: ð6:19aÞ

Here we adopt the notation that the principle value of a term such as 1
a�iϵ is written as 1

a. The second and third integrals in
(6.17b) are

ΔK1b ¼ −ð−iÞi4Mω1ðiÞ−i4Mω2

Z
Λ

1

dωω−1þi4Mðω1−ω2Þ

¼ i
e2πMðω1þω2Þ

4Mðω1 − ω2Þ
½Λi4Mðω1−ω2Þ − 1�; ð6:19bÞ

ΔK1c ¼ −ð−iÞi4Mω1ðiÞ−i4Mω2

Z
1

0

dωω−1þi4Mðω1−ω2Þ

¼ −e2πMðω1þω2Þ
Z

0

−∞
dze½i4Mðω1−ω2Þþϵ�z ¼ −

e2πMðω1þω2Þ

i4Mðω1 − ω2Þ þ ϵ
¼ ie2πMðω1þω2Þ

4Mðω1 − ω2Þ − iϵ

¼ ie2πMðω1þω2Þ

4Mðω1 − ω2Þ
− e2πMðω1þω2Þ π

4M
δðω1 − ω2Þ; ð6:19cÞ

where in the integral for ΔK1c the change of variable z ¼ logω has been made and an integrating factor ϵ has been inserted.
Combining these results, one finds

ΔK1 ¼ e−2πMðω1þω2Þ
�
i
ωi4Mω1

1 ω−i4Mω2

2

4Mðω1 − ω2Þ
−

π

4M
δðω1 − ω2Þ

�

¼ ie−2πMðω1þω2Þ ωi4Mω1

1 ω−i4Mω2

2

4Mðω1 − ω2 − iϵÞ : ð6:20aÞ

Substituting (6.20a) into (6.17a) gives

ΔI1 ¼
i

4π2
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞi4Mðω1−ω2ÞeivHðω1−ω2ÞΓð1 − i4Mω1ÞΓð1þ i4Mω2Þ

× e−2πMðω1þω2Þ ωi4Mω1

1 ω−i4Mω2

2

4Mðω1 − ω2 − iϵÞ : ð6:20bÞ

Note that this is a finite contribution to ΔGc because of the factor of e−2πMðω1þω2Þ.
Next consider ΔI4 which is the other term with nonvanishing delta functions:

ΔI4 ¼
1

4π2
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞ−i4Mðω1−ω2Þe−ivHðω1−ω2ÞΓð1þ i4Mω1ÞΓð1 − i4Mω2ÞΔK4; ð6:21aÞ

ΔK4 ¼ lim
Λ→∞

ð−iÞ−i4Mω1ðiÞi4Mω2

��Z
Λ

0

dω
ω

ðωþ ω1 þ iϵ1Þ1þi4Mω1ðωþ ω2 − iϵ2Þ1−i4Mω2

−
Z

Λ

1

dωω−1−i4Mðω1−ω2Þ
�
−
Z

1

0

dωω−1−i4Mðω1−ω2Þ
�
: ð6:21bÞ

The integrals in ΔK4 can be computed analytically with the result
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ΔK4a ¼ e−2πMðω1þω2Þ
Z

Λ

0

dω
ω

ðωþ ω1 þ iϵ1Þ1þi4Mðω1þiϵ1Þðωþ ω2 − iϵ2Þ1−i4Mðω2−iϵ2Þ

¼ e−2πMðω1þω2Þ i
4M

�ðΛþ ω1Þ−i4Mω1ðΛþ ω2Þi4Mω2

ω1 − ω2 þ iðϵ1 þ ϵ2Þ
−

ω−i4Mω1

1 ωi4Mω2

2

ω1 − ω2 þ iðϵ1 þ ϵ2Þ
�
;

ΔK4b ¼ e−2πMðω1þω2Þ
�
−

Λ−i4Mðω1−ω2Þ

−i4Mðω1 − ω2Þ
þ 1

−i4Mðω1 − ω2Þ
�
;

ΔK4c ¼ −e−2πMðω1þω2Þ
Z

0

−∞
dze½−i4Mðω1−ω2Þþϵ�z ¼ −

e−2πMðω1þω2Þ

−i4Mðω1 − ω2Þ þ ϵ

¼ −i
e−2πMðω1þω2Þ

4Mðω1 − ω2Þ þ iϵ
¼ −i

e−2πMðω1þω2Þ

4Mðω1 − ω2Þ
− e−2πMðω1þω2Þ π

4M
δðω1 − ω2Þ: ð6:22Þ

Both terms in ΔK4a can be written in terms of their principle values added to a term proportional to δðω1 − ω2Þ. Combining
these terms, the following expression for ΔK4 is obtained:

ΔK4 ¼ e−2πMðω1þω2Þ
�
−i

ω−i4Mω1

1 ωi4Mω2

2

4Mðω1 − ω2Þ
−

π

4M
δðω1 − ω2Þ

�

¼ −ie−2πMðω1þω2Þ ω−i4Mω1

1 ωi4Mω2

2

4Mðω1 − ω2 þ iϵÞ : ð6:23aÞ

Finally

ΔI4 ¼ −
i

4π2
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞ−i4Mðω1−ω2Þe−ivHðω1−ω2ÞΓð1þ i4Mω1ÞΓð1 − i4Mω2Þe−2πMðω1þω2Þ ω−i4Mω1

1 ωi4Mω2

2

4Mðω1 − ω2 þ iϵÞ : ð6:23bÞ

Note that if we let ω1 ↔ ω2 in the expression (6.20b) for ΔI1, then we get ΔI4 in (6.23b). It is also true that if this switch is
made in the entire contribution to the two-point function from ΔI1 then that is equal to the contribution from ΔI4. Finally,
the total contribution from ΔI4 can be shown to be the complex conjugate of the total contribution from ΔI1. Thus both
contributions are real. Next consider ΔI2

ΔI2 ¼ −
1

4π2
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞi4Mðω1þω2ÞeivHðω1þω2ÞΓð1 − i4Mω1ÞΓð1 − i4Mω2ÞΔK2; ð6:24aÞ

ΔK2 ¼ lim
Λ→∞

ð−iÞi4Mω1ðiÞi4Mω2

��Z
Λ

0

dω
ω

ðω − ω1 þ iϵ1Þ1−i4Mω1ðωþ ω2 − iϵ2Þ1−i4Mω2

−
Z

Λ

1

dωω−1þi4Mðω1þω2Þ
�
−
Z

1

0

dωω−1þi4Mðω1þω2Þ
�
; ð6:24bÞ

where the integrals in ΔK2 can be computed analytically

ΔK2a ¼ ð−iÞi4Mω1ðiÞi4Mω2

Z
Λ

0

dω
ω

ðω − ω1 þ iϵ1Þ1−i4Mðω1−iϵ1Þðωþ ω2 − iϵ2Þ1−i4Mðω2−iϵ2Þ

¼ −
i

4M
ð−iÞi4Mω1ðiÞi4Mω2

�ðΛ − ω1Þi4Mω1ðΛþ ω2Þi4Mω2

½ω1 þ ω2 − iðϵ1 þ ϵ2Þ�
−

ð−ω1Þi4Mω1ωi4Mω2

2

½ω1 þ ω2 − iðϵ1 þ ϵ2Þ�
�

¼ −
i

4M
e2πMðω1−ω2Þ ðΛ − ω1Þi4Mω1ðΛþ ω2Þi4Mω2

½ω1 þ ω2 − iðϵ1 þ ϵ2Þ�
þ i
4M

e−2πMðω1þω2Þ ωi4Mω1

1 ωi4Mω2

2

½ω1 þ ω2 − iðϵ1 þ ϵ2Þ�
; ð6:25aÞ

ΔK2b ¼
i

4M
e2πMðω1−ω2Þ Λ

i4Mðω1þω2Þ

ω1 þ ω2

−
i

4M
e2πMðω1−ω2Þ 1

ω1 þ ω2

; ð6:25bÞ
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ΔK2c ¼ −e2πMðω1−ω2Þ
Z

0

−∞
dze½i4Mðω1þω2Þþϵ�z ¼ −

e2πMðω1−ω2Þ

i4Mðω1 þ ω2Þ þ ϵ

¼ i
e2πMðω1−ω2Þ

4Mðω1 þ ω2Þ − iϵ
¼ i

e2πMðω1−ω2Þ

4Mðω1 þ ω2Þ
−

π

4M
δðω1 þ ω2Þ: ð6:25cÞ

Given that δðω1 þ ω2Þ ¼ 0 since the frequencies are all non-negative, one can set ϵ1 ¼ ϵ2 ¼ 0. Then

ΔK2 ¼ ie−2πMðω1þω2Þ ω
i4Mω1

1 ωi4Mω2

2

4Mðω1 þ ω2Þ
; ð6:26aÞ

and

ΔI2 ¼ −
i

4π2
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞi4Mðω1þω2ÞeivHðω1þω2ÞΓð1 − i4Mω1ÞΓð1 − i4Mω2Þe−2πMðω1þω2Þ ω
i4Mω1

1 ωi4Mω2

2

4Mðω1 þ ω2Þ
: ð6:26bÞ

Comparing ΔI2 in (6.16b) and ΔI3 in (6.16c), one can immediately see that their contributions to the two-point function,
(6.15), are the complex conjugate of each other if one also takes ω1 ↔ ω2 in the contribution from ΔI2

ΔI3 ¼ ðΔI2Þ�

¼ i
4π2

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p ð4MÞ−i4Mðω1þω2Þe−ivHðω1þω2ÞΓð1þ i4Mω1ÞΓð1þ i4Mω2Þe−2πMðω1þω2Þ ω
−i4Mω1

1 ω−i4Mω2

2

4Mðω1 þ ω2Þ
: ð6:27Þ

Substituting (6.20b), (6.23b), (6.26b), and (6.27) into (6.15) one finds

ΔGCðx; x0Þ ¼ R

�
i

8π3

Z
∞

0

dω1

ω1

Z
∞

0

dω2

ω2

e−2πMðω1þω2Þ

×

�
½e−iω1usþiω2u0s þ e−iω1u0sþiω2us � ð4Mω1e

vH
4MÞ4iMω1

ð4Mω2e
vH
4MÞ4iMω2

Γð1 − 4iMω1ÞΓð1þ 4iMω2Þ
4Mðω1 − ω2 − iϵÞ

− ½e−iω1us−iω2u0s þ e−iω1u0s−iω2us �ð4Mω1e
vH
4MÞ4iMω1ð4Mω2e

vH
4MÞ4iMω2

×
Γð1 − 4iMω1ÞΓð1 − 4iMω2Þ

4Mðω1 þ ω2Þ
��

: ð6:28Þ

There are infrared divergences in this expression. However, it is easy to see that the derivatives in the general formula for the
stress-energy tensor (3.1) bring down factors of ω1 and ω2 which remove these infrared divergences. Recalling that ΔGC is
the only contribution to hTabi from ΔGð1Þ, it is straightforward to show using (6.5), (C3), (C5), (C6), and (6.28) that

ΔhTtti ¼ −
�
1 −

2M
r

�
lim
x0→x

1

4
ðΔGC;t0;r þ ΔGC;t;r0 Þ

¼ R
�

i
8π3

Z
∞

0

dω1

Z
∞

0

dω2e−2πMðω1þω2Þ
�
eiðω2−ω1Þus ð4Mω1e

vH
4MÞ4iMω1

ð4Mω2e
vH
4MÞ4iMω2

Γð1 − 4iMω1ÞΓð1þ 4iMω2Þ
4Mðω1 − ω2 − iϵÞ

þ e−iðω2þω1Þusð4Mω1e
vH
4MÞ4iMω1ð4Mω2e

vH
4MÞ4iMω2

Γð1 − 4iMω1ÞΓð1 − 4iMω2Þ
4Mðω1 þ ω2Þ

��
: ð6:29Þ

The integral over ω2 of the first term inside the curly bracket can be written in the form

ΔhTtti1 ¼
Z

∞

0

dω2

fðω2Þ
ω1 − ω2 − iϵ

¼
Z

∞

0

dω2

�
fðω2Þ
ω1 − ω2

þ iπδðω1 − ω2Þ
�

¼ lim
ϵ→0þ

�Z
ω1−ϵ

0

dω2

fðω2Þ
ω1 − ω2

þ
Z

∞

ω1þϵ
dω2

fðω2Þ
ω1 − ω2

�
þ iπfðω1Þ; ð6:30Þ

where the definition of the Cauchy principal value integral has been explicitly used.
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Thus, extracting the explicit form of the fðω2Þ from (6.29) and substituting it into (6.30) yields

ΔhTtti1 ¼ R

�
i

8π3

Z
∞

0

dω1

�Z
∞

0

dω2e−2πMðω1þω2Þeiðω2−ω1Þus

×
ð4Mω1e

vH
4MÞ4iMω1

ð4Mω2e
vH
4MÞ4iMω2

Γð1 − 4iMω1ÞΓð1þ 4iMω2Þ
4Mðω1 − ω2Þ

��
− 1

8π2

Z
∞

0

dω1

e−4πMω1

4M

× Γð1 − 4iMω1ÞΓð1þ 4iMω1Þ: ð6:31Þ

The stress-energy tensor for a massless minimally
coupled scalar field in the 2D collapsing null shell
spacetime has been previously computed analytically using
a different method [20,24] and the stress-energy tensor for
the Unruh state has also been computed analytically
[20,29]. For the difference one finds

ΔhTuui ¼ −
1

24π

�
8M

ðu − v0Þ3
þ 24M2

ðu − v0Þ4
�
−

1

768πM2
;

ΔhTuvi ¼ ΔhTvvi ¼ 0;

ΔhTtti ¼ ΔhTuui þ 2ΔhTuvi þ ΔhTvvi

¼ −
1

24π

�
8M

ðu − v0Þ3
þ 24M2

ðu − v0Þ4
�
−

1

768πM2
:

ð6:32Þ

Both terms in (6.31) have been computed numerically. In
the first integral, the numerical computation has been
performed by the symmetric removal of the neighborhood
with radius ϵ about the singular points of the integrand,
ω1 ¼ ω2. The integral of the second term in (6.30) has been
computed using a more straightforward numerical method.
Our results for ΔhTtti in (6.30) are shown in Fig. 4.

Although it is not possible to detect this from the plot, our
numerical results agree with the analytical results in [20,24]
to more than ten digits.
It is worth mentioning that in 2D, once ΔhTtti is

numerically computed, ΔhTrri and ΔhTtri can be easily
determined from the relations (B7) and (C7).

VII. SUMMARY

We have presented a method of numerically computing
the stress-energy tensor for a massless minimally coupled
scalar field in the case when a black hole is formed from the
collapse of a spherically symmetric null shell in four
dimensions. There are two primary parts to the method.
The first is to expand the mode functions in the natural in
vacuum state in terms of a complete set of mode functions
in the part of Schwarzschild spacetime that is outside of the
event horizon of the black hole. Expressions have been
found for the matching coefficients that involve integrals of
these mode functions over the trajectory of the null shell.
The second part of the method involves subtracting the

unrenormalized expression for the stress-energy tensor in
the Unruh state from the expression for the unrenormalized
stress-energy tensor in the in vacuum state. Since the
ultraviolet divergences in the stress-energy tensor are
independent of the state, this difference is finite. Then
one can add to this the renormalized expression for the
stress-energy tensor in the Unruh state that has already been
computed [13,14] and the result is the full renormalized
stress-energy tensor for the in vacuum state.
We have tested the first part of the method by analytically

computing the matching coefficients in the 2D case and
reconstructing the mode functions for the in vacuum state.
We have also analytically computed the matching coef-
ficients in 4D for the spherically symmetric mode functions
(those with l ¼ 0) in the in vacuum state for a simple
model in which the effective potential in the mode equation
is proportional to a Dirac delta function. In this case it was
possible to analytically compute the part of the mode
function in the in vacuum state that is proportional to e−iωv

inside the null shell and to verify that it gives the known
result on the matching surface. Finally, for the actual case
of a collapsing null shell in 4D, we have analytically
computed parts of the matching coefficients and used those

FIG. 4. The quantity 104M2ΔhTtti is plotted for the massless
minimally coupled scalar field in the region exterior to the null
shell and to the event horizon. The dots correspond to the results
of the numerical computations. The solid curve represents the
analytic results in (6.32).
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parts to numerically compute part of one of the inmodes on
the future horizon and shown that it has the correct value at
the point where the future horizon intersects the null shell
trajectory.
The second part of the method has been tested by

numerically computing in 2D the difference between
the stress-energy tensor in the in vacuum state for the
collapsing null shell spacetime and the Unruh state for
Schwarzschild spacetime. The result is in excellent agree-
ment with an analytic expression for the difference obtained
from prior calculations of the stress-energy tensor in these
two states [20,24,29].
These tests provide substantial evidence that the method

will work and that it will be possible to numerically com-
pute the exact renormalized stress-energy tensor for a
massless minimally coupled scalar field in a 4D spacetime
in which a black hole forms from the collapse of a
spherically symmetric null shell. Work on that computation
is in progress.
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APPENDIX A: LAGRANGE INVERSION
THEOREM APPLIED TO THE LAMBERT W

FUNCTION

In [33] the relation

e−cWðxÞ ¼
X∞
n¼0

cðnþ cÞn−1
n!

ð−xÞn ðA1Þ

is derived for any complex constant c. An alternative
derivation is given here. It is based on the Lagrange
inversion theorem [35]. In [36] different forms for the
Lagrange inversion theorem are given, one of which we use
here. To state the form that is most useful to us we use the
notation in [36] that if fðxÞ is expanded in a Laurent series
then ½xn�fðxÞ denotes the coefficient of xn in that series.
Then a statement of the theorem is as follows: Suppose f is
a function of x and there is a relation of the following form:

fðxÞ ¼ xRðfðxÞÞ; ðA2Þ

where RðtÞ is a power series in t. Suppose further that ϕðtÞ
is also a Laurent series in t. Then for any nonzero integer n,
ϕðfðxÞÞ can be expressed in terms of a unique power series
in x with coefficients

½xn�ϕðfÞ≡ 1

n!
dnϕðfðxÞÞ

dxn

				
x¼0

¼ 1

n
½tn−1�ϕ0ðtÞRðtÞn; ðA3Þ

where the interpretation of the far right-hand side is that one

first expands the function dϕðtÞ
dt RðtÞ in powers of t, then

chooses the coefficient of the term proportional to tn−1 in
that series and divides that coefficient by n.
To use this to obtain a power series for the function

e−cWðxÞ, note that the Lambert W function satisfies the
relation

WðxÞ ¼ xe−WðxÞ ¼ x
X∞
n¼0

ð−WðxÞÞn
n!

: ðA4Þ

Thus we can choose the function RðtÞ in (A2) to be
RðtÞ ¼ e−t. We also choose ϕðtÞ ¼ e−ct. Then

½xn�e−cWðxÞ ¼ 1

n
½tn−1�ϕ0ðtÞRnðtÞ

¼ −
c
n
½tn−1�e−ðcþnÞt ¼ −

c
n!

½−ðcþ nÞ�n−1

¼ ð−1Þn c
n!

ðcþ nÞn−1: ðA5Þ

Equation (A1) follows immediately from this.

APPENDIX B: CONTRIBUTIONS TO THE
STRESS-ENERGY TENSOR

The calculations in this appendix are done entirely for
the Schwarzschild geometry. Therefore for simplicity we
use t and u to denote the usual time coordinate and the right
moving radial null coordinate in Schwarzschild spacetime.
In Sec. VI B it is mentioned that for the null shell

spacetime in 2D the Hadamard Green’s function in (6.14)
can be broken into three parts. One of these, which we call

Gð1Þ
A ðx; x0Þ, includes fHþ

and its complex conjugate and is
given by the expression

Gð1Þ
A ðx; x0Þ ¼

Z
∞

0

dωffHþ
ω ðxÞfHþ�

ω ðx0Þ þ fH
þ

ω ðx0ÞfHþ�
ω ðxÞg:

ðB1Þ

For the Unruh state the corresponding contribution to

Gð1Þðx; x0Þ is exactly the same so ΔGð1Þ
A ðx; x0Þ ¼ 0.

A second part, Gð1Þ
B ðx; x0Þ, has terms involving products

of fH
þ
and its complex conjugate with fI

þ
and its complex

conjugate such that
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Gð1Þ
B ðx; x0Þ ¼

Z
∞

0

dω

�Z
∞

0

dω2½A�
ωω2

fH
þ

ω ðxÞfIþ�
ω2

ðx0Þ þ B�
ωω2

fH
þ

ω ðxÞfIþ
ω2
ðx0Þ�

þ
Z

∞

0

dω1½Aωω1
fH

þ�
ω ðx0ÞfIþ

ω1
ðxÞ þ Bωω1

fH
þ�

ω ðx0ÞfIþ�
ω1

ðxÞ�

þ
Z

∞

0

dω2½A�
ωω2

fH
þ

ω ðx0ÞfIþ�
ω2

ðxÞ þ B�
ωω2

fH
þ

ω ðx0ÞfIþ
ω2
ðxÞ�

þ
Z

∞

0

dω1½Aωω1
fH

þ�
ω ðxÞfIþ

ω1
ðx0Þ þ Bωω1

fH
þ�

ω ðxÞfIþ�
ω1

ðx0Þ�
�
: ðB2Þ

There is no contribution toGð1Þðx; x0Þwhich has terms of this form if the field is in the Unruh state, so there is no subtraction

term and ΔGð1Þ
B ðx; x0Þ ¼ Gð1Þ

B ðx; x0Þ.
While Gð1Þ

B ðx; x0Þ contributes to the two-point function, we next show that its contribution to the stress-energy tensor is
zero. Substituting (5.20) into (B2) and using (5.23a) and (5.23b), one readily finds that

½Gð1Þ
B ðx; x0Þ�;t;t0 ¼

1

4π

Z
∞

0

dω

�Z
∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ðA�
ωω2

e−iωvþiω2u0 − B�
ωω2

e−iωv−iω2u0 Þ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ðAωω1
eiωv

0−iω1u − Bωω1
eiωv

0þiω1uÞ

þ
Z

∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ðA�
ωω2

e−iωv
0þiω2u − B�

ωω2
e−iωv

0−iω2uÞ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ðAωω1
eiωv−iω1u0 − Bωω1

eiωvþiω1u0 Þ
�
; ðB3Þ

½Gð1Þ
B ðx; x0Þ�;r;r0 ¼

1

4πð1 − 2M
r Þ2

Z
∞

0

dω

�Z
∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ð−A�
ωω2

e−iωvþiω2u0 þ B�
ωω2

e−iωv−iω2u0 Þ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ð−Aωω1
eiωv

0−iω1u þ Bωω1
eiωv

0þiω1uÞ

þ
Z

∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ð−A�
ωω2

e−iωv
0þiω2u þ B�

ωω2
e−iωv

0−iω2uÞ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ð−Aωω1
eiωv−iω1u0 þ Bωω1

eiωvþiω1u0 Þ
�
: ðB4Þ

From (6.5) one finds

ΔhTtti ¼
1

4
lim
x0→x

�
ΔG;t;t0 þ

�
1 −

2M
r

�
2

ΔG;r;r0

�
: ðB5Þ

By substituting (B3) and (B4) into (B5), it is easy to see that
the contribution to hTtti is zero.
Next consider the contribution of Gð1Þ

B ðx; x0Þ to hTrri.
Using (6.5) it is not hard to show that

ΔhTrri ¼
1

4
lim
x0→x

�
ΔG;t;t0

ð1 − 2M
r Þ2

þ ΔG;rr0

�
: ðB6Þ

Together with (B5), one obtains

ΔhTrri ¼
ΔhTtti

ð1 − 2M
r Þ2

: ðB7Þ

Thus Gð1Þ
B ðx; x0Þ does not contribute to hTrri either.

Finally, we consider the contribution of Gð1Þ
B ðx; x0Þ to

hTtri. From (6.5) one finds

ΔhTtri ¼
1

4
lim
x0→x

½ΔG;t0;r þ ΔG;t;r0 �: ðB8Þ

Taking the derivative of (B2) with respect to t and r0, one
finds
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½Gð1Þ
B ðx; x0Þ�;t;r0 ¼

1

4πð1 − 2M
r0 Þ

Z
∞

0

dω

�Z
∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ð−A�
ωω2

e−iωvþiω2u0 þ B�
ωω2

e−iωv−iω2u0 Þ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ðAωω1
eiωv

0−iω1u − Bωω1
eiωv

0þiω1uÞ

þ
Z

∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ðA�
ωω2

e−iωv
0þiω2u − B�

ωω2
e−iωv

0−iω2uÞ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ð−Aωω1
eiωv−iω1u0 þ Bωω1

eiωvþiω1u0 Þ
�
: ðB9Þ

and taking the derivative of (B2) with respect to t0 and r gives

½Gð1Þ
B ðx; x0Þ�;t0;r ¼

1

4πð1 − 2M
r0 Þ

Z
∞

0

dω

�Z
∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ðA�
ωω2

e−iωvþiω2u0 − B�
ωω2

e−iωv−iω2u0 Þ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ð−Aωω1
eiωv

0−iω1u þ Bωω1
eiωv

0þiω1uÞ

þ
Z

∞

0

dω2

ffiffiffiffiffiffiffiffiffi
ωω2

p ð−A�
ωω2

e−iωv
0þiω2u þ B�

ωω2
e−iωv

0−iω2uÞ

þ
Z

∞

0

dω1

ffiffiffiffiffiffiffiffiffi
ωω1

p ðAωω1
eiωv−iω1u0 − Bωω1

eiωvþiω1u0 Þ
�
: ðB10Þ

It is clear that ½Gð1Þ
B ðx; x0Þ�;t0;r ¼ −½Gð1Þ

B ðx; x0Þ�;t;r0 and therefore that their contribution to hTtri is zero.
The third part of Gð1Þðx; x0Þ we call Gð1Þ

C ðx; x0Þ. Its contribution to ΔhTtti is given in Sec. VI B.

APPENDIX C: RELATION BETWEEN TWO COMPONENTS OF ΔhTabi
The calculations in this appendix are done entirely for the Schwarzschild geometry. Therefore for simplicity we use t and

u to denote the usual time coordinate and the right moving radial null coordinate in Schwarzschild spacetime.
In this appendix a relation is derived between two components of ΔhTabi in (6.5) for the 2D collapsing null shell

spacetime. As shown in Appendix B only ΔGCðx; x0Þ in (6.15) contributes to ΔhTabi. The explicit form for ΔGcðx; x0Þ is

ΔGCðx; x0Þ ¼
1

4π

Z
∞

0

dω
Z

∞

0

dω1

Z
∞

0

dω2

1ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p f½Aωω1
e−iω1u þ Bωω1

eiω1u�

× ½A�
ωω2

eiω2u0 þ B�
ωω2

e−iω2u0 � þ ½Aωω1
e−iω1u0 þ Bωω1

eiω1u0 �
× ½A�

ωω2
eiω2u þ B�

ωω2
e−iω2u� − subtraction termsg; ðC1Þ

where the subtraction terms have exactly the same form except that the matching coefficients are replaced by the Bogolubov
coefficients (5.17) for the Unruh state. Then

½ΔGCðx; x0Þ�;r;t0 ¼
1

4π

1

ð1 − 2M
r Þ

Z
∞

0

dω
Z

∞

0

dω1

Z
∞

0

dω2

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p f½iAωω1
e−iω1u − iBωω1

eiω1u�

× ½iA�
ωω2

eiω2u0 − iB�
ωω2

e−iω2u0 � þ ½−iAωω1
e−iω1u0 þ iBωω1

eiω1u0 �
× ½−iA�

ωω2
eiω2u þ iB�

ωω2
e−iω2u� − subtraction termsg: ðC2Þ

A similar calculation for ½ΔGCðx; x0Þ�;t;r0 gives the opposite sign for each term in square brackets and a replacement of rwith
r0 in the overall factor of ð1 − 2M

r Þ−1. Thus

lim
x0→x

½ΔGCðx; x0Þ�;r;t0 ¼ lim
x0→x

½ΔGCðx; x0Þ�;t;r0 : ðC3Þ
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Next consider

½ΔGCðx; x0Þ�;t;t0 ¼
1

4π

Z
∞

0

dω
Z

∞

0

dω1

Z
∞

0

dω2

ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p f½−iAωω1
e−iω1u þ iBωω1

eiω1u�

× ½iA�
ωω2

eiω2u0 − iB�
ωω2

e−iω2u0 � þ ½−iAωω1
e−iω1u0 þ iBωω1

eiω1u0 �
× ½iA�

ωω2
eiω2u − iB�

ωω2
e−iω2u� − subtraction termsg: ðC4Þ

A similar computation for ½ΔGCðx; x0Þ�;r;r0 gives the relation

½ΔGCðx; x0Þ�;r;r0 ¼
1

ð1 − 2M
r Þð1 − 2M

r0 Þ
½ΔGCðx; x0Þ�;t;t0 : ðC5Þ

Also a comparison of (C2) and (C4) shows that

½ΔGCðx; x0Þ�;r;t0 ¼ −
½ΔGCðx; x0Þ�;t;t0

1 − 2M
r

: ðC6Þ

Finally by substituting (C5) into (B5) and substituting (C3) and (C6) into (B8) one can see that

ΔhTrti ¼ −
ΔhTtti
1 − 2M

r

: ðC7Þ
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