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Method to compute the stress-energy tensor for a quantized scalar field
when a black hole forms from the collapse of a null shell
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A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a
spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four
dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of
modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized
expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding
expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for
the field in the Unruh state. The method is shown to work in the two-dimensional case where the results are

known.
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I. INTRODUCTION

The stress-energy tensor of a quantized field is an
extremely useful tool for studying quantum effects in
curved space because it takes both particle production
and vacuum polarization into account. It can be computed
in a background spacetime to obtain the energy density,
pressure, etc. for a quantum field in that spacetime. It can
also be used in the context of semiclassical gravity to
compute the backreaction of the quantum field on the
spacetime geometry.

For black holes in four-dimensional, 4D, spacetimes, the
full stress-energy tensor must be computed numerically.
This is a difficult task that has to date only been done
without other approximations for the cases of static spheri-
cally symmetric black holes [1-15] and the stationary Kerr
metric [16,17]. However, because of the difficulty involved,
to our knowledge, no one has numerically computed the
full stress-energy tensor for a quantized field in a 4D
spacetime in which a black hole forms from collapse. This
is important because there can be a significant difference
between the stress-energy tensor for a quantum field in a
2D versus a 4D spacetime such as that found for a massless
minimally coupled scalar field in an extreme Reissner-
Nordstrom spacetime [9,18].

In this paper we present a method to compute the renor-
malized stress-energy tensor, (in|7,,|in), for a massless
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minimally coupled scalar field in the case that a black hole
forms from the collapse of a spherically symmetric null
shell. This model has been previously used to derive the
Hawking effect [19,20], investigate how the stress-energy
tensor is affected by the production of a pair of particles
due to the Hawking effect [21], study some details of how
the spectrum and number of produced particles changes in
time during and after the collapse [22,23], and in 2D to
compute the stress-energy tensor for a massless minimally
coupled scalar field [20,24]. While this is not a realistic
model for collapse because the shell begins with an
infinite size, this is probably the simplest model to work
with that involves collapse in 4D to form a black hole.
Thus it is a reasonable first choice for the full numerical
computation of the stress-energy tensor of a quantized
field in a 4D spacetime in which a black hole forms from
collapse. Further, since the Hawking effect is independent
of how the black hole forms [25], and since it is expected
that the stress-energy tensor at late times will also be
independent of the formation process, studying how the
stress-energy tensor evolves in time and approaches its
late time behavior can provide insight into what is likely to
happen in a more realistic model.

The method we have developed works in the region
outside both the null shell and the event horizon. In the
region outside the shell, Birkhoff’s theorem ensures that the
metric is that for Schwarzschild spacetime (2.2). In the
region inside the shell the space is flat. Thus in both regions
the mode equation for the quantum field is separable and
inside the shell its solutions are known analytically. This
allows for a numerical computation of the stress-energy
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tensor for the field in which only ordinary differential
equations need to be solved numerically.

For the collapsing null shell model, the initial vacuum
state of the quantum field is well defined and the main
complication that occurs is due to the propagation of the
modes across the null shell surface. The crux of our method
involves the expansions of the in modes in terms of a
complete set of solutions to the mode equation in the region
outside the shell.

The stress-energy tensor for the quantum field is
obtained by expanding the quantum field in terms of a
complete set of modes. This expansion is substituted into
the formula for the stress-energy tensor of the correspond-
ing classical field and the expectation value is computed. If
the field is in the in vacuum state then the result is an
expression which involves sums and integrals over the
mode functions for the in state and their derivatives. After
the renormalization counterterms are subtracted off, the
resulting stress-energy tensor is finite and can be computed.
This is straightforward inside the null shell since the mode
functions are known analytically and for the in state, the
result is that the stress-energy tensor is equal to zero.

Outside the null shell and the event horizon the in modes
do not assume a simple form in 4D. One approach to
computing them would be to use the analytically known
values for the modes inside the shell and on past null
infinity to provide initial data for a numerical integration of
the mode equation in the region exterior to the shell.
However, outside the shell the in modes will not factorize
into a product of a function that depends only on time and a
function that depends only on the radial coordinate r. Thus
the part of the mode equation that depends on both r and ¢
must be solved numerically.

We have developed an alternative method which
involves expanding each of the in modes in terms of a
complete set of modes in Schwarzschild spacetime. The
radial parts of these modes and the matching parameters
must be computed numerically. The mode matching has
been tested in the 2D case where there is no effective
potential in the mode equation. It has also been partially
tested for spherically symmetric modes in 4D both when
the effective potential is modeled as a delta function and
when the exact effective potential is used.

One advantage of the first method is that there are no
matching parameters. A disadvantage is that one must solve
a partial differential equation directly using numerical
techniques. Conversely the chief advantage of the method
developed here is that one only needs to numerically solve
the radial mode equation, which is an ordinary differential
equation. A second advantage is that the properties of the
solutions to this equation are well understood. One dis-
advantage of our method is that the formulas for the
matching parameters involve certain integrals that must
be computed numerically. A second disadvantage is that
the computation of the stress-energy tensor involves the

numerical computation of triple integrals rather than single
integrals over various products of the mode functions and
their derivatives. It is not obvious to us which approach is
more efficient. However, since no full numerical compu-
tation of the stress-energy tensor has been previously done
for a quantized scalar field in a 4D spacetime where a black
hole forms from collapse, we think the most important
thing is to develop one viable method to do the calculation
and that is what we present here.

When the expansions for the in modes are substituted
into the formula for the unrenormalized stress-energy
tensor one finds a combination of sums and integrals over
various combinations of the modes and their derivatives.
Renormalization of the stress-energy tensor can be accom-
plished by subtracting the corresponding expression that
occurs in Schwarzschild spacetime for the Unruh state [26],
adding that expression back and subtracting the renorm-
alization counterterms. The result is the sum of two finite
tensors. The first is the difference between the expressions
for the unrenormalized stress-energy tensors in the in
state and the Unruh state. The second is the renormalized
stress-energy tensor for the Unruh state. The latter has been
numerically computed for the masslesss minimally coupled
scalar field in [13,14]. Thus one can simply add that result
to the difference between the two stress-energy tensors to
obtain the full renormalized stress-energy tensor for the
scalar field in the in state in the collapsing null shell
spacetime. This type of renormalization scheme has been
used to compute the stress-energy tensors in Schwarzschild
spacetime in the Unruh state for the conformally coupled
massless scalar field [5,27] and for the massless spin 1 field
[5]. It has also been used to compute a late time approxi-
mation to (7,,) for the case of a massive minimally coupled
scalar field in a spacetime consisting of a massive thin shell
that is initially static and then collapses to form a black
hole [28].

We have tested our method by numerically computing
the difference between the stress-energy tensor for the in
state in the collapsing null shell spacetime and the stress-
energy tensor for the Unruh state in 2D. The results are
compared with an analytic expression for the difference
obtained from previous analytic calculations of the stress-
energy tensor for the Unruh state [29] and the in vacuum
state for the collapsing null shell spacetime [20,24]. Our
results are in agreement with those calculations.

In Sec. II we introduce the collapsing null shell model
and then discuss the modes for a massless minimally
coupled scalar field in the null shell spacetime. A descrip-
tion of the method of computing the stress-energy tensor is
given in Sec. III. Various mode functions in Schwarzschild
spacetime that are used in the computation of the stress-
energy tensor are discussed in Sec. IV. In Sec. V general
expressions for the matching coefficients in the 4D case are
derived followed by examples where the matching method
is tested. Formulas needed for the computation of the
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stress-energy tensor in the 4D case are derived in the first
part of Sec. VL. In the second part, the difference between
the stress-energy tensor in the in vacuum state and the
Unruh state is numerically computed for the 2D case and
compared with the difference obtained from previous
analytic calculations. Section VII contains a summary of
our results. The appendixes contain some details of a proof
and some derivations that are used in the 2D examples in
Secs. V and VI. Throughout the paper, we use the sign
conventions of [30] and units are chosen such that
h=c=G=1.

II. MASSLESS MINIMALLY COUPLED
SCALAR FIELD IN A SPACETIME
WITH A COLLAPSING NULL SHELL

A. Collapsing null shell model

We consider a model in which a spherically symmetric
black hole forms from the collapse of a null shell. Our
analysis of the spactime follows that in [20]. The metric
inside the shell is the flat space metric

ds? = —dt* + dr* + r*dQ?, (2.1)

and, by Birkhoff’s theorem, the metric outside the shell is
the Schwarzschild metric

2M 2MN\
ds* = —<1 ——)dl‘g + (1 ——) dr’ + r*dQ?.
r r
(2.2)

The two metrics need to be matched along the trajectory
of the null shell. An obvious way to do this is to let the
angular coordinates be continuous across the shell along
with the radial coordinate r that is related to the area of a
two-sphere. Then the time coordinate is not continuous
across the shell trajectory which is why we distinguish in
the above metrics between the time coordinate ¢ inside the
shell and the time coordinate ¢, outside the shell.

The actual matching is easier in terms of radial null
coordinates which can be defined inside the shell as

u=t-r, (2.3a)
v=t+r, (2.3b)
and outside the shell as
Ug =1 =1y, (2.4a)
vV=1t,+7r,, (2.4Db)
where
r. =r+2Mlog <r ;};M > (2.5)

FIG. 1. Penrose diagram for a spacetime in which a null shell
collapses to form a spherically symmetric black hole. The vertical
line on the left corresponds to the surface » = 0 which is also the
surface where u = v. The trajectory of the shell (dashed blue
curve) is v = v,. The horizon, H™, is the dotted red curve. Inside
the shell trajectory it corresponds to the surface u = vy and
outside the shell trajectory it corresponds to u, = oco.

is the usual tortoise coordinate in Schwarzschild spacetime.
It is easiest to let v be continuous across the shell trajectory
which is denoted as v = v,. The outgoing radial null
coordinate is then discontinuous across the shell trajectory
which is why it is denoted as u inside the shell and u;
outside. The relationship between u and u, is [20,21]

Vg —u
=u—4M1 s 2.6
= u-annog(" ") (26)
with
UH = UO - 4M (27)

Note that the value of the flat space coordinate u on the
event horizon is vy as can be seen from Fig. 1. Inverting,
one finds that [22]

u=uvy—4MW {exp (UHM;IM‘Y)],

with W the Lambert W function. A Penrose diagram for the
resulting spacetime is sketched in Fig. 1.

(2.8)

B. Massless minimally coupled scalar field

The type of quantum field we consider is a massless
minimally coupled scalar field which in a general space-
time satisfies the wave equation

L = 0. (2.9)

In the null shell spacetime the field can be expanded in
terms of a complete set of modes such that

© 4 . -
¢ = Z & KA dw[awfmfa)fm + a;fmfz,fm], (210)

=0 m=—
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with a,,, an annihilation operator. The modes are sol-
utions to (2.9) which have the form

Yf,m (9’ ¢)
r

(2.11)

fa)fm =N l//wf(T7 }"),

with N a normalization constant and 7 = ¢ inside the shell
trajectory and 7 = ¢, outside. Inside the shell trajectory the
equation for v, is

_ azl//(uf azl/]u)f _ f(f + 1)
or or? r?

Vor =0, (2.12)

while outside the shell the equation is

82Wwf (32)((05 2M 2M f(f + 1)
B AT A e

(2.13)
The in vacuum state is defined by requiring that on 7~
wih, = eV, (2.14)

The modes must also be regular on the surface » = 0 inside
the shell trajectory which implies that wif)‘f = 0 there.

The normalization constant N is fixed using the scalar
product which is defined by the relation

(Frofo) = i / I (DO, (2.15)

Here n* is a future-directed unit vector orthogonal to the
spacelike (or null) hypersurface X and dX is the volume
element in . The hypersurface X is taken to be a Cauchy
surface. To normalize the in modes it is easiest to use past
null infinity, Z~, as the Cauchy surface. If the orthonormal
condition

(fwfmvfw’f’m’) = 5/./’5m,m'5(a} - 0)’) (216)
is imposed then it is straightforward to show that
1
N = . (2.17)
4w

For the modes in the in state in the region inside the null
shell trajectory

Wiy = ey (1) (2.18)
Substituting this into (2.12) gives
d*, , C(€+1)
7:— w —T Xt~ (219)

The solution for which l//iar;f vanishes at r = 0 is

i, = Crearjy(wr), (2.20)
where C, is a normalization constant and j, is a spherical
Bessel function. The condition (2.14) on Z~ fixes the value
of C,. For example, for # = 0, it is easy to show that Cy, =
—2i and
WL?O — piwv _ p-iwu (221)
In the region outside of the null shell trajectory v = vy,
the in modes still have the boundary condition (2.14).
However, their other boundary condition is that ", and its
first derivatives must be continuous across v = v,. The fact
that the time coordinates are different on either side of this
surface makes it impossible to have a solution of the form
wil, = e~y (1) outside the null shell trajectory.
However, it is possible to write l//iar)lf in terms of a complete
set of mode functions of the form y,, = e" 'y, (r)
outside the null shell trajectory as is shown in Sec. V.

1. METHOD TO COMPUTE THE
STRESS-ENERGY TENSOR

The stress-energy tensor for the quantized massless
minimally coupled scalar field, (7,,), is to be computed
for the in vacuum state in the region outside the null shell
and outside the event horizon. The stress-energy tensor for
the classical field is

1
Tub = 8a¢)8h¢) — Ega,,g"dac(bad(l). (31)

To compute (in|T,;,[in), one can substitute (2.10) into (3.1),
use the complete set of modes for the in vacuum state f ia‘)‘fm,
and compute the expectation value. There are two things
which make this difficult. One is computing the modes

in in the region outside the shell and the other is
renormalizing the stress-energy tensor. Our method to
compute the stress-energy tensor provides one way to
overcome these difficulties.

First, we renormalize by subtracting from the unrenor-
malized expression for the stress-energy tensor for the in
vacuum state, the unrenormalized stress-energy tensor for
the Unruh state. Since the renormalization counterterms are
local and thus do not depend on the state of the quantum
field, this quantity will be finite. Then we add back the
unrenormalized stress-energy tensor for the Unruh state and
then subtract from it the renormalization counter terms.
Schematically one can write

<in|Tab|in>ren = A<Tab> + <U|Tab|U>ren’

A<Tab> = <in|Tab|in>unren - <U|Tab|U>unrcn' (32)

125035-4
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The quantity (U|T,,|U),, has been numerically com-
puted for a massless minimally coupled scalar field in
Schwarzschild spacetime [13,14]. Thus what remains is to
compute the difference between the unrenormalized
expressions. To do that it is necessary to discuss the
computation of the mode functions for the quantum field
that are relevant for the in and Unruh states. It is worth
pointing out that the computation of (U|T,;|U),, done in
[13,14] was done for pure Schwarzschild spacetime outside
the event horizon. However the computation we wish to do
for (in|T,|in),., is for the null shell spacetime outside both
the shell and the horizon. The reason that there is no
problem is that the renormalization counterterms are local
and so are the same in this part of the null shell spacetime as
they are in pure Schwarzschild spacetime.

Analytic expressions for the mode functions in the in
vacuum state, I, . inside the shell are given in (2.20).
However, it is not easy to continue these to the region
outside the shell because the time coordinate ¢ and the right
moving radial null coordinate u are not continuous across
the shell. However, the known solutions inside the null
shell along with their behavior on Z~ can be used to fix the
initial data on a Cauchy surface in the null shell spacetime.
The Cauchy surface we consider here, consists of the part
of 7~ with vy < v < oo along with the trajectory of the null
shell. This initial data could be used for a numerical
calculation of the partial differential equation satisfied by
fin,, outside the shell. Alternatively, one can expand f,
in terms of a complete set of modes in the region outside the
shell and use the data on the Cauchy surface to determine
the matching coefficients.

Here we take a variation of the latter approach by
noting that the spacetime geometry outside the shell is
the Schwarzschild geometry. Because of this, it is possi-
ble to do the matching in the corresponding part of
Schwarzschild spacetime. The advantage of this is that
the matching can be to a complete set of modes in the
region outside the horizon in Schwarzschild spacetime.
These modes are well understood and straightforward to
work with numerically. The disadvantage is that the
relevant part of the Cauchy surface in the null shell space-
time discussed above does not form a Cauchy surface in the
Schwarzschild spacetime. This can be remedied by adding
a segment along the future horizon with —co < v < v,. The
result is a Cauchy surface for the part of Schwarzschild
spacetime that is outside of the past and future horizons. It
is illustrated in Fig. 2. It is worth noting that the part of the
Cauchy surface on the future horizon is not causally
connected with the region outside the future horizon and
outside the surface v = v,. The corresponding region in the
null shell spacetime is the region where we want to com-
pute the stress-energy tensor. Thus any initial data can be
used for the mode function fi, ~on that surface so long as

in_is continuous at the point where the future horizon

wlm
intersects the part of the Cauchy surface with v = v,.

r=20 it

FIG. 2. Penrose diagram for Schwarzschild spacetime showing
the Cauchy surface used for matching the in modes in the null
shell spacetime to a complete set of modes in Schwarzschild
spacetime in the region outside the past and future horizons. The
Cauchy surface is denoted by the dashed red curve.

IV. COMPLETE SETS OF MODE FUNCTIONS
IN SCHWARZSCHILD SPACETIME

In this paper we work with four complete sets of mode
functions for the part of Schwarzschild spacetime that is
outside both the past and future horizons. The frequencies
of all of the modes that we consider are taken to be
non-negative.

A. Modes used for the in state

To expand the modes for the in state in terms of a
complete set of modes in Schwarzschild spacetime we find
it most convenient to choose the complete sets of modes
that consists of the union of modes that are positive
frequency on the future horizon H* and zero on future
null infinity, Z* (labeled by f7, ), and modes that are
positive frequency on Z* and zero on H™' (labeled by

fE. ). Both sets of modes are of the general form

—iwt,

Waor = €y (r), (4.1)

with 0 < @ < oo. Substituting into (2.13) gives the radial
mode equation for Schwarzschild spacetime

d*y oy 5 IMN (2M (€ + 1)
d—rz—‘[‘“ ‘(“7)(7*7 Ko
(4.2)

These modes are normalized on the Cauchy surface
consisting of H™ and Z* with the result (2.17).

It is useful to consider a different complete set of mode
functions of the form (4.1) which are defined by two
linearly independent solutions to the radial mode equa-
tion (4.2) with the properties

(o8]

XR

— e, r, = o,

(4.3a)
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a2 e, > o0, (4.3b)

Near the event horizon they have the behaviors [31]

1% = Ep(w)e'™ + Fp(w)e @, (4.4a)

ry —> —00,

12— Ep(w)e + Fp(w)e™ ", r, > —oo, (4.4b)
where Ep, E;, Fg, and F; are scattering parameters that
can be determined numerically. They satisfy the rela-
tion ExF, —E Fp=1.

For the modes
while w7, = 0 on Z*. The radial mode function which has

these properties is

; H" _ —iov
- fm, on the future horizon v}, = e

1
HY — — yoo 4.5
Kot FL)( L ( )
This is easily verified by evaluating the resulting mode
function w7 on H* and Z*. To see how this works

consider the behavior near Z:

1 )
H* —iwv—ev
yo, > —e -0,

P (4.6)

UV — 0.

Here we have used a positive integrating factor ¢ to
explicitly show that this mode function vanishes on Z*
where v = 0.

For the modes fZ, , on H*, w’, =0 while on Z7,
z//wf — e~ The radial mode function which results in
these properties is

wlm>

- o) FR 00
Xﬁf:)(R _F_)(L' (4.7)
L

B. Complete sets of modes used to define
the Unruh state

Before discussing the modes that can be used to define
the Unruh state, it is useful to consider a complete set of
mode functions that are positive frequency on either the
past horizon H~ and vanish on Z~ (denoted by f“fm) or
which vanish on H~ and are positive frequency on 7~
(denoted by fwfm) For the modes (%, ~on H-, y!, =

e~ while y", =0 on Z~. The radial mode function
which has these properties is [31]

H- )( AR
){ wl ER °

(4.8)
For the modes fZ, . on H-, wl =0 while on Z-,
wl, — e~ The radial mode functions which have these
properties is [31]

"The subscripts r and [ in [31] have been changed here to R
and L respectively.

Xow =XF = %x}? : (4.9)

R

These modes are normalized on the Cauchy surface
consisting of H~ and Z~ with the result (2.17).

The Unruh state in Schwarzschild spacetime consists ofa

complete set of modes consisting of the modes fZ, and

the modes (denoted by fX, ) that on H~ have the form

wlm

vl = e, (4.10)

with

(4.11)

Here k = (4M)~! is the surface gravity of the black hole
and 0 < wg < oo. These modes vanish on Z~ and can be
normalized on the Cauchy surface that is the union between
H~ and Z~ with the result that’

YL” m

K = K . 4. 12
wlm \/4_7z—0)1<r L ( )
They can be expanded in terms of the f#, modes. The

result is given in (5.16) and (5.17).

Since the method used to compute the stress-energy
tensor involves subtracting the unrenormalized stress-
energy tensor for the Unruh state it is useful to write the

modes associated with this state, /7, and fZ_ . in terms
of f#, and fZ, . The result is
- _ 1
zﬂ;m = (fwfm ff,;m) (413]3)

V. MATCHING COEFFICIENTS

A. General formulas

In this section general formulas are derived for the
matching coefficients used in an expansion of the modes
of a massless minimally coupled scalar field for the in
vacuum state in the collapsing null shell spacetime in terms
of a complete set of modes in Schwarzschild spacetime in
the region outside the past and future horizons. These can
be used in the computation of the stress-energy tensor,
(in| T, |in), for the scalar field in the part of the collapsing
null shell spacetime that is outside of the shell and outside
of the event horizon.

"Here we use the entire surface H~ which extends from U =
—o0 to U = +o0.

125035-6
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The expansion of the in mode functions has the form

Om* f’/
Ht

+ B a)lmw 'm' (f(u ' m ’) + A(mf’ma) &' m ’fa)’f’m’
H+
+ Ba}fma)’f’m’ (fw’f’m’)*]'

The matching coefficients are found using the scalar
product in (2.15) and the orthonormality of the modes

I+ T+
da) A fﬂ)/f/m/

wfm — wfma''m'

(5.1)

FEHY) with respect to this scalar product. The result is
(T HY) s (T+.H*)
Awfma)’f’m’ - ( Z[)lfm’ fw/ﬂm/ )7 (52&)
(Z*.H7) i (TH.H')\4
wtmo'f'm’ _( g;lfm’ (fw’f’m’ ) ) (52]3)

For the Cauchy surface we consider, (2.15) reduces to
integrals of the form

/ du / QP / v / Q0.

On the hypersurfaces where these integrals are computed,
the following properties for spherical harmonics can be
used:

(5.3)

/ dQY 1, (0.)Y, (0.0) = 8,46, (5.40)

I+.HY) (T+.HY) (T+.HY)

/dQYlm(9,¢) I'm ’(9 ¢) ( ) 511’5171 —m' (54b)

As a result we can write

It H* I+ H*
A((ulmw’l’Zn’ = 51.[’51n,m’A£0wrf ), (553)
I+~,H+ I+,H+
s = (=1)"6,48,, B ) (5.5D)
and
. Yf dﬂ) T+ T+ T+ vk
:‘l}fm - r ZIZ \/—[ ww fwwf + B(uw’f(l//m’f)
+ Amm fwa) 4 + B(uu) f(ll/g';)*} . (56)

From this expression one can see that if, at small @', the
matching coefficients go like \/— then there is an infrared

divergence in the integral and it is not obvious how to deal
with it. For this reason, we use integrations by parts in some
of the computations of the matching coefficients below to
avoid this difficulty. For Schwarzschild spacetime in 4D,
our results when substituted into (5.6) do not give infrared
divergences.

The contribution to the matching coefficients from the
three segments of the Cauchy surface in Fig. 2 are

(T*.H")

AC ) = A0 e+ A+ Al (5.7a)
AL == [ v = o)l = o, (5.7b)
W)y = =g | iy o)L ). o) (5.7¢)
AL === / doyn(u = —o0, )0, % M) (u, = —o0, )], (5.74)

and

Boui = (B e + (B ), + (B ) (5.82)
( g{;}m))m 47[\/_/ doy™ (u = vy, v )5;1/151)1,;’1#)(%:00,11), (5.8b)
B 1= s | i 00) 3, ™) (uy (). wo). (5.8¢)
(BI), = [ dvin = —e0, )%, = —c0,0). (5.80)
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It is important to note that the integrals in (5.7b) and
(5.8b) are computed with the integrands evaluated on H*.

Since yZ,, =0 on H*

(Ag;'z) (Bi; D =0. (5.9)
On H*, y, = ¢~". The part of the Cauchy surface in
Schwarzschild spacetime which is on H has no counter-
part in the collapsing null shell spacetime and, as discussed

in Sec. II1, is causally disconnected from the region outside
|

the collapsing null shell and outside the event horizon.
Thus the only restriction on the mode functions y", for this
surface is continuity at v = v,. The simplest mode function
to use on this surface is then

wi(u = vy, v) =y (u = vy, vy). (5.10)
With this choice it turns out to be useful to write the
contribution to the matching coefficients from H* in

the form

H* i in i v i o' eia)’vo in

(At i 447[\/60—@,‘//&;5(”11’”0)@ - gmvlw(”mvo)’ (5.11a)
H* _ i i i i o emi @

Bt = = e Vo0 0 g\ e Ve e o) (5.11b)

where for each integral an integration by parts has been
done and an integrating factor 0 < € < 1 has been included
to make the integrals converge.

The integrals in (5.7c) and (5.8¢c) are computed with
the integrands evaluated on the surface v = v,. In this
case y, is given by (2.20) while analytic expressions for

wﬁ;‘m are only known for the limits u; - 4o0. For
intermediate values of u, these modes must be computed

numerically.
The integrals in (5.7d) and (5.8d) are computed with the
integrands evaluated on the surface Z~. In this case y", is
|

|
given by (2.14). From (4.5) and (4.7) one can deduce that
onZ~

I
* —iwv
gf = FLe la1’
F
wl, = __FR emion (5.12)
L

To avoid infrared divergences in (5.6) it is useful to
subtract and then add back the quantity e=** from ", in
(5.7¢) and (5.8c). Then after integrations by parts the
contributions from the surface v = v, can be written as

(AZZ)I) = _#ng(vHvUO)ei(’)/yo +47r\/a)_w’ll‘72(a)’,f) e~ilo=a)vy
b \/— / w0,y (u, vo) lwrth 7 (g (u), vo), (5.13a)
(Bg;z)vn :r\/—/wwf(UH’ vo)e lw,v0_47t\/w—a)’;L(a)’,f) ~i(wte)oo
o [ o )l 0. 0), (5.130)
Wy == b o D et - [ i) = 0T ) ). (5.136)
B, = e 2D et [l ) = IO ) w0 (5.130)

The modes on Z~ take on the simple forms (2.14) and (5.12). This makes it possible to evaluate the integrals for the
contributions to the matching parameters from that surface. After integrating by parts, we find

(AZ; Dr- = - l
Anvwa' Fi (o, 7)

—i(w—a')vg

i W 1 ei(a)’ —w)vy

22\ o Fi (0. 0) 0 — 0+ i€’

(5.14a)
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[ . i Jo 1 e il@+a)no
BH ) — —ilota)vy _ =\ [ , 5.14b
( mwl)I 47TWFL(CU/,K) 2 a)FL(a)’,f)a)’—l—a)—ie ( )
; —i(w—a')v
(AI+’I) L FR(a) f) —i(w-a')vy _ i FR(a) f) 0 ’ (5140)
@ T 4V o Fi (o, f) 22V w Fi (0. 0) ) — o+ i€
Fr(@ . €) iiiw | o Fr(a/,£) e7 /@t
(B ), = ! R(a’/’ )e—t(aI+w)U0 LY R(w, ) e/ . (5.14d)
wa' 4”«/a)a,’FL(a),f) 27V w Fp(o,6) 0 + w—ie
Combining these results together, the general formulas for the matching coefficients are
AH+ i C() el(u Vo (U ) >+L 2/ 1 ei(a)/—u))vo
0l ™ 2x N wa —ie Vior (v, 2o 27V o Fi (o, 6) @ — @ + i€
Htx
ul//w u, vo) |y, (ug(u), vo), 5.15a
s [ dulonit o (). ) (5,159
ot i a) e~i@'n l// o )_L\/Q 1 e~ i(@+a)v,
ool ~ g V oo +ie’ v vo) =5 o F(o,0)o +o-
u u,v " ug(u), vgy), 5.15b
o [ vl (). ) (5.15b)
I+ i o Fp(a,£) eo=)n /
—\/— dul — e~ @]9,y , 5.15
0ol = 722\ g Fi(0,0)0 —w+ice 271\/“ e (0 v0) = €Ny (), v0) (5.15¢)
- i W FR(CU/, f) —i(w+a')vg

ww'l —

27V 0 F (o, 0) 0 + @

B. Expansions of modes for the
Unruh state

As discussed in Sec. III, our method for renormalizing
the stress-energy tensor involves subtracting the unrenor-
malized stress-energy tensor for the Unruh modes. Recall
these modes include the set of modes fX, that are positive
frequency on the past horizon with respect to the Kruskal
time coordinate along with the set of modes fZ, that on
I~ have y,, = e”'®?. Before subtracting the contmbution
from the fZ, modes we first write them in terms of fZ
and fH, using (4.13b).

For the contributions of the fX,
down the Bogolubov transformation

wlm

modes we first write

H ™% }
w'fml*

o= [ e Al + B (5.16)

The coefficients can be obtained using the scalar product
(2.15) with a Cauchy surface consisting of the union of past
null infinity and the past horizon in Schwarzschild space-
time. Integrating over the angular coordinates one finds that
the Bogolubov coefficients can be written in the form (5.5)

du| u,v =i0v0) 9w, (ug(u), vy). 5.15d
et [l ) = O ) o). (5150

with a replacing A and f replacing B. Integrating the
remaining integrals over u, by parts one finds that’

1

awKw = 2” ox (4M)1+t4M(u
% /0 dUKe_i“’KUK (_UK)—I—MMCU’
1 ' o T(6—i4M,
[ 2(4M)1+14M(u ( l 6;)) . (5173)
27 \| wg (—iwg +¢)~4M
1 ,
e = 35 | clab) e
X /0 dUKe—inUK(_UK)—1+i4Mw’
1 , T(6+ i4M
© apg) - (‘L—lf’) (5.17b)
~ 21\ (—iwg + €)M

3This calculation was originally done in [32] but note that there
is a mistake in the results. The expressions in that paper are
missing a factor of (4M)*®',
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Here 6 and € are integrating factors with 0 < § < 1 and
0 <e<x 1. Note that the Bogolubov coefficients are
independent of the value of #. This is because the effective
potential vanishes on A~ which is the surface where the

integrals are being computed. Then we use (4.13) to
H~ I~ (ZtH™)
wlm wlm

express the modes f in terms of the modes f

C. 2D example

In this section we will illustrate the matching for the case
of a 2D spacetime which has a perfectly reflecting mirror at
r = 0. The metric inside the shell is the flat space metric

ds? = —di? + dr?, (5.18)

and the metric outside the shell is the Schwarzschild metric

2M 2MN\ !
ds® = _<1 __>dt§ + <1 ——) dar*.  (5.19)
r r

The Penrose diagram is the same as in the 4D case as is the
definition of the radial null coordinates u, u, and v and the
relation between u and u;.

The general form of the mode functions is

Y
drw

There is no scattering for the massless minimally coupled
scalar field modes in 2D so

ER:FLzl, EL:FRIO. (521)
Inside the shell the in modes are
yin = giov _ pmion, (5.22)

In the region outside the shell the spacetime is the 2D
version of Schwarzschild spacetime and the modes are
|

(fiar)l)m =

= \/4—71-—0)0(1]0 - ’U) -+

wl' =yl = eions (5.23a)

+ - —iov
yi =yl = emiov, (5.23b)

The expansion for the in modes is similar to the 4D case
except there are no parameters £ and m related to the

spherical harmonics. Thus

i = ALY B AL
0

+ B ()] (5.24)

The matching coefficients are given by substituting (5.21),

(5.22), and (5.23) into (5.15). It is then easy to show that

+ + + +
[Bg,w’faHz’ *} = Aga)’fg’ ’

o' ——a'

I+ Tt _ ATV 4T
[Bw’m/fw/ *}w’—>—w’ — Am,m’fw’ 5 (525)
where the quantities on the right-hand side are to be
evaluated at @’ < 0. As a result

fi= [Taa ey AT (520

(Se]

Because z,//aH),+ does not depend on u, the integral in (5.15a)
is trivial to evaluate and one finds that

. i @ e—i(m—a)/)vo i @' ei(m’—w)vo
AH — _ —
wo' T /

2V 0o —w+ie
(5.27)

2z V o o —ie

To see what the contribution to f is from the f&"
modes, first substitute (5.27) into the first two terms of
(5.24) along with (5.20) and (5.22) with the result

ie”'®" ooda)/ eia)’(vo—y) _ 1 4 1
204w J-w o —ie o —w-+ie

e—imvo e—iwv

Varw

O0(v — vy). (5.28)

We next consider the contribution of the fI+ modes. The matching coefficient in (5.15¢) is

AL = -5 \/g " dueion gio'u () dus
(0%} 2 o J_w du

1 J& [vn o (v — w "M aM
_ due—i(@=a")u H 1 .
27V w /_oo ue ( aM + vy — U

(5.29)

Changing variables to x = vy — u and performing an integration by parts gives
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! 7 —i

(- vy (4M) M

©
/ dxei(m—m')x—exx—i4Ma/—1+6
0

AT = — ==
wat = g VOUE (0 —w)+e€
i N Y I'6—idMa')
— /a)a)/e—l(m—w Yoy AM ) Hi4Mw ' - 5.30
2 ( ) [i(a)’ _ w) 4 6]1—14Mw ( )
Note that two integrating factors have been used with 0 < e <« 1 and 0 < <« 1.
To find the contribution to £ from the fZ° modes, first substitute (5.30) into (5.26) with the result
in 14M\/5 —iwv oo ! i (vg—uy) i4Ma' F(6 — 14Mw/)
M = ———e ' do' e \Pa"s) (4M . 5.31
(fa)z+ 2n\/4n — (4M) [i(0 — w) + ]! ~4M@ (5:31)
| .
Note that the denominator has an essential singularity in the (Fin)y. = — e~iwu(us)
upper half @’ plane while the Gamma function has simple @I Varw
poles in the lower half plane at o o iovn oxp {,‘4MwW [exp <( vy — us)>] }
/ is (5:32) Varw am
o =—-— .
aM’ (5.37)
and where (2.8) has been used and W(z) is the Lambert W
function. To make a comparison between (5.36) and (5.37),
, in 19 533 one needs to write the latter in terms of a series. This has
O =Ty T e (5.33) been done in [33]. An alternative derivation is given in

In the complex plane at large |@'| Sterling’s approximation
gives

F(—14Ma)’) ~ /2”€i4Ma/e(—i4Mm’—1/2) log(—i4M(u’)‘ (534)
Using the usual change of variables @’ = Re'®, with R > 0,
it is straightforward to show that the dominant contribution
to the integrand of (5.31) in the large R limit comes from
the factor e*MRsinflogR anq therefore one must close in the
lower half plane. This means there is no contribution from
the essential singularity but there is a contribution from

each pole of the Gamma function. At these poles it is
straightforward to show that

—1)"
F(é—i4Ma))—>W, n=0,1,2,....
(5.35)
Then
in 4Ml\/5 —iovy . (_l)n n—
(fa))I+ = \/4—7[ € nZ:; 0 (n—l4M0)) 1
x {exp (“’”4#)} (5.36)

Because the general solutions to the 2D mode equation in
Schwarzschild spacetime are of the form y = g(u,) + h(v)
with g and 4 arbitrary functions, the exact solution for the in
modes is

Appendix A. The result is

SGEDY clnt o' *};)Cl)"_ (—2)".

5.38
2 (5.38)

Taking ¢ = —4iMw and z = exp(*43) in (5.38), one can
see that (5.37) and (5.36) are equivalent.

D. Delta function potential

In this section, we apply our matching method to the case
where the potential term in (4.2) is replaced by
V = 5(r,), (5.39)
with 1 a positive real constant. This can serve as a model for
the original potential which has a single peak and vanishes
at the horizon and infinity. The resulting mode equation can
be solved analytically and the solutions are simple enough
that the matching coefficients can be computed analytically.
Some of these matching coefficients will be used to
partially reconstruct the mode functions fi, in the case
that £ = 0.

For ¢ = 01in 4D the in modes inside the null shell take on
the particularly simple form (2.21). In the region outside the
shell the mode functions in the complete set with £ =0
have the general form

T Yoo  (w+1%) (H %) _ mials,, (H TV
@00 A Voo —» Yo X a0

(5.40)
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The radial parts of the modes satisfy the following
equation:

d2

Iy

= 0. (5.41)

In the region where r, > 0, two linearly independent
solutions are

e = e, (5.42a)
L =eiorn (5.42b)

For r, <0, yr and y; can be expressed in the following
way:

)(?eo — EReimr* + FRe—iwr*’ (5438.)

X =E e + Fpe . (5.43Db)

1N

L

e—iu)’v 4 /5

H*_g
(' -

Yo ( )

ik
S~—

T+ w
Vo = 9(—)”*) ]
0 (w/ _%1)

Imposing the continuity of the mode function and dis-
continuity of its first derivative in the usual way at the
spacelike curve r, = 0, the following analytic expressions
are found for the scattering coefficients

Er=1+ 0 (5.44a)
Fp— —%, (5.44b)

E, =Fp= %, (5.44c¢)
n:m:—%. (5.44d)

Then the mode functions that we are using for the matching
can be obtained from (4.5) and (4.7) with the result

—] +0(r,) (5.452)

il

v ;o
—iw'v —iw'u
e + e S

e (5.45b)

To verify that the matching coefficients can be used to reconstruct the original mode functions for the case £ =0
it is useful to break them up into contributions that come from the term proportional to e~®" in (2.21) and the

term proportional to —e

—iou Tn what follows we compute the matching coefficients for both terms but then focus only

on those that come from the term proportional to e~*”. Substituting (5.45), and (5.44) into (5.15) one finds the matching

coefficients

(AZ:)O) + ( [oro 0>

H)(l)

i W elw v ] i (1)/ @ ei(a)’—u})vo
PR iy , 5.46
(o) wmV oo —ief +27r o (o +4) (0 — o + i€) (5-462)
; /o Lio'vy 4 )
AH+, _ L \/Z(); € P — / due—iou i i’ vy
( ‘““’0)“ 2 a)a)’—le e )a)’+%e
+9pﬂgGmW_;%ﬁfMuw>} (5.46b)
2
+ + +
AZ:J(U’O = (Az:m)’0>7 + (A:a[)w’O)u’
. / iA —i(w—a")vg
ALy =2 € 5.47
(oro)s 2V @ (o +%) (0 — @ + i€)’ (5.47a)
1 Jo' (v dug(u) o
LA p— —/ du T gmion giofu(u) | g 2 5.47b
AL = e[ 2 [ T () +00r) (5.471)

Note that the relations (5.25) are satisfied by these matching coefficients so the relation (5.26) also holds. Thus
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Pl = [ 4o/ (AL 0) o + (AT S (549
Substituting (5.46a), (5.47a), and (5.45) into (5.48) gives after some algebra
in _ YOO
(waO)T/' - [9(—}’*)11 + 9(?'*)12},
rvarw
. A . iA i (vo—uy) o' (vy—v) ! ia' (vg—v)
2w’ L @ oW D W —ie) T (@ D@ —w+ie)
= 0(vy — uy)e~ @ [e=2(0=1) — 1] 4 G(vy — v)e i@
9 - ./1 . A .
(7} 1;0) |:l_ e~ 100 p=5(v=10) | =i ) (5493)
(w+%5) [2
: . ! io (vg—v) i (vg—v) iA Lio (vo—uy)
12——L€_iw"°/ do/ a)e. : N /e : ; 2¢ .0 7
2z —oo (0 —ie)(w %) & -w+ic (0 —w+ie)(o +%)
= O(vy — v)e~@r0e~20=) L g(y — yy)ei
5 A )
—O(u, —v 2 [—eimvgp—5(uy—ro) 4 pmimuy) 5.49b
(=) 2 | (5.49b)

It is easy to verify that (5.49) gives the correct values for (f
v = vy, and on past null infinity for v > v,.

ino), on the future horizon for v < v, on the null shell surface

E. Partial analytic results for the matching coefficients in 4D for £ =0

Because of the simple form of the in modes for £ = 0 inside the null shell (2.21), it is possible to compute the matching
coefficients for the e~®? part analytically. To do so we begin by substituting (2.21) into (5.15) with the result

; i’ vy
IV

0’0

(e—lawo
w o —ie

_ e—imv,., ) +

pil@=o)v

i @ 1 i(of
27V @ F; (@.0) 0 — o+ ie

1/ / du ey < (ug(u), v). (5.50a)
. i @' e—iw’vo ) ) i @ 1 e—i(w+w’)v0
BZ«)O o (e—la”}[) - e_lwvH) T\ / / :
27V oo + i€ 27V @ Fp(0,0) 0 + o — ie
1 w UH . +
to\l /_ eyl (). o) (5.500)
+ i o Fa(a',0) eilo=eno ] v , +
AZ =y = R ’ o / du e=ou9 II* ) , , 5.50
ww'0 20 a)Fj(a)’,O)a)’—a)+i€+27z\/w—w’ - ue uwmo(u‘s(u) 1}0) ( C)
i / / —i(w+a')vg : oy
I+ o Fp(',0) e i1 _
— d ioud wt, . g)- 5.50d
w00 2” a)FL(a)’,O)a)’+w—ze 27[\/— ue MW,IO( ( ) UO) ( )

Note that the integrals have to be computed numerically
because the mode functions in Schwarzschild spacetime
must be computed numerically. However, because of the
simple form that 1//2}0 takes it is possible to separate the
matching coefficients into separate matching coefficients

for the part that goes like e~/®? inside the null shell and the
part that goes like e~/* there. The matching coefficients for
e~ do not depend on the integrals. In what follows we
focus on these matching coefficients. Examination of (5.50)
gives for these coefficients
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i Y ei(w’—w)no

i @ 1 ei(w’—a)) v

(A‘f’[;/o)”:_ﬁ a)m_l—ﬂ o F;(0,0)0 — 0+ i€’ (5.51a)
(B, = é %% T 2x %FL (clo’, 0) cj'_—l(—;j:e (5:51b)
1 1 e 5310
- e e

These matching coefficients can be used to reconstruct
the part of the mode function which goes like e™®" inside
the shell by substituting the expressions into (5.1). To check
them we shall compute the resulting integral on H™. Recall
that we are working in the exact Schwarzschild spacetime
rather than the null shell spacetime when we do the
matching. The same applies to the reconstruction. Thus
the results for the reconstruction for which v > v, also
apply to the null shell spacetime, but the results for v < v,
do not apply to the null shell spacetime.

Recall that the modes fZ° vanish on H*.

(fi00)y = m(ll + 1),

j . ei(vo—v)a)’
— —iwv !
I, =——e '™ dw — =
2 0 ' — i€

e—i(vo—v)m’

o' +ie
(5.52a)
i ) 0 1 e—iw’(v—vo)
1, = — e~iovg do'
27 0¢ A w{FZ(a)’,O)a)’—w—l—ie
1 eiw’(v—vo)
— . 5.52b
FL(a)’,O)w’+(u—ie} ( )
3
2
1
0
-! 0 5 10 15 20 25

Rl=

If in the second term of /; a change of variables is made
so that @ — —@' then one finds that

i ) s ei(vo—v)w’ )
I, = —— ¢ i@t do/ ——— = e7"0(vy — v),
2 _ o' —ie

) (5.53)

with @ the step function. It is thus clear that the initial
data on H™ for —co < v < vy does not affect the mode
functions on the part of the future horizon for which
Uy < UV < 0.

It can be shown from the properties of the scattering
coefficients given in [31], that F; (@) = F; (—@'). Using
this identity and changing the variable of integration in the
second integral in the same way as was done for /, one
obtains

) Yooe—iwvo
mn = ————0(vyg— v
( (,000)7/ r\/% ( 0 )
i s e—ia)’v eiv(,(a)’—w)
4+ — do' —.
27/ A /_oo Fj(o,0) 0 —w+ ic
(5.54)

0.1
0.0
—0.1

~02 V

-0.3

SN

FIG. 3. The real (left) and the imaginary (right) parts of \/%( 2}00) , on the future horizon have been plotted. In both plots, Mo = 0.02
and 19 = 3. The plots clearly show that (fi), is continuous at v = v,.

[
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To compute this integral using complex integration tech-
niques one must know the singularity structure of Fi which
L

is difficult since this scattering coefficient must be com-
puted numerically. However, one can at least test whether it
has one or more singularities in the complex plane by
assuming it does not and computing the integral. We will
call the result ' because there is no guarantee that this
method will give the correct answer. The result of such an
integration is

—iwv —iwv
0 e

—v) +——F———=0(v — vy).
Anw ) F; (@', 0)vA4nw (v=10)

ftest —

Here complex integration has been performed using a

contour in the lower half of the complex plane. It is

obvious that at v = vy, the continuity condition for

(f0), is not satisfied so f*' % (f ), which implies

that 7 — ('w,) has one or more singularities in the complex
L

plane.

Alternatively one can work with 7, in the form (5.52b),
use the relation (o F o tie)™! =F ind(0 F w)+
(@' F w)~!, and compute the principle value parts of the
integral numerically for » > v,. This has been done and
the result is shown in Fig. 3. It is clear from the plots in this
figure that on the future horizon (f,)), is continuous
at v = v.

VI. STRESS-ENERGY TENSOR
A. Method in 4D

For the massless minimally coupled scalar field the
classical stress-energy tensor in a general curved spacetime
is given in (3.1) and a renormalization expression for (T )
is given in (3.2). To compute (7T',) using (3.2) it is useful to
begin with the points split and to write the stress-energy
tensor in terms of derivatives of the Hadamard Green’s
function

(Oin|{g(x). ¢

) }[0in) = fiz/

wfm(x)< wfm( )) +f(ufm( )( iarylfm(x»*]’

GW(x,x') = ({p(x). p(x')}). (6.1)

We adopt the notation
AGU () = (inl{(x). (<)} i) = (U p(x). () H V).
(6.2)

with |in) representing the in vacuum state and |U) the
Unruh state. The corresponding difference in the stress-
energy tensors is then

1 . o 1 o 1 cd'
A(Ty) = 3 ml(gf AL, + 05 AGLL) = gung™ DGl .

(6.3)

Here the quantity ¢ parallel transports a vector from x’ to x
and is called the bivector of parallel transport [34]. To
leading order when the point separation is small

g = gh =5, (6.4)
The subleading orders all vanish in the limit X’ — x. Since
there are no ultraviolet divergences in the quantity A(T )
one can use (6.4) in (6.3) with the result

|
A(T ) = [im(AGY, + AGY) ) = g9 limAG!), ),

4o
(6.5)

where a slight abuse of notation has been used for the
implied sum over d and d’ in the last term. It is important to
note that this expression is valid in both two and four
dimensions.

Expanding the field in terms of modes as in (2.10) one
finds for the in modes that

(6.6)

The Unruh state in Schwarzschild spacetime consists of modes that are positive frequency with respect to the usual time
coordinate on Z~ along with modes that are positive frequency with respect to the Kruskal time coordinate on H~ so that

00 14

(UKo (x), p(x)}U) =

=0 m=—¢

+A dw[fwfm(x)( a)fm( )) +fwz,’m( )(ff)fm(x))*]}

The next step is to find expansions for these two-point functions in terms of the complete set of modes f(Z"

> D {/ dog(f5 () (fE on )+ 18 () FE 0 (X))7]

(6.7)

H") that we

are using. For (Oin x), ¢(x")}|0in) one can substitute (5.1) into (6.6). This results in integrals of the form
g ( g
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0 m=—

[ H+ I7) ) (f(H*.I* )* 4 (B H*,I*))*f(H*,I*)]}’

where the subscripts on the matching coefficients and mode
functions have been suppressed. For (U|{¢(x), p(x)}|U)
one can first substitute (5. 16) and (5.17) into (6.7) to obtain

7") Then (4.13) can be used
$(x')}|U) that

an expression in terms of f P
to obtain an expressmn for (U|{¢p(x),
depends only on f )

wf m

B. 2D Example

In this section the method discussed above is tested
by using it to computing the stress-energy tensor for the
scalar field in the corresponding 2D spacetime where
the answer is known. The computation will be done in
the region v > v, outside the null shell and outside the
|

4
S [ [ [t g5 oy

(6.8)

|
horizon. From (5.28) it is clear that for » > v, the
contribution from the £ modes to fin is

e—iwv -
==l 6.9
)u Varw (6.9)

(/5
Thus
0

with AZ’ | given in (5.30). Using the relation I'(x) = F(I;”C)

one obtains the form used for the numerical computations

1 (1 - i4Ma)
I*/ _ aM Mo ,—i(o—o')vy i -~ 6.11
020} 271. ( ) € [—1(a) _ a)/) + €]1—l4M(H ( )
Then, using the relations (5.25) one finds
— —idMao' —l (w+a vy F(l + l4Mw/) 6.12
T or [ i(o+ o) +€]l+i4Mw" (6.12)

In what follows the superscript Z* on the matching coefficients A and B will be suppressed.
Next, with the aim of finding the components of the stress-energy tensor using (6.5), we construct the Hadamard form of

Green’s function which in 2D is

G (x.x') = / ® dolfn(x)

Substituting (6.10) into (6.13) gives

() + f () (x)). (6.13)

60 et) = [ aof [72 00+ [ ot 500+ B 7+ )

0

S |: (];)I+*(x/)+/oo de[ wwszz ( ) (uwzfa)z( )]:|
0

; [fg* )+ [ don A, 5 () + walfﬁf*(X’)]]

74 [ donttin, £ 0 + B 5 01

Expanding the integrand of the integral over w results in
three types of expressions: an integral consisting of pro-

ducts of the modes f#", which we call G, another integral
which includes cross products between the modes " and

(6.14)

Z" which we call G, and finally an integral consisting of
products of the modes fZ°, which we called G.

To renormalize we follow a procedure equivalent to that

outlined in Sec. VI A. We begin by subtracting off the
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integrals with the integrand evaluated in the large @ limit.
When we add them back, we get contributions that are
identical to those obtained for the Unruh state. We are not
quite subtracting off the Unruh modes because the large
solutions have a dependence on vy. However, when the
subtracted terms are added back and the integral over o is
computed, then factors of §(w; — w,) and §(w; + w,) are
obtained. Note that terms proportional to &(w; + @,)

|

Achx)—/ da)l/ dar ([

vanish. For the ones that do not vanish, once one integrates
over say @,, the dependence on vy vanishes.

In Appendix B it is shown that when this method is
applied to G(l)(x, x'), the AG, term vanishes. It is also
shown that, while the AGp term does not vanish, it does not
contribute to the stress-energy tensor. As a result, the only
term that contributes to A(T,) is AG¢(x,x’) which has
the form

() fo," () + fo, ()0, (x)] AL

[f()f()f()f()]Alz
[u), ( ) ) ( ) fw] ( )fwz ( )]Al?a
+ [fo 7 ()6 () + fo, 7 () 5, (2] AL}, (6.15)
with
Al :/ dw{Awml 0w, _O(Aa)wlAz)mz)} (6168')
0
AIZ :/ dw{A(uwl 0w, _O(AwwlBZ)wz)}’ (616b)
0
AIS _/ dw{Bale 0w, _O(walA:uwg)}’ (616C)
0
A14 :/ dw{Bwa)] ww, _O(Bwa)lBZ)wz)}' (616d)
0

Here O indicates the asymptotic behavior of the matching coefficients for o > @ ;.
The integrals in (6.16) can be computed analytically. Substituting the explicit expression for A from (6.11) into (6.16a)

gives
1 i —;) Livy (W) —o : .
Al :m(w) WM (—o2) givn(@1=0) (1 — i4Me, )T(1 + i4Mo,) AK . (6.17a)
AK 1 i4Ma —i4Mw, Ad w
1= Aljlolo( i) (i)~ { [A a) (@ — o, + i€1)1—i4Mm1 (0 — ) — i€2)1+i4Mmz
_ /A dwa)—1+i4M(w1—w2):| _ /1 dww—l+i4M(w1—a)2)}' (617]3)
1 0

First we compute the indefinite integrals and evaluate them at the limits. Since ¢; and ¢, go to O" at the end of the
calculation, it is acceptable to add terms containing them to the exponents. The first indefinite integral is

w

A
AKlu — ( )14Mu)]( ) 14Ma)2/ do

0 ((0—(01 +i€l)l—i4M((u]—iel)<w_a)2_
i4M((u]—i€])(

(0 — oy + iey)

i€2) 1+idM (0, +iey)

w—wy — iez)—i4M(mz+iez) A

= (=i e

4M(0)1

(A —w )i4Mw] (A _ w2)—i4sz

—0)2—i€1—i€2) 0

_l'(_l')i4Mw] (l')—i4M(u2 |: 4M(wl

 (m0) M (—ay) M }

4M(a)1 - i€2) ’

— Wy — €]

—m,) — €| — e,

(6.18)
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Note that after evaluating the integral at the limits, ¢; and ¢, are set to zero in the exponents because they have no effect
there. Also, each term is a combination of a principle value and a term proportional to §(w; — @, ), thus

A A G o)

AKla _ e2nM(w1+(u2) |:—l(

4M((l)1 - 0)2) 4M
wi4Mw1 w—i4Ma)2 T
“2iM(w+w) ;2L 2 7 s — . 6.19
re o L] (6.19

Here we adopt the notation that the principle value of a term such as aill.e is written as 1. The second and third integrals in

(6.17b) are

AKlb — _(_l-)i4Mw1 (l')—i4Ma)2 /A dwa)—1+i4M(w1—w2)
1
eZﬂM(w]+w2)

. AAM(@-02) _ | 6.19b
l4M(CU]—602)[ ]’ ( ? )

Ach — _(_i)i4Ma)1(i)—i4Mw2 /1 da)a)—1+i4M(a),—a)z)
0

0 eZnM((u|+mz) ieZﬂM((u|+w2)
— _e2ﬂM(a;]+a}2) / dze[i4M(w,—u12)+e]z — _ —
oo idM(w) — ) + €  4M(w; — w,) — ie
ieZﬂM(w1+a)2) T
— M (wi+®) T 5(0) — 6.19
4M(601 - 0)2) ¢ am (wl a)2)’ ( C)

where in the integral for AK . the change of variable z = log w has been made and an integrating factor € has been inserted.
Combining these results, one finds

wi4Mw1 w—i4M(u2
AK, = e 2aM(o+a) | ;2L 72 % s —
| =e i M0, —an) M () — @)

Mo, —idMaw,
@ @,

L, —21M (0, +w,)

= . 6.20
e AM(w| — @, — i€) (6:20a)
Substituting (6.20a) into (6.17a) gives
i A (0o - ipee i )
Al = 4712—0)1(1)2(41\4)1 M{w=w2) givi(@1=0) (1 — i4AMa, )T (1 4 i4Mw,)
oMo [ ~idMa,
% e—27[M<m|+(H2) 1 2 . (620]3)
AM (@ — @, — i€)
Note that this is a finite contribution to AG, because of the factor of e=>™M(@i+e),
Next consider Al, which is the other term with nonvanishing delta functions:

Al, = (4M)~i4M(@1=02) g=ivn(@1=) (1 4 i4AMe )T (1 — i4Maw,)AK,, (6.21a)

Iy N

) . A w
AK, = lim (—i —i4dMw, i i4Maw, / dw _ _
4 A—>oo( ) ( ) 0 ((U + o, + i€1)1+t4Ma)1 (O) +w, — i€2)1—14Ma)2

A . 1 .
_/ da)a)—l—l4M(!1}]—u)2):| _/ dww—l—l4M(ml—w2)}‘ (621]3)
1 0

The integrals in AK, can be computed analytically with the result
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A w
— p~2aM(w+;)
ARy, = e A dw (0 4 @) + ie)) M @FE) () 4 gy — jey ) ~AM(@2-ic2)
; —idMw i4Mw, —idMw, i4Mw
= e~ M(w1+m) L (A+ o) e (A + o) o, @0 o,
am 0)1—0)2+i(€1+€2) 0)1—0)2+i(€1+€2) ’

A—i4M(w1—w2) 1
—l4M(601 - a)z) + —l4M(CU1 - 0)2) ’

AKy, = e~ 2nM (w1 +;) |:_

e—27tM(m| +w,)

0 )
AK4C _ _e—2er(w1+a)2) / dze[—t4M(w1—m2)+e]z —_

oo _—i4M(a)1 —w,) te
=27M (w1 +w,) =27M (0 +®,)
=it =t — e 2Monton) T 54 o). (6.22)
AM(w; — w,) + i€ AM (w1 — w5) AM

Both terms in AK,, can be written in terms of their principle values added to a term proportional to 6(w; — @,). Combining
these terms, the following expression for AK, is obtained:

@Ml iAMey
AKy = em2Mlon+o) _i—4}\/l(a)1 _2602) — 17 0(@1 — @)
= —je~2M(@1tm) oy . (6.23a)
4M (w0 — w, + i€)
Finally
; - ‘ - iAMo  iAMo,
Al, = —FTZM(4M)"4M(’“l“"Z)e‘”"ﬂ(”"‘“’z)l“(1 + i4Mw, )T (1 — i4Ma,)e~2M(@i+e) 4Méa)1 - wi et (6.23b)

Note that if we let w; <> @, in the expression (6.20b) for Al;, then we get Al, in (6.23b). It is also true that if this switch is
made in the entire contribution to the two-point function from A/, then that is equal to the contribution from A/,. Finally,
the total contribution from A/, can be shown to be the complex conjugate of the total contribution from A/7;. Thus both
contributions are real. Next consider Al,

1 j vy () +o : 1
Al = s (AM) )ttt (1~ iMoo, )T(1 ~ idMawp) AK,. (6.24a)
AK i Y, i4M Ad @
_ _\idMaw, (;\idMw, _ .
o= Jim iy f | [P
_ /A dww—1+i4M(w|+wz):| _ /1 dwa)—1+i4M(w|+w2)}, (624]3)
1 0

where the integrals in AK, can be computed analytically

. . A [0
AK,, = (—=i)4Moi(j)i4Mo; / dw - - - -
2a ( ) ( ) 0 (CO — + i€1)1—14M(m|—le‘l)(w + ) — i€2)1—14M(m2—162)
H i4Mw i4Mw i4Maw, , i4Mo
:—L(—i)MM‘”‘(i)MM“’Z{(A_wl)4M A+ @) AM 2_ (_wl)4M ty }
aM [0)1 +Cl)2—i(€1 +€2)] [0)1 +C()2—i(€1 +€2)]
; i4Mwo i4Ma i4Mw, _i4Mw,
L N Ch 7 (S L7 P O PR L - (6.25a)
aM [0 + @, = i(e] + )] aM (@) + @, —i(e) +€)]
i i4M (w1 +w,) i 1
AKZb - eZﬂM(wl—wz) = eZﬂM(wl—wz) - (625]3)
aM o +w, 4M W) + @)
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eZﬂM(aJl —w,)

AKZ' — _e2ﬂM(a)l—a)2) /O dze[i4M(a)]+u}2)+e]z - _
‘ oo i4M(w, + @,) + €

eZn’M(wl —wy) . eZn’M((ul —w,)

:l4M(a)1+w2)—i€:l4M(a)1—|—a)2) 4M

(@) + w2). (6.25¢)

Given that §(w; + @w,) = 0 since the frequencies are all non-negative, one can set €, = ¢, = 0. Then

i4Mw, _i4Maw,
w

AK, = je~2M(to) X1 D2 6.26a
2 AM (@ + @,) ( )
and
i a)i4M(u1 a)i4Ma)2
Al = — (4M)#M(@1t) givil@ito) (] — jdMa, )T (1 — idMa, )e~2M(@tor) —L__ 2 (6.26b)

Y N

Comparing Al, in (6.16b) and Al5 in (6.16¢), one can immediately see that their contributions to the two-point function,
(6.15), are the complex conjugate of each other if one also takes @w; <> @, in the contribution from A/,

4M(C()1 + 6()2) '

Aly = (ALL)"

. —idMw, —idMw,
1 . . w .
— (4 M) "M (@1+02) p=ivg(@1+0) (1 4 iAMeo, (1 + idM. “2aM(o+an) Y1 P2 6.27
4”2 W@, ( ) € ( +1 0)1) ( T 0)2)6 4M(a)1 n 0)2) ( )

Substituting (6.20b), (6.23b), (6.26b), and (6.27) into (6.15) one finds

AGc<x X { / dwl/ dw2 e~ 2nM(w+as)
87°

(Mo, e5)* Mo (1 — 4iMw, )T(1 + 4iMa,)
(4Mw, ewir)4iMo> M (0) — w, — ic)
_ [e—iw] ug—iw, i + e—iwlug—ia)zus](4Mw1 ez—z)MMwl (4sze:—,\f,’1)4isz

(1 - 4iMa, )T (1 — 4iMw,)
4M (@ + ;) }}

% {[e—iwlupLiwzu; +e—iw1u§+iwzus

(6.28)

There are infrared divergences in this expression. However, it is easy to see that the derivatives in the general formula for the
stress-energy tensor (3.1) bring down factors of @, and @, which remove these infrared divergences. Recalling that AG is
the only contribution to (7,;,) from AGW, it is straightforward to show using (6.5), (C3), (C5), (C6), and (6.28) that

2M
A1) = =(1-2) m § (3Ge, + AGey)

r x'—x

=R L/oo dw /o0 dw- e 27M(@i+w2) ) pi(wr—w;)ug (4Ma) 64M)41Mw] F(l - 4iMwl)F(1 +4iMa)2)
8 0 ! 0 2 (4M(1)264M)4le2 4M(a)1 -y — i€)

. o i g L(1—4iMo )T'(1 — 4iMm,)
+ e~il@rtonus (40, e ) MO (4 )M gy eiir ) M2 . 6.29
( 1 ) ( 2 ) 4M((01 +0)2) ( )
The integral over w, of the first term inside the curly bracket can be written in the form
A<Ttt>l = /oo da)zﬂ: /oo da)2 [M‘Flﬂ'é(wl —(1)2):|
0 Wy —wy — 1€ 0 v — Wy
— lim le_e dw2M+/°° dwzf(wz)] +infan), (6.30)
e=0" ] Jo W) — Wy ) +€ (Rl )

where the definition of the Cauchy principal value integral has been explicitly used.
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Thus, extracting the explicit form of the f(w,) from (6.29) and substituting it into (6.30) yields

87 Jo 0

X v, .
(4MCO2 eﬁ)Msz

The stress-energy tensor for a massless minimally
coupled scalar field in the 2D collapsing null shell
spacetime has been previously computed analytically using
a different method [20,24] and the stress-energy tensor for
the Unruh state has also been computed analytically
[20,29]. For the difference one finds

Ty =g [ 2] L
7 [(u—vy)°  (u—vp) 768xM
A(T,,) = A(T,,) =0,
A(T,) = A(T,,) +2A(T,,) + A(T,,)
_1[ 8M 24M2]_ 1
 24x ((u—19)®  (u—wy)*] T68zM>
(6.32)

Both terms in (6.31) have been computed numerically. In
the first integral, the numerical computation has been
performed by the symmetric removal of the neighborhood
with radius e about the singular points of the integrand,
®; = w,. The integral of the second term in (6.30) has been
computed using a more straightforward numerical method.
Our results for A(T,) in (6.30) are shown in Fig. 4.

FIG. 4. The quantity 10*M?A(T,,) is plotted for the massless
minimally coupled scalar field in the region exterior to the null
shell and to the event horizon. The dots correspond to the results
of the numerical computations. The solid curve represents the
analytic results in (6.32).

4M

(4Mwlei—74)4iMw1 1—'(1 — 4[M(1)1>F(1 + 4lMa)2) 1 /'oo J e—4n’Mw1
) [0
4M(CU] - 602) 87[2 0 1

x T(1 — 4iMaw, )T(1 4 4iMa, ).

(6.31)

[

Although it is not possible to detect this from the plot, our
numerical results agree with the analytical results in [20,24]
to more than ten digits.

It is worth mentioning that in 2D, once A(T,) is
numerically computed, A(T,,) and A(T,.) can be easily
determined from the relations (B7) and (C7).

VII. SUMMARY

We have presented a method of numerically computing
the stress-energy tensor for a massless minimally coupled
scalar field in the case when a black hole is formed from the
collapse of a spherically symmetric null shell in four
dimensions. There are two primary parts to the method.
The first is to expand the mode functions in the natural in
vacuum state in terms of a complete set of mode functions
in the part of Schwarzschild spacetime that is outside of the
event horizon of the black hole. Expressions have been
found for the matching coefficients that involve integrals of
these mode functions over the trajectory of the null shell.

The second part of the method involves subtracting the
unrenormalized expression for the stress-energy tensor in
the Unruh state from the expression for the unrenormalized
stress-energy tensor in the in vacuum state. Since the
ultraviolet divergences in the stress-energy tensor are
independent of the state, this difference is finite. Then
one can add to this the renormalized expression for the
stress-energy tensor in the Unruh state that has already been
computed [13,14] and the result is the full renormalized
stress-energy tensor for the in vacuum state.

We have tested the first part of the method by analytically
computing the matching coefficients in the 2D case and
reconstructing the mode functions for the in vacuum state.
We have also analytically computed the matching coef-
ficients in 4D for the spherically symmetric mode functions
(those with # = 0) in the in vacuum state for a simple
model in which the effective potential in the mode equation
is proportional to a Dirac delta function. In this case it was
possible to analytically compute the part of the mode
function in the in vacuum state that is proportional to e~/®?
inside the null shell and to verify that it gives the known
result on the matching surface. Finally, for the actual case
of a collapsing null shell in 4D, we have analytically
computed parts of the matching coefficients and used those
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parts to numerically compute part of one of the in modes on
the future horizon and shown that it has the correct value at
the point where the future horizon intersects the null shell
trajectory.

The second part of the method has been tested by
numerically computing in 2D the difference between
the stress-energy tensor in the in vacuum state for the
collapsing null shell spacetime and the Unruh state for
Schwarzschild spacetime. The result is in excellent agree-
ment with an analytic expression for the difference obtained
from prior calculations of the stress-energy tensor in these
two states [20,24,29].

These tests provide substantial evidence that the method
will work and that it will be possible to numerically com-
pute the exact renormalized stress-energy tensor for a
massless minimally coupled scalar field in a 4D spacetime
in which a black hole forms from the collapse of a
spherically symmetric null shell. Work on that computation
is in progress.
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APPENDIX A: LAGRANGE INVERSION
THEOREM APPLIED TO THE LAMBERT W
FUNCTION

In [33] the relation

g =2 c(n+ )} .
e 'W():Z4(—x)

(A1)
n=0 n!

is derived for any complex constant c. An alternative
derivation is given here. It is based on the Lagrange
inversion theorem [35]. In [36] different forms for the
Lagrange inversion theorem are given, one of which we use
here. To state the form that is most useful to us we use the
notation in [36] that if f(x) is expanded in a Laurent series
then [x"]f(x) denotes the coefficient of x" in that series.
Then a statement of the theorem is as follows: Suppose f is
a function of x and there is a relation of the following form:

f(x) = xR(f(x)), (A2)

where R(?) is a power series in ¢. Suppose further that ¢ ()
is also a Laurent series in ¢. Then for any nonzero integer n,
¢(f(x)) can be expressed in terms of a unique power series
in x with coefficients

o = L Oy,

(A3)

where the interpretation of the far right-hand side is that one

first expands the function %&”R(t) in powers of f, then

chooses the coefficient of the term proportional to #~! in
that series and divides that coefficient by n.

To use this to obtain a power series for the function
e~W)  note that the Lambert W function satisfies the
relation

(=W(x))"
n! ’

W(x) = xe VW = x Z

n=0

(A4)

Thus we can choose the function R(¢) in (A2) to be
R(1) = e™". We also choose ¢(7) = e™“". Then

[xn}e—cW(x) _ 1

=~ [ R (1)

Cc c
_ _Z [tn—l]e—(c+11)t — _E [—(c 4 n)]n—l

=(-1)" % (c+n)" 1.

Equation (A1) follows immediately from this.

APPENDIX B: CONTRIBUTIONS TO THE
STRESS-ENERGY TENSOR

The calculations in this appendix are done entirely for
the Schwarzschild geometry. Therefore for simplicity we
use ¢ and u to denote the usual time coordinate and the right
moving radial null coordinate in Schwarzschild spacetime.

In Sec. VIB it is mentioned that for the null shell
spacetime in 2D the Hadamard Green’s function in (6.14)
can be broken into three parts. One of these, which we call

G/&l)(x,x’ ), includes f#" and its complex conjugate and is
given by the expression

) LSO ()
(B1)

G (x,x) = A ® do{fH (0) 11

For the Unruh state the corresponding contribution to

G (x,x') is exactly the same so AGS)(x, x')=0.

A second part, Gg)(x, x'), has terms involving products

of f#" and its complex conjugate with fZ* and its complex
conjugate such that
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Yo = [ dco{ |7 ol £ 75 ) + B P (05 ()
b [ oA £ ()5 ) + B, £ ()5 0)
b [ ol £ 780 + B P (7 ()
[ 0 A 7 OFE, () + B P 5] (B2)

There is no contribution to G)(x, x') which has terms of this form if the field is in the Unruh state, so there is no subtraction
term and AGg)(x, x') = Gg)(x, x').

While Gg” (x, x") contributes to the two-point function, we next show that its contribution to the stress-energy tensor is
zero. Substituting (5.20) into (B2) and using (5.23a) and (5.23b), one readily finds that

1 © . . . ,
[GE;)(X X )] A E/ dﬂ){A d(l)zw/a)a)z(Az)wze_’a’”""lsz BZ}&)Z —lw'b‘—thu)
+ / dwl /a)wl (Aww]eiwv’—iwlu _ wal eiwv’+iw1u)
0

oo
* —iwv' +iwyu * —zaw’—iw u
+ / da)Z AU} (Awwz e 2 waz : )
0

+ A dwl /a)(l)l (Awa)] eia}v—iwlu’ _ wal eiwv-&-ia}lu’)}’ (B3)
[G)(_zgl)(x,x/)]rr, 4”( { da)2 wwz( A:sz e—iovtioyu —I—Bz,wz _lw”—iww/)
-+ / dwl /wwl( Aa}wl zan)’—i(ulu 4 wal eiwu’+iw1u)
0
© o
+ / dCl)z /wwz(_A:)mze—mw +imyu + B:m)z e~ lov —zu)zu)
0
© ] ny ' o
+ /0 da)l /a)wl (_A(ua)l glov=iou’ B(le elovtiou )} (B4)
From (6.5) one finds A(T,)
A(T,,) = oy &)2 (B7)

2M\2
A<Ttt> =2 hin [AGtz’ + (1 - T) AG;r;r’]- (B3)
Thus Gg)(x,x’ ) does not contribute to (7,,) either.

Finally, we consider the contribution of Gg)(x, x') to
(T,,). From (6.5) one finds

By substituting (B3) and (B4) into (B5), it is easy to see that
the contribution to (7,) is zero.

Next consider the contribution of Gg)(x, x') to (T,,).
Using (6.5) it is not hard to show that

1
. | AG,, A(T,,) = 4)1121[AG v+ AG .. (B3)
(T, = 4)}1_” [(l 2M)2 + AG. ,,J} (B6)
Taking the derivative of (B2) with respect to ¢ and #/, one
Together with (B5), one obtains finds
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[Gg)(x, N = ﬁlw da){Aoo dw,\/ww,(—A;,, e eiwvtiond + B}, e emiov=ioa’y
+/O dw /0 (A, e = B,,, @V o)
+ /0 ” da)z\/M(A:)wze—iaw'Jriwzu Blu,e —zwv’—iwzu)
+ /Ooo dw\/ow(=A e, eloviow’ 4 B, e"“’””“’l"')}. (B9)

and taking the derivative of (B2) with respect to ¢ and r gives
1 o0 oo . Ly
G4 (53 = / dao / 5055 (Al N By, 70
obs 47.[( ) 0 0 2 2

iV —iw u iV +ioju
—|—/ dwy/ow, (A, e 4 By € i)
0

©
* —iwv'+iwyu * —zm/—iw u
+/ de V a)wZ(_Aww 2+ Bw(uz * ? )
0

0

4 /oo dw]\/a—)a*)l'(Aww]eiwv—iwlu’ _ wal eiwL'Jriwlu’)}. (BIO)

It is clear that [G?(x, XNy, = —[Gg)(x x')].., and therefore that their contribution to (T',) is zero.
The third part of G (x, x') we call G(C)(x,x ). Its contribution to A(T,,) is given in Sec. VIB.

APPENDIX C: RELATION BETWEEN TWO COMPONENTS OF A(T ;)

The calculations in this appendix are done entirely for the Schwarzschild geometry. Therefore for simplicity we use ¢ and
u to denote the usual time coordinate and the right moving radial null coordinate in Schwarzschild spacetime.

In this appendix a relation is derived between two components of A(T,;,) in (6.5) for the 2D collapsing null shell
spacetime. As shown in Appendix B only AG(x, x') in (6.15) contributes to A(T,;,). The explicit form for AG,.(x, x’) is

AC;C X, x / da)/ dwl da)Z \/—{[ mu)] _lwlu +Bmml m)lu]

* 1u}2u * —lwzu ] [ —m)]u lw]u }
[ (1)(1)2 + B (z)wz + A(uw] + B wa)l

X [Afy, " + B}, e~'*2"] — subtraction terms}, (C1)

where the subtraction terms have exactly the same form except that the matching coefficients are replaced by the Bogolubov
coefficients (5.17) for the Unruh state. Then

1 1 & © © . ,
[AGe(x, X)), = _W/ da)/ dw, / dwy /w10y {[iA €71 — iB,,,,, €]
4r (1 =27) Jo 0 0

* A x iwyu’ oLy —iwyu’ . —iw . iw
X [iA}y, €' — iBj, €7 "] 4 [—iA 71" + iB,,, €]

X [—iA},, " + (B}, e~'*"] — subtraction terms}. (C2)

A similar calculation for [AG¢(x, x')]...,, gives the opposite sign for each term in square brackets and a replacement of r with
r’ in the overall factor of (1 —2%)=!. Thus

lim[AGc(x, )], = Im[AGe(x, X')].,., (C3)

X' —x X' —x
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Next consider

1 00 0 00 . .
[AGc(x,X)]...p :E/) da)/o da)IA dwy /010y {[=1A €1 + iB,,, €]

. - . —iwou .
X [IA* elmu _ iB* o zwzu] + [_lAwu)]

wwy wwy

x [iAL,, € — iB},, e "] — subtraction terms}.

ww, ww,

A similar computation for [AG¢(x, x)].,.., gives the relation

[AGC('X’ X’)} T

Also a comparison of (C2) and (C4) shows that

r

1

[AGC(X’ x/)];r;t’ =

—iwu' : iwu'
e o+ lBu)a)]e ! ]

Finally by substituting (C5) into (B5) and substituting (C3) and (C6) into (B8) one can see that

(C4)

[AGc(x, X))y (C5)
—[AG'{"%’;H””/ (C6)
1“_@ . (©7)
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