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We extend the fixed-charge semiclassical approach to compute conformal field theory (CFT) data for
generic non-Abelian Higgs dynamics by also identifying the proper family of related operators. As an
example, we consider the UðNÞ × UðNÞ non-Abelian Higgs theory in four minus epsilon dimensions. We
observe that the semiclassical method and state-operator correspondence can be used for complex CFTs,
which are naturally related to walking dynamics.
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I. INTRODUCTION

Conformal field theories (CFTs) are of fundamental
importance to our understanding of different phenomena
in condensed matter [1–3], particle physics [4,5], and
quantum gravity [6]. Moreover, CFT tools play a central
role in unveiling the dynamics of quantum field theories
(QFT) in regimes where ordinary (non)perturbative meth-
ods are either inadequate or cumbersome. The approach is
to investigate the dynamics of a desired class of QFT
theories by considering certain CFT limits in their param-
eter space. Additionally, as we shall argue below, certain
theory sectors can be directly investigated using semi-
classical approximations.
Here, we consider the dynamics of the non-Abelian

Higgs theories because they often appear in the literature
due to their relevance to particle physics and cosmology.
These theories feature several marginal couplings in four
dimensions that typically flow to zero at large distances
and develop Landau poles at high energies, making these
effective field theories. Removing the Landau poles is

possible only if the couplings vanish along the entire
renormalization group. Theories such as this one are known
as trivial QFTs. One can, however, embed this type of
theories into an asymptotically safe gauge-fermion-scalar
theory like the one constructed in [7].
As a theoretical laboratory, we study UðNÞ ×UðNÞ in

4 − ϵ space time dimensions. Nevertheless, our approach is
broad and not limited to this example. We first show that in
the infrared the model features two complex conjugated
fixed points in the quartic couplings (complex CFTs) [8],
signaling the appearance of a controllable near-conformal
behavior of the walking type [9–14]. The latter behavior has
been invoked in the literature for models of dynamical
electroweak symmetry breaking [15–17]. Lattice methods
have been employed to establish walking as summarized
in Ref. [18]. Another way to discuss walking is via the
emergence of two complex zeros of the beta function in the
near-conformal phase [9,19].
It is noteworthy that in the fixed-charge sector of these

theories, one can obtain nontrivial information about their
conformal dynamics by expanding around the fixed-charge
stationary trajectories. A large-charge expansion method is
initiated in [20,21] and further developed in [22–25] to
compute CFT operator spectrum. More recently, a semi-
classical method, which can also access the small-charge
regime, has been developed in [26] for the simple λðϕ̄ϕÞ2
model in 4 − ϵ dimensions with aUð1Þ global symmetry. In
the small-charge regime, the method allows us to determine
the scaling dimensions of a family of fixed charged
operators to the leading and next to leading order terms
in the charge expansion but to all-orders in the couplings.
The method is more powerful compared to the conventional
perturbative approach (CPA) in that it automatically
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organizes the computation of scaling dimensions for a
whole infinite tower of operators rather than a single one.
Moreover, it determines the terms that are difficult to obtain
within CPA, therefore, significantly boosting conventional
high-loop computations [27].
In this work, we generalize the semiclassical method to

theories with non-Abelian symmetries beyond the Uð1Þ
Abelian case [26] and non-AbelianOðNÞ case in both 4 − ϵ
[28] and 6 − ϵ dimensions [29]. We use the UðNÞ ×UðNÞ
Higgs model as an example to illustrate our procedure,
which by itself is more general. Note that it is trivial to
identify the operator from the charge configuration ofOðNÞ
model, since by a symmetry rotation, it can be simplified to
a single charge problem like the trivialUð1Þ case. Thus, our
task to identify the operator will be much tougher due to the
nontrivial charge configuration.
The main point of our work is to deal with non-Abelian

theories with more than one coupling and that the CFT is
complex with an emerging walking behavior. We highlight
a few novelties as follows. For a specific charge configu-
ration, we identify a family of corresponding operators
and compute their scaling dimensions. Remarkably, we
find agreement with the available results stemming from
conventional perturbation theory by employing the state-
operator correspondence [30,31] at a complex CFT.
Our findings complement the nonperturbative large-

charge approach employed in [32,33] to investigate near-
conformal dynamics. Also the first nonsupersymmetric
four-dimensional application to the gauged-Yukawa version
of our UðNÞ ×UðNÞ model is analyzed at a large charge
in [23].
The work is organized as follows. We first introduce the

theory and the associated complex CFT, we then introduce
the charge configurations, construct the spectrum of oper-
ators at fixed charge, and then analyze the low energy
spectrum of the theory associated with the related charge
configuration. Using the state-operator correspondence at
the complex CFT, we determine the ground state energy
and associated scaling dimensions in the charge expansion.
Then, combining the semiclassical approach with ordinary
perturbation theory, we reconstruct the full two loops
scaling dimension for the whole family of fixed-charge
operators. Remarkably, we are able to write it in a form
valid for real and complex couplings, encompassing the
case where both couplings are purely reals and the theory
walks. Finally, we compare our choice of charge configu-
ration to the one considered in [23].

II. THE UðNÞ × UðNÞ HIGGS MODEL
AS A COMPLEX CFT

In Euclidean spacetime, the UðNÞ ×UðNÞ linear sigma
model is defined via the bare Lagrangian,

L ¼ Trð∂μH†∂μHÞ þ u0TrðH†HÞ2 þ v0ðTrH†HÞ2; ð1Þ

where H is a N × N matrix with complex entries,
which transforms in the ðN; N̄Þ representation of the
UðNÞ × UðNÞ symmetry and can be written in terms of
2N2 real scalar fields,

ðHÞaα ¼
ϕþ iηffiffiffiffiffiffiffiffiffi
2NF

p δaα þ
XN2−1

A¼1

ðhA þ iπAÞTA
aα ð2Þ

where TA
aα are the generalized Gell-Mann matrices, nor-

malized as TrðTATBÞ ¼ 1
2
δAB. The N-rescaled couplings

of the model are αh ¼ uN
ð4πÞ2 and αv ¼ vN2

ð4πÞ2 and, in terms

of these rescaled couplings, the one-loop beta functions in
4 − ϵ dimensions read

βαv ¼ −ϵαv þ 4α2v

�
1þ 4

N2

�
þ 16αvαh þ 12α2h ð3Þ

βαh ¼ −ϵαh þ
24

N2
αvαh þ 8α2h: ð4Þ

The beta functions to five loops have been derived in [34].
For αh ¼ 0, Lagrangian (1) reduces to the Oð2N2Þ model

with the 1-loop fixed point (FP) αOð2N2Þ
v ¼ ϵN2

4ð4þN2Þ while for
αh ≠ 0, two fixed points at 1-loop emerge, and they are

α�v ¼ ϵN2
9þ N

�
−N � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N2 − 6

p �
8ð27 − 8N2 þ N4Þ

α�h ¼ −ϵN
5N − N3 � 3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N2 − 6

p

8ð27 − 8N2 þ N4Þ : ð5Þ

For N >
ffiffiffi
3

p
, they are complex thus defining two complex

interacting CFT’s.
To elucidate the impact of the complex CFT on the

dynamics of the model, we consider the infinite N limit.
Here, the single-trace beta function βαh decouples from the
double-trace one. An interacting fixed point in the infrared
occurs for α�h ¼ ϵ=8. Substituting this value in the beta
function for the double-trace operator, one notices that the
double-trace beta function is positive and has a minimum
near the origin controlled by ϵ2. Therefore, the running
of αv slows near this point; i.e., its running behavior is
replaced by a walking one. One can also show that such
behavior persists at finite N.
As we showed in [28], in the OðNÞ model, fixed-charge

operators with the lowest scaling dimension are Q-index
traceless symmetric tensors with the classical dimensionQ.
For Q ¼ 2 and N > 2 [when the representation (2) is
irreducible], we obtain the decomposition of the 2-index
traceless symmetric tensor as
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ð6Þ

We computed the 1-loop scaling dimensions Δ1−loop ¼
2þ γ1−loop for the operators appearing in this decomposi-
tion, which are shown in the table below [with the scaling
dimensions for the representations (1, Adj) and (Adj, 1)
being identical],

ð7Þ

where KiðK̄iÞ and LiðL̄iÞ are the Clebsch-Gordan coef-
ficients for the SUðNÞ representations and ,
respectively. The Tr½TaHTaH†� appeared earlier in [35] and
will be used to test our semiclassical computation. For
αh ¼ 0, the operators have the same scaling dimensions
due to the enhanced Oð2N2Þ symmetry.

III. CHARGING THE SYSTEM

It would be desirable if we can probe the complex CFT
associated with the complex fixed points by methods that
go beyond the conventional perturbation theory. In this
regard, the semiclassical approach delineated in [26] is well
suited, which extracts the scaling dimensions of the lowest-
lying fixed-charge operators by virtue of the state operator
correspondence [20]. We therefore perform aWeyl map to a
cylinder of radius R (i.e., Rd → R × Sd−1), with the
cylinder action given by

Scyl ¼
Z

ddx
ffiffiffi
g

p ½Trð∂μH†∂μHÞ þ u0TrðH†HÞ2

þ v0ðTrH†HÞ2 þm2TrðH†HÞ�: ð8Þ

Here, g denotes the metric determinant and m2 ¼ ðd−2
2R Þ2 is

the coefficient of the conformal coupling required by Weyl
invariance. An operator with a scaling dimension Δ in the
CFT corresponds to a state with energy E ¼ Δ=R, which
can be computed from a fixed-charge path integral on the
cylinder [26].
Following [23], it is simplest to consider a homogeneous

ground state with the ansatz (with τ being the cylinder
time),

H0ðτÞ ¼ e2iMτB; ð9Þ

where M and B are diagonal matrices. For such solutions,
the value of Cartan charges for the SUðNÞL × SUðNÞR
symmetries are encoded in the traceless charge matrices,

QL ≡ −V _H0H
†
0 ¼ −2iVMB†B;

QR ≡ VH†
0
_H0 ¼ 2iVMB†B; ð10Þ

with V ¼ Rd−1Ωd−1 being the volume of Sd−1. Note
QL þQR ¼ 0 follows as a consequence of our diagonal
ansatz solution, Eq. (9). The normalization of the charge
matrices is chosen such that the operator Trðe21He12H†Þ,
with the N × N constant matrix epq defined by ðepqÞjk ¼
δjpδkq, corresponds to the charge configuration,

QL;1=2 ¼ −QR;1=2 ¼ diagf−1=2; 1=2; 0;…; 0g: ð11Þ

A general fixed-charge operator with charge configuration
Q ¼ QL ¼ −QR can be constructed as, for example,

Tr½ΠjðτjHτTj H
†Þjyjj�: ð12Þ

Here, yj is an integer, determined by first choosing a
root basis βj, j ¼ 1; 2;…; N − 1, onto which we decom-
pose Q as

Q ¼ Σj¼N−1
j¼1 yjĥβj ; ð13Þ

where ĥβj’s are the roots mapped into the Cartan subalgebra
of SUðNÞ and satisfy the normalization condition
Trðĥ2βjÞ ¼ 1

2
, τj ¼ epq for some p, q that depend on j

and should be chosen to be an element in the root subspace
of βj. For a given charge configuration, one may obtain
variations of Eq. (12) by changing the root basis, redis-
tributing the trace operation, or changing the order of
different τjHτTj H

† factors, giving rise to multiple operators
corresponding to a given charge configuration. In any case,
the operator construction involves a decomposition equa-
tion like Eq. (13). The normalization condition dictates
entries of ĥβj ’s must be integers or half-integers, and since
yj’s must be integers [see Eq. (12)], we conclude entries of
Q must be integers or half-integers as well.
The operator identification for a generic charge configu-

ration is complicated and not unique. However, it can be
shown that a special family of charge configurations,

QL;J ¼ −QR;J ¼ diagf−J; J; 0;…; 0g; ð14Þ

with J being a positive integer or half-integer, corresponds
to a unique fixed-charge operatorOJ ¼ Tr½ðe21He12H†Þ2J�
with minimal classical scaling dimension Q ¼ 4J living in
the representation ðΓJ;ΓJÞ of SUðNÞL × SUðNÞR, with the
irreducible representation ΓJ of SUðNÞ defined through
its Dynkin label ð2J; 0;…; 0; 2JÞ. For J ¼ 1=2, ΓJ reduces
to the adjoint of SUðNÞ. The uniqueness is related to the
fact that this special family of charge configurations
corresponds to the highest weights in the tensor product
of the adjoint representations. More detail about operator
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identification from charge configurations is presented in
the Appendixes.
Motivated by the form of QL;J, QR;J, we parametrize

the M, B matrices as M ¼ −idiagfμ;−μ; 0;…; 0g, B ¼
diagfb; b; 0;…; 0g, with μ > 0, b > 0. Then according to
Eq. (10), we have J ¼ 2Vμb2. The ansatz Eq. (9) with this
form of M, B satisfies the equations of motion (EOM)
derived from the cylinder action as long as

2μ2 ¼ ðu0 þ 2v0Þb2 þ
m2

2
; ð15Þ

which fixes μ and b for given J and m.
The fixed-charge path integral is equivalent to an

unconstrained path integral with an effective action Seff
obtained by adding appropriate boundary terms resulting
in adding 16μ2b2 to Scyl [26]. The action Seff evaluated on
the solution Eq. (9) gives classical energy. To compute the
leading quantum correction, we expand Seff around the
fixed-charge solution Eq. (9) to obtain an effective
Lagrangian Lquad to a quadratic order in the fluctuation
field. The leading quantum correction is then computed
through the functional determinant associated with Lquad,
which is equivalent to a sum of dispersion relations over all
degrees of freedom.
The dispersion relations and their multiplicity can be

explicitly worked out,

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ2

q
4N − 8d:o:f:

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4ð1− a0Þμ2 þ a0m2

q
2ðN − 2Þ2 d:o:f

ω3;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ2

q
∓ 2μ 2N − 3d:o:f: each

ω5;6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ2 þ 2ð4μ2 −m2Þa0

q
� 2μ oned:o:f: each

ω7;8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 12μ2 −m2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16μ2p2 þ ðm2 − 12μ2Þ2

qr

ω9;10 ¼ ðJ2l þ ð8þ 4a0Þμ2 − a0m2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð8þ 4a0Þμ2 − a0m2�2 þ 16μ2J2l

q
Þ
1
2
; ð16Þ

where a0 ¼ u0
u0þ2v0

, and J2l ¼ lðlþ d − 2Þ=R2 corresponds

to the eigenvalues of the Laplacian on Sd−1. Goldstone
modes appear as a consequence of symmetry breaking
enforced by fixing the charge. The symmetry breaking

pattern can be written as G0→
exp

G1 →
spont

G2, with

G0 ≡ SUðNÞL × SUðNÞR ×Uð1ÞA
G1 ≡ SUðN − 2ÞL × SUðNÞR ×Uð1ÞL3 × Uð1ÞL5 ×Uð1ÞA
G2 ≡ SUðN − 2ÞL × SUðN − 2ÞR ×Uð1ÞD3

× Uð1ÞD5 ×Uð1ÞA6: ð17Þ

Here, SUðN − 2ÞL denotes the left SUðN − 2Þ transforma-
tions with generators living in the lower ðN − 2Þ × ðN − 2Þ
block, and the remaining Uð1Þ’s are generated from

Uð1ÞL3ðD3Þ → diagf1;−1; 0;…; 0gLðDÞ ð18Þ

Uð1ÞL5ðD5Þ → diagf1; 1; 0;…; 0gLðDÞ ð19Þ

Uð1ÞA6 → diagf0; 0; 1;…; 1gA; ð20Þ

where the subscript L means left transformation, D means
the diagonal part of left and right transformation [i.e.,
Uð1ÞLþR], and finally A means axial part of the left and
right transformation [i.e., Uð1ÞL−R]. We omitted the extra
vectorial Uð1Þ symmetry in the breaking pattern analysis
above because it acts as a spectator.
Since Lorentz symmetry is explicitly broken, we

expect both relativistic (type I) and nonrelativistic (type II)
Goldstones [36]. In fact, the minus sign solution in ω3;4

corresponds to 2N − 3 type II Goldstones, while two
additional type I Goldstones come from the minus sign
solution in ω7;8 and ω9;10, with the one in ω7;8 being the
conformal mode. When each type I Goldstone is counted
once and type II Goldstone twice, the sum of Goldstone
degrees of freedom is 4N − 4, which matches the number
of broken generators at the spontaneous breaking step,
saturating the Nielsen-Chadha bound [36].

IV. SEMICLASSICAL ANALYSIS AND RESULTS

The leading order (LO) ground state energy ELO is
obtained by evaluating the effective action Seff on the
classical trajectory (9) and reads

ELO ¼ mNð48ðμmÞ4 − 8ðμmÞ2 − 1Þ
16ðαh þ αyÞ

and αy ≡ 2αv=N:

ð21Þ

Using the EOM (15) and that J ¼ 2Vμb2, we can express μ
m

in terms of the parameter J ≡ 2J αhþαy
N as

μ

m
¼ 1

2

3
1
3 þ x

2
3

3
2
3x

1
3

; ð22Þ

where x ¼ 36J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 1296J 2

p
. The coupling J con-

trols the transition between the large charge (J ≫ 1)
and the perturbative (J ≪ 1) regimes. Our final expression
for the leading contribution to the anomalous dimension
ΔLO ¼ RELO is

ΔLO ¼ N
144ðαh þ αyÞ

�
3
1
3ð31

3 þ x
2
3Þ4

x
4
3

− 2
3

2
3ð31

3 þ x
2
3Þ2

x
2
3

− 9

�
;

ð23Þ
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and, notice that in ΔLO, we used generic values for the
couplings αh and αy since at LO Lagrangian (1) is Weyl
invariant for any values of the couplings.
We now proceed with the computation of the leading

quantum corrections ΔNLO. Its bare expression is given by
the fluctuation functional determinant and reads

Δbare
NLO ¼ R

2

X∞
l¼0

nl

�X
i

giðNÞωiðlÞ
�
; ð24Þ

where nl ¼ ð2lþd−2ÞΓðlþd−2Þ
Γðlþ1ÞΓðd−1Þ is the Laplacian multiplicity

on Sd−1. The inner sum runs over all the dispersion relations
ωi computed in (16), each counted with its multiplic-
ity giðNÞ.
After renormalization, we can expressΔNLO in terms of a

convergent sum, which can be computed numerically.

Thus, following the procedure of [26], we arrive at our
final expression for the NLO contribution in the semi-
classical expansion at the fixed points, which reads

ΔNLO ¼ ρþ 1

2

X∞
l¼0

�
Rð1þ lÞ2

�X
i
giðNÞωiðlÞ

�
d¼4

þ σ

�
:

ð25Þ

The functions ρðJ �; N; α�h; α
�
yÞ and σðl;J �; N; α�h; α

�
yÞ are

given in the Appendixes. Our results (23) and (25) resum
to all orders in the coupling J the LO and NLO terms in
the charge expansion, respectively. We now focus on the
perturbative regime at small J , where the sum of (23)
and (25) evaluated at the FPs reads

ΔLO þ ΔNLO ¼ Q

�
1þQðα�h þ α�yÞ

N
−
2ð7þ 2NÞα�h2 þ ð9þ 8NÞα�hα�y þ ð5þ N2Þα�y2

Nðα�y þ α�hÞ
þOðJ 2Þ

�
; ð26Þ

whereQ ¼ 4J is the classical dimension of the operator, and for theOðJ Þ term, we substituted J ¼ Q α�hþα�y
2N explicitly. We

checked that for α�h ¼ 0 the above results reproduce the anomalous dimension of the Q-index traceless symmetric Oð2N2Þ
tensor with the classical dimension Q. The presence of the couplings at the denominator in the perturbative expansion is a
somewhat surprising feature of our results which, at first sight, can look suspicious. Nevertheless, one has to remind oneself
that the above expression is strictly valid only at the fixed points so one should look at the conformal dimension Δ as a
function of ϵ and not as a function of the couplings.
Considering the FPs (5), we obtain the scaling dimension at OðϵÞ, which reads

Δ¼Qþ
�
−126þ 10Nþ 34N2− 2N3− 4N4� ið6−2NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N2− 6

p

8ð27− 8N2þN4Þ Qþ 18− 5N − 2N2þN3� ið2N − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N2 − 6

p

8ð27− 8N2þN4Þ Q2

�
ϵ

þOðϵ2Þ: ð27Þ

From the group-theoretical arguments given in the pre-
vious section, this result should correspond to the 1-loop
scaling dimensions for the family of the charged operators
OJ ¼ Tr½ðe21He12H†ÞQ=2�. It is easy to check that indeed
for Q ¼ 2 and at 1-loop, Eq. (27) matches the anomalous
dimension of the biadjoint operator Tr½TaHTaH†� at the fixed
point Eq. (5) shown in Table (7). The remarkable agreement
between our results with the ones stemming from conven-
tional perturbation theory shows that the state-operator
correspondence [30,31] and the semiclassical method can
be applied to a complex CFT.

We can combine our semiclassical results with the
knowledge of the 2-loop anomalous dimension for
Tr½TaHTaH†� [35], to extract the complete 2-loop anoma-
lous dimension for the whole family. Remarkably, assum-
ing an ordinary perturbative power series expansion in
both couplings combined with the constraint that for
αh ¼ 0, we reproduce the known result for the Oð2N2Þ
model [28]. We can write it in a form valid beyond the
FPs; i.e., it holds for any perturbative values of the
couplings. We have

Δ2−loops ¼ QþQðQ − 1Þαy
N

þQðQ − 2Þαh
N

−Q

�
2

�
3

N2
−

4

N
− 1

�
α2h þ 4

�
2

N2
−

3

N

�
αhαy þ

1

2

�
1

N2
− 3

�
α2y

�

þQ2

�
2

�
1

N2
−

2

N

�
α2h þ 4

�
3

N2
−

2

N

�
αhαy þ

�
3

N2
− 1

�
α2y

�
−
2Q3ðαh þ αyÞ2

N2
; ð28Þ
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where we highlighted in red the term that was not predicted
by our semiclassical result as it is an NNLO in the charge
expansion. It would be interesting to extend this strategy to
higher loops.
The above shows that the semiclassical approach can be

successfully applied to four-dimension real theories, which
describe near-conformal physics featuring complex CFTs.
Before concluding, we note that the charge configuration

used so far differs from the one adopted in [23] when
investigating the large charge regime of the UðNÞ ×UðNÞ
linear sigma model embedded in a safe theory. In their
case, the charge assignment reads Q�

L;J ¼ −Q�
R;J ¼

diagfJ;…; J|fflfflffl{zfflfflffl}
N=2

;−J;…;−J|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N=2

g. For such a configuration, the

classical dimension Q of the corresponding fixed-charge
operator satisfiesQ ¼ 2JN. As discussed earlier, J must be
positive and an integer or half-integer with the minimal
value 1=2; thus, in this case, Q is nontrivially related to N
by the constraint Q ≥ N. As a consequence, for a given Q,
the irreducible representation to which the operator belongs
depends on the value of N, making the identification of
such operators highly nontrivial. For instance, using the
semiclassical method exploited here, we have checked that
for Q ¼ 2 and arbitrary N > 2, the corresponding result
does not match any of the operators in Table (7), while for
N ¼ 2 and arbitrary Q it coincides with Eq. (28). Notice
that this is a simple consequence of the fact that for N ¼ 2,
this charge configuration coincides with ours. The bottom
line is that one needs to choose which charge configuration
to consider with care when analyzing the fixed charge
sectors of a CFT. We will further analyze this issue and
related ones in a follow-up paper.
In summary, in this work, we generalize the semi-

classical method to non-Abelian theories with nontrivial
charge configurations. For the first time, we employ, with
an explicit example, to illustrate that the semiclassical
method and state-operator correspondence can be applied
to complex CFTs.
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APPENDIX A: OPERATOR IDENTIFICATION
FROM CHARGE CONFIGURATIONS

For simplicity, we confine ourselves to charge configu-
rations that satisfy QL þQR ¼ 0, dictated by the diagonal

ansatz solution, and simply write QL as Q. Q lives in the
Cartan subalgebra H of SUðNÞ, and its meaning is
characterized by the set of charge eigenvalues associated
with a set of orthonormal basis elements inH. Suppose ĥ is
one of the basis elements. In the self-representation of
SUðNÞ in which ĥ is a traceless diagonal N × N matrix, we
determine the proper normalization condition for ĥ as
Trðĥ2Þ ¼ 1

2
. For example, ĥj ≡ 1

2
ðej;j − ejþ1;jþ1Þ for j ¼

1; 2;…; N − 1 are normalized elements (although one
should be careful that for adjacent j’s the elements are
not orthogonal). For any normalized basis element ĥ, the
associated charge eigenvalue qh for a given charge con-
figuration Q can be computed as

qh ¼ 2TrðQhÞ: ðA1Þ

Note that only for orthonormal basis elements this is
equivalent to the coefficient extracted from the decom-
position of Q onto basis elements, and different choices of
orthonormal basis give charge eigenvalues that are com-
patible with each other. The key relation in fixing all these
normalizations is the following commutation relation in
SUðNÞ Lie algebra:

½ĥj; epq� ¼
1

2
ðδjp − δjq − δjþ1;p þ δjþ1;qÞepq; ðA2Þ

for j ¼ 1; 2;…; N − 1 and p; q ¼ 1; 2;…; N with p ≠ q.
A special case is

½ĥj; ej;jþ1� ¼ ej;jþ1; ðA3Þ

when this equation is turned into a commutation relation
between Noether charge and fixed-charge operators con-
structed from fields that satisfy canonical commutation
relations. The standard normalization condition introduced
above is then implied.
The general method to construct fixed-charge operator

with the minimal classical scaling dimension corresponding
to a given charge configuration starts with building blocks
that have simple definite transformation properties under
SUðNÞL × SUðNÞR × Uð1ÞA. Since we are concerned with
charge configurations that satisfy QL þQR ¼ 0, the build-
ing block takes the form TrðτHτTH†Þ with τ being an
element in some root subspace of the SUðNÞ Lie algebra.
Obviously, this object lives in the biadjoint representation
of SUðNÞL × SUðNÞR. To build operators with more fields,
one replicates the same structure inside the same trace
operation, such as

Tr½ΠjðτjHτTj H
†Þjyjj�: ðA4Þ
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Here, yj is an integer, and τj ¼ epq for some p, q that
depend on j. More generally, one may choose to redistri-
bute the trace operation (i.e., splitting one single trace to
multiple traces) and changing the order of matrix products
for different τjHτTj H

† factors, to obtain more operators
associated with the same charge configuration. The value
of yj should be determined from the charge configurationQ.
Since we consider operators with the minimal classical
scaling dimension, it suffices to decompose Q onto a root
basis βj; j ¼ 1; 2;…; N − 1, which in precise terms mean to
consider the decomposition,

Q ¼ Σj¼N−1
j¼1 yjĥβj ; ðA5Þ

where ĥβj’s are the roots mapped into H, which satisfy the

standard normalization condition Trðĥ2βjÞ ¼ 1
2
. Note ĥβj’s are

not orthogonal, and yj’s do not correspond to charge
eigenvalues. However, by making a connection to an
arbitrary orthonormal basis, one may prove that when τj
in Eq. (A4) is chosen to be an element in the root subspace of
βj, yj should be determined from the decomposition
in Eq. (A5).
For instance, for a class of charge configurations

QG ¼ diagfQ1;−Q1;Q3;−Q3;…;QN−1;−QN−1g, if we
choose the root basis such that ĥβj ¼ ĥj, we find the
nonzero yj’s are given by y1 ¼ 2Q1; y3 ¼ 2Q3;…; yN−1 ¼
2QN−1. Since yj’s must be an integer, this implies
Q1; Q3;…; QN−1 must be integers or half-integers. This
is not surprising since our charge configuration corresponds
to a weight of Lie algebra representation and thus can only
take a discrete set of values.
The number of operators that can be constructed in this

manner grows drastically if we realize that we have the
freedom to change the root basis and redo the decom-
position, to redistribute the trace operation, and to utilize
noncommutativity of matrix products. In general, we need
to change the root basis in all possible manners to find one
or more optimal root basis that lead to the minimal classical
scaling dimension (i.e., minimizing the sum of jyjj). After
the optimal root bases are found, we need to consider the
above-mentioned variations that all correspond to the same

charge configurations. Algebraically some of the variations
may be identical. Moreover, in general, all the operators
constructed in this manner only correspond to the same
charge configuration, or weight; however, it is not guar-
anteed that they are already organized into definite irre-
ducible representations.
Due to these algebraic complications, a complete

operator identification for a generic charge configuration
looks quite difficult. Nevertheless, we found a special
family of charge configurations defined by QL;J ¼
−QR;J ¼ diagf−J; J; 0;…; 0g lead to great simplification
since one can prove that it corresponds to a unique fixed-
charge operator OJ ¼ Tr½ðe21He12H†Þ2J� living in the
representation ðΓJ;ΓJÞ of SUðNÞL × SUðNÞR, with the
irreducible representation ΓJ of SUðNÞ defined through its
Dynkin label ð2J; 0;…; 0; 2JÞ. Any variations either lead to
operators with larger classical scaling dimensions or lead to
the same operator written in a different form. The unique-
ness is related to the fact that this special family of charge
configurations corresponds to highest weights in tensor
product of the adjoint representations.
On the other hand, if we consider QF ¼ diagfJ;−J;

J;−J;…; J;−Jg (J > 0), which is the charge configuration
used in [23], then it does not correspond to a unique
operator in general. Moreover, according to the decom-
position in Eq. (A5), it should correspond to operators with
minimal classical scaling dimension Q ¼ 2NJ. Since the
minimal nonzero value of J is 1

2
, it implies for this family of

charge configurations Q ≥ N. Only for N ¼ 2; J ¼ 1
2
, QF

reduces to Q1=2 which corresponds to the biadjoint
of SUð2ÞL × SUð2ÞR.

APPENDIX B: THE FUNCTIONS ρðJ �;N;α�
h;α

�
yÞ

AND σðl;J �;N;α�
h;α

�
yÞ

Here, we provide explicit expressions for the functions
ρðJ �; N; α�h; α

�
yÞ and σðl;J �; N; α�h; α

�
yÞ, which appear in

our result (25) for the NLO contribution to the anomalous
dimension in the semiclassical expansion.
Recalling that α�y ¼ 2α�v

N and that x� ¼ 36J �þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 1296J �2p

, we have
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ρðJ �;N;α�h;α
�
yÞ

¼ 1

240ðα�hþα�yÞ2
�
10

3
α�h

2

�
−72N2−

3231=3Nðx�2=3þ31=3Þ4
x�4=3

−
4832=3Nðx�2=3þ31=3Þ2

x�2=3
þ162N

−
ð432=3x�4=3þ15x�2=3þ1231=3Þð1231=3α�hð2α�hþα�yÞþ432=3x�4=3α�hð2α�hþα�yÞþ3x�2=3ð18α�h2þ5α�hα

�
y−4α�y2ÞÞ

x�4=3ðα�hþα�yÞ2
�

þ20

3
α�hα

�
y

�
−
ð432=3x�4=3þ15x�2=3þ1231=3Þð1231=3α�hð2α�hþα�yÞþ432=3x�4=3α�hð2α�hþα�yÞþx�2=3ð62α�h2þ31α�hα

�
y−4α�y2ÞÞ

x�4=3ðα�hþα�yÞ2

−
832=3N2ðx�2=3þ31=3Þ2

x�2=3
−54N2−

3231=3Nðx�2=3þ31=3Þ4
x�4=3

−
1632=3Nðx�2=3þ31=3Þ2

x�2=3
þ90N

�

þα�y2
�
10

�
4ðx�2=3þ31=3Þ2
331=3x�2=3

−1
��

−
45α�h
α�hþα�y

−
9α�h

2

ðα�hþα�yÞ2
−
432=3ðx�2=3þ31=3Þ2ð8α�h2þ7α�hα

�
yþ2α�y2Þ

x�2=3ðα�hþα�yÞ2
−18

�

þN2

�
−
40ð2x�8=3þ33x�2=3þ1131=3x�2þ631=3Þ

32=3x�4=3
−825

���
ðB1Þ

and

σðl;J �;N;α�h;α
�
yÞ

¼ 1

4lðα�hþα�yÞ2
�
2α�h

2

�
−4lðlþ1Þ3N2−2N

�
4ðx�2=3þ31=3Þ2

331=3x�2=3
−1

��
ð2lþ1Þ2−4ðx

�2=3þ31=3Þ2
331=3x�2=3

�
þð432=3x�4=3þ15x�2=3

þ1231=3Þα
�
hα

�
yð3ð6l2þ6lþ5Þx�2=3þ432=3x�4=3þ1231=3Þþð832=3x�4=3þ30x�2=3þ2431=3Þα�h2þ18lðlþ1Þx�2=3α�y2

27x�4=3ðα�hþα�yÞ2
�

þ4α�hα
�
y

�
−lðlþ1ÞN2

�
4lðlþ2Þþ4ðx�2=3þ31=3Þ2

331=3x�2=3
þ3

�
−2N

�
4ðx�2=3þ31=3Þ2
331=3x�2=3

−1
��

2lðlþ1Þ−4ðx
�2=3þ31=3Þ2
331=3x�2=3

þ1

�

þð432=3x�4=3þ15x�2=3þ1231=3Þ

×
α�hα

�
yð−3ð2l2þ2l−5Þx�2=3þ432=3x�4=3þ1231=3Þþ2α�h

2ð−3ð2l2þ2l−5Þx�2=3þ432=3x�4=3þ1231=3Þþ6lðlþ1Þx�2=3α�y2
27x�4=3ðα�hþα�yÞ2

�

þα�y2
�
2

�
4ðx�2=3þ31=3Þ2

331=3x�2=3
−1

��
−3α�h

2l2þ2lþ1

α�hþα�y
−

3α�h
2

ðα�hþα�yÞ2
þ4ðx�2=3þ31=3Þ2ð8α�h2þ7α�hα

�
yþ2α�y2Þ

331=3x�2=3ðα�hþα�yÞ2
−2l2−2l−2

�

−N2

�
4

�
4lðlþ1Þðx�2=3þ31=3Þ2

331=3x�2=3
þlðlþ1Þð2lðlþ2Þþ1Þ−4ðx

�2=3þ31=3Þ4
932=3x�4=3

�
þ8ðx�2=3þ31=3Þ2

331=3x�2=3
−1

���
: ðB2Þ
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