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In the present paper, we investigate the influence of a grounded perfectly conducting surface on the
photon self-energy of a 2þ 1D system of massless Dirac fermions, whose electron interaction is described
by pseudoquantum electrodynamics. We calculate the temporal component of the polarization tensor up to
2-loop perturbation order in the presence of the conducting surface and, applying the Kubo formula, we
obtain the longitudinal and optical conductivities of such system. When the distance between the system
and the plate tends to infinity, we recover the correspondent results found in the literature. Since
pseudoquantum electrodynamics proved to give a good description of the transport properties of graphene,
our results can be useful as an alternative way to control the longitudinal and optical conductivities of this
material.
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I. INTRODUCTION

Recently, quantum field theories in 2þ 1D have been
extensively studied. This interest is due, in part, to their
potential applications in the physics of condensed matter,
such as, for instance, the quantum Hall effect [1] and the
theory of superconductivity with a high critical temper-
ature value [2–4]. The discovery of graphene has pro-
vided a fascinating possibility to relate relativistic
quantum field theories to a condensed matter system
[5]. In this material, the valence electrons are originated
in sp2 orbitals (σ-type bonds) and pz orbitals (π-type
bonds). However, since the electrons of pz orbitals are
weakly bound to the atoms, they are effectively the most
important electrons for the optical and electrical transport
properties of graphene [5]. Besides that, the electronic
dispersion of graphene exhibits a particle-hole symmetry
and, for low energies, a linear dependence on the
momentum k is observed, E�ðkÞ ≈�vFjkj [6], where
vF is the bare Fermi velocity. These characteristics allow
us to relate the pz electrons in graphene to free Dirac
massless particles in 2þ 1D (hereafter we refer to the
2þ 1D system of massless Dirac fermions as 2þ 1D
system). The fact that electrons in graphene are relativ-
istic opened the possibility of predicting, in this material,
typical phenomena of particle physics. In this sense,
some phenomena, such as Klein’s paradox [7–10], and
Zitterbewegung [11,12], are examples known to occur in
graphene. In addition, graphene also exhibits an

unconventional transport phenomenon, characterized by
the existence of the anomalous quantum Hall effect [13]
and minimal dc conductivity, whose value in the approxi-
mation of noninteracting electrons is given by ðπ=2Þe2=h
[14]. Since the relevance of electronic interactions in
graphene was confirmed by the experimental observation
of the renormalization of the Fermi velocity [15], as
predicted in Ref. [16] with a theory that considered such
interactions, there has been a great effort in trying to
obtain models that describe some physical properties of
these materials.
The electronic interaction between pz electrons in

graphene is described by the minimal coupling between
the electronic current and the gauge field. However, this
is not easily incorporated into the model, because the
electrons in graphene are constrained to move in a 2þ
1D plane, whereas the photon lives in 3þ 1D. The usual
quantum electrodynamics in 2þ 1D is not a good
candidate to describe such a system, because for this
theory both electrons and photons are confined to the
plane. Furthermore, this theory produces an interaction
between electrons proportional to ln r [17] (nonphysical),
instead of the Coulomb potential 1=r. An appropriate
gauge theory that has the characteristic of mixing
dimensions is pseudoquantum electrodynamics (PQED)
[18], also known as reduced quantum electrodynamics
[19], which is the projection of QED4 on the plane and
leads to a nonlocal gauge field. This approach provides
the correct propagator of the gauge field and properly
accounts for several features, such as scale invariance
[20]. In particular, it has been shown that these models
respect causality [21] and unitarity [22]. Indeed, the
gauge field propagator in PQED has support in the
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light-cone surface and therefore the theory obeys the
Huygens principle, as in the case of QED4, and in
contrast to QED3 [23]. Furthermore, PQED yields the
Coulomb potential in the static limit, which is a desirable
feature for applications in the physics of two-dimensional
materials [24].
When the dimensional reduction from the QED4 to

PQED takes into account the effects of boundary con-
ditions imposed to the electromagnetic field in 3þ 1D,
the influence of such external conditions is carried into
PQED, producing the so-called cavity PQED [25,26]. In
this context, Silva et al. [25], showed that the renorm-
alization of the Fermi velocity is inhibited by the presence
of a grounded perfectly conducting surface. Such effect,
caused by a modification in the photon propagator by the
conducting surface, should also have an influence on the
polarization tensor, which, using the Kubo formula,
determines the longitudinal conductivity, and, in the
low momentum limit, results in the optical conductivity
of the system [27].
In the present paper, we investigate how the conducting

plate and its distance to the 2þ 1D system affect the photon
self-energy, which, as mentioned, results in a modification
of the conductivity. More specifically, we compute the
2-loop contributions to the 00-component of the polariza-
tion tensor for the 2þ 1D system in the presence of a
grounded perfectly conducting plate. From this result, the
longitudinal and optical conductivities are obtained,
according to the Kubo formula.
The paper is organized as follows. In Sec. II, we present

the model and the Feynman rules. In Sec. III, we review the
influence of a conducting surface on the renormalized
Fermi velocity in the static regime, obtained in Ref. [25]. In
Sec. IV, we calculate the polarization tensor at 2-loop
perturbation order in the presence of the conducting sur-
face. In Sec. V, we merge all results and get the longitudinal
conductivity. Also, the optical limit of the conductivity is
investigated. In Sec. VI, we analyze our results and make
final comments.

II. THE MODEL AND FEYNMAN RULES

PQED, which was first proposed by Marino [18],
describes the electromagnetic interaction between electrons
moving on a plane in a 2þ 1D spacetime. In PQED,
although electrons are confined to a plane, they interact,
effectively, as particles in 3þ 1D. Formally, this system
can be achieved by changing the usual Maxwell term F2

μν

by F2
μν=

ffiffiffiffiffiffiffiffi
−□

p
, where □ is the d’Alembertian operator.

Besides that, since the nonlocal gauge field also produces
the full electromagnetic interaction, independently of
whether the matter is relativistic or not, we can easily
include the Lorentz symmetry breaking term in the matter
field. Considering this, we start with anisotropic PQED,
given by the effective Lagrangian (ℏ ¼ c ¼ 1)

LPQED ¼ FμνFμν

2ð−□Þ1=2 þ ψ̄aðiγ0∂0 þ ivFγ ·∇Þψa þ jμAμ

−
ξ

2
Aμ

∂μ∂ν

ð−□Þ1=2 Aν; ð1Þ

where Fμν is the usual electromagnetic tensor, vF is the bare

Fermi velocity of the electrons in the 2þ 1D system, ψ†
a ¼

ðψ�
A↑ψ

�
A↓ψ

�
B↑ψ

�
B↓Þa is the four-component Dirac spinor

representation of the electrons The flavor index a repre-
sents a sum over valleys K and K0, A and B denote the
sublattices in graphene, whereas ↑ and ↓ are the different
spin orientations [23,25,26,28]. γμ ¼ ðγ0; vFγÞ are rank-4
Dirac matrices, jμ is the matter current in 2þ 1D, and the
last term is the gauge fixing. PQED has been successfully
used in the description of several properties 2þ 1D
systems [24–26,28–37].
Considering Eq. (1), the photon propagator is given

by [29]

Δð0Þ
μν ðkÞ ¼ 2π

κ
ffiffiffiffiffi
k2

p
�
δμν −

�
1 −

1

ξ

�
kμkν
k2

�
; ð2Þ

where κ is the dielectric constant of the environment in cgs
units, and we defined the quadrimomentum k ¼ ðk0;kÞ,
with =k ¼ γ0k0 þ vFγ · k and k2 ¼ k20 þ v2Fjkj2. Also, since
we are working in the Euclidean space representation, the γ
matrices satisfy fγμ; γνg ¼ 2δμνI, where μ, ν ¼ 0, 1, 2 and
I ¼ diagð1; 1; 1Þ [38].
Assuming the Feynman gauge (ξ ¼ 1) and the static

regime (k0 ¼ 0), we get

Δð0Þ
μν ðjkjÞ ¼ 2π

κjkj δ0μδ0ν; ð3Þ

which, by a Fourier transform [17], leads to the
Coulombian potential for static charges,

VðjrjÞ ¼ e
κjrj ; ð4Þ

where e is the bare coupling constant and jrj is the distance
between an electron and a point where the potential is
calculated. The bare fermion propagator is defined as

Sð0ÞF ðkÞ ¼ γ0k0 þ vFγ · k
k20 þ v2Fjkj2

: ð5Þ

From (3), the electron self-energy becomes [39]

ΣðqÞ ¼ −
e2

4κ
q · γ ln

�
Λ
jqj

�
; ð6Þ

where Λ is the ultraviolet momentum cutoff. Note that,
since we considered the static approximation, there is no
wave function renormalization at the 1-loop order [39].
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From Eq. (6), one obtains the renormalized Fermi
velocity [39]

v�q ¼ vF

�
1þ α

4
ln

�
Λ
jqj

��
; ð7Þ

where α ¼ e2=ðκvFÞ is the fine structure constant of
the 2þ 1D system. Consequently, the renormalized α will
be [38]

α�q ¼ α

1þ α
4
lnðΛ=jqjÞ : ð8Þ

III. THE EFFECT OF THE CONDUCTING
SURFACE IN THE STATIC REGIME

Among the various ways to influence the transport
properties of graphene (see [5,40]), it has been shown
by Silva et al. [25,26] that a grounded perfectly conducting
surface can inhibit the renormalization of the Fermi
velocity in a neutral graphene sheet placed in vacuum
(see Fig. 1, κ ¼ 1 for vacuum). In this context, we can also
highlight the work of Raoux et al. [41], who obtained, for
doped graphene, the inhibition of the renormalized Fermi
velocity in the same configuration.
Considering Fig. 2, an electron (charge e) in the 2þ 1D

system (located at the point P), in the presence of a parallel
grounded perfectly conducting plate at a distance ρ0,
interacts not only with another electron in the same sheet
(at point A), but also with a certain amount of positive
charge on the surface of the conducting plate induced by
the other electron (at point A0). Using the image method,
this amount of positive charge is effectively given by an
image charge e0 ¼ −e. Taking this into account, the
resultant static potential will be given by [25,26]

Vðρ0; jrjÞ ¼
e
κ

�
1

jrj −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrj2 þ ð2ρ0Þ2
p �

: ð9Þ

Taking a Fourier transform over Eq. (9), the photon
propagator becomes [25,26]

Δð0Þ
00 ðρ0; jkjÞ ¼

2π

κjkj ð1 − e−2ρ0jkjÞ: ð10Þ

Considering Eq. (10), the electron self-energy correction
is [25]

Σðρ0;qÞ ¼ −
e2

4κ
q · γ

�
ln

�
Λ
jqj

�
− Fðρ0jqj;ΛÞ

�
; ð11Þ

where

Fðρ0jqj;ΛÞ ¼
1

2π

Z
2π

0

dζ
Z

ξΛ

0

dξð1þ cosh ξ cos ζÞ

× exp½−ρ0jqjðcosh ξ − cos ζÞ�; ð12Þ

and

ξΛ ¼ cosh−1
�
2Λ
jqj þ cos ζ

�
: ð13Þ

Hence, the renormalized Fermi velocity will be written
as [25]

v�ρ0;q ¼ vF

�
1þ α

4

�
ln

�
Λ
jqj

�
− Fðρ0jqj;ΛÞ

��
: ð14Þ

Next, we compute the influence of the conducting
surface on the polarization tensor.

IV. POLARIZATION TENSOR

The component Π00, renamed as Π, can be expanded
perturbatively as

Πðω;qÞ ≈ Π1ðω;qÞ þ 2Π2aðω;qÞ þ Π2bðω;qÞ; ð15Þ

FIG. 1. A 2þ 1D system of massless Dirac fermions at a
distance ρ0 from a grounded perfectly conducting surface. The
dielectric media above and below the 2þ 1D system have the
same dielectric constant κ.

FIG. 2. Illustration of the 2þ 1D system, represented by the
dashed line, located at a distance ρ0 from the conducting surface
(represented by the solid horizontal line). An electron e in the
2þ 1D system, located at the point A, has its image e0 ¼ −e at
the point A0. P is the point in the 2þ 1D system where the
potential is computed.
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where Π1 is the contribution coming from the 1-loop
Feynman diagram [see Fig. 3(a)], whereas Π2a [Fig. 3(b)]
and Π2b [Fig. 3(b)] are contributions from the 2-loop
diagrams. Due to its symmetry, the correction Π2a must
be multiplied by the factor 2.
From Fig. 3(a), one can see that there are no photon lines

in the Π1 diagram, therefore, the result is the same for QED
in 2þ 1D, given by [38,42,43]

Π1ðω;qÞ ¼ −
Ne2jqj
8vF

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

q ; ð16Þ

where N ¼ 2 corresponds to the K and K0 valleys, and we
defined iq0 ¼ ωþ iϵ, ϵ → 0þ, with yq ¼ ðωþ iϵÞ=vFjqj
(remember thatq¼ðq0;qÞ represents the quadrimomentum).
The diagrams in Figs. 3(b) and 3(c) show that these

contributions to Π depend on the photon propagator and,
therefore, are directly affected by the presence of the
conducting plate [to emphasize this influence, hereafter,
we write Π2aðρ0;ω;qÞ and Π2bðρ0;ω;qÞ].

A. Calculation of Π2a

The diagram presented in Fig. 3(b) leads to the following
definition:

Π2aðρ0;ω;qÞ ¼ −N
Z

d3k
ð2πÞ3 Tr½eγ

0Sð0ÞF ðkÞeγ0Sð0ÞF ðkþ qÞ

× Σðρ0;kþ qÞSð0ÞF ðkþ qÞ�; ð17Þ

which, from Eqs. (5), (10) and (11), gives

Π2aðρ0;ω;qÞ ¼ Ne2
Z

d3k
ð2πÞ3 Tr

�
γ0

=k
k2

γ0
ð=kþ qÞ
ðkþ qÞ2

e2

4κ
ðkþ qÞ · γ

�
ln

�
Λ

jkþ qj
�
− Fðρ0jkþ qj;ΛÞ

� ð=kþ qÞ
ðkþ qÞ2

�
: ð18Þ

Following the same approach of Ref. [38], one can find that

Π2aðρ0;ω;qÞ ¼ −
Ne4

2κ

Z
d2k
ð2πÞ2

k · ðkþ qÞ − jkjjkþ qj
jkj

½v2Fðjkj þ jkþ qjÞ2 − q20�
½v2Fðjkj þ jkþ qjÞ2 þ q20�2

�
ln

�
Λ

jkþ qj
�
− Fðρ0jkþ qj;ΛÞ

�
:

ð19Þ

By making k → −k − q, choosing a coordinate system such that q ¼ ðjqj; 0Þ, and performing a transformation to elliptic
coordinates [38,44],

kx ¼
jqj
2
ðcosh μ cos ν − 1Þ; ky ¼

jqj
2
sinh μ sin ν; d2k ¼ jqj2

4
ðcosh2μ − cos2νÞdμdν; ð20Þ

we are able to obtain

Π2aðρ0;ω;qÞ ¼
Ne4jqj
32π2κv2F

Z
2π

0

dν
Z

∞

0

dμ
sin2 νðcosh μ − cos νÞðcosh2 μþ y2qÞ

ðcosh2 μ − y2qÞ2
�
ln

�
2Λ

jqjðcosh μ − cos νÞ
�

−F
�
ρ0jqj
2

ðcosh μ − cos νÞ;Λ
��

: ð21Þ

The above equation can be rewritten as

(a)

(b) (c)

FIG. 3. Feynman diagrams representing the first terms of the
perturbative expansion of Π, according to Eq. (15). The red part
of the diagram in (b) is to highlight the contribution of the
electron self-energy diagram.
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Π2aðρ0;ω;qÞ ¼
e2αjqj
16πvF

�
π

2

1

ð1 − y2qÞ3=2
lnðΛ=jqjÞ þ Ia0 ðyqÞ − Ia00 ðρ0jqj; yq;ΛÞ

�
; ð22Þ

where the function Ia0 ðyqÞ was obtained in Ref. [44]:

Ia0 ðyqÞ ¼
1

3

1þ 2y2q
1 − y2q

−
yq
6

5 − 2y2q
1 − y2q

ln

�
1 − yq
1þ yq

�
−

π

12

3 − 12 ln 2þ 6y2q − 4y4q
ð1 − y2qÞ3=2

−
i

ð1 − y2qÞ3=2

×

�
π2

4
− Li2

	
yq þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

q 

þ Li2

	
−yq − i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

q 

þ iπ

2
ln
	
yq þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

q 
�
; ð23Þ

where Li2ðzÞ ¼
P∞

k¼1 z
k=k2 is the dilogarithmic function, whereas Ia00 ðρ0jqj; yq;ΛÞ is the following integral, which will be

solved numerically:

Ia00 ðρ0jqj; yq;ΛÞ ¼
Z

2π

0

dν
Z

∞

0

dμ
sin2 νðcosh μ − cos νÞðcosh2 μþ y2qÞ

πðcosh2 μ − y2qÞ2
F

�
ρ0jqj
2

ðcosh μ − cos νÞ;Λ
�
: ð24Þ

Defining xq ¼ Reyq ¼ ω=ðvFjqjÞ, we see that, for xq > 1, there is a pole on the contour. In such situation, we can
determine the real and imaginary parts of Ia00 ðρ0jqj; yq;ΛÞ using a generalization of the Sokhotski-Plemelj identity for
integrals with higher order poles [45], as presented in Appendix A 1:

ReIa00 ðρ0jqj; xq;ΛÞ ¼ lim
ϵ→0þ

Z
2π

0

dν

�Z
xq−ϵ

1

Hðw; xq; νÞ
ðw − xqÞ2

dwþ
Z

∞

xqþϵ

Hðw; xq; νÞ
ðw − xqÞ2

dw −
2Hðxq; xq; νÞ

ϵ

�
; ð25Þ

ImIa00 ðρ0jqj; xq;ΛÞ ¼
Z

2π

0

dν
dHðw; xq; νÞ

dw

����
w¼xq

; ð26Þ

where w ¼ cosh μ and

Hðw; xq; νÞ ¼
1

π

sin2 νðw − cos νÞðw2 þ x2qÞ
ðwþ xqÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p F

�
ρ0jqj
2

ðw − cos νÞ;Λ
�
: ð27Þ

B. Calculation of Π2b

The diagram in Fig. 3(c) leads to the following polarization correction:

Π2bðρ0;ω;qÞ ¼ −Ne4
ZZ

d3k
ð2πÞ3

d3p
ð2πÞ3Δ

ð0Þ
00 ðρ0; jk − pjÞTr½γ0Sð0ÞF ðpþ qÞγ0Sð0ÞF ðkþ qÞγ0Sð0ÞF ðkÞγ0Sð0ÞF ðpÞ�; ð28Þ

which, according to Eqs. (10) and (5), gives

Π2bðρ0;ω;qÞ ¼ −
2πe4N

κ

ZZ
d3k
ð2πÞ3

d3p
ð2πÞ3

1 − e−2ρ0jk−pj

jk − pj Tr

�
γ0

ðpþ qÞ
ðpþ qÞ2 γ

0
ð=kþ qÞ
ðkþ qÞ2 γ

0
=k
k2

γ0
p
p2

�
: ð29Þ

Considering Ref. [38], we find

Π2bðρ0;ω;qÞ ¼ −
2πNe4

κ

ZZ
d2k
ð2πÞ2

d2p
ð2πÞ2

1 − e−2ρ0jk−pj

jk − pj½v2Fðjkj þ jkþ qjÞ2 þ q20�½v2Fðjpj þ jpþ qjÞ2 þ q20�

×

�
−q20

�
k · p
jkjjpj −

p · ðkþ qÞ
jpjjkþ qj −

k · ðpþ qÞ
jkjjpþ qj þ

ðkþ qÞ · ðpþ qÞ
jkþ qjjpþ qj

�

þ v2Fðjkj þ jkþ qjÞðjpj þ jpþ qjÞ
jkjjpjjkþ qjjpþ qj ½k · pjqj2 − ðk · qÞðp · qÞ

þ ðjkj2 þ k · q − jkjjkþ qjÞðjpj2 þ p · q − jpjjpþ qjÞ�
�
: ð30Þ
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By making a transformation to elliptic coordinates over momenta k and p, in the same way of Eq. (20), we get

Π2bðρ0;ω;qÞ ¼ −
Ne2jqjα
16π3vF

Z
dμdμ0dνdν0 cosh μ cosh μ0 sin ν sin ν0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½coshðμþ μ0Þ − cosðνþ ν0Þ�½coshðμ − μ0Þ − cosðν − ν0Þ�p

×
½sin ν sin ν0 þ sinh μ sinh μ0 þ y2qðsin ν sin ν0 þ tanh μ tanh μ0 cos ν cos ν0Þ�

ðcosh2 μ − y2qÞðcosh2 μ0 − y2qÞ
×
h
1 − exp

	
−ρ0jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½coshðμþ μ0Þ − cosðνþ ν0Þ�½coshðμ − μ0Þ − cosðν − ν0Þ�

p 
i
: ð31Þ

After that, making η ¼ νþ ν0, τ ¼ ν − ν0, a ¼ μþ μ0 and b ¼ μ − μ0, we find:

Π2bðρ0;ω;qÞ ¼
jqje2α
vF

p2bðρ0jqj; yqÞ; ð32Þ

where

p2bðρ0jqj; yqÞ ¼ −
1

16π3

Z
∞

0

db
Z

∞

b
da

1

½1 − 2y2q þ coshðaþ bÞ�½1 − 2y2q þ coshða − bÞ�
× ½ðcosh2 a − cosh2 bÞð1þ y2qÞM1ða; b; ρ0jqjÞ þ ðcosh aþ cosh bÞM2ða; b; ρ0jqjÞ
þ y2qðcosha − cosh bÞM3ða; b; ρ0jqjÞ�; ð33Þ

and

Miða; b; ρ0jqjÞ ¼
Z

2π

0

dη
Z

2π

0

dτhið1 − hρ0jqjÞ; for i ¼ 1; 2; 3; ð34Þ

with

h1 ¼
cos τ − cos ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½cosh a − cos η�½cosh b − cos τ�p ; h2 ¼

ðcos τ − cos ηÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½cosh a − cos η�½cosh b − cos τ�p ; ð35Þ

h3 ¼
cos2τ − cos2ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½cosh a − cos η�½coshb − cos τ�p ; hρ0jqj ¼ exp ð−ρ0jqj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cosh a − cos η�½coshb − cos τ�

p
Þ: ð36Þ

The integral in Eq. (33) has a pole at xq > 1. Therefore, within this region, we split the integral into real and imaginary
parts with the application of the Sokhotski-Plemelj identity (as shown in Appendix A 2), resulting in

Re½p2bðρ0jqj; xqÞ� ¼ −
1

16π3
lim
ϵ→0þ

Z
∞

0

db

�Z
λðxqÞ−b−ϵ

b
da

Uða; b; ρ0jqj; λðxqÞÞ
gþða; b; λðxqÞÞg−ða; b; λðxqÞÞ

þ
Z

λðxqÞþb−ϵ

λðxqÞ−bþϵ
da

Uða; b; ρ0jqj; λðxqÞÞ
gþða; b; λðxqÞÞg−ða; b; λðxqÞÞ

þ
Z

∞

λðxqÞþbþϵ
da

Uða; b; ρ0jqj; λðxqÞÞ
gþða; b; λðxqÞÞg−ða; b; λðxqÞÞ

�
; ð37Þ

Im½p2bðρ0jqj; xqÞ� ¼ −
1

32π2 sinhðλðxqÞÞ
�Z

λðxqÞ=2

0

db
sinh b

�
UðλðxqÞ þ b; b; ρ0jqj; λðxqÞÞ

sinhðbþ λðxqÞÞ

−
UðλðxqÞ − b; b; ρ0jqj; λðxqÞÞ

sinhðλðxqÞ − bÞ
�
þ
Z

∞

λðxqÞ=2

db
sinhb

UðλðxqÞ þ b; b; ρ0jqj; λðxqÞÞ
sinhðbþ λðxqÞÞ

�
; ð38Þ

where we have defined xq ¼ coshðλ=2Þ as in Ref. [44], and

Uða; b; ρ0jqj; λÞ ¼ ðcosh2 a − cosh2 bÞM1ða; b; ρ0jqjÞ þ
�
cosh λþ 3

2

�
ðcosh aþ cosh bÞM2ða; b; ρ0jqjÞ

þ cosh λþ 1

2
ðcosha − cosh bÞM3ða; b; ρ0jqjÞ; ð39Þ
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with

gþða; b; λÞ ¼ coshðaþ bÞ − cosh λ; ð40Þ
and

g−ða; b; λÞ ¼ coshða − bÞ − cosh λ: ð41Þ

C. Renormalization

Until here, we have written the polarization tensor in
terms of the bare parameters α and vF. However, in order to

have results written in terms of observable quantities,
we must rewrite the polarization tensor in terms of
renormalized parameters, as stated in Refs. [38,44].
The method to do this transformation, as described in
Refs. [38,44,46], is to perform the summation Π1 þ 2Π2a
and absorb the logarithmic divergence into the renormal-
ized Fermi velocity. Following this method, and consider-
ing the conducting surface, the combination of Eqs. (16)
and (22) leads to

Π1ðω;qÞ þ 2Π2aðρ0;ω;qÞ ¼ −
Ne2jqj
8vF

8<
: 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2q
q −

α

4

1

ð1 − y2qÞ3=2
½lnðΛ=jqjÞ − Fðρ0jqj;ΛÞ� −

α

4

Fðρ0jqj;ΛÞ
ð1 − y2qÞ3=2

−
α

2π
½Ia0 ðyqÞ − Ia00 ðρ0jqj; yq;ΛÞ�

9=
;; ð42Þ

where, for convenience, we added and subtracted
Ne2jqjαFðρ0jqj;ΛÞ=½32vFð1 − y2qÞ3=2� to the right-hand
side.
Now, considering the renormalized Fermi velocity in

Eq. (14) and the renormalized fine structure constant of the
2þ 1D system in the presence of a conducting plate,

α�ρ0;q ¼ e2

κv�ρ0;q
¼ α

1þ α
4
½lnðΛ=jqjÞ − Fðρ0jqj;ΛÞ�

; ð43Þ

we write α in terms of α�ρ0;q,

α ¼ α�ρ0;q

�
1þ α�ρ0;q

4
½ln ðΛ=qÞ − Fðρ0jqj;ΛÞ�

�
þOðα�3ρ0;qÞ: ð44Þ

Then, replacing the above equation into Eq. (42) and
performing a series expansion untilOðα�ρ0;qÞ, one can show
that the combination of terms leads to the absorption of the
logarithmic divergence into the renormalized Fermi veloc-
ity and Eq. (42) becomes

Π1ðω;qÞþ2Π2aðρ0;ω;qÞ

≈−
e2jqj

4v�ρ0;q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−y�2ρ0;q

q þe2jqjα�ρ0;q
v�ρ0;q

p2aðρ0jqj;y�ρ0;qÞ; ð45Þ

where

p2aðρ0jqj; y�ρ0;qÞ ¼
1

8π

�
π

2

Fðρ0jqj;ΛÞ
ð1 − y�2ρ0;qÞ3=2

þ Ia0 ðy�ρ0;qÞ

−Ia00 ðρ0jqj; y�ρ0;qÞ
�
; ð46Þ

y�ρ0;q ¼ x�ρ0;q þ iϵ; and x�ρ0;q ¼
ω

v�ρ0;qjqj
: ð47Þ

To remove the dependence on Λ from F, we consider
suitable values for ρ0, for instance ρ0 > 5=Λ, such that, as
shown in Appendix B, we can rewrite F in terms of Bessel
functions [25]:

Fðρ0jqj;ΛÞ ≈ I0ðρ0jqjÞK0ðρ0jqjÞ þ I1ðρ0jqjÞK1ðρ0jqjÞ;
ð48Þ

where Iν and Kν are the modified Bessel functions of first
and second kind, respectively, and, hereafter, we write the
function F as Fðρ0jqjÞ.
Finally, we consider the map ðα; vFÞ → ðα�ρ0;q; v�ρ0;qÞ in

Eq. (32), rewriting Π2b in terms of these renormalized
parameters until Oðα�ρ0;qÞ, namely

Π2bðρ0;ω;qÞ ¼
e2jqjα�ρ0;q

v�ρ0;q
p2bðρ0jqj; y�ρ0;qÞ: ð49Þ

By inserting Eqs. (45) and (49) into (15), we can write
the 00 component of the polarization tensor, corrected until
2-loop order, in terms of the renormalized parameters,
namely

Πðρ0;ω;qÞ≈−
e2jqj

4v�ρ0;q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−y�2ρ0;q

q þe2jqjα�ρ0;q
v�ρ0;q

× ½p2aðρ0jqj;y�ρ0;qÞþp2bðρ0jqj;y�ρ0;qÞ�: ð50Þ

The pole in Eq. (50), at x�ρ0;q ¼ 1, determines a threshold
from which (x�ρ0;q > 1) the polarization tensor has a
imaginary part, which is connected to the real part of
the longitudinal conductivity. According to Ref. [44], for
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the case without the presence of the conducting plate,
it was argued that as x�q → 1 the 2-loop results tend to be
unreliable, since higher order corrections become as impor-
tant as the 2-loop ones. In the present case, with the presence
of the conducting plate, we expect a similar behavior, so that,
as x�ρ0;q → 1, the 2-loop results become less reliable.
As an application of the above calculations, we deter-

mine the longitudinal conductivity and its optical limit.

V. THE CONDUCTIVITY

As shown in Appendix C, the longitudinal conductivity,
σðω;qÞ, can be obtained in terms of the 00-component of
the polarization tensor Πðω;qÞ as follows [27,44,46]:

σðω;qÞ ¼ iωΠðω;qÞ
jqj2 : ð51Þ

From Eqs. (50) and (51), the longitudinal conductivity
becomes

σðρ0;ω;qÞ
σ0

≈ 4ix�ρ0;q

�
−

1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y�2ρ0;q

q þ α�ρ0;q

× ½p2aðρ0jqj; y�ρ0;qÞ þ p2bðρ0jqj; y�ρ0;qÞ�
�
:

ð52Þ

In order to visualize the results in terms of quantities
that do not vary with ρ0, we write x�ρ0;q as a function of x�q,
which is done using Eqs. (7) and (14), remembering that
α�q ¼ e2=ðκv�qÞ, giving

x�ρ0;q ¼
x�q

1 − α�q
4
Fðρ0jqjÞ

and

α�ρ0;q ¼ α�q
1 − α�q

4
Fðρ0jqjÞ

: ð53Þ

For further analysis, taking into account the real
part of the longitudinal conductivity, it is convenient to
define

σ̃1ðρ0jqj; x�qÞ ¼ −Re

8>><
>>:

ix�qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
1 − α�q

4
Fðρ0jqjÞ

i
2
− y�2q

r
9>>=
>>;; ð54Þ

which is the real part of the ratio (52), calculated until
1-loop order of perturbation (the subscript 1 means that
the formula takes into account calculations up to 1-loop).
We also define:

σ̃2ðρ0jqj; x�qÞ ¼ Re

8<
:−

ix�qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − α�q

4
Fðρ0jqjÞ�2 − y�2q

q

þ 4ix�qα�q
½1 − α�q

4
Fðρ0jqjÞ�2

�
p2a

�
ρ0jqj;

y�q
1 − α�q

4
Fðρ0jqjÞ

�
þp2b

�
ρ0jqj;

y�q
1 − α�q

4
Fðρ0jqjÞ

��9=
;; ð55Þ

which is the real part of the ratio (52), written in terms of x�q
and α�q using Eq. (53). The subscript 2 means we are going
until 2-loop perturbation order.
In Fig. 4(a), we plotted the real part of the conductivity at

1-loop order, represented by σ̃1ðρ0jqj; x�qÞ, given in
Eq. (54). The three curves correspond to σ̃1ðρ0jqj → ∞;
x�qÞ (dashed line), σ̃1ðρ0jqj ¼ 5; x�qÞ (dot-dashed line) and
σ̃1ðρ0jqj ¼ 1; x�qÞ (dotted line). From this panel we can take
two conclusions: first, as we bring the conducting plate
closer to the 2þ 1D system, the 1-loop conductivity
increases, with such effect being more noticeable as we
approach the point ω=ðv�qjqjÞ ¼ 1; second, for a fixed ρ0,
we also see an increase in the conductivity as jqj decreases,
which is a consequence of the product ρ0jqj in the
exponential term of the photon propagator (10).
In Fig. 4(b), we plotted the real part of the conductivity

up to 2-loop perturbation, represented by σ̃2ðρ0jqj; x�qÞ,
given by Eq. (55), and, for comparison, the 1-loop

correction for ρ0jqj ¼ 1, i.e., σ̃1ðρ0jqj ¼ 1; x�qÞ. The 2-loop
curves correspond to σ̃2ðρ0jqj → ∞; x�qÞ (long dashed line),
σ̃2ðρ0jqj ¼ 5; x�qÞ (dot-long-dashed line) and σ̃2ðρ0jqj ¼ 1;
x�qÞ (small dashed line). When the product ρ0jqj decreases,
we observe an inhibition of the 2-loop correction, which,
therefore, causes a displacement of the longitudinal con-
ductivity towards the 1-loop correction, leading to an
increase in the conductivity even more evident than at
1-loop. In other words, as the distance between the
conducting plate and the 2þ 1D system gets smaller,
the contribution of the 2-loop polarization diagrams
becomes inhibited, and this leads to an enhancement of
the conductivity for this part of the spectrum (in the optical
limit we see a slightly different behavior). On the other
hand, for a fixed ρ0, if we vary jqj and ω such that the ratio
ω=ðv�qjqjÞ remains constant, the previous behavior will also
be observed: a cancellation of the 2-loop corrections as jqj
decreases, leading to an increase of σ̃2ðρ0jqj; xqÞ. We must
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highlight that this feature is not observed in graphene in the
absence of the plate [47], since the only dependence it has
on the external momentum comes from ω=ðv�qjqjÞ, but
varying jqj while keeping this quantity constant will not
affect the conductivity.

A. The optical limit

In Ref. [26], the authors considered the real part of the
optical conductivity σoptðωÞ as presented in Ref. [48],

Re½σ�optðωÞ�
σ0

¼ 1þ Cα�ω=vF ≡ 1þ Cα
vF
v�q

����
jqj¼ω=vF

; ð56Þ

where C is a constant, σ0 ¼ e2=4 is the minimal conduc-
tivity of graphene and the superscript in σ� sets the
dependence on the renormalized parameter α�ω=vF. In

Ref. [26], it is suggested that the optical conductivity
should increase due to the inhibition of the renormalization
of the Fermi velocity by the conducting surface. In order to
verify this proposal, we compute the optical conductivity
from the following limit [47]:

σoptðρ0;ωÞ ¼ lim
jqj→0

iω
jqj2Πðρ0;ω;qÞ: ð57Þ

From the above definition, we show, in Appendix D, that
the optical conductivity is given by

σ̃optðρ0;ωÞ ¼
Re½σoptðρ0;ωÞ�

σ0
≈ 1þ Cðρ0ω=vFÞα; ð58Þ

where

Cðρ0ω=vFÞ ¼ C0 þ
ρ0ω

8vF

d
dðρ0jkjÞ

Fðρ0jkjÞ
����
jkj¼ω=2vF

þ
Z

π

0

dθ
π

Z
∞

0

du
cosθðuþ cosθÞ

ð1− u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1− 2u cosθ

p

× exp

�
−
ρ0ω

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1− 2u cosθ

p �
; ð59Þ

and

C0 ¼
19 − 6π

12
≈ 0.0125 ð60Þ

is the 2-loop term calculated in Ref. [47].
In the context of graphene with no plate [39,47], one

makes α → α�ω=ð2vFÞ, therefore, considering the existence of
the plate, we must make α → α�ρ0;ω=ð2vFÞ, obtaining:

Re½σ�optðρ0;ωÞ�
σ0

¼ 1þ Cðρ0ω=vFÞα�ρ0;ω=vF ; ð61Þ

which is correspondent to Eq. (56). Therefore, the above
equation is the proper description of the optical conduc-
tivity of graphene in the presence of a conducting surface,
computing the new C factor and not just considering v�q →
v�ρ0;q in Eq. (56), as supposed in Ref. [26].
In Fig. 5(a), we plot the real part of the optical

conductivity as a function of ρ0ω=vF, where the solid line
corresponds to Eq. (61). In this figure, the point P1 is where
the optical conductivity is equal to the minimal conduc-
tivity (represented by the dotted line), which means a total
cancellation of the 2-loop correction due to the presence of
the plate in the limit ρ0 → 0. The point P2 is where the
optical conductivity in the presence of the plate equals
the optical conductivity without the plate (dashed line). The
point P3 represents the peak of conductivity. Then, as the
distance ρ0 gets bigger, the optical conductivity tends to
the case without the plate, as expected.

(a)

(b)

FIG. 4. (a) Representation of the real part of the conductivity at
1-loop perturbation order, where the dashed line accounts for
σ̃1ðρ0jqj → ∞; x�qÞ, the dot-dashed line for σ̃1ðρ0jqj ¼ 5; x�qÞ and
the dotted line for σ̃1ðρ0jqj ¼ 1; x�qÞ. (b) Presentation of the
curves for the longitudinal conductivity up to 2-loop perturbation
order, where the long-dashed line accounts for σ̃2ðρ0jqj→∞;x�qÞ,
the dot-long-dashed line for σ̃2ðρ0jqj ¼ 5; x�qÞ and the small
dashed line for σ̃2ðρ0jqj ¼ 1; x�qÞ, we also plotted σ̃1ðρ0jqj ¼
1; x�qÞ for comparison purposes. Both panels have ω=ðv�qjqjÞ as
the horizontal axis. We made α�q ¼ 0.3 as in Ref. [44].
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In Fig. 5(b), the solid line corresponds to the function
Cðρ0ω=vFÞ, given by Eq. (59). At the limit ρ0 → 0,
Cðρ0ω=vFÞ tends to zero, which is represented by the point
P0
1, and whose value is indicated by the dotted line. As we

increase the distance ρ0, we get to the point P0
2, where

Cðρ0ω=vFÞ coincides with C0 ≈ 0.01 (represented by the
dashed line). As the distance ρ0 becomes larger, the function
Cðρ0ω=vFÞ increases until reaching amaximumvalue, given
by the point P0

3. For ρ0 → ∞, we recover the C0 obtained in
Ref. [47], which is represented by the dashed line.

VI. ANALYSIS OF THE RESULTS
AND FINAL COMMENTS

In the present paper, using PQED as the theory
which describes the interactions of electrons in a 2þ 1D

system of massless Dirac fermions, we computed the
00-component of the photon self-energy, until 2-loop
perturbation order and in the presence of a grounded
perfectly conducting surface. As an application of our
results, using the Kubo formula [Eq. (51)], we were able to
determine the longitudinal and optical conductivities of the
2þ 1D system. In the language of condensed matter, the
2þ 1D system investigated by us is the representation
of graphene in the low energy regime, since, in this
approach, the dispersion relation of graphene is given by
E� ≈�vFjkj, where vF is the Fermi velocity and k is the
external momentum.
In our work, an important result is that the real part of the

longitudinal conductivity increases when the distance
between the 2þ 1D system and the plate decreases. In
Fig. 4(a), we see this enhancement for the 1-loop approxi-
mation [Eq. (54)], but it is more evident if we go up to
2-loop perturbation order [Eq. (55)], specifically near the
point ω=ðv�qjqjÞ ¼ 1, as shown in Fig. 4(b).
The longitudinal conductivity, obtained here for any

frequency and momentum [Eq. (52)], leads, in the limit
jqj → 0, to the optical conductivity [Eq. (57)]. In Ref. [26],
considering Eq. (56), it is suggested that the optical
conductivity of a graphene sheet near a conducting plate
is increased (if compared to the case without the plate) due
to the inhibition of the renormalization of the Fermi
velocity by the plate. However, the authors didn’t consider
the influence of the plate on the C factor of Eq. (56). The
calculations up to 2-loop perturbation order provide the
correct C for the model, given by Eq. (59) and shown in
Fig. 5(b). According to our results, even if we write the
conductivity in terms of the bare parameters [as shown in
Eq. (58)], the presence of the conducting plate generates a
dependence on the frequency, what does not happen in the
situation without the plate.
Therefore, considering contributions from both the C

factor and the renormalization of the Fermi velocity, we
obtain a proper description of the optical conductivity
[Eq. (61)], presented in Fig. 5(a) as the solid line. In this
panel, when the plate is infinitely distant from the 2þ 1D
system, we recover the result for the optical conductivity
found in the literature [47], which is indicated by the
dashed line in Fig. 5(a). As we bring the conducting plate
closer to the 2þ 1D system, the optical conductivity is
increased (if compared to the case without the presence of a
conducting plate), reaching a maximum value. After that,
the optical conductivity decreases until it gets totally
canceled in the limit of no distance between the conducting
surface and the 2þ 1D system.
In summary, our results give a theoretical description of

the longitudinal and optical conductivities of a 2þ 1D
system, which is correlated to graphene, in the presence of a
conducting plate. With calculations taken until 2-loop
perturbation order, we showed that the longitudinal con-
ductivity increases as we bring the conducting surface

(a)

(b)

FIG. 5. (a) The solid line corresponds to the real part of the
optical conductivity [Eq. (61)] for α�ω=vF ¼ 0.3. The dashed line
represents the optical conductivity calculated until 2-loop order,
without the presence of the plate. The dotted line corresponds to
the minimal conductivity, given by the point P1. P2 is the point
where the values, with or without plate, are the same. P3

represents the maximum value of the optical conductivity.
(b) The solid line corresponds to Cðρ0ω=vFÞ [Eq. (59)]. The
dashed line represents C0 ≈ 0.01, and the dotted line serves as a
reference for Cðρ0ω=vFÞ ≈ 0. At the point P0

3, Cðρ0ω=vFÞ
reaches a maximum value, while at the point P0

2 we have
Cðρ0ω=vFÞ ¼ C0. At the point P0

1, Cðρ0ω=vFÞ becomes null.
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closer to the 2þ 1D system. In the optical limit, the
conductivity can increase or decrease, depending on the
position of the conducting plate. These results may be
useful as an alternative way to control the longitudinal and
optical conductivities of graphene.
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APPENDIX A: THE SOKHOTSKI-PLEMELJ
IDENTITY

Usually, the Sokhotski-Plemelj identity is presented
as [45]

lim
ϵ→0

Z
b

a

fðxÞ
x−x0� iϵ

dx¼P
Z

b

a

fðxÞ
x−x0

dx∓ iπfðx0Þ; ðA1Þ

where P is the Cauchy principal value. One can extend
its definition to calculate integrals with higher order
poles [45],

lim
ϵ→0

Z
b

a

fðxÞ
ðx − x0 � iϵÞnþ1

dx ¼ #
Z

b

a

fðxÞ
ðx − x0Þnþ1

dx;

∓ iπ
fðnÞðx0Þ

n!
; ðA2Þ

where # represents the Hadamard finite-part integral (an
extension of the Cauchy principal value integral), and is
defined as

#
Z

b

a

fðxÞ
ðx − x0Þnþ1

dx ¼ lim
ϵ→0

�Z
x0−ϵ

a

fðxÞ
ðx − x0Þnþ1

þ
Z

b

x0þϵ

fðxÞ
ðx − x0Þnþ1

−Hnðx0; ϵÞ
�
;

ðA3Þ

where

H0 ¼ 0; ðA4Þ

and

Hn ¼
Xn−1
k¼0

hðkÞðx0Þ
k!ðn − kÞ

ð1 − ð−1Þn−kÞ
ϵn−k

; n ¼ 1; 2;…: ðA5Þ

Hereafter, we use the above representations to compute the
real and imaginary parts of the 2-loop corrections to the
polarization tensor for xq ¼ ω=ðvFjqjÞ > 1.

1. Π2a diagram

First, we compute the real and imaginary parts of the
integral Ia00 [Eq. (24)] of the Π2a diagram, for xq > 1.

a. Real part

Lets make a change of variables in Eq. (24),

w ¼ cosh μ; dμ ¼ dwffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p ; ðA6Þ

obtaining

Ia00 ðρ0jqj; yqÞ ¼
Z

2π

0

dν
Z

∞

1

dw
Hðw; yq; νÞ
ðw − yqÞ2

; ðA7Þ

where

Hðw; yq; νÞ ¼
1

π

sin2 νðw − cos νÞðw2 þ y2qÞ
ðwþ yqÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p

× F

�
ρ0jqj
2

ðw − cos νÞ;Λ
�
: ðA8Þ

Then, from Eqs. (A3) and (A5), we find the real part is
given by

Re½Ia00 ðρ0jqj;xqÞ� ¼ lim
ϵ→0þ

�Z
xq−ϵ

1

Hðw;xq;νÞ
ðw−xqÞ2

dw

þ
Z

∞

xqþϵ

Hðw;xq;νÞ
ðw−xqÞ2

dw−
2Hðxq;xq;νÞ

ϵ

�
:

ðA9Þ

b. Imaginary part

From Eq. (A2), we obtain the imaginary part:

Im½Ia00 ðρ0jqj; xqÞ� ¼
Z

2π

0

dν
dHðw; xq; νÞ

dw

����
w¼xq

; ðA10Þ

where
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dHðw; xq; νÞ
dw

����
w¼xq

¼ sin2ν

2πðx2q − 1Þ3=2
�
ðxq cos ν − 1ÞF

�
ρ0jqj
2

ðxq − cos νÞ;Λ
�

þ ðx2q − 1Þðxq − cos νÞ d
dw

F

�
ρ0jqj
2

ðw − cos νÞ;Λ
�����

w¼xq

�
: ðA11Þ

2. Π2b diagram

Here, we compute the real and imaginary parts of theΠ2b
correction to the vacuum polarization, represented by
Eq. (33). In the following steps, our calculations are similar
to Ref. [44], though leading to different representations,
they generate the same numerical results.
Since Eq. (33) has a first order pole, we can apply the

usual definition of the Sokhotski-Plemelj identity, but in
terms of the delta function [44]:

1

x − x0 � iϵ
¼ P

1

x − x0
∓ iπδðx − x0Þ; ðA12Þ

which can be also generalized for a function on the
denominator,

1

gðxÞ � iϵ
¼

X
i

�
P

1

gðxiÞ
∓ iπδðgðxiÞÞ

�
; ðA13Þ

where gðxÞ is an invertible function in the region of
integration, and the δ function of a function is given by [49]

δðgðxÞÞ ¼
X
i

δðx − xiÞ
jg0ðxiÞj

; ðA14Þ

assuming x ¼ xi are the zeros of gðxÞ.
In Eq. (33), making xq ¼ coshðλ=2Þ [44], we must define

two functions in the denominator, namely

gþða; b; λÞ ¼ coshðaþ bÞ − cosh λ; ðA15Þ

and

g−ða; b; λÞ ¼ coshða − bÞ − cosh λ; ðA16Þ

which have poles at a� ¼ λ ∓ b. Hence, Eq. (33) leads to

p2bðρ0jqj;xqÞ¼−
1

16π3

Z
∞

0

db
Z

∞

b
da

×
Uða;b;ρ0jqj;λðxqÞÞ

½gþða;b;λðxqÞÞ− iϵ�½g−ða;b;λðxqÞÞ− iϵ� ;

ðA17Þ

where

Uða; b; ρ0jqj; λÞ ¼ ðcosh2 a − cosh2 bÞM1ða; b; ρ0jqjÞ þ
�
cosh λþ 3

2

�
ðcosh aþ cosh bÞM2ða; b; ρ0jqjÞ

þ cosh λþ 1

2
ðcosh a − cosh bÞM3ða; b; ρ0jqjÞ: ðA18Þ

Next, we explicit the real and imaginary parts of p2b.

a. Real part

As mentioned before, the real part of p2b will be calculated by taking the principal value of (A17), namely

Re½p2bðρ0jqj; xqÞ� ¼−
1

16π3
lim
ϵ→0þ

Z
∞

0

db

�Z
λðxqÞ−b−ϵ

b
da

Uða;b;ρ0jqj;λðxqÞÞ
gþða;b;λðxqÞÞg−ða;b;λðxqÞÞ

þ
Z

λðxqÞþb−ϵ

λðxqÞ−bþϵ
da

Uða;b;ρ0jqj;λðxqÞÞ
gþða;b;λðxqÞÞg−ða;b;λðxqÞÞ

þ
Z

∞

λðxqÞþbþϵ
da

Uða;b;ρ0jqj;λðxqÞÞ
gþða;b;λðxqÞÞg−ða;b;λðxqÞÞ

�
: ðA19Þ
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b. Imaginary part

The poles of the functions gþða; b; λÞ and g−ða; b; λÞ are not the same. Therefore, we have

δðgþða; b; λÞÞ ¼
δða − ðλ − bÞÞ

sinh λ
and δðg−ða; b; λÞÞ ¼

δða − ðλþ bÞÞ
sinh λ

: ðA20Þ

Hence, the imaginary part of Eq. (A17) becomes

Im½p2bðρ0jqj; xqÞ� ¼ −
1

32π2 sinh λðxqÞ
�Z

λðxqÞ=2

0

db
sinh b

�
UðλðxqÞ þ b; b; λðxqÞÞ

sinhðbþ λðxqÞÞ
−
UðλðxqÞ − b; b; λðxqÞÞ

sinhðλðxqÞ − bÞ
�

þ
Z

∞

λðxqÞ=2

db
sinh b

UðλðxqÞ þ b; b; λðxqÞÞ
sinhðbþ λðxqÞÞ

�
: ðA21Þ

APPENDIX B: THE Fðρ0jqjÞ APPROXIMATION

The integral in Eq. (12) has a cutoff at ξΛ, which is given
in terms of the momentum cutoff Λ by Eq. (13). As
explained in Ref. [25], the integrand of (12) can vanish
before reaching the cutoff ξΛ. In Figs. 6(a) and 6(b) we plot

the integrand of Eq. (13), and also the cutoff ξΛ, represented
by the solid line. In Fig. 6(a) (ρ0 ¼ 1=Λ), we observe that
the integrand is not null at ξ ¼ ξΛ. On the other hand, in
Fig. 6(b) (ρ0 ¼ 5=Λ), the integrand vanishes before reach-
ing the cutoff ξΛ. Therefore, choosing the appropriate ρ0,
for instance ρ0 > 5=Λ, the integral in ξ tends toZ

ξΛ

0

dξ →
Z

∞

0

dξ; ðB1Þ

and, the function F can be rewritten as [25]

Fðρ0jqj;ΛÞ ≈ I0ðρ0jqjÞK0ðρ0jqjÞ þ I1ðρ0jqjÞK1ðρ0jqjÞ;
ðB2Þ

where Iμ and Kν are the modified Bessel functions of first
and second kind, respectively.

APPENDIX C: THE RELATION BETWEEN THE
LONGITUDINAL CONDUCTIVITY AND Π00

From the Kubo formula [27] we get the definition of the
conductivity in terms of the polarization tensor, namely

σijðω;qÞ ¼ i
ω
Πijðω;qÞ: ðC1Þ

The spatial components Πij can be written as [50]

Πijðω;qÞ ¼ ΠLðω; jqjÞ q
iqj

jqj2 þ ΠTðω; jqjÞ
�
δij −

qiqj

jqj2
�
;

ðC2Þ

where ΠL and ΠT are the longitudinal and transverse
components of the polarization tensor, which leads to a
definition of the longitudinal and transverse conductivities.
In the present paper, we are interested in the longitudinal
part, given by

(a)

(b)

FIG. 6. In (a) and (b) we plot the integrand of F [Eq. (12)] for
ρ0 ¼ 1=Λ and ρ0 ¼ 1=Λ, respectively, with jqj ¼ Λ=10. The
solid line corresponds to the cutoff ξΛ.
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σLðω; jqjÞ ¼
i
ω
ΠLðω; jqjÞ: ðC3Þ

In order to isolate the longitudinal component, we
multiply both sides of Eq. (C2) by qiqj and sum over,
obtaining that

qiqjΠijðω;qÞ ¼ jqj2ΠLðω; jqjÞ: ðC4Þ

From the continuity equation, given by [50]

∂μJμ ¼ 0; ðC5Þ

where Jμ ¼ ðρ; JÞ is the quadricurrent, one can also show
that [50]

qiqj
ω2

Πijðω;qÞ ¼ Π00ðω; jqjÞ; ðC6Þ

which, combined with Eq. (C4), leads to

Π00ðω; jqjÞ ¼ jqj2
ω2

ΠLðω; jqjÞ: ðC7Þ

Therefore, by replacing the above equation into Eq. (C1),
the longitudinal conductivity can be given in terms of the
00-component of the polarization tensor as

σðω; jqjÞ ¼ i
ω

jqj2Π
00ðω; jqjÞ; ðC8Þ

where σLðω; jqjÞ was replaced by σðω; jqjÞ throughout
the text.

APPENDIX D: THE OPTICAL LIMIT

The optical conductivity can be represented as

σoptðρ0;ωÞ ≈ σopt;1ðωÞ þ σopt;2aðρ0;ωÞ þ σopt;2bðρ0;ωÞ;
ðD1Þ

where

σopt;1ðωÞ ¼ lim
jqj→0

iω
jqj2Π1ðω;qÞ; ðD2Þ

σopt;2aðρ0;ωÞ ¼ lim
jqj→0

iω
jqj2 2Π2aðρ0;ω;qÞ; ðD3Þ

σopt;2bðρ0;ωÞ ¼ lim
jqj→0

iω
jqj2Π2bðρ0;ω;qÞ: ðD4Þ

From Eq. (16), we get that σopt;1ðωÞ will be given by

σopt;1ðωÞ ¼ lim
jqj→0

iω
jqj2Π1ðω;qÞ ¼

e2

4
¼ σ0; ðD5Þ

so that the contribution of σopt;1 results in the minimal
conductivity σ0.
Obtaining σopt;2aðωÞ requires the calculation Π2a in

Eq. (D3). Using Eq. (19), we have

Π2aðρ0;ω;qÞ ¼ −
Ne4

2κ

Z
d2k
ð2πÞ2

k · ðkþ qÞ − jkjjkþ qj
jkþ qj

×
½v2Fðjkj þ jkþ qjÞ2 þ ω2�
½v2Fðjkj þ jkþ qjÞ2 − ω2�2

× ½ln ðΛ=jkjÞ − Fðρ0jkjÞ�; ðD6Þ

where we made k → −k − q. Expanding until order jqj2
leads to

Π2aðρ0;ω;qÞ ¼ −
Ne4

2κ

Z
d2k
ð2πÞ2

1
2
jqj2ðcos2 θ− 1Þ

jkj

×

�
4v2Fjkj2 − q20
4v2Fjkj2 þ q20

�
½ln ðΛ=jkjÞ−Fðρ0jkjÞ�;

ðD7Þ

where θ is the angle between k and q. Then, integrating in
the polar coordinate system, we get

Π2aðρ0;ω;qÞ ¼
e2jqj2vFα

8π

Z
djkj ð4v

2
Fjkj2 þ ω2Þ

ð4v2Fjkj2 − ω2Þ2

×

�
ln

�
Λ
jkj

�
− Fðρ0jkjÞ

�
: ðD8Þ

The above integral has a second order pole, and its
imaginary part will be obtained from the following formula,
better explained in Appendix A:

Im

�
lim
ϵ→0

Z
b

a

fðxÞ
ðx − x0 � iϵÞnþ1

dx

�
¼ ∓π

fðnÞðx0Þ
n!

: ðD9Þ

In our case, n ¼ 1 and we define

fðjkjÞ ¼
ð4v2Fjkj2 þ ω2Þ½lnð ΛjkjÞ − Fðρ0jkjÞ�

ð2vFjkj þ ωÞ2 ; ðD10Þ

with derivative given by

df
djkj ¼ −

vF
ω

−
ρ0
2

dFðρ0jkjÞ
dðρ0jkjÞ

����
jkj¼ω=2vF

: ðD11Þ

Therefore, we have that

Im½2Π2aðρ0;ω;qÞ� ¼ −
e2

4

jqj2
ω

α

4

�
1þ ρ0ω

vF

1

2

×
dFðρ0jkjÞ
dðρ0jkjÞ

����
jkj¼ω=2vF

�
: ðD12Þ
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Hence, from (D3), the above contribution to the real part of
the conductivity will be

Re½σopt;2aðρ0;ωÞ� ¼
σ0α

4

�
1þ ρ0ω

2vF

dFðρ0jkjÞ
dðρ0jkjÞ

����
jkj¼ ω

2vF

�
;

ðD13Þ

where the first term was obtained in [47].
The σopt;2bðωÞ contribution is given by Eq. (D4).

Expanding the Π2b contribution until order jqj2 in
Eq. (30), it follows that:

Π2bðρ0;ω;qÞ¼−
Ne4jqj2
2κð2πÞ3

Z
∞

0

djkj
Z

∞

0

djpj
Z

2π

0

dθk

×
Z

2π

0

dθpjkjjpj½cosðθk−θpÞ−cosðθkþθpÞ�

×
½ ω2

jkjjpjcosðθk−θpÞþ4v2F�ð1−e−2ρ0jk−pjÞ
jk−pjð4v2Fjkj2−ω2Þð4v2Fjpj2−ω2Þ ;

ðD14Þ

where we have made q ¼ ðjqj; 0Þ such that θkq ¼ θk and
θpq ¼ θp. From a change of variables, θ ¼ θk − θp and
φ ¼ θk þ θp, one can easily obtain that

Π2bðρ0;ω;qÞ ¼ −
e4

2πκ
jqj2

Z
π

0

dθ
π

Z
∞

0

djkj
Z

∞

0

djpjjkj

×
jpj cosθð ω2

jkjjpj cosθþ 4v2FÞ
ð4v2Fjkj2 −ω2Þð4v2Fjpj2 −ω2Þ

×

	
1− e−2ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2þjpj2−2jkjjpj cosθ

p 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ jpj2 − 2jkjjpj cosθ

p : ðD15Þ

From Eq. (A13), we find that the imaginary part of the
above equation will be given in terms of

Im

�
1

4v2Fjpj2 − ω2

�
¼ π

4ωvF
δðjpj − ω=2vFÞ; ðD16Þ

and

Im

�
1

4v2Fjkj2 − ω2

�
¼ π

4ωvF
δðjkj − ω=2vFÞ: ðD17Þ

Due to symmetry, we can multiply the integral in (D15)
by 2 and consider only the imaginary part of p, giving
(u ¼ 2vFjkj=ω)

Im½Π2bðρ0;ω;qÞ�¼
σ0jqj2α

ω

Z
π

0

dθ
π

Z
∞

0

du
ðuþcosθÞ
ð1−u2Þ

×
cosθ½1−expð−ρ0ω

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þ1−2ucosθ

p
Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þ1−2ucosθ
p ;

ðD18Þ

where the first term in the integral was determined in [47],
giving

Re½σopt;2bðρ0;ωÞ�

¼ σ0α

"
8 − 3π

6
þ
Z

π

0

dθ
π

Z
∞

0

du

×
cos θðuþ cos θÞ exp ð− ρ0ω

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1 − 2u cos θ

p
Þ

ð1 − u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1 − 2u cos θ

p
#
:

ðD19Þ

Therefore, from Eqs. (D13) and (D19) we obtain

σ̃optðρ0;ωÞ ¼
Re½σoptðρ0;ωÞ�

σ0
≈ 1þ Cðρ0ω=vFÞα ðD20Þ

where

Cðρ0ω=vFÞ ¼ C0 þ
ρ0ω

8vF

d
dðρ0jkjÞ

Fðρ0jkjÞ
����
jkj¼ω=2vF

þ
Z

π

0

dθ
π

Z
∞

0

du
cosθðuþ cosθÞ

ð1− u2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1− 2u cosθ

p

× exp

�
−
ρ0ω

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1− 2u cosθ

p �
; ðD21Þ

and C0 ¼ 19−6π
12

≈ 0.0125 [47].
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