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Two-loop photon self-energy in pseudoquantum electrodynamics
in the presence of a conducting surface
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In the present paper, we investigate the influence of a grounded perfectly conducting surface on the
photon self-energy of a 2 4+ 1D system of massless Dirac fermions, whose electron interaction is described
by pseudoquantum electrodynamics. We calculate the temporal component of the polarization tensor up to
2-loop perturbation order in the presence of the conducting surface and, applying the Kubo formula, we
obtain the longitudinal and optical conductivities of such system. When the distance between the system
and the plate tends to infinity, we recover the correspondent results found in the literature. Since
pseudoquantum electrodynamics proved to give a good description of the transport properties of graphene,
our results can be useful as an alternative way to control the longitudinal and optical conductivities of this

material.
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I. INTRODUCTION

Recently, quantum field theories in 2 + 1D have been
extensively studied. This interest is due, in part, to their
potential applications in the physics of condensed matter,
such as, for instance, the quantum Hall effect [1] and the
theory of superconductivity with a high critical temper-
ature value [2-4]. The discovery of graphene has pro-
vided a fascinating possibility to relate relativistic
quantum field theories to a condensed matter system
[5]. In this material, the valence electrons are originated
in sp2 orbitals (o-type bonds) and p, orbitals (z-type
bonds). However, since the electrons of p, orbitals are
weakly bound to the atoms, they are effectively the most
important electrons for the optical and electrical transport
properties of graphene [5]. Besides that, the electronic
dispersion of graphene exhibits a particle-hole symmetry
and, for low energies, a linear dependence on the
momentum Kk is observed, E. (k)= tvg|k| [6], where
vr is the bare Fermi velocity. These characteristics allow
us to relate the p, electrons in graphene to free Dirac
massless particles in 2+ 1D (hereafter we refer to the
2 4+ 1D system of massless Dirac fermions as 2+ 1D
system). The fact that electrons in graphene are relativ-
istic opened the possibility of predicting, in this material,
typical phenomena of particle physics. In this sense,
some phenomena, such as Klein’s paradox [7-10], and
Zitterbewegung [11,12], are examples known to occur in
graphene. In addition, graphene also exhibits an
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unconventional transport phenomenon, characterized by
the existence of the anomalous quantum Hall effect [13]
and minimal dc conductivity, whose value in the approxi-
mation of noninteracting electrons is given by (z/2)e*/h
[14]. Since the relevance of electronic interactions in
graphene was confirmed by the experimental observation
of the renormalization of the Fermi velocity [15], as
predicted in Ref. [16] with a theory that considered such
interactions, there has been a great effort in trying to
obtain models that describe some physical properties of
these materials.

The electronic interaction between p, electrons in
graphene is described by the minimal coupling between
the electronic current and the gauge field. However, this
is not easily incorporated into the model, because the
electrons in graphene are constrained to move in a 2 +
1D plane, whereas the photon lives in 3 + 1D. The usual
quantum electrodynamics in 2+ 1D is not a good
candidate to describe such a system, because for this
theory both electrons and photons are confined to the
plane. Furthermore, this theory produces an interaction
between electrons proportional to In r [17] (nonphysical),
instead of the Coulomb potential 1/r. An appropriate
gauge theory that has the characteristic of mixing
dimensions is pseudoquantum electrodynamics (PQED)
[18], also known as reduced quantum electrodynamics
[19], which is the projection of QED4 on the plane and
leads to a nonlocal gauge field. This approach provides
the correct propagator of the gauge field and properly
accounts for several features, such as scale invariance
[20]. In particular, it has been shown that these models
respect causality [21] and unitarity [22]. Indeed, the
gauge field propagator in PQED has support in the
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light-cone surface and therefore the theory obeys the
Huygens principle, as in the case of QED4, and in
contrast to QED3 [23]. Furthermore, PQED yields the
Coulomb potential in the static limit, which is a desirable
feature for applications in the physics of two-dimensional
materials [24].

When the dimensional reduction from the QED4 to
PQED takes into account the effects of boundary con-
ditions imposed to the electromagnetic field in 3 + 1D,
the influence of such external conditions is carried into
PQED, producing the so-called cavity PQED [25,26]. In
this context, Silva et al. [25], showed that the renorm-
alization of the Fermi velocity is inhibited by the presence
of a grounded perfectly conducting surface. Such effect,
caused by a modification in the photon propagator by the
conducting surface, should also have an influence on the
polarization tensor, which, using the Kubo formula,
determines the longitudinal conductivity, and, in the
low momentum limit, results in the optical conductivity
of the system [27].

In the present paper, we investigate how the conducting
plate and its distance to the 2 + 1D system affect the photon
self-energy, which, as mentioned, results in a modification
of the conductivity. More specifically, we compute the
2-loop contributions to the 00-component of the polariza-
tion tensor for the 2 + 1D system in the presence of a
grounded perfectly conducting plate. From this result, the
longitudinal and optical conductivities are obtained,
according to the Kubo formula.

The paper is organized as follows. In Sec. II, we present
the model and the Feynman rules. In Sec. III, we review the
influence of a conducting surface on the renormalized
Fermi velocity in the static regime, obtained in Ref. [25]. In
Sec. IV, we calculate the polarization tensor at 2-loop
perturbation order in the presence of the conducting sur-
face. In Sec. V, we merge all results and get the longitudinal
conductivity. Also, the optical limit of the conductivity is
investigated. In Sec. VI, we analyze our results and make
final comments.

II. THE MODEL AND FEYNMAN RULES

PQED, which was first proposed by Marino [18],
describes the electromagnetic interaction between electrons
moving on a plane in a 24 1D spacetime. In PQED,
although electrons are confined to a plane, they interact,
effectively, as particles in 3 4 1D. Formally, this system
can be achieved by changing the usual Maxwell term F ,2,,,

by Ffw/ V-0, where [ is the d’Alembertian operator.
Besides that, since the nonlocal gauge field also produces
the full electromagnetic interaction, independently of
whether the matter is relativistic or not, we can easily
include the Lorentz symmetry breaking term in the matter
field. Considering this, we start with anisotropic PQED,
given by the effective Lagrangian (A =c = 1)

F
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where F,, is the usual electromagnetic tensor, vy is the bare
Fermi velocity of the electrons in the 2 4 1D system, y; =
(I//ZTI//Z \WE1¥Ws ) i the four-component Dirac spinor
representation of the electrons The flavor index a repre-
sents a sum over valleys K and K, A and B denote the
sublattices in graphene, whereas 1 and | are the different
spin orientations [23,25,26,28]. y* = (y°, vpy) are rank-4
Dirac matrices, j* is the matter current in 2 4 1D, and the
last term is the gauge fixing. PQED has been successfully
used in the description of several properties 2 + 1D
systems [24-26,28-37].

Considering Eq. (1), the photon propagator is given
by [29]

(0) o 2r 1 kﬂky
A/“’ (k> - K\/k_2 |:5IU/ (1 5) k2 }’ (2)
where « is the dielectric constant of the environment in cgs
units, and we defined the quadrimomentum k = (kq, k),
with ¥ = ¥k + vy - k and k2 = k3 + v%|k|%. Also, since
we are working in the Euclidean space representation, the y
matrices satisfy {y#,y*} = 281, where p, v = 0, 1, 2 and
I = diag(1,1,1) [38].

Assuming the Feynman gauge (£ = 1) and the static
regime (ko = 0), we get

0 277:
A (K]) = k] Sondor (3)

which, by a Fourier transform [17], leads to the
Coulombian potential for static charges,

e

4G (4)

k|’
where e is the bare coupling constant and |r| is the distance
between an electron and a point where the potential is
calculated. The bare fermion propagator is defined as

_ 7’ko + vpy - k

(0)
Sy (k) = . 5

From (3), the electron self-energy becomes [39]

()
——q-ylnl—|, 6

w7 jq ©)
where A is the ultraviolet momentum cutoff. Note that,

since we considered the static approximation, there is no
wave function renormalization at the 1-loop order [39].

I(q) =
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From Eq. (6), one obtains the renormalized Fermi

velocity [39]
=g 2

where a = e¢?/(kvg) is the fine structure constant of
the 2 + 1D system. Consequently, the renormalized o will
be [38]

a

R ESTIVTN o

III. THE EFFECT OF THE CONDUCTING
SURFACE IN THE STATIC REGIME

Among the various ways to influence the transport
properties of graphene (see [5,40]), it has been shown
by Silva et al. [25,26] that a grounded perfectly conducting
surface can inhibit the renormalization of the Fermi
velocity in a neutral graphene sheet placed in vacuum
(see Fig. 1, k = 1 for vacuum). In this context, we can also
highlight the work of Raoux et al. [41], who obtained, for
doped graphene, the inhibition of the renormalized Fermi
velocity in the same configuration.

Considering Fig. 2, an electron (charge ¢) in the 2 + 1D
system (located at the point P), in the presence of a parallel
grounded perfectly conducting plate at a distance py,
interacts not only with another electron in the same sheet
(at point A), but also with a certain amount of positive
charge on the surface of the conducting plate induced by
the other electron (at point A’). Using the image method,
this amount of positive charge is effectively given by an
image charge ¢’ = —e. Taking this into account, the
resultant static potential will be given by [25,26]

el 1l 1

Vipp t)) == | = -
(pO |l'|) K |r| |I’|2—|—(2p0)2

©)

Taking a Fourier transform over Eq. (9), the photon
propagator becomes [25,26]

Dielectric Media (k)

2+1D system :
Po K

v

L

Conducting Surface

FIG. 1. A 2+ 1D system of massless Dirac fermions at a
distance p, from a grounded perfectly conducting surface. The
dielectric media above and below the 2 + 1D system have the
same dielectric constant «.

K
e (A r
—-0—————|—| ————— -o- — — 2+1D system
Po K
R Conducting surface
el 2
wl | VR @)
'e“,*"A,
FIG. 2. Tllustration of the 2 + 1D system, represented by the

dashed line, located at a distance p, from the conducting surface
(represented by the solid horizontal line). An electron e in the
2 + 1D system, located at the point A, has its image ¢/ = —e at
the point A’. P is the point in the 2 + 1D system where the
potential is computed.

27
k|

Considering Eq. (10), the electron self-energy correction

is [25]
62 | A F A 11
—&q-}/ n @ - (p0|q|’ ) ’ ( )

AG (po[k[) = = (1= ek). (10)

Z(po,q) =

where

1 2 &
F( A) :ﬂ/o dc_f/o d&(1 + cosh écos ()

x exp[—py|q|(cosh & — cos {)], (12)
and

&y = cosh™! <|2q—A| + cos é’). (13)

Hence, the renormalized Fermi velocity will be written
as [25]

N (1 N i |

Next, we compute the influence of the conducting
surface on the polarization tensor.

IV. POLARIZATION TENSOR

The component 1%, renamed as II, can be expanded
perturbatively as

H(w, q) = 11 (0. q) + 21, (0. q) + (0. q),  (15)
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where II; is the contribution coming from the I1-loop
Feynman diagram [see Fig. 3(a)], whereas I1,, [Fig. 3(b)]
and II,, [Fig. 3(b)] are contributions from the 2-loop
diagrams. Due to its symmetry, the correction IT,, must
be multiplied by the factor 2.

From Fig. 3(a), one can see that there are no photon lines
in the IT; diagram, therefore, the result is the same for QED
in 2+ 1D, given by [38,42,43]

Nellg] 1
SUF

I (0.q) = - : (16)

l—yé

where N = 2 corresponds to the K and K’ valleys, and we
defined igy = w + ie, € » 0%, with y, = (o + ie)/vp|q|
(remember that g = (g, q) represents the quadrimomentum).

The diagrams in Figs. 3(b) and 3(c) show that these
contributions to IT depend on the photon propagator and,
therefore, are directly affected by the presence of the
conducting plate [to emphasize this influence, hereafter,
we write I, (po. @, q) and I, (po. @, q)]-

A. Calculation of II,,
The diagram presented in Fig. 3(b) leads to the following

definition:

|
&Pk k
Neé? T
¢ /(271)3 r{y e

M (0. 0.4) = o

k+q

WO

q q

(a) ITq diagram.

2(k+q)

(b) I, diagram. (c) 1oy diagram.

FIG. 3. Feynman diagrams representing the first terms of the
perturbative expansion of II, according to Eq. (15). The red part
of the diagram in (b) is to highlight the contribution of the
electron self-energy diagram.

0 0
Trley*SY (k)er"Sy (k + q)

Ak
H2a(p07w’q) :_N/(2 )3

x Z(po. k + )8y (k + g)]. (17)

which, from Egs. (5), (10) and (11), gives

(“4)4 (k+q)-y[ln<|k—iq|) —F(p0|k+q|,/\)} “”q)}. (18)

(k+q)*

Following the same approach of Ref. [38], one can find that

Net [ &k k- (k +q) -
I, (po. @.q) = _K/ (27)? K|

By making k — —k — q, choosing a coordinate system such that q = (

coordinates [38,44],

k||k +q| [v2(|k|+ |k +q])? = ¢3 A
k|| |[2F(| |+ | I>2 2012 In — F(polk +q|.A)|.
W2k + [k +q])% + ¢2] k +q|

(19)

,0), and performing a transformation to elliptic

2
k, = |(21| (coshpucosv — 1), ky = %sinh,u sinv, d’k = |1| (cosh’u — cos’v)dudv, (20)
we are able to obtain
Net|q Zﬂ sin? v(cosh y — cos v)(cosh? u + y2) 2A
HZa (/007 w, q) | | / 2 2 1 In
327Kk v% (cosh? u — y2) |q|(cosh y — cosv)

—F <p0£q| (coshpu — cosv), A>] .

The above equation can be rewritten as

(21)
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ealq| [ 1
o p.00.) = Tt |2 sl + L) = Ll v )] @)

where the function 7, (y,) was obtained in Ref. [44]:

l]+2y5_&5—2y5 -y, _13—121n2+6yé—4yf1 i
31-y2 6 1-y; 1L +y,

I,(y,) = —
! 2 (1-yp)” (1=yg)*?

o R SO ars R A RN

where Liy(z) = > | zF/k? is the dilogarithmic function, whereas 7 ( A) is the following integral, which will be

solved numerically:

Ia”(

hu — h? pu +
/ dl// sin”v(cosh C;)SU><COS a yq)F poldl (coshu —cosv), A ). (24)
m(cosh? u — y2)? 2

Defining x, = Rey, = w/(vp|q|), we see that, for x, > I, there is a pole on the contour. In such situation, we can
determine the real and imaginary parts of 7, ( A) using a generalization of the Sokhotski-Plemelj identity for
integrals with higher order poles [45], as presented in Appendix A 1:

2r x,—e H(w, x,, o H , 2H(x,, x,,
Rel, (polal, x, A) = lim/ d,,[/ (VV—XQ’;)dW+/ (w, x, 1;) g 202 v)]’ (25)
e—=0" Jo 1 (w—2x,) rore (W=Xxg) €
22 dH(w,x,,v)
it polal g ) = [T S (26)
0 w w=x,
where w = cosh ¢ and
1 sin? v(w — cosv)(w? + x2
H(w, xg.0) =~ plw = cosv)(w” + xq) F(”O“” (w — cos u),A). (27)
T (wHx,)Vwr -1 2

B. Calculation of II,,

The diagram in Fig. 3(c) leads to the following polarization correction:

Pk Pp o
I, (po. 0, q) = —N€4//(27)3WA00 (Po

which, according to Egs. (10) and (5), gives

k —p)Trl*SY (p + )y (k + @)r°SY (k) s (p)],  (28)

277:64N Bk d*p1—e—2ﬂo\k Pl F+aq) ,K+q) K ¥
I, (g, w, q) // Tr[o 7° - 0—} 29
2{po Gxf k—p] ot hral B 29)
Considering Ref. [38], we find
Iy, ( 27rNe // d*k d2 1 — e~ 2rolk-p|
Po. @, q)
R )? |k = pl[v}(k| + [k +a])* + g3][v:(p| + [p +al)® + ¢3]
{_q2<k'p_p-(k+q)_k-(p+q) (k+q)~(p+q)>
°\Ik[lp| Ip|/k+q| [kl[p+4q] |k+gq|lp+q|
v (k| + [k + +|p +
Ik||p|[k + q|[p + q|
+(Ik|2+k-q—|k||k+q|)(|p|2+p-q—|p||p+q|)]}- (30)
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By making a transformation to elliptic coordinates over momenta k and p, in the same way of Eq. (20), we get

Nez|q|a dudy' dvdy/ cosh p cosh y/ sin v sin v/
167> vp V/[cosh(u + ') — cos(v + V/)][cosh(u — ') — cos(v — /)]
[sinvsine/ + sinh g sinh g’ 4 y2(sinvsin 2/ + tanh g tanh ¢’ cos v cos /)]

(cosh? u — yg)(cosh® 4’ — yg)

I, (po. @, q)

x [1= exp (=polal/Teosh(u + ) = cos(v + )feosh(u = ) —cosw=¥)]) | (31)
After that, making n =v+v,t=v—-1V,a=u+y and b = pu—y/, we find:
Iql ‘a
I, (po, @, q) = P2b(l’0|(I| yq) (32)
where
(olal- ) == [Tt [T 1
) - — 7, 3 a
P2p1poll- Vg 167 Jo b [1 = 2y2 + cosh(a + b)][1 —2y2 + cosh(a — b)]
x [(cosh? a — cosh? b)(1 + y2)M (a. b, polq|) + (cosha + cosh b)M,(a, b, po|q])
+ y2(cosha — cosh b)M5(a, b, )], (33)
and
2n 27
M,(a, b, pola]) = / dn/ dehi(1 = ) fori=1,2,3, (34)
0 0
with

2
COST — COS COST — COS
h] = l/l h2 — ( ’7)

v/[cosha — cosn][cosh b — cos 7] '

(35)

v/[cosh a — cosn][cosh b — cos 7] '

cos’t — cos’y

hy = Jeosha—cosjlcoshb —cos e Ryial = €xp (—pola|y/[cosh a — cos n][cosh b — cos 7]). (36)

The integral in Eq. (33) has a pole at x, > 1. Therefore, within this region, we split the integral into real and imaginary
parts with the application of the Sokhotski-Plemelj identity (as shown in Appendix A 2), resulting in

1 o /1<xq)_b_e U(a, ba p0|q|’ﬂ’(x ))
Re[pay(polal. x,)] = lim A db {A da ;

1673 e=0° 94 (a.b,A(x,))g-(a. b, A(x,))
Ax,)+b—e ) ’j
+ / a ( ) +/ da () ] (37)
Mxy)—b+e 9+ (av b, /I(xq))g— (a’ b, A(xq)) Mxg)+b+e g+(a, b, A(xq))g— (av b, /l(xq))
1 Ax)/2 db [U(Mx,) ,A(xg))
I e e —— q q
m{p2s (poldl. x)] = =357 sinh((x,)) { A sinh b [ sinh(b + A(x,))
_U(i(xq)_lfh b7p0|q|7/1(xq)) +/oo db U(ﬂ’('xq) +bvb7p0|q|’l('xq)) (38)
sinh(A(x,) — b) A(x,)/2 Sinh b sinh(b 4 A(x,)) '
where we have defined x, = cosh(4/2) as in Ref. [44], and
h
U(a, b, pold|, 2) = (cosh® @ — cosh® b)M (a, b, po|q|) + (%) (cosha + cosh b)M,(a, b, polq|)
hl+1
COMAY L (cosha — cosh b)M; (a, b, pola]), (39)
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with
g4 (a,b, ) = cosh(a + b) — cosh 4, (40)
and

g_(a,b,2) = cosh(a — b) — cosh 4. (41)

C. Renormalization

Until here, we have written the polarization tensor in
terms of the bare parameters a and vr. However, in order to
|

have results written in terms of observable quantities,
we must rewrite the polarization tensor in terms of
renormalized parameters, as stated in Refs. [38,44].
The method to do this transformation, as described in
Refs. [38,44,46], is to perform the summation IT; + 2I1,,
and absorb the logarithmic divergence into the renormal-
ized Fermi velocity. Following this method, and consider-
ing the conducting surface, the combination of Egs. (16)
and (22) leads to

Ne?lq| ! a_ 1 aF(polal, A)
I (@, q) + 2[4 (po, @, @) = = ~ (In(A/lql) = Flpolal, Al = 5 =57
8vp -2 4(1-y2)32 4 (1—y2)%2
a
_2_[Ia’(yq)_Ia”(p0|q|’yq7A)] s (42)

V4
where, for convenience, we added and subtracted Via = Xh o +ie, and x5, =— » (47)
Ne?|q|aF(polal. A)/[32vF(1 — y2)3/?] to the right-hand Upoqldl
side.

Now, considering the renormalized Fermi velocity in
Eq. (14) and the renormalized fine structure constant of the
2 + 1D system in the presence of a conducting plate,

2

e a
Wpqg=—5—= . (43)
kg 1§ In(A/|a]) = Flpolal. A))

we write a in terms of a; 4,

«= {1+ B I (/) - Flanal. )]

+O0(a5q)- (44)

Then, replacing the above equation into Eq. (42) and
performing a series expansion until O(«;, 4), one can show
that the combination of terms leads to the absorption of the
logarithmic divergence into the renormalized Fermi veloc-
ity and Eq. (42) becomes

IT, (w.q) +2I0,,(py. @.q)

*|q| *lqla;,
W Gl (49)
4”po-,q\/ 1=y50q pod
where
Pl i) = g 5 R+ 1 )
Po-q
Ly(polal. y;;o,qﬂ , (46)

To remove the dependence on A from F, we consider
suitable values for p,, for instance p, > 5/A, such that, as
shown in Appendix B, we can rewrite F' in terms of Bessel
functions [25]:

A) = 1y(pola|)Ko(polal) + 11 (polal) K1 (pola

):
(48)

F(polq

where [, and K, are the modified Bessel functions of first
and second kind, respectively, and, hereafter, we write the
function F as F(pg|q|).

Finally, we consider the map (@, vr) = (@, q. V), q) I
Eq. (32), rewriting Il,, in terms of these renormalized
parameters until O(a), o), namely

e*|q|a;
I, (pg. @, q) = Tpo'q
Po-4

Pav(polal, y;%,:;)- (49)

By inserting Eqgs. (45) and (49) into (15), we can write
the 00 component of the polarization tensor, corrected until
2-loop order, in terms of the renormalized parameters,
namely

e*|q] €2|q|a;o-q

H(Po’wam = . 2 v
4vp, \ 1=y50q pod

X [paa(polal.yp,.q4) + P2n(Pola

’yl*Jo,tI)]' (50)

The pole in Eq. (50), at xj, , = 1, determines a threshold
from which (x; , > 1) the polarization tensor has a
imaginary part, which is connected to the real part of
the longitudinal conductivity. According to Ref. [44], for

125032-7
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the case without the presence of the conducting plate,
it was argued that as x; — 1 the 2-loop results tend to be
unreliable, since higher order corrections become as impor-
tant as the 2-loop ones. In the present case, with the presence
of the conducting plate, we expect a similar behavior, so that,
as x, o — 1, the 2-loop results become less reliable.

As an application of the above calculations, we deter-
mine the longitudinal conductivity and its optical limit.

V. THE CONDUCTIVITY

As shown in Appendix C, the longitudinal conductivity,
o(w, q), can be obtained in terms of the 00-component of
the polarization tensor I1(w, q) as follows [27,44,46]:

ioll(w,q)
o(w,q) = T

From Egs. (50) and (51), the longitudinal conductivity
becomes

(51)

9 9 . 1
oo 2.9) ~ 41x,*,0_q{— T %
O *
0 4\/ L=yioy
X [P2a(polal. ¥5,.q) + P2n(pola 7y;0,q)}}'
(52)
|
ix!
32(polg|, x;) = Re 1

VI =% F (ol - vy

4ix} o
+ a s 4 2 |:pZa<p0|q|7
[1 =3 F(polal)]

which is the real part of the ratio (52), written in terms of xj,
and ag using Eq. (53). The subscript 2 means we are going
until 2-loop perturbation order.

In Fig. 4(a), we plotted the real part of the conductivity at
I-loop order, represented by &(po|q|.x;), given in
Eq. (54). The three curves correspond to &;(po|q| — o,
x;) (dashed line), &,(po|q| = 5. x;) (dot-dashed line) and
1(pola] = 1.x;) (dotted line). From this panel we can take
two conclusions: first, as we bring the conducting plate
closer to the 24 1D system, the 1-loop conductivity
increases, with such effect being more noticeable as we
approach the point @/(vg|q|) = 1; second, for a fixed p,
we also see an increase in the conductivity as |q| decreases,
which is a consequence of the product py|q| in the
exponential term of the photon propagator (10).

In Fig. 4(b), we plotted the real part of the conductivity
up to 2-loop perturbation, represented by &,(polql.x;),
given by Eq. (55), and, for comparison, the I1-loop

Vg Vg
,ﬁl—q> +DP2w (P0|Q|’a;—q>} ;
1 =3 F(polal) 1 =2 F(polal)

In order to visualize the results in terms of quantities
that do not vary with p,, we write x, , as a function of xj,
which is done using Egs. (7) and (14), remembering that

*

ay = e*/(kvy), giving

q
x*
* q
Xpq = - and
" 1= F(polal)
. %
%poq = : (53)
" 1=3F(pola))

For further analysis, taking into account the real
part of the longitudinal conductivity, it is convenient to
define

lxq ’ (54)

ag 2 "
[1-%F(plal)]” -7

51(polal.x;) = —Re \/

which is the real part of the ratio (52), calculated until
1-loop order of perturbation (the subscript 1 means that
the formula takes into account calculations up to 1-loop).
We also define:

(55)

|

correction for po|q| = 1,i.e., 5, (po|q| = 1.x). The 2-loop
curves correspond to 5, (pg|q| — o0, x}) (long dashed line),
2(polq| = 5.x;) (dot-long-dashed line) and &, (py|q| = 1,
x,) (small dashed line). When the product p,|q| decreases,
we observe an inhibition of the 2-loop correction, which,
therefore, causes a displacement of the longitudinal con-
ductivity towards the I-loop correction, leading to an
increase in the conductivity even more evident than at
I-loop. In other words, as the distance between the
conducting plate and the 2 4 1D system gets smaller,
the contribution of the 2-loop polarization diagrams
becomes inhibited, and this leads to an enhancement of
the conductivity for this part of the spectrum (in the optical
limit we see a slightly different behavior). On the other
hand, for a fixed py, if we vary |q| and w such that the ratio
w/(vg|q|) remains constant, the previous behavior will also
be observed: a cancellation of the 2-loop corrections as |q|
decreases, leading to an increase of &,(py|q], x,). We must
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FIG. 4. (a) Representation of the real part of the conductivity at

1-loop perturbation order, where the dashed line accounts for
1(polq| = 0, x7), the dot-dashed line for 5, (po|q| = 5, x) and
the dotted line for &;(plq| = 1.x}). (b) Presentation of the
curves for the longitudinal conductivity up to 2-loop perturbation
order, where the long-dashed line accounts for &, (py|q| — oo,xj;),
the dot-long-dashed line for &,(po|q| = 5,x}) and the small
dashed line for &,(polq| = 1.x}), we also plotted &, (polq| =
1, x3) for comparison purposes. Both panels have w/(vglq|) as
the horizontal axis. We made ag = 0.3 as in Ref. [44].

highlight that this feature is not observed in graphene in the
absence of the plate [47], since the only dependence it has
on the external momentum comes from w/(vg|ql), but
varying |q| while keeping this quantity constant will not
affect the conductivity.

A. The optical limit

In Ref. [26], the authors considered the real part of the
optical conductivity o,y (@) as presented in Ref. [48],

Re|o} (@
Reloo(@)] _ | . Caly, =1+ Ca-l . (56)
09 g Yqliql=w/v,

where C is a constant, 6, = €?/4 is the minimal conduc-
tivity of graphene and the superscript in ¢ sets the

dependence on the renormalized parameter o) . In

Ref. [26], it is suggested that the optical conductivity
should increase due to the inhibition of the renormalization
of the Fermi velocity by the conducting surface. In order to
verify this proposal, we compute the optical conductivity
from the following limit [47]:

. o
Copt(Po, @) = ‘(III‘TOWH(/JO’ ®,q). (57)

From the above definition, we show, in Appendix D, that
the optical conductivity is given by

Re[gopt (/7()7 w)]

ETOPt(pO! Cl)) = 5 ~1+ C(Pow/”F)a’ (58)
where
Clpow/vr) = Co+222 4 F(pylk])
w/vp) = YRS TANETIEY
PR/ r * T 8urdlpolk]) " Ik |=w/20,
+/n’d6/00d cos O(u + cos6)
—_— u
o 7 Jo (1 —=u?*)Vu? +1-2ucos®
xexp(—pow u2+1—2ucos9), (59)
3
and
19-6
Co=—— T ~0.0125 (60)

is the 2-loop term calculated in Ref. [47].
In the context of graphene with no plate [39,47], one
makes a — o ) therefore, considering the existence of

w/(2vp o
the plate, we must make @ — a ) obtaining:

po-w/(2vF

Re[ogp(po, )]

=1+ Cpow/vr)a,
0o

(61)

0.0/ V5’

which is correspondent to Eq. (56). Therefore, the above
equation is the proper description of the optical conduc-
tivity of graphene in the presence of a conducting surface,
computing the new C factor and not just considering vgq —
vy,.q 10 Eq. (56), as supposed in Ref. [26].

In Fig. 5(a), we plot the real part of the optical
conductivity as a function of pyw/ v, where the solid line
corresponds to Eq. (61). In this figure, the point P is where
the optical conductivity is equal to the minimal conduc-
tivity (represented by the dotted line), which means a total
cancellation of the 2-loop correction due to the presence of
the plate in the limit p, — 0. The point P, is where the
optical conductivity in the presence of the plate equals
the optical conductivity without the plate (dashed line). The
point P5 represents the peak of conductivity. Then, as the
distance p, gets bigger, the optical conductivity tends to
the case without the plate, as expected.
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FIG. 5. (a) The solid line corresponds to the real part of the
optical conductivity [Eq. (61)] for e, = 0.3. The dashed line
represents the optical conductivity calculated until 2-loop order,
without the presence of the plate. The dotted line corresponds to
the minimal conductivity, given by the point P,. P, is the point
where the values, with or without plate, are the same. Pj
represents the maximum value of the optical conductivity.
(b) The solid line corresponds to C(pyw/vg) [Eq. (59)]. The
dashed line represents Cy =~ 0.01, and the dotted line serves as a
reference for C(pyw/vyp) = 0. At the point Pj, C(pow/vr)
reaches a maximum value, while at the point P, we have
C(pow/vp) = Cy. At the point P}, C(pow/vr) becomes null.

In Fig. 5(b), the solid line corresponds to the function
C(pow/vg), given by Eq. (59). At the limit py — 0,
C(pow/vp) tends to zero, which is represented by the point
P', and whose value is indicated by the dotted line. As we
increase the distance p,, we get to the point P,, where
C(pow/vp) coincides with Cy =~ 0.01 (represented by the
dashed line). As the distance p, becomes larger, the function
C(pow/vr) increases until reaching a maximum value, given
by the point P%. For py — oo, we recover the C,, obtained in
Ref. [47], which is represented by the dashed line.

VI. ANALYSIS OF THE RESULTS

AND FINAL COMMENTS

In the present paper, using PQED as the theory
which describes the interactions of electrons in a 2 + 1D

system of massless Dirac fermions, we computed the
00-component of the photon self-energy, until 2-loop
perturbation order and in the presence of a grounded
perfectly conducting surface. As an application of our
results, using the Kubo formula [Eq. (51)], we were able to
determine the longitudinal and optical conductivities of the
2 4 1D system. In the language of condensed matter, the
2 4 1D system investigated by us is the representation
of graphene in the low energy regime, since, in this
approach, the dispersion relation of graphene is given by
E. ~ twvg|k|, where vy is the Fermi velocity and k is the
external momentum.

In our work, an important result is that the real part of the
longitudinal conductivity increases when the distance
between the 2 4 1D system and the plate decreases. In
Fig. 4(a), we see this enhancement for the 1-loop approxi-
mation [Eq. (54)], but it is more evident if we go up to
2-loop perturbation order [Eq. (55)], specifically near the
point @/(vg|q|) = 1, as shown in Fig. 4(b).

The longitudinal conductivity, obtained here for any
frequency and momentum [Eq. (52)], leads, in the limit
|q| = 0, to the optical conductivity [Eq. (57)]. In Ref. [26],
considering Eq. (56), it is suggested that the optical
conductivity of a graphene sheet near a conducting plate
is increased (if compared to the case without the plate) due
to the inhibition of the renormalization of the Fermi
velocity by the plate. However, the authors didn’t consider
the influence of the plate on the C factor of Eq. (56). The
calculations up to 2-loop perturbation order provide the
correct C for the model, given by Eq. (59) and shown in
Fig. 5(b). According to our results, even if we write the
conductivity in terms of the bare parameters [as shown in
Eq. (58)], the presence of the conducting plate generates a
dependence on the frequency, what does not happen in the
situation without the plate.

Therefore, considering contributions from both the C
factor and the renormalization of the Fermi velocity, we
obtain a proper description of the optical conductivity
[Eq. (61)], presented in Fig. 5(a) as the solid line. In this
panel, when the plate is infinitely distant from the 2 + 1D
system, we recover the result for the optical conductivity
found in the literature [47], which is indicated by the
dashed line in Fig. 5(a). As we bring the conducting plate
closer to the 2 4 1D system, the optical conductivity is
increased (if compared to the case without the presence of a
conducting plate), reaching a maximum value. After that,
the optical conductivity decreases until it gets totally
canceled in the limit of no distance between the conducting
surface and the 2 4 1D system.

In summary, our results give a theoretical description of
the longitudinal and optical conductivities of a 2+ 1D
system, which is correlated to graphene, in the presence of a
conducting plate. With calculations taken until 2-loop
perturbation order, we showed that the longitudinal con-
ductivity increases as we bring the conducting surface
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closer to the 2+ 1D system. In the optical limit, the
conductivity can increase or decrease, depending on the
position of the conducting plate. These results may be
useful as an alternative way to control the longitudinal and
optical conductivities of graphene.
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APPENDIX A: THE SOKHOTSKI-PLEMELJ
IDENTITY

Usually, the Sokhotski-Plemelj identity is presented
as [45]

lim bL),dsz/hf()dxﬂme( 0)s

(A1)
-0 ), x—xgxie X=Xy

where P is the Cauchy principal value. One can extend
its definition to calculate integrals with higher order
poles [45],

b b
lim Lx).dx:#/ de,
—0 J, (x — X + l€)"+l . (x _xo)n+l
(n)
+inl n(‘x(’), (A2)

where # represents the Hadamard finite-part integral (an
extension of the Cauchy principal value integral), and is
defined as

’ f . Xp—€ f
o =t [
b f(x)
' L»Jrem —H,(x.€)|,
(A3)

where

Ho =0, (A4)
and

&L R0 (1= (=1

L on=12,...
K(n—k) e * "

(AS)
k=0

Hereafter, we use the above representations to compute the
real and imaginary parts of the 2-loop corrections to the
polarization tensor for x, = @/(vg|q|) > L.

1. II,, diagram

First, we compute the real and imaginary parts of the
integral 1, [Eq. (24)] of the II,, diagram, for x, > 1.

a. Real part
Lets make a change of variables in Eq. (24),

d
w = cosh y, du = L (A6)
w? —1
obtaining
W )
/ dl// dw Yo ) (A7)
(w=y,)?
where
1 sin? v(w — cosv) (w? + y2)
H(w,y,.v) =— d

oty PV

X F(p02|q| (w —cos y),A).

(A8)

Then, from Eqs. (A3) and (AS5), we find the real part is
given by

x—e H(w,x,,)
Re[l(polal.x,)] = lim {/ de
+/oo H(w,xq,lg) dw— ZH(xq,Xq,l/) ‘
rre (W=2x,) €
(A9)
b. Imaginary part
From Eq. (A2), we obtain the imaginary part:
2z dH(w, X4 V)
il (polal.x)) = | a2 (A1)
0 w W=X,

q

where
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dH(w, x,,v) sin?y

dw

W=X,

2. I1,, diagram

Here, we compute the real and imaginary parts of the I1,;
correction to the vacuum polarization, represented by
Eq. (33). In the following steps, our calculations are similar
to Ref. [44], though leading to different representations,
they generate the same numerical results.

Since Eq. (33) has a first order pole, we can apply the
usual definition of the Sokhotski-Plemelj identity, but in
terms of the delta function [44]:

1
—=P
X — Xy i€ X — X

F ind(x —xy), (Al2)

which can be also generalized for a function on the
denominator,

:W[(xqcosy—l)F<

+ (x2 = 1)(x, —cosy)d(ivFCoO'ql(w—cosy),A>

p0£q| (x, —cosv), A)

|

q

5 (A11)

5(g(x) (A14)

Z|x x)

assuming x = x; are the zeros of g(x).
In Eq. (33), making x, = cosh(4/2) [44], we must define
two functions in the denominator, namely

g, (a,b,A) = cosh(a + b) — cosh 4, (A15)

and
g_(a,b,A) = cosh(a — b) — cosh 4, (A16)

which have poles at a,. = 1 F b. Hence, Eq. (33) leads to

P (polql.x / db/ da
—iw—Z[ (9())|,  (A13) W e
i % U(a,b, A(xy))
g, (a,b,A(x,))—iellg_(a,b,A(x,)) —ie]’
where g(x) is an invertible function in the region of - ( () ~iellg-( () il
integration, and the § function of a function is given by [49] (A17)
|
where
hl+3
U(a. b.pola|.4) = (cosh? a = cosh? b)M (a. b. polq]) + (%) (cosh a+ cosh b)M3(a. b. pol)
hl+1
% (cosh a — cosh b)Ms(a, b, polql)- (A18)
Next, we explicit the real and imaginary parts of p,,.
a. Real part
As mentioned before, the real part of p,, will be calculated by taking the principal value of (A17), namely
°° Hxg)=be U(a.b.polql. A(x,))
R , li db d
elps(polal-xg)] = =775 im | [ A C9(a.b.a(x,)9-(a.b.2(x,))
Axg)+b—e b, A S A
+/ da—-"" () +/ da—Y! C)) ] (ar9)
Axg)=b+e 9+ (a’ bv’l(xq))g— (a’ b”l(xq)) Mxy)+b+e G+ (a’ b”l(xq))g— (av b’l(xq))
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b. Imaginary part

The poles of the functions g, (a,b,1) and g_(a, b, 1) are not the same. Therefore, we have

_dla—(A-D)) _dla—(A+D))
8(g4(a,b,2)) === — 8(g-(a.b.2) = ——= —— (A20)
Hence, the imaginary part of Eq. (A17) becomes
1m{pay (00| )= — 1 //1()6(,)/2 db [U(A(x,) +b.b,A(x,)) B U(A(x,) = b, b, A(x,))
Pt Poll X = T3 Ginh () Lo sinhb | sinh(b + A(x,)) sinh(A(x,) — b)
/00 db U(A(x,)+b.b,A(x,)) (A21)
ix,)/28inh b sinh(b + A(x,)) '

APPENDIX B: THE F(py|q|) APPROXIMATION

The integral in Eq. (12) has a cutoff at £, , which is given
in terms of the momentum cutoff A by Eq. (13). As
explained in Ref. [25], the integrand of (12) can vanish
before reaching the cutoff £,. In Figs. 6(a) and 6(b) we plot

6

(b) Integrand of F' for pg = 5/A.

FIG. 6. In (a) and (b) we plot the integrand of F' [Eq. (12)] for
po = 1/A and py = 1/A, respectively, with |q] = A/10. The
solid line corresponds to the cutoff &,.

the integrand of Eq. (13), and also the cutoff £, , represented
by the solid line. In Fig. 6(a) (py = 1/A), we observe that
the integrand is not null at £ = £,. On the other hand, in
Fig. 6(b) (py = 5/A), the integrand vanishes before reach-
ing the cutoff £,. Therefore, choosing the appropriate p),
for instance p, > 5/A, the integral in ¢ tends to

5/\ o0
/ d§—>/ e,
0 0

and, the function F can be rewritten as [25]

(B1)

F(polal. A) = Io(polal)Ko(polal) + 11 (polal) K (polal).
(B2)

where [, and K, are the modified Bessel functions of first
and second kind, respectively.

APPENDIX C: THE RELATION BETWEEN THE
LONGITUDINAL CONDUCTIVITY AND II,,

From the Kubo formula [27] we get the definition of the
conductivity in terms of the polarization tensor, namely

o!/(w.q) = 11(w.q). (1)
w
The spatial components 1 can be written as [50]

g
q|>(«su - )
lq?

(€2)

M (w, q) = T* (w,

q'q’
q\)W + HT((IL

where II; and Il; are the longitudinal and transverse
components of the polarization tensor, which leads to a
definition of the longitudinal and transverse conductivities.
In the present paper, we are interested in the longitudinal
part, given by
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i
or(@. lq]) =~ (. |q]). (C3)
In order to isolate the longitudinal component, we
multiply both sides of Eq. (C2) by g,;q; and sum over,
obtaining that

49,117 (. q) = |q|’TT"(o. |q]). (C4)
From the continuity equation, given by [50]
0, J" =0, (C5)

where J# = (p,J) is the quadricurrent, one can also show
that [50]

qiq; .
ﬁﬂ”(w,q) =1"(w,|q

): (Co)

which, combined with Eq. (C4), leads to

HOO(CU,

a) =L@ (©)

Therefore, by replacing the above equation into Eq. (C1),
the longitudinal conductivity can be given in terms of the
00-component of the polarization tensor as

w
lq|?

HOO(G),

q|), (CB)

o(w,|q]) =i

where o (w,|q|) was replaced by o(w,|q|) throughout

the text.

APPENDIX D: THE OPTICAL LIMIT

The optical conductivity can be represented as

O-opt(pov Cl)) ~ Oopt,1 (a)) + Oopt,2a (pO’ w) + Oopt,2b (p()’ Cl)),

(D1)
where
. lw
Oopt1 (@) = |¢111\T0WH1(0)’ q). (D2)
. iw
Copt2a(Po, @) = |¢111|r30W2H2“(p0’w’ q). (D3)
. iw
Gopl,zb(Po,w) = ltlll‘f_r)lownzb(pmw, q). (D4)

From Eq. (16), we get that 6,1 (@) will be given by

2

.o e
Gopt.1 (@) = lim —TI;(w. q) = — = oy,

D5
lal~0 |q? - (B3)

so that the contribution of 6, ; results in the minimal
conductivity oy,

Obtaining 6,y 0,(w) requires the calculation IT,, in
Eq. (D3). Using Eq. (19), we have

Ne* [ d*k k- (k+q)—|k|k +q
L

2c ) (2n)? k + q
. LE(k| + [k + ) + o]

[vE(k[+ [k +q])* -0’
x [In (A/[K[) = F(po|K|)].

(D6)

where we made k — —k — q. Expanding until order |q|?
leads to

_N_e“/ &k 1|q*(cos?6-1)
w ) @ K

4v%|k|? - g3
(G i /D = Fipol)
o7

H2a (ﬂo7 w, q) =

where 6 is the angle between k and q. Then, integrating in
the polar coordinate system, we get

’lqPvra (407K [ +o?)
Tz (po. @.q) = T/ kP =)

o) )]

The above integral has a second order pole, and its
imaginary part will be obtained from the following formula,
better explained in Appendix A:

(D8)

[P f(x) J" (x)
Im{lﬁ% / (——i)d} =T (D)
In our case, n = 1 and we define
402K [> + o0®)[In(L) = F(po|k
)y < P+ DG Pl
(2vr K| + )
with derivative given by
df _ _vr_podF(polk|) (D11)
dlk| o 2 dpolK|) |kj=w/20,
Therefore, we have that
e lgla pow 1
Im 211 q)l=—-—"2 1+
{2t )] = = G (142222
dF (polk|)

. (D12
d(p0|k|) ka)/2vF>
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Hence, from (D3), the above contribution to the real part of
the conductivity will be
Ik=ﬁ)

(D13)

pow dF (po|k|)

onx
Re[doptla(p(]’a))] = T <1 +m d(ﬂ0|k|)

where the first term was obtained in [47].

The 64y 5(@) contribution is given by Eq. (D4).
Expanding the TII,, contribution until order |q|*> in
Eq. (30), it follows that:

Net|q?
k d do
2m/ ||/ |p|/ )

XA db, |k|[p|[cos(6,—0,) —cos(6;+6,)]

I, (po.0.q) =

[|k|‘p‘c0s(9k 0,)+4v3](1— e 2olk-pl)
|k —p|(4v7[k[* — ) (407 |p|* - »?)
(D14)

where we have made q = (|q|,0) such that 6;, = 6, and
0,, = 0,. From a change of variables, § = 6, — 6, and
@ = 0, + 0, one can easily obtain that

do
ol [T [T an [~ i
plcos (3

‘ka‘ cos @ + 4v%)
(407 |k > — 0?) (407 |p|* — 0?)

(1 _ e—zpm/|k|2+\p|2—2\knp\cos&)
VK[ +[pl* —2[k[[p|cosd

I, (po, ®.q)

15)

From Eq. (A13), we find that the imaginary part of the
above equation will be given in terms of

I 1 b2
m =
4v%|p)? — w? dovp

—w/2vg), (D16)

s(Ip|

and

[ 1
Im

T
= o(|k| —w/2vp). D17
TR~ Okl = 0/20). (DI7)

Due to symmetry, we can multiply the integral in (D15)
by 2 and consider only the imaginary part of p, giving
(u =2vr|K|/w)

2
_0olq do
Im [sz(ﬂo, ,q 0| = / /

cosé’[l —exp(— ”0“’\/ u*+1 —2ucos€)]
X

Vu?+1=2ucosd '
(D18)

u+cos9

where the first term in the integral was determined in [47],
giving

Re[ opt 2b(p07 )

—aoalg 3z /de/ "

cos O(u + cos ) exp (—”L‘?—;"\/u2 +1—2ucos0)
X :
(1 —u*)Vu? +1-2ucosd

(D19)
Therefore, from Egs. (D13) and (D19) we obtain
- Re[oop(po. )]
Bopt(Po- @) = % ~ 1+ Clpow/vp)a  (D20)
where
Clpowvr) = Co + 2224 F(pylk)
Pow/v 0
! 8 (p0|k|) |k|=w/2vp
cos O(u + cos6)

i
(1—u?)Vu? +1-2ucosé

xexp(—po—\/uz—l—l—ZucosH), (D21)
3

and Cy = '91‘26” ~0.0125 [47].
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