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We develop an effective field theory of a generic massive particle of any spin and, as an example,
apply this to study higher-spin dark matter (DM). Our formalism does not introduce unphysical degrees of
freedom, thus avoiding the potential inconsistencies that may appear in other field-theoretical descriptions
of higher spin. Being a useful reformulation of the Weinberg’s original idea, the proposed effective field
theory allows for consistent computations of physical observables for general-spin particles, although it
does not admit a Lagrangian description. As a specific realization, we explore the phenomenology of
a general-spin singlet with Z2-symmetric Higgs portal couplings, a setup which automatically arises for
high spin, and show that higher spin particles with masses above Oð10Þ TeV can be viable thermally
produced DM candidates. Most importantly, if the general-spin DM has purely parity-odd couplings,
it naturally avoids all DM direct detection bounds, in which case, its mass can lie below the electroweak
scale. Our formalism reproduces the existing results for low-spin DM and allows one to develop consistent
higher-spin particle physics phenomenology for high- and low-energy experiments and cosmology.
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I. INTRODUCTION

By very general considerations [1–5], massless interact-
ing fundamental constituents of matter can have at most
spin 2. Dark matter (DM), being necessarily massive,
naturally avoids conditions of those theorems and can thus
consist of particles with arbitrary spin.
Spin-0 [6,7], spin-1=2, spin-1, and, as manifested by the

discovery of gravitational waves [8], also spin-2 particles
do exist in nature. A generic pattern appears in the
conventional description of these particles: the higher the
spin of the particle, the more constraints are needed to
describe it. The first example is fundamental massive vector
bosons, which must be gauge bosons.
For higher spins, the situation becomes more compli-

cated. For example, motivated by Dirac’s successful
description of relativistic spin-1=2 fermions [9], and the
Fierz-Pauli theory of particles with general spin [10], Rarita
and Schwinger proposed a first-order derivative theory of a
generic spin-3=2 field [11]. However, the massive Rarita-
Schwinger field contains unphysical degrees of freedom,
which must be projected out. Generically, in interacting
theories, the eliminated degrees of freedom reappear,

causing potential pathologies, including the violation of
causality and perturbative unitarity [12,13]. The only
known consistent way to get rid of the unphysical back-
ground field is to embed the Rarita-Schwinger theory in
supergravity [14–17]. This implies that the spin-3=2 field
must be identified with the gravitino [2,3]. Needless to say,
this also implies that the low-energy limit of this theory
contains other fields in addition to the gravitino, the
superpartners, and that the couplings of all those particles
are fixed by supersymmetry.
In general, in the absence of ultraviolet (UV)-complete

theory of higher-spin fields, the questions of consistency
and physical viability will always arise whenever one
computes any physical observable involving higher-
spin degrees of freedom. At the same time, there is
considerable interest to the phenomenology of higher-spin
fields. Higher-spin resonances are known to exist in nuclear
physics; thus, one must be able to compute their cross
sections in order to interpret experimental results. Higher-
spin particles can also form the DM of the Universe, which
implies that one must be able to compute their freeze-in or
freeze-out cross sections and low-energy interactions with
the Standard Model (SM) matter in direct detection experi-
ments. As higher-spin particles appear in the extensions of
gravity and supergravity, they can appear as resonances at
high-energy colliders or as a specific fifth force in low-
energy experiments. In all those cases, the crucial question
stands—is there a consistent framework in which physical
observables for higher-spin particles can be computed?
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By far, the most studied higher-spin particle is the spin-
3=2 fermion (spin-2 DM has also been studied in [18–21]).
Leaving aside the gravitino phenomenology, attempts to
describe a spin-3=2 fermion with generic interactions to
the SM are dominated by studies of the Rarita-Schwinger
field [22–31]. Unfortunately, as explained above, the
interacting Rarita-Schwinger field in the Lorentz represen-
tation ð1; 1=2Þ contains unphysical degrees of freedom. In
nuclear physics, where spin-3=2 resonances must be
described, physicists avoid the extra degrees of freedom
by using second-derivative Lagrangians with specifically
chosen interactions to describe the ð3=2; 0Þ representation
[32–34]. We argue that, in this case, even the free field
theory cannot be quantized consistently without introduc-
ing new fields and constraints (see Appendix B), despite the
fact that the SM does admit the second-order formulation
[35,36]. An effective field theory (EFT) for any integer-
spin particle has been constructed in Ref. [37] using (j=2,
j=2) fields. However, these fields contain unphysical
components.1 Is it possible to have an EFT for interacting
particles of general spin without introducing such extra
degrees of freedom? The answer is yes.
In this work, we develop an EFT describing a generic

massive particle of any spin in which only the physical
degrees of freedom are introduced from the very beginning.
The idea goes back to Weinberg [39], who uses a
non-Lagrangian field theory with fields in the ðj; 0Þ
representation to compute scattering amplitudes for physi-
cal processes. Unfortunately, in Weinberg’s notation, the
formalism becomes increasingly more complicated the
higher the particle’s spin is, and we are not aware of
any practical computation performed using this formalism.
Here, we propose an EFT framework realizing this idea,

which easily allows for computations and remains
unchanged for any spin (see Appendix A for the notation).
This EFT does not admit a Lagrangian description. Needless
to say, problems related to the presence of unphysical
components, such as the violation of causality, are absent.
On the other hand, perturbative unitarity is unavoidably
broken in our description at some high scale Λ above the
particle’s mass. Thus, our proposal represents an effective
tool for physically meaningful and consistent computations
of higher-spin particle observables with generic couplings to
the SM fields. Unlike in supersymmetry, no relation between
different couplings needs to be imposed.
We do not consider gravitational interactions. However,

general arguments in string theory indicate that additional
light particles in the gravity sector must exist if higher-spin
particles exist in nature [40,41]. These arguments further
motivate studies of higher-spin particles.

As an application of our framework, we show that such a
particle can provide a natural DM candidate, when stabi-
lized by a Z2 symmetry under which only the higher-spin
particle is odd, while all the SM ones are even. For
low spins, this symmetry has to be imposed by hand,
but when the spin is sufficiently high, an accidental Z2

symmetry is naturally realized. Indeed, in order for an
interaction to explicitly break this symmetry, it must
contain the higher-spin particle an odd number of times.
Thus, the higher the spin, the more SM particles are needed
to construct Lorentz-invariant local operators. The effects
of such an interaction will be suppressed by powers of
m=Λ, where m is the mass of higher-spin particle. Making
either Λ or j large will then render the higher-spin particle
metastable.
We work out the DM results for the lowest order

coupling of a general-spin particle, the Higgs portal, and
demonstrate that the observed DM abundance can be
obtained both for freeze-in and freeze-out processes,
consistently with the known results in the case of low-
spin particles. A particularly important result concerns DM
direct detection—for purely P-odd couplings the direct
detection cross section is naturally suppressed, providing a
possible explanation to the nonobservation of higher-spin
DM in those experiments.
More generally, our results enable one to work consis-

tently with generic higher-spin fields and to develop
phenomenology of those particles without worrying about
the possible disastrous effects from unphysical degrees of
freedom.
This paper is organized as follows. In Sec. II, we develop

the EFT of general-spin particles. Section III deals with the
phenomenology of general-spin DM from the Higgs portal.
Our main results are presented in Sec. IV, and we conclude
in Sec. V. Various technical results are presented in the
Appendixes. In particular, we introduce our notation in
Appendix A, we demonstrate in Appendix B that quanti-
zation of second order fermions without additional fields
and constraints is inconsistent, we compute corrections
to propagators in our framework and discuss their inter-
pretation in Appendix C, we collect several alternatives
of spin-3=2 field beyond the minimal representation in
Appendix D, and we present results of cross section
computations in Appendix E. Throughout the paper, we
use natural units ℏ ¼ c ¼ 1 and the metric signature
ðþ;−;−;−Þ.

II. EFFECTIVE FIELD THEORY FOR
GENERAL-SPIN PARTICLES

The choice of a field that describes a particle of any mass
and spin is not unique. In particular, the creation and
annihilation operators for a massive particle of spin j
may be contained in any field transforming as the ðl; rÞ
irrep of the Lorentz group, whenever jl − rj ≤ j ≤ lþ r
and lþ rþ j is an integer number. However, not all

1It has been suggested that issues related to unphysical modes
might be treated by removing them from the spectrum of
asymptotic states [38].
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possibilities have equal practical importance. The irreps
ðj; 0Þ and ð0; jÞ are minimal in the sense that they contain
exactly the necessary number of degrees of freedom for this
purpose. In contrast, any other irrep will include unphysical
components, making the construction of a theory for them
more complicated. In this case, additional care is needed
not to couple these components with any physical degree of
freedom.2 In this work, we will make use of the minimal
irreps only.
Implementing parity transformations, the field space

requires, in principle, existence of a pair of fields ψL ∼
ðj; 0Þ and ψR ∼ ð0; jÞ. One can collect both in a multiplet
ðψL;ψRÞ belonging to the representation ðj; 0Þ ⊕ ð0; jÞ.
This is the minimal field content for charged particles.
However, if all the symmetries act on the particle through
real representations, a single field ψ with j components,
known as a purely neutral field, is needed. The represen-
tation Rj to which this field belongs to is defined as the

subspace of ðj; 0Þ ⊕ ð0; jÞ for which ψ†
L ¼ ψR. We will

focus on purely neutral fields in the rest of this work, which
constitute the minimal option for describing DM, since the
DM particles themselves are neutral. We will call these
fields general-spin fields. Using the example of spin-3=2, a
brief comparison of minimal and nonminimal possibilities
is given in Appendix D.

A. Free theory

In order to outline the perturbative setup, we must begin
with the basic ingredients of a free theory of massive
general-spin particles. Our fields will be in the Rj repre-
sentation. Similar arguments and conclusions as the ones
presented here apply to the charged version of this
representation. The Feynman rules for such fields were
derived by Weinberg more than half a century ago [39]. No
Lagrangian formulation for the free sector of this theory is
known. Below, we outline some of the theoretical diffi-
culties one encounters in attempting to construct such a
formulation. They strongly suggest that it does not exist.
Once this is shown, we will adopt Weinberg’s non-
Lagrangian field-theoretical approach [39], whose
Feynman rules take a very simple form in our symmetric
multispinor index notation.
The free Rj field can be decomposed in terms of the

creation and annihilation operators of the one-particle
states,

ψ ðaÞðxÞ ¼
Z

d3p
ð2πÞ3ð2EpÞ

X
σ

½apσuðaÞðp; σÞeipx

þ a�pσvðaÞðp; σÞe−ipx�; ð1Þ

where E2
p ¼ p2 þm2, p ¼ ðEp;pÞ, and ðaÞ≡ a1…a2j is

a symmetrized multi-index built from two-component
spinor indices (for details, see Appendix A). The creation
operators a, a� satisfy the following (anti)commutation
relations:

½apσ; a�qρ�� ¼ ð2πÞ3ð2EpÞδσρδ3ðp − qÞ; ð2Þ

with ½·; ·�� being the commutator for bosons and the
anticommutator for fermions. The action of the Poincaré
group over the creation and annihilation operators can be
determined from its action over the one-particle states. The
wave functions u and v are completely determined by the
transformation properties of ψ and a. For our current
purposes, it is sufficient to state the explicit expressions
for the spin sums of u and v, which are shown in Ref. [39]
to be

X
σ

uðaÞðp; σÞu�ð _aÞðp; σÞ ¼
pðaÞð _aÞ
m2j ; ð3Þ

X
σ

vðaÞðp; σÞv�ð _aÞðp; σÞ ¼
pðaÞð _aÞ
m2j ; ð4Þ

X
σ

uðaÞðp; σÞvðbÞðp; σÞ ¼ δðaÞðbÞ; ð5Þ

where pðaÞð _aÞ ≡ pa1 _a1…pa2j _a2j , δ
ðbÞ
ðaÞ ≡ δb1a1…δ

b2j
a2j , and sym-

metrization over all indices of the same type at the same
height is implied. We remark that these equations are
considerably simpler in our notation than in the spin-index
notation used in Ref. [39].
The field ψ has mass dimension one regardless of the

spin, as is inferred from the normalization of a, a�, and uðaÞ,
determined by Eqs. (2), (3), and (4), respectively. This leads
to an unconventional mass dimension already for spin
j ¼ 1=2. The conventional case is recovered by rescaling
the wave functions withmj. Such a rescaling will, however,
modify the mass dimension of the coupling. To remove any
arbitrariness related to conventions, we will consider the
higher-spin field ψ to be effectively,

Δψ ≡ 1þ j; ð6Þ

dimensional. This choice is justified later when considering
interactions.
From the Lorentz-group transformation properties of u

and v, it follows that the fields satisfy the following
order-2j equations [39]:

∂ð _aÞðaÞψ ðaÞ ¼ m2jψ†ð _aÞ; ð7Þ

where ∂ð _aÞðaÞ ≡ ∂ _a1a1…∂ _a2ja2j , with symmetrization over
all indices of the same type is to be understood. In addition,

2Despite this, nonminimal irreps can be useful in specific
cases, as it happens for the usual vector (1=2, 1=2) fields, and for
the Rarita-Schwinger ð1; 1=2Þ ⊕ ð1=2; 1Þ field.
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as with any other relativistic field, all their components
must satisfy the Klein-Gordon equation,

ð□þm2Þψ ðaÞ ¼ 0: ð8Þ

The difficulties with constructing a free Lagrangian for
these field equations becomes apparent when noting that
the number of field equations (7) and (8) is twice as large as
the number of field components. Thus, in a Lagrangian
theory, not all of the field equations can be independent or
the additional equations must appear as constraints, either
hidden or explicitly imposed.3 For scalars, j ¼ 0, this issue
is solved trivially as only the Klein-Gordon equation
applies in this case. For j ¼ 1=2, the Klein-Gordon
equation can be derived from the Majorana equation (7).
However, for j > 1, Eq. (7) is of higher order than the
Klein-Gordon equation (8). One cannot derive the former
from the latter, since the former mixes different compo-
nents of the fields, and the latter consists only of one
independent equation for each component.
Obstructions to the construction of a free Lagrangian

manifest also in other ways. For example, one expects the
Lagrangian to be of the schematic form ψP−1ψ , where P is
the free propagator. From Eq. (1), one can compute P,
which is given by the Feynman rules in Fig. 1. Inverting
these functions would give a nonlocal Lagrangian.
Additional but unrelated problems appear in fermionic
theories, since Lorentz invariance requires that the kinetic
terms for j > 1=2 have more than one derivative, and this
leads to complications (see Appendix B). Finally, for j > 1,
quadratic operators μ2ψ ðaÞψ ðaÞ þ H:c: are not simple mass

terms since they can generate additional poles to the
propagator at high scales (see Appendix C).
These facts strongly suggest that a consistent Lagrangian

formulation for the theory of purelyRj quantum fields does
not exist. If it requires the introduction of extra degrees of
freedom and constraints, the main advantage of the ðj; 0Þ
representation, which is that they only contain physical
degrees of freedom, would be lost. Since the Feynman rules
for propagators and external legs can be computed without
relying on a Lagrangian [39], we will abandon the
Lagrangian formulation for the rest of this work.
The propagators and external lines corresponding to the

field equations (7) and (8) are shown in Figs. 1 and 2.4

We stress that the initial and final states are uðaÞ ⊕ v�ð _aÞ
and u�ð _aÞ ⊕ vðaÞ, respectively. Technically, this means that

amplitudes must be built from diagrams with all possible
orientations of the external legs. In the fermionic case, the
usual sign rules arising from permutations of the external
legs and loops apply.

B. Interactions

The Hamiltonian densityHfree for the free theory defined
through the Feynman rules above can be perturbed by
adding an interacting Hamiltonian density Hint. One can
then derive Feynman rules for the interactions introduced
through Hint, defining in this way, a perturbative theory
with local interactions. Our assumption is that below some
energy scale Λ, much larger than the mass m of the particle
and the electroweak scale, the only degrees of freedom
present are those of the SM together with the general-spin
particle. The situation is then describable by an EFT in
which the effects of the new physics at Λ are incorporated
through nonrenormalizable local operators, whose effects
are suppressed by inverse powers of Λ.
In order to construct a model of general-spin DM, the

DM particle must be stable. This can be achieved by
imposing a Z2 symmetry. However, as will be shown later,

FIG. 1. Feynman rules for internal lines in the Rj theory.

FIG. 2. Feynman rules for external lines in the Rj theory.
σ ¼ j; j − 1;…;−j denotes the spin state of the external particle.

3One could try, for example, the Lagrangian,

Lfree ¼ κ1

�
ψ ðaÞ∂ðaÞð _aÞψ†ð _aÞ −

m2j

2
ðψ ðaÞψ ðaÞ þ H:c:Þ;

�
þ κ2ðψ ðaÞð□þm2Þψ ðaÞ þ H:c:Þ;

which gives Eq. (7) for κ1 ≠ 0 ¼ κ2, and Eq. (8) for κ1 ¼ 0 ≠ κ2,
but it cannot produce both for constant parameters κ1 and κ2.

4We remark that the omnipresent object ΠðpÞ in Ref. [39] is
now simply pðaÞð _aÞ. The equivalence between ΠðpÞ and pðaÞð _aÞ
follows from the fact that there is only one object with the
required transformation properties and that they are normalized in
the same way.
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for sufficiently high spin, an approximate Z2 symmetry
appears. In the simplest scenario, ψ will be a color and
electroweak singlet, with vanishing hypercharge. The low-
est dimensional operator in this case for any Rj field is the
Higgs portal,

Hportal ¼ −λψ ðaÞψ ðaÞðjϕj2 − v2h=2Þ þ H:c:; ð9Þ

where ϕ is the Higgs doublet and vh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hjϕj2i

p
is the

Higgs vacuum expectation value (vev). The coupling
constant λ can generally be complex, with a real (imagi-
nary) coupling corresponding to a parity-even (parity-odd)
interaction. For j ¼ 0, only the real part Re½λ� contributes.
The Feynman rules corresponding to (9) are given in Fig. 3.
The v2h term is included in the portal interaction (9) to

avoid generating an extra contribution to the mass of ψ in
the phase where the electroweak symmetry is broken; i.e.,
m will denote the pole mass of ψ . Moreover, for j > 1,
quadratic operators like ψ ðaÞψ ðaÞ þ H:c: will introduce
nontrivial momentum dependence into the denominator
of the propagator (see Appendix C for details) and should
thus not be interpreted as simple mass terms. This is not
surprising, because the formalism can at best provide an
EFT description of general-spin particles. We define the
effective cutoff scale Λ⋆ as�

m
Λ⋆

�
2j ≡ jλj

4π
; ð10Þ

which provides a rough upper limit for the validity of the
theory. In particular, if E is the typical energy of some
process, we expect perturbative unitarity to be broken for
that process when E ≃ Λ⋆. This is seen explicitly in Sec. III
for some specific processes. The portal operator (9) is thus
effectively of dimension 4þ 2j.
If ψ would be charged under the SM gauge group, other

types of ψ-SM interactions with the same dimension as the
Higgs portal are allowed: interactions that couple twoψ fields
with SM gauge bosons have either operators of the schematic
form ψ2D2 or of the form ψ2F, whereD is the SM covariant
derivative and F is an SM field-strength tensor.5 All other

ψ-SM interactions are suppressed by further powers
of 1=Λ.
Consider now operators breaking the Z2 symmetry that

may potentially render the general-spin fields unstable. In
order for the general-spin particle corresponding to the field
ψ to decay into SM ones, Hint must contain at least one
term of the form,

Hlinear ¼
1

ΛΔSMþj−3
lin

ψOSM; ð11Þ

where OSM is a local operator constructed out of SM fields
only, Λlin is an energy scale of order Λ, and ΔSM is the
canonical dimension of OSM. The SM fields are at most
of spin 1, and all SM fermions carry a SM charge, i.e.,
neutral fermionic SM operators (for example, ϕl, with l a
lepton doublet) must at least involve a Higgs doublet. This
implies that6

ΔSM ≥
�
2j for bosons;

2jþ 3=2 for fermions:
ð12Þ

Thus, since the general-spin field can be treated as
effectively 1þ j dimensional, the decays will be induced
by operators of dimension 1þ 3j for bosons and 5=2þ 3j
for fermions. Comparing this with the effective dimension
of the Higgs portal operator, 4þ 2j, we find that the decays
of ψ are protected by an accidental Z2 symmetry for j ¼
5=2 and j > 3, broken explicitly only at order 1=ΛΔSMþj−3.
For lower spins, however, without the Z2 symmetry, the
decays will not be suppressed with respect to the portal
operator.
For completeness, let us briefly consider pointlike self-

interactions of general-spin particles. Without the Z2

symmetry, the lowest order self-interactions are cubic ψ3

for even spin. Several different ψ4 operators can be
constructed. For example, the operator ψ ðaÞψ ðaÞψ

†
ðbÞψ

†ðbÞ

exists for any spin. We will assume here that self-
interactions can be neglected for the DM phenomenology
of ψ .

FIG. 3. Feynman rules for ψ-Higgs interactions derived from the Higgs-portal term λψ ðaÞψ ðaÞðjϕj2 − v2h=2Þ þ H:c: in the interaction
Hamiltonian for the Rj field. vh is the Higgs vev.

5We remark that ψ2F type interactions must couple states with
different charges and are thus not allowed for SM-neutral fields
even when F is a Uð1Þ field strength. This is because Fab is
symmetric in the spinor indices a, b, while ψaðcÞψbðdÞϵðcÞðdÞ is
always antisymmetric.

6These inequalities can be saturated, except for j ¼ 0, for
which ΔSM ≥ 2, and for j ¼ 1 for which ΔSM ≥ 3.
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III. PHENOMENOLOGY OF GENERAL-SPIN DM

General-spin particles, stabilized either by an exact or
approximate Z2 symmetry, are potential candidates of DM.
In the following, we will focus on the simplest model in
which such particles are SM singlets that interact with the
visible sector via the Higgs portal (9). Despite the apparent
simplicity of this interaction, it supports a relatively rich
DM phenomenology, which is partly owed to the complex
phase of the coupling λ allowing, e.g., for the suppression
of direct detection signals.

A. Dark matter abundance

The evolution of the number density n of the general-spin
particle ψ is described by the Boltzmann equation [42,43],

dn
dt

þ 3Hn ¼ −hσvreliðn2 − n2eqÞ; ð13Þ

where H is the Hubble rate and hσvreli is the thermally
averaged annihilation cross section. The Hubble rate
depends on temperature as H ¼ 1.66

ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
T2=mPl,

where g�ðTÞ is the effective number of relativistic degrees
of freedom associated with the energy density. In the
present model, the general-spin particle ψ has the following
annihilation channels: ψψ → ff̄, WþW−, ZZ, and hh,
where f is any charged SM fermion. The tree-level
diagrams contributing to these processes are given in
Fig. 7. Explicitly, the thermally averaged cross section is7

hσvreli ¼
ð2jþ 1Þ2T
32π4n2eq

Z
∞

4m2

dsσðsÞðs − 4m2Þ ffiffiffi
s

p
K1

� ffiffiffi
s

p
T

�
:

ð14Þ
The Boltzmann equation in Eq. (13) can be written in a

more convenient form in terms of the yield, Y ¼ n=s, where
s is the entropy density sðTÞ ¼ ð2π2=45Þg�sðTÞT3,

dY
dx

¼ −
hσvrelis
xH

ðY2 − Y2
eqÞ; ð15Þ

with x¼m=T. The g�sðTÞ is the effective number of relativ-
istic degrees of freedom contributing to the entropy density.
In the next two subsections, we will study two different

DM production mechanisms, the freeze-out and freeze-in.

1. From freeze-out

When the DM abundance is produced through the
freeze-out mechanism, it is assumed that DM is initially
in thermal equilibrium with the SM thermal bath. When
the temperature drops bellow the mass of the DM, it
becomes nonrelativistic, and its equilibrium number

density Boltzmann suppressed. Soon after, the number
density will not be able to track its equilibrium value.
Eventually, the DM annihilation rate will not be able to
keep up with the expansion rate of the Universe and the DM
freezes out. The last phase determines the DM abundance
and can be approximately described by neglecting the
exponentially small equilibrium yield Yeq in the left-hand
side of Eq. (15),

dY
dx

≃ −
hσvrelis
xH

Y2; ð16Þ

which can be integrated to obtain the DM abundance,

Ωh2 ¼ 8.7 × 10−11

GeV2

�Z
∞

xf

dxhσvreli
g�sðTÞ
x2

�
−1
; ð17Þ

where we used that Ωh2 ¼ 1.38 × 108Y0m=GeV, with Y0

the present yield, and xf ¼ m=Tf, with Tf the freeze-out
temperature, that is the temperature at which the DM number
density starts to deviate from the equilibrium number
density. We set it to Tf ¼ m=20 in our analysis, thus
neglecting its logarithmic dependence on the cross section.
The magnitude of the interaction strength λ required to

produce the observed DM abundance, ΩDMh2 ¼ 0.120
[44], for a given mass m of the higher-spin particle is
depicted in Fig. 4 for a parity-even portal, and in Fig. 5 for a
parity-odd portal.
In order for the EFT approach to hold at the typical

energy scales involved in our calculations, we require that
vh < Λ⋆ and m < Λ⋆, where the latter is equivalent to
requiring perturbativity, λ < 4π. These conditions will be
translated into lower and upper bounds on the higher-spin
particle mass. For j → ∞, when demanding λ≲ 4π, the
first condition translates into m > vh, while lower spins
allow lower masses. For low values of spin, the more
stringent lower bounds on the mass come from direct
detection or collider bounds, as will be discussed below.
In order to acquire the correct relic abundance the portal

coupling has to be increased as the m grows beyond mh, as
can be seen in Figs. 4 and 5. Thus, as one keeps increasing
m one must violate perturbative unitarity at some point.
We estimate the upper bound on m using the following
expressions for annihilation cross sections for different
annihilation channels, in the limit s → 4m2 and with
m ≫ mf;mV;mh:

σψψ→f̄fvrel∼
jλj2m2

f

8πð2jþ1Þm4

�
1þð−1Þ2jc2θþ

2

3
jðjþ1Þv2rel

�
;

ð18aÞ

σψψ→VVvrel∼
ηV jλj2

4πð2jþ1Þm2

�
1þð−1Þ2jc2θþ

2

3
jðjþ1Þv2rel

�
;

ð18bÞ
7We assume Boltzmann statistics and note that this can

introduce Oð1Þ errors with respect to Fermi or Bose statistics
at high temperatures.
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FIG. 4. Excluded regions in ðm; jλjÞ space from the CMS bounds on the branching ratio BRh→inv (blue), from the Xenon1T limit on σN
(red), from the indirect limits on annihilation cross sections from Ref. [45] (green), and from the perturbativity requirement vh < Λ⋆
(gray), together with the lines of ðm; jλjÞ values that give the correct relic abundance in a freeze-out scenario (black), for c2θ ¼ 1
(corresponding to a vanishing complex phase θ ¼ 0 of λ) and different values of the spin j.
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FIG. 5. Excluded regions in ðm; jλjÞ space from the CMS bounds on the branching ratio BRh→inv (blue), from the indirect limits on
annihilation cross sections from Ref. [45] (green), and from the perturbativity requirement vh < Λ⋆ (gray), together with the lines of
ðm; jλjÞ values that give the correct relic abundance in a freeze-out scenario (black), for c2θ ¼ −1 (corresponding to complex phase of
θ ¼ π=2 for λ) and for different values of the spin j.
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σψψ→hhvrel∼
jλj2

8πð2jþ1Þ2m2

�
1þð−1Þ2jc2θþ

2

3
jðjþ1Þv2rel

�
;

ð18cÞ

where ηW ¼ 2ηZ ¼ 1, c2θ ≡ Re½λ2�=jλj2 accounts for the
complex phase of the coupling and, in the last equation, we
have neglected terms proportional to jλj4. One acquires a
different bound on the maximal m depending whether the
annihilation is an s wave (∼v0rel) or p wave (∼v2rel). By
imposing λ≲ 4π and hσvreli ≃ 3 × 10−26 cm3 s−1, which is
the typical value required to produce the correct relic
density, we obtain

m≲
8<
:

1ffiffiffiffiffiffiffiffi
2jþ1

p 100 TeV if ð−1Þ2jc2θ > −1;ffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ
2jþ1

q
20 TeV if ð−1Þ2jc2θ ≃ −1:

ð19Þ

This agrees with the known limit of order 100 TeV on the
mass of thermally produced DM particles [46].

2. From freeze-in

In freeze-in production, the DM coupling to the SM
thermal bath must be so weak that DM never thermalizes.
Such feeble interactions are extremely difficult to detect
experimentally (for a review, see [47]). The DM abundance,
which is assumed to be negligible after inflation, is
produced via scattering of SM particles into the dark
sector. If the production cross section decreases with
energy, typically as s−1, the bath ceases to produce DM
particles when the temperature of the thermal bath falls
bellow the DM mass, and most of the DM production will
happen at this infrared (IR) limit near the DM mass. This is
referred to as IR freeze-in [48] and, in this case, the DM
yield is independent of physics in the UV, e.g., the
reheating temperature. On the other hand, if the production
cross section is not decreasing with temperature, most of
the DM is produced in the UV regime [48,49]. Thus, in UV
freeze-in the DM yield is sensitive to UV physics and will
depend on the highest temperatures in the early Universe.
The qualitative behavior of the freeze-in production

depends on the high-energy behavior of the annihilation
cross section. The s → ∞ asymptotic behavior of the
annihilation channels (given in Appendix E) is

σψψ→f̄f ∼
jλj2m2

fð1þ δj0Þ
ð2jþ 1Þ2πm4j s2j−2; ð20aÞ

σψψ→VV ∼
ηV jλj2ð1þ δj0Þ
2ð2jþ 1Þ2πm4j s

2j−1; ð20bÞ

σψψ→hh ∼
jλj2ð1þ δj0Þ

4ð2jþ 1Þ2πm4j s
2j−1 þ 2jλj4v4hGj

ð2jþ 1Þ2πm8j s
4j−3;

ð20cÞ

where ηW ¼ 2ηZ ¼ 1 and

Gj ¼
ð2j − 2Þ!ð2jÞ!þ ð−1Þ2j½ð2j − 1Þ!�2

ð4j − 1Þ! : ð21Þ

The total annihilation cross section for j ¼ 0 behaves as
σ ∼ s−1 in the UV. The freeze-in production is then
dominated by the low-temperature regime, where the
DM is nonrelativistic. For spins j > 0, the energy depend-
ence is stronger, σ ∼ sn, with n ≥ 0. Thus, for the Higgs
portal (9) considered here, the freeze-in takes place in the
UV regime with scalars being the only exception.
Below, when estimating the DM abundance for UV

freeze-in, we will assume that the visible sector will be
instantaneously reheated to temperature TRH. However, this
assumption can be violated if the Universe is heated by
inflaton decays, as a subdominant fraction of visible matter
at temperatures higher than TRH will be produced before
the complete decay of the inflaton [50–54]. In this case, due
to higher densities and UV-enhanced production, the bulk
of the DM may be produced before reheating. Moreover, if
the visible sector is not thermalized in the beginning of this
epoch, the energies of the SM particles will be generally
higher than in a thermal bath—of the order of the inflatons
mass—further enhancing DM production [55,56]. If the
inflaton is nonminimally coupled, couplings to higher
dimensional operators will be naturally generated enabling
DM production through direct decays of the inflaton
[57–59]. For example, in Starobinsky inflation, DM pro-
duction through direct inflaton decays may dominate over
the freeze-in production already when j > 1 [59]. The DM
abundance in UV freeze-in may be further affected by the
cosmological background [60,61]. In all, in order to avoid
details related to UV physics, we adapt the instantaneous
reheating approximation. However, it must be kept in mind
that this approximation ignores DM production before the
complete decay of the inflaton and may thus predict
stronger couplings to produce the observed DM abundance.
In freeze-in, the DM number density is always much

smaller than its thermal value. We can therefore ignore DM
annihilation in the Boltzmann equation (15), which is now
approximately,

dY
dx

≃
hσvrelis
xH

Y2
eq: ð22Þ

Analogously to the freeze-out case, this equation can be
directly integrated, giving the DM abundance,

Ωh2 ¼ 3.4 × 1025c2jð2jþ 1Þ2
Z

TRH

Tmin

dTmhσvreliffiffiffiffiffi
g�

p
g�s

; ð23Þ

where cj ¼ 1 for bosons and 3=4 for fermions, TRH is
the reheating temperature, and Tmin ≃ 1.36m is the temper-
ature when the production becomes inefficient due to
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the Boltzmann suppression of the production rate [62]. For
j > 0, we set Tmin ¼ 0. For the EFT approach to be valid,
TRH ≪ Λ⋆ must hold.
For j ≥ 1=2, the present day abundance can be written as

Ωh2 ¼ 2.2 × 1021
�
Ajjλj2

�
TRH

m

�
4j−1

þ Bjjλj4
v4h
m4

�
TRH

m

�
8j−5

�
; ð24Þ

where we took g�sðTRHÞ ¼ g�sðTRHÞ ¼ 106.75 and defined

Aj ¼
24jþ2ð2jÞ!ð2jþ 1Þ!

4j − 1
; ð25Þ

Bj ¼
28j−1ð4j − 1Þ!ð4j − 2Þ!Gj

8j − 5
: ð26Þ

For spins 1=2 and 1, the jλj2 term in Eq. (24) dominates. For
j ≥ 3=2, the jλj4 term in Eq. (24) can be relevant as its T
dependence becomes stronger than that of the jλj2 term.
The jλj4 term is, however, suppressed by extra powers of
the couplings. In particular, fixing ΩDMh2 ¼ 0.12, we
obtain that the second term is dominant for spin j < 20

only when mT3
RH ≲ GeV4 and can thus be ignored for

realistic models of reheating unless the spin is very high.
Thus, as usual for freeze-in, the required coupling,

jλj ≃ 7 × 10−12
1ffiffiffiffiffi
Aj

p �
m
TRH

�
2j−1=2

; ð27Þ

is too weak to be observable with current or planned
experiments. As discussed earlier, accounting for DM
production before the reheating is complete, will likely
lower the required jλj even more.

B. Collider constraints

The collider constraints of our effective framework are
quite similar to usual Higgs-portal DM models [63–66].
In this class of models, the only way of producing DM
in colliders is by first producing Higgs bosons, either on
shell or off shell, that subsequently dacays into DM:
pp → hX → ψψX, where X represents visible SM states.
The prospects of a DM signal then crucially depends on the
mass of the DM. If the DM mass is ≤ mh=2, the Higgs
boson can decay to DM on shell, which is an invisible
decay. The SM Higgs decays predominantly to visible
channels. The only invisible decay channel of the Higgs
boson is to the neutrinos, BRSMðh→ invÞ¼BRSMðh→4νÞ≃
10−3, and can be neglected. BSM contributions can
significantly alter the invisible decay rate of the Higgs
boson. If ψ is heavier than mh=2, the Higgs boson in
pp → hX → ψψX has to be virtual. The DM production
process in this case is suppressed by jλj2, and the produc-
tion rate will be small.

In the present model, the invisible decay of the Higgs
boson can be modified, if kinematically allowed, due to
new decay channel h → ψψ . The corresponding branching
ratio is

BRðh → ψψÞ ¼ Γðh → ψψÞ
Γh þ Γðh → ψψÞ ; ð28Þ

with

Γh→ψψ ¼ jλj2v2hm2

22jþ3πm3
h

��
m2

h

m2
− 2þm2

h

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

m2
h

s �
2jþ1

−
�
m2

h

m2
− 2þm2

h

m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

m2
h

s �
2jþ1

�

þ jλj2v2h
4πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

m2
h

s
2jþ 1ð−1Þ2jc2θ;

ð29Þ
where mh is the Higgs mass. The SM Higgs decay width to
visible channels is Γh ¼ 4.07 MeV [67]. The branching
ratio for invisible decays has been determined experimen-
tally to be less than 0.19 at 95% C.L. [68]. We impose this
bound on the BRðh → ψψÞ. This excludes regions in the
ðm; jλjÞ plane for general spin j, as shown in Figs. 4 and 5,
for c2θ ¼ 1 and c2θ ¼ −1, respectively.
In order for perturbation theory not to be broken at the

electroweak scale, it is conservatively required that vh is
below the effective cutoff scale Λ⋆. Figures 4 and 5 shows
the region excluded by this condition.
In the case of parity-odd couplings, i.e., for purely

imaginary λ, the invisible decay of the Higgs boson yields
the strongest lower bound on m for low spins. For j ¼ 1=2
and c2θ ¼ −1, one gets the lowest mass consistent with the
freeze-out scenario to be m ≃mh=2. For spins higher than
j ¼ 5=2, the Higgs boson decay takes place close to the
nonperturbative regime, and, thus, the DM mass must be
larger for the EFT to be trusted.

C. Direct detection

The direct detection prospects depend on the production
mechanism. The portal coupling for frozen-in DM are
typically too weak to be constrained by direct detection.
However, the portal coupling needed for production via
freeze-out may be sufficiently large to be detected in direct
detection experiments. In the simplest weakly interacting
massive particles (WIMP) models, both the DM annihila-
tion and direct detection cross sections depend on the same
coupling, and direct detection excludes DM masses around
the electroweak scale [69]. However, there exist models
where WIMP direct detection cross section is suppressed.
These include secluded DM models where the DM anni-
hilation and the direct detection cross sections depend on
different parameters and the stringent constraints can be
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avoided [70,71]. Direct detection bounds can be avoided
also in models where DM co-annihilations [72] or
some cancellations in direct detection amplitude are uti-
lized [73]. Most importantly, the WIMP direct detection
cross section can be suppressed in models where the DM is
a pseudo-Goldstone boson [74–81]. In these models, the
tree-level direct detection amplitude vanishes at zero
momentum transfer limit due to derivative couplings of
the pseudo-Goldstone DM. Intriguingly, also our effective
framework allows for the cancellation of the tree-level
direct detection amplitude.
The general-spin particle ψ couples to nucleon through

Higgs bosons. The ψ is therefore potentially subject to
stringent direct detection bounds. The current bounds are
from XENON1T [82]. The SM Higgs boson h couples to
nucleon N through the following effective coupling:

LhN ¼ fNmN

v
N̄Nh; ð30Þ

where mN ¼ 0.946 GeV is the nucleon mass and fN ¼ 0.3
is the effective nucleon coupling [83–85].
In the limit of zero momentum transfer, the tree-level

DM-nucleon scattering cross section is

σN ¼ 2m2
Nμ

2
Nf

2
N jλj2

πm4
hm

2

�
1þ c2θ þ

4

3
jðjþ 1Þ μ

2
Nv

2
rel

m2

�
; ð31Þ

where μN ≡mmN=ðmþmNÞ denotes the DM-nucleon
reduced mass, and we have neglected terms containing
ð1þ c2θÞv2rel. This is justified in the vrel → 0 limit, since
(1þ c2θ) must already be very small in order for velocity-
dependent terms to dominate over the velocity indepen-
dent one.
In Fig. 4, we show the excluded region in ðm; jλjÞ space

induced by the m-dependent 90% C.L. limit on σN
measured by the XENON1T Collaboration [82], for real
coupling (c2θ ¼ 1). In this case, freeze-out DM with
masses below 1 TeVare excluded for any spin. This bound
can be saturated only when j ¼ 0, while fermions with
j < 7 are completely excluded by it, in conjunction with
the perturbativity condition jλj < 4π.
The cross section (31) reveals an important feature: the

direct detection cross section vanishes for the purely
imaginary (parity-odd) portal coupling and zero velocity.8

Thus, setting c2θ ≃ −1 allows one to escape the stringent
direct detection bounds, and they become irrelevant for
Fig. 5, in which we have set c2θ ≃ −1.

D. Indirect detection

The relevant indirect detection constraints arise due to
DM annihilations in spheroidal dwarf galaxies orbiting the
Milky Way. The DM in these structures is cold, and it is
therefore justified to take the vanishing momentum limit in
annihilation cross sections. The DM annihilations in dwarf
galaxies produce a gamma-ray flux that depends on the
density profile of the DM halo. This effect is described by
the J-factor. We use the constraints on annihilation channels
ψψ → bb̄ and ψψ → WþW− that are based on J factors
given in Ref. [45].
The annihilation cross sections of relevant channels at

vanishing momentum are given in Eq. (18), with particle
masses omitted for simplicity. Full expressions were used
in the numerical analysis. The 95% C.L. limits on the DM
annihilation cross section into bb̄ and WþW− [45] are
shown in Figs. 4 and 5. As above, two qualitative extremes
can be distinguished, depending on whether the portal
coupling is real or imaginary. The real portal coupling
corresponds to s-wave (∼v0rel) DM annihilation for bosons
and p-wave annihilation (∼v2rel) for fermions. As the
velocity suppressed bounds are extremely weak, the indi-
rect detection constraints for fermions do not show in the
right panels of Fig. 4. For the imaginary portal coupling, the
situation is reversed. Now the bosonic DM annihilations
are p wave and the fermionic DM is s wave. The indirect
detection constraints for bosonic DM is now velocity
suppressed and does not show in Fig. 5. In all cases
considered, the thermal DM abundance is not constrained
by indirect detection.

IV. RESULTS AND DISCUSSION

We now briefly describe our results for each individual
spin and discuss the relation with previous works, when-
ever they exist. As a general feature, the necessary values of
coupling jλj for the correct DM abundance to be generated
through freeze-out are excluded by the bounds on invisible
decays of the Higgs boson for m < mh=2 and by direct
detection experiments for 6 GeV < m < 1 TeV, unless
c2θ ≃ −1. However, if λ is near the imaginary axis, the
DM-nucleon cross section is suppressed, and direct detec-
tion limits can be evaded, allowing for freeze-out DM with
masses m > mh=2. On the other hand, no experimental
bounds apply to the values of λ required for the freeze-in
mechanism to work, except for very high spin j.
j=0 Among the bosons, the scalar is the one with the

mildest bounds on jλj from direct and indirect
detection as well as from the invisible decays of the
Higgs boson, as compared with cases with other
spins in which c2θ is away from −1. However,
since λ is real for a scalar particle, this is the only
spin for which the c2θ ≃ −1 mechanism for the
suppression of the direct detection cross section
does not exist. Another unique feature of spin 0 is

8However, DM particles passing through a detector at the
Earth have nonvanishing velocities. Although the local velocity
distribution of DM particles is highly uncertain (e.g., [86–89]),
assuming a velocity vrel ¼ 220 km=s (which corresponds to the
Sun’s circular velocity) gives σN < 10−47 cm−2 for 6 GeV <
m < 1 TeV, well below current experimental limits.
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that the bound from the Higgs decays stays almost
constant (at λmax ≃ 4 × 10−2) for m < mh=2.
Real and complex scalar singlet DM has been

studied inRefs. [69,85,90–92] and inRefs. [93–95],
respectively. Our spin-0 field ψ is just the conven-
tional real scalar field, with portal coupling,

Lportal ¼ 2λjϕj2ψ2: ð32Þ

Our analytic results for theHiggs invisiblewidth and
DM-nucleon cross section agree with those given
in Ref. [92].

j=1/2 This is the lowest spin for which the following
three features appear: the c2θ ≃ −1 suppression
mechanism for the DM-nucleon cross section
exists, the limits from the Higgs invisible decays
become stronger for lower masses, and perturba-
tive unitarity is broken at some finite energy.
These three features are present for any spin
higher than 1=2.
Spin-1=2 DM has been considered in

Refs. [69,92,96–99]. Our spin-1=2 particle is a
Majorana fermion. In terms of the usual four-
component spinor Ψ representing such a fermion,
the portal interaction becomes

Lportal ¼
1

m
jϕj2Ψ̄ðRe½λ� − iIm½λ�γ5ÞΨ: ð33Þ

As in the scalar case, our analytic results for the
Higgs invisible width and DM-nucleon cross
section agree with those given in Ref. [92] for
real λ. Two of the properties of this model become
apparent in view of Eq. (33): the imaginary part
of λ is associated with pseudoscalar DM-Higgs
interactions, which are known to generate a small
contribution to DM-nucleon scattering (see
Refs. [97,98]), and perturbative unitarity is broken
because the DM-Higgs interactions are generated
by a dimension-5 operator, with a coefficient of
order λ=m.

j=1 Our results here are similar to those for spin 1=2,
but now our formulation does not coincide with
the usual one. Spin-1 DM has been studied in
Refs. [69,92,100–103] using a (1=2, 1=2) field
and in Ref. [104] using a ð1; 0Þ ⊕ ð0; 1Þ field.
A direct analogy between our field and the (1=2,
1=2) is harder to make. However, the physics
should be the same in any case. For example, in
Ref. [69], it is shown that spin-1 CP-preserving
DM with mh=2 ≠ m < 1 TeV is excluded when
its abundance is to be set by freeze-out. This also
happens in our formulation, as can be seen
in Fig. 4.

j=3/2 We find here similar results as for the lower spins.
Just as for spin-1, our formulation differs from the

usual one. In a nonsupersymmetric context, spin-
3=2 DM has been considered in [22–31]. These
works use the Rarita-Schwinger formulation, in
which the field irrep is ð1; 1=2Þ ⊕ ð1=2; 1Þ, while
the irrep we use is R3=2.

9 Locally supersymmetric
theories (i.e., supergravity) generally predict the
existence of a spin-3=2 particle called the grav-
itino, the supersymmetric partner of spin-2 grav-
iton [14–16]. In supergravity, the gravitino is
described as a Rarita-Schwinger field. When the
local supersymmetry is exact, the gravitino is
massless. The supersymmetry must be broken at
low energies, and therefore, the gravitino acquires
a mass through super-Higgs mechanism [105].
The gravitino can be stable or unstable, depending
on whether it is the lightest supersymmetric
particle (LSP) or not. If the gravitino is the
LSP, it is stable and a possible DM candidate.
In fact, the gravitino was the first supersymmetric
DM candidate proposed [106,107]. However, if
the gravition thermalizes, the Universe is over-
closed if m3=2 ≳ keV, which is in strong tension
with large-scale structure formation [108] and the
Tremaine-Gunn limit [109]. Alternative mecha-
nisms for the generation of gravitino abundance
exist where the gravitino does not thermalize,
thus avoiding the above problems. One of these
mechanisms produces gravitinos through thermal
scatterings after the inflation [110–121]. Another
mechanism is to produce gravitinos through de-
cays of other supersymmetric particles in a thermal
bath, that is through freeze-in [122].
The spin-3=2 phenomenology of the effective

approach we have adopted differs greatly from that
of gravitino of the supergravity. In supergravity,
the couplings of the gravitino are completely
determined by the other couplings of the theory,
such as gauge couplings. In contrast, the portal
coupling of our effective approach is free and
not related to other couplings of the model. The
spin-3=2 particle of the effective approach can
safely thermalize and its abundance be produced
through the usual freeze-out, unlike in case of the
gravitino.

j=2 Spin-2 DM has been studied in Refs. [18–21] in
the context of ghost-free bimetric gravity [123].
In this case, the field is a symmetric rank-2 tensor
whose representation under the Lorentz group
decomposes as ð1; 1Þ ⊕ ð0; 0Þ. The ghost-free
bimetric model is the only known realization of
such a spin-2 field that does not contain a

9We have nevertheless listed all the effective operators that
would be allowed for a ð1; 1=2Þ ⊕ ð1=2; 1Þ field in different SM
gauge group irreps in Appendix D.
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dynamical scalar ghost. It predicts gravitylike
universal interactions between the heavy spin-2
field and other matter whose strength is controlled
by a single coupling constant. Our irrep for spin-2,
on the other hand, corresponds to a rank-4 tensor
with the symmetries of the Weyl tensor, which
transforms as ð2; 0Þ ⊕ ð0; 2Þ.

j>2 The situation for even higher spins is similar to the
one for j ≤ 2. The experimental limits slowly
become stronger as j increases, since the relevant
cross sections and decay widths grow with j.
Spin-3 DM has been considered in Ref. [124].

V. CONCLUSIONS

We have presented an EFT description of massive
particles of any spin. In order to do this, we have used
fields in the ðj; 0Þ irrep of the Lorentz group. Contrary to
other options for describing higher-spin particles, these
fields do not contain any unphysical degrees of freedom.
The proposed EFT framework is, therefore, free of con-
sistency problems, such as causality violation, except for
the breaking of perturbative unitarity at high-enough
energies above the cutoff scale Λ.
A Lagrangian formulation for such fields is likely not to

exist, at least without involving a complicated system of
extra fields and constraints. This motivated us to use
Weinbergs prescription [39], which directly produces the
Feynman rules needed to compute any amplitude pertur-
batively. We have reformulated this theory using our own
symmetric multispinor notation, which leads to a consid-
erable simplification of the Feynman rules, rendering them
easy to use for practical calculations.
As an application, we have used this framework to study

DM of any spin. The minimal DM models, involving a SM
singlet, already contain interesting phenomenology. First, if
the particles spin is high enough, an accidental stabilizing
Z2 symmetry arises, rendering it suitable to be a DM
candidate. If the spin is low, this symmetry has to be
imposed by hand. In both cases, the most relevant operator
for phenomenology is the Higgs-portal coupling. Our
model then depends on four (one discrete and three real)
free parameters: the spin j, the mass m, the coupling
constant modulus jλj and the phase θ of the coupling
constant, with a purely real (imaginary) coupling corre-
sponding to a parity-even (odd) portal.
We found that, for general θ and a sufficiently high mass,

general-spin DM whose abundance is set through the
freeze-out mechanism is allowed by the current experi-
mental bounds, except for low-spin fermions. An intriguing
feature arises for the parity-odd portal, that is, for
θ ¼ �π=2. Then, direct detection bounds are avoided
and the DM mass can be as low as 51 GeV for lower
spins, while for higher spins the masses must be somewhat
higher, mostly due to perturbative unitarity considerations.

For j > 0, we find that the freeze-in takes place in the
UV, so that most of the DM is produced near the highest
temperatures in the early Universe. This is because cross
sections grow as E4j−2 (or E8j−6 when jλj is large enough)
with the center-of-mass energy E of the process.
The general conclusion of our work is that the proposed

framework represents a tool to address and to compute
phenomenology of generic fields with higher spin. Our
formalism is free of inconsistencies and allows us to use the
EFT language to compute high- and low-energy observ-
ables involving particles with any spin. UV completion of
the proposed framework remains, however, a mystery.
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APPENDIX A: SYMMETRIC MULTISPINOR
INDEX NOTATION

In this appendix, we define a general notation for the
components of objects in any irrep of the Lorentz group,
together with some convenient definitions for dealing
with such objects. The basis of our notation lies in the
well-known two-component spinor formalism, reviewed
for example in Ref. [36]. We briefly summarize its main
ingredients here.
We denote indices for the (1=2, 0) irrep with lowercase

letters from the beginning of the latin alphabet: a; b;…
Indices (0, 1=2) irrep are denoted with the same kind of
letters decorated with a dot: _a; _b;…. Any of these indices
can appear in the up or down positions, so the most general
object t one can write indexed by them is of the form,

ta1…ak _a1… _al
b1…bk _bm… _bn

: ðA1Þ

Such an object is called a multispinor. A Lorentz trans-
formation acts naturally on such an object with a ð1=2; 0Þ or
ð0; 1=2Þ representation for each indices. Kronecker deltas
δba or δ

_b
_a for two indices of the same type are covariant when

the two indices are at different heights. The only covariant
objects with two indices of the same type at the same height
are the epsilon symbols ϵab, ϵ _a _b, ϵ

ab, and ϵ _a _b, which are
antisymmetric 2 × 2 matrices satisfying ϵ12 ¼ −ϵ12 ¼ 1.
They are used to raise and lower indices.10

10The only exception to this rule is the ϵ symbol itself, for
which ϵab ¼ −ϵacϵbdϵcd.
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Two indices of a different type at the same height can be
converted into one vector index μ using the tensor σμa _a,
defined as σ0 being the identity matrix and σi for i ¼ 1, 2, 3
the Pauli matrices

σμa _a ¼ ð1; σiÞ; σ̄μ _aa ¼ εabε _a _bσμ
b _b

¼ ð1;−σiÞ: ðA2Þ

They satisfy the identity

ðσμσ̄ν þ σνσ̄μÞab ¼ 2ημνδba: ðA3Þ
In particular, we will denote vectors pμ and derivatives in
their two-component spinor form,11

pa _a ¼ σμa _apμ; ∂a _a ¼ σμa _a∂μ: ðA4Þ

One commonly used convention for two-component spinor
indices is that contractions of undotted indices should be
made from in descending order, whereas for dotted ones
they should be in ascending order, e.g., ua ¼ ϵabub. This
has the advantage that expressions stay unambiguous when
indices are suppressed. On the other hand, there are some
expressions (usually involving traces) in which it is
impossible to make all the indices explicit without violating
this convention. In this paper, we choose to make the
indices explicit, and thus, we only follow the convention
when possible.
Components of fields in irreps of the Lorentz group are

easily denoted in terms of the undotted and dotted indices.
First, it should be noticed that any spin-j irrep of SUð2Þ can
be viewed as a symmetric tensor product of the funda-
mental representation. The extension to the Lorentz group
is straightforward: a ðl; rÞ irrep can be interpreted as a
symmetric tensor product of l ð1=2; 0Þ irreps times a
symmetric tensor product of r ð0; 1=2Þ irreps. In terms
of indices, this corresponds to a field of the form,

ψa1…a2l _a1… _a2r ; ðA5Þ
which is totally symmetric in the undotted and in the dotted
indices.
We will often encounter expressions with symmetrized

tuples of indices ða1…a2lÞ or ð _a1… _a2rÞ. A convenient
notation when the number of indices in such tuples is
known from the context is to denote them by symmetric
multi-indices (a) or ð _aÞ. Since the indices contained in
(a) or ð _aÞ are symmetrized, we call them symmetric

multispinor indices. In terms of symmetric multispinor
indices, the fields of the form in Eq. (A5) are written as

ψ ðaÞð _aÞ: ðA6Þ

All the indices of a multispinor t can be converted into
symmetric multispinor indices with l ¼ r ¼ j by taking
the product of j copies of t and symmetrizing indices. As an

example, one can generate the multispinor tðaÞð _aÞ from the

multispinor ta_a as

tðaÞð _aÞ ¼ tða1ð _a1…tanÞ
_anÞ: ðA7Þ

Applying this procedure to the ϵab and ϵab symbols gives
rise to the generalized ϵ symbols ϵðaÞðbÞ and ϵðaÞðbÞ, which
can be used to raise and lower symmetric multispinor
indices.
Some useful algebraic relations in the notation defined

here are

ϵðaÞðbÞ ¼ ð−1Þ2jϵðbÞðaÞ; ðA8Þ

ϵðaÞðcÞϵðcÞðbÞ ¼ δðbÞðaÞ; ðA9Þ

δðaÞðaÞ ¼ 2jþ 1; ðA10Þ

xðaÞyðaÞ ¼ ð−1Þ2jyðaÞxðaÞ; ðA11Þ

pðaÞð _aÞpð _aÞðbÞ ¼ ðp2Þ2jδðbÞðaÞ; ðA12Þ

for bosonic x, y, p, and q.
Identities for traces and contractions of symmetric

multispinor objects follow from the two basic properties:
(i) The multiplicative structure of rank-2 two-spinor

tensors is preserved when they are promoted to the
corresponding symmetric multispinor object, e.g.,

XðaÞð_cÞYð_cÞðbÞ ¼ ðXYÞðaÞðbÞ; ðA13Þ

where ðXYÞab ¼ Xa_cY _cb. The identity (A11) is a
simple example of this rule. Note that additive
structure is not preserved and thus identities like
(25) do not easily generalize to multispinors.

(ii) The trace of a rank 2 symmetric multispinor tensor is
a complete homogeneous symmetric polynomial of
the eigenvalues of the corresponding two-spinor
tensor:

XðaÞðaÞ ¼
x2jþ1
þ − x2jþ1

−

xþ − x−
; ðA14Þ

where x� are the eigenvalues of Xa
b determined

from

11Note that there is a sign difference between our definition
Eq. (A4) and that of Ref. [36]. This is because our definition gives
simpler expressions in the simplified notation for general spin j.
Furthermore, we will not make an independent definition for p _aa,
as in Ref. [36]. Instead, in our case, pa _a is obtained by raising the
indices of pa _a with ϵ symbols. This is equivalent to using
Ref. [36]’s definition of p _aa and then exchanging the places
of the dotted and the undotted index.
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x2 − Xa
axþ detðXa

bÞ ¼ 0: ðA15Þ

Equation (A14) can be proved by noting that the
multispinor trace is basis independent (as expected)
and then studying it in the basis where Xa

b is
diagonal.

For example, multispinor traces of products of momenta,
such as pðaÞð _aÞqð _aÞðaÞ, can be computed using the trace
identities in the two-spinor formalism. The corresponding
two-spinor object to be used in Eq. (A14) in the current
example is Xa

b ¼ pa _aq _ab. The determinant of a vector is
simply jpa _aj ¼ p2 and the trace reads pa _aq _aa ¼ 2p · q.
Applying Eq. (A14) then gives that

pðaÞð _aÞqð _aÞðaÞ ¼
ðp · qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 − p2q2

p
Þ2jþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 − p2q2

p
−
ðp · q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 − p2q2

p
Þ2jþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 − p2q2

p : ðA16Þ

Of course, any multispinor trace has an equivalent expres-
sion as a homogeneous polynomial of scalar products of
the involved momenta, although these polynomials can get
rather complicatedwhenmore than 2momenta are involved.
Carrying on with the example, (30) can be recast as

pðaÞð _aÞqð _aÞðaÞ ¼
Xbjc
k¼0

akðp · qÞ2j−2kð−p2q2Þk;

with ak ¼
Xbjc
n¼k

�
2jþ 1

2nþ 1

��
n

k

�
: ðA17Þ

APPENDIX B: QUANTIZATION OF
SECOND-ORDER FERMIONS

A possible alternative to the usual Dirac and Rarita-
Schwinger formulation based on single derivative
Lagrangians is to use a two derivative formulation analo-
gous to the bosonic case. In this appendix, we comment on
the pitfalls of such an approach. One can try to write down a
second-order theory by constructing a second-order free
Lagrangian, since the lowest number of derivatives allowed
by Lorentz invariance for the kinetic term of aRj field with
j > 1=2 is 2. For example, the simplest Lagrangian of this
kind is

Lsecond−order
free ¼ −

1

2
ψ ðaÞð□þm2Þψ ðaÞ þ H:c: ðB1Þ

Apart from the problems outlined in Sec. II A, the theory
defined in this way will lead to inconsistencies in the
Hilbert-space representation of ψ . Let us use a simplified
notation in which all indices of fields, including the
spacetime point, are collected in one multi-index, denoted
by a greek letter α, β, etc. Canonical quantization fixes the

(anti)commutation relations between ψα and the associated
mometum ðΠψ Þβ, which, if the Lagrangian L exists, is
given by ðΠψÞβ ≡ ∂L=∂ _ψβ as

fψα; ðΠψÞβg ¼ iδαβ; ðB2Þ

while the (anti)commutator of ψα with any operator
independent of ðΠψÞα is taken to vanish. Thus, theories
in which ψ†

α is independent of ðΠψ Þα are problematic

because then fψα;ψ
†
βg ¼ 0, which implies kψαjAik2 ¼ 0

for any state jAi. This means that either the Hilbert space
contains zero-norm states or ψα identically vanishes in it.
The only way of avoiding these issues in the free theory

via constraints of the form,

Kβ
αðΠψ Þβ þ Lβ

αψ
†
β þMβ

αψβ ¼ 0; ðB3Þ

for some linear (possibly differential, but local) operators
K, L, and M. By fψα;ψβg ¼ 0 and (B2), this implies that
Kγ

βδαγ ¼ iLγ
βfψα;ψ

†
γg. Both K and L must be nonsingular

in order for the relation to apply to the full set of field
operators and their conjugates. As L can be inverted,
Eq. (B3) can be schematically recast as fψα;ψ

†
βg ¼

−iðL−1KÞαβ. Moreover, if ðL−1KÞαβ is a c number, it
can be diagonalized because, for a positively definite norm,
hAjfψα;ψ

†
βgjAi must be Hermitian and positive for any

state jAi. Thus, with a suitable field redefinition, it is
possible diagonalize ðL−1KÞαβ. Note that in the first
order formulation for spin-1=2, Eq. (B3) has the form
fψα;ψ

†
βg ∝ δαβ, which follows from ðΠψ Þα ≡ ∂L=∂ _ψβ ∝

ψβ
† and the canonical commutation relations (B2).

However, this implies a Lagrangian in which time deriv-
atives appear only through _ψβψβ

†, which, due to Lorentz
invariance, is not possible for higher j.
In general, for the theory to be Lorentz invariant, the

form of Eq. (B3) should be preserved by Lorentz trans-
formations. In order to provide an explicit expression for L
and K when a Lagrangian formulation exists, it is con-
venient to define

ðΠ̃ψ Þa _aa1…a2j ≡
∂L

∂ð∂a _aψ
a1…a2jÞ ; ðB4Þ

which depends linearly on Πψ . Then, the Lorentz-invariant
expression of the form of Eq. (B3) containing the lowest
number of derivatives is

ðΠ̃ψ Þa _aa1a2…a2j
∝ δaa1ϵ

_a _a1∂a2 _a2…∂a2j _a2jψ†
_a1… _a2j

: ðB5Þ

Thus, a consistent theory of general-spin fermions seems to
require equations of motion with as many as 2j derivatives
and, in particular, purely second-order quantum theories of
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fermions with spin-3=2 or higher do not appear to be
possible.

APPENDIX C: CORRECTION TO
PROPAGATORS FROM QUADRATIC TERMS

Operators quadratic in the general-spin field do not
necessarily produce a constant contribution to the mass.
To avoid this issue, we assumed that portal coupling (9)
does not produce quadratic term in the vacuum. The
contribution from the quadratic operator,

−
λv2

2
ψ ðaÞψ ðaÞ þ H:c:; ðC1Þ

can be easily computed using diagrammatic techniques
[36]. The Feynman rules have a similar structure than
the four-legged vertices given in Fig. 3. The resummed
propagators, depicted with encircled arrows in Fig. 6, can
be parametrized as

iAðp2ÞpðaÞð _aÞ=m2j

p2 −m2
;

iBðp2ÞδðaÞðbÞ
p2 −m2

; ðC2Þ

and obey the equations shown diagramatically in Fig. 6.
These can be recast as

�
A

B

�
¼

�
1

1

�
þ v2h
p2 −m2

�
λ λ�

λðp2=m2Þ2j λ�

��
A

B

�
;

ðC3Þ

so that, for example, the propagator with an arrow pointing
to the right takes the form,

ipðaÞð _aÞ=m2j

p2 −m2 − 2v2hRe½λ� − v4hjλj2
m2

P2j−1
n¼0 ðp2=m2Þn

: ðC4Þ

The other two propagators are resummed analogously.
The corrections can be absorbed by a redefinition of the

pole mass only in the lower spin cases:

(i) For j ¼ 0, the squared pole mass is

m2 þ 2v2hRe½λ�;

as expected for a scalar.
(ii) For j ¼ 1=2, the squared pole mass is

m2j1þ λv2h=m
2j2:

Additionally, in order to recover the correct propa-
gator normalization pðaÞð _aÞ=m

2j
pole, the field must be

rescaled as ψ → ψ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λv2h=m

2
p

affecting all
interactions with ψ .

(iii) For j ¼ 1, the squared pole mass is

m2
j1þ λv2h=m

2j2
1 − jλv2h=m2j2 ;

and the field must be rescaled, as ψ → ψ
1−jλv2h=m2j2
j1þλv2h=m

2j .

(iv) For j ≥ 1, the squared pole mass can be estimated as

m2j1þ λv2h=m
2j2 þ ð2j − 1Þjλv2h=mj2 þOðλ3Þ;

assuming λv2h ≪ m2. The resummed propagator
denominator contains powers up to ðp2=m2Þ2j−1,
implying that there are nonperturbative poles
scaling as λ−1=ð2j−1Þ. These, however, do not show
up in the EFTapproach as such a resummation is not
justified.

In the EFT description, the corrections to the propagator
must be subdominant; thus, one must impose

jλv2h=m2j2ðp2=m2Þ2j−1 ≪ 1; ðC5Þ

when j ≥ 1. In terms of the effective cutoff scale (10), this
condition reads

p2 ≪ Λ2⋆
�
mΛ⋆
4πv2h

� 2
2j−1

: ðC6Þ

APPENDIX D: SPIN-3=2 ALTERNATIVES

Here, we consider alternative spin-3=2 theories in which
either the Lorentz-group irrep or the SM-gauge-group irrep
differ from the ones we have considered so far and write
down the leading-order effective Hamiltonian correspond-
ing to each case.12 This serves as an example of what may
happen for other spins when one goes beyond the minimal
case. In general, variations in the Lorentz group irrep
should not change the physics, as long as only the spin-jFIG. 6. Diagrammatic equations for the resummed propaga-

tors. Lines with encircled arrows denote the resummed propa-
gators (C2) and black dots denote insertions of the quadratic
operator (C1).

12To obtain a list of all the independent operators allowed at
each order, we have used the code BasisGen [125].
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degrees of are coupled (as discussed in Sec. II). On the
other hand, different gauge-group irreps give rise to
physically different possibilities.

1. R3=2

In this case, the field ψ must belong to a real repre-
sentation of the SM gauge group. This means that it should
have vanishing hypercharge, integer electroweak isospin,
and zero SUð3Þ triality. The simplest case corresponds to
having an ð1; 1Þ0 SM irrep, which is the one whose
phenomenology is studied in detail in Sec. III. The next
simplest case is given by the ð1; 3Þ0 irrep, for which the
most general Z2-symmetric interaction Hamiltonian for
SM-ψ interactions at the lowest order in 1=Λ is

Hint;SM ¼ −λjϕj2ψabcψ
abc þ cWϵABCWA

abψ
B
acdψ

Cbcd þH:c:;

ðD1Þ

where upper case latin letters A, B denote SUð2Þ triplet
indices and ðWAÞab ¼ ðσμνÞabðWA

μν þ iW̃A
μνÞ=2 with WA

μν

the SUð2Þ field-strength tensor.
Here and below, additional interactions with gauge fields

are implied by the minimal substitution of partial deriva-
tives with gauge covariant ones in the eom (7) and (8). Such
interactions are not listed here.

2. Charged ð3=2;0Þ ⊕ ð0;3=2Þ
In order for the field not to reduce to two independent

copies of the R3=2 representation, it must belong to a
complex representation of the SM gauge group. The
simplest such representation containing a neutral compo-
nent (to be used as the DM candidate) is an SUð2Þ doublet
with hypercharge Y ¼ 1=2. The Z2-symmetric leading-
order interactions with the SM are given by

Hint;SM ¼ −λLjϕj2ψ2
L − λRjϕj2ψ2

R − λLR1jϕj2ψLabcψ
† abc
R

− λLR2ðϕ†ψLabcÞðψ† abc
R ϕÞ

þ cWWA
abψ

†B
Racdσ

AψCbcd
L

þ cBBabψ
†B
Racdψ

Cbcd
L þ H:c:; ðD2Þ

where Ba
b ¼ ðσμνÞabðBμν þ iB̃μνÞ=2 with Bμν the Uð1Þ

field-strength tensor.

3. Neutral ð1;1=2Þ ⊕ ð1=2;1Þ
The field irrep here is defined as the subset of the

ð1;1=2Þ⊕ ð1=2;1Þ representation satisfying ψ ≡ ψL ¼ ψ†
R,

where ψL and ψR belong to the ð1; 1=2Þ and ð1=2; 1Þ
sectors, respectively. The conditions over the SM irrep are
the same as in the ð3=2; 0Þ case. We assume that the usual
Rarita-Schwinger formulation is used, so the field has
dimension 3=2. Then, the leading-order interaction terms
have dimension 5. The full interaction Hamiltonians for the
ð1; 1Þ0 and ð1; 3Þ0 cases at this order are

Hint¼−
λ

Λ
ψab_cψ

ab_cjϕj2þðclÞi
Λ

ψab_clai D
b_cϕþH:c:; ðD3Þ

and

Hint ¼ −
λ

Λ
ψA
ab_cψ

Aab_cjϕj2 þ ðclÞi
Λ

ψA
ab_cðlai ÞTσADb_cϕ

þ cB1
Λ

Bd
aψA

ab_cψ
Adb_c þ cB2

Λ
ðB†Þ _d _cψA

ab_cψ
Aab _d

þ H:c:; ðD4Þ

where li is the ith generation SM lepton doublet and T

denotes SUð2Þ doublet transposition. Self interactions are
not allowed at this order: they would appear at dimension 6.
Since the field we are using now contains unphysical

degrees of freedom, a careful examination of the interaction
Hamiltonian is needed to see which conditions need to be
applied to it, in order for the unphysical components not to
be coupled with the physical ones.

4. Charged ð1;1=2Þ ⊕ ð1=2;1Þ
As for the charged ð3=2; 0Þ ⊕ ð0; 3=2Þ field, the simplest

SMirrephere is anSUð2ÞdoubletwithhyperchargeY ¼ 1=2,
and as for the neutral ð1; 1=2Þ ⊕ ð1=2; 1Þ, we assume that
the dimension of the field is 3=2. Then, we have

Hint ¼
cB1
Λ

Ba
dψ

†
Rab_cψ

db_c
L þ cB2

Λ
ðB†Þ_c _dψ†

Rab_cψ
ab _d
L þ cW1

Λ
ðWAÞadψ†

R;ab_cσ
Aψdb_c

L þ cW2

Λ
ðW†AÞ_c _dψ†

Rab_cσ
Aψab _d

L

þ ðcBlÞi
Λ

ðB†Þ _a _cψR _a _b cl
c
i þ

ðcWlÞi
Λ

ðW†AÞ _a _cψR _a _b cσ
Alci þ

ðceÞi
Λ

ψRab_ceai D
b_cϕþ cϕ

Λ
ψ†
Rab_cψ

ab_c
L jϕj2

−
λL
Λ
ðϕ†ψLab_cÞðϕ†ψab_c

L Þ − λR
Λ
ðϕ†ψR _a _b cÞðϕ†ψ _a _b c

R Þ þ H:c: ðD5Þ
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Restrictions on the structure ofHint have to be imposed to decouple the unphysical components of the field, as for its neutral
counterpart.

APPENDIX E: ANNIHILATION CROSS SECTION

The diagrams contributing to the annihilation of two ψ particles into a pair of SM model ones are shown in Fig. 7. The
cross section for annihilation into massive SM particles (except the Higgs boson) is

σψψ→XX† ¼ v2hjλj2
2πð2jþ 1Þ2sðs −m2

hÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

X

s − 4m2

s �ðp1p2ÞðaÞðaÞ
m4j þ cos 2θð−1Þ2jδðaÞðaÞ

�
γXðsÞ; ðE1Þ

where p1 and p2 are the four momenta of the incoming particles and, s is the center-of-mass energy squared, and

γfðsÞ ¼
2m2

f

v2h
ðs − 4m2

fÞ; γWðsÞ ¼
4m4

W

v2h

�
s2

4m4
W
−

s
m2

W
þ 3

�
; γZðsÞ ¼

2m4
Z

v2h

�
s2

4m4
Z
−

s
m2

Z
þ 3

�
; ðE2Þ

with f representing any massive SM fermion. We omitted explicit indices in the multispinor traces for brevity, e.g.

ðp1p2ÞðaÞðaÞ ≡ p1ðaÞð _aÞp
ð _aÞðaÞ
2 . All multispinor traces encountered here can be computed using Eqs. (27) and (28).

The differential cross section for the annihilation into two Higgs bosons, ψðp1Þψðp2Þ → hðk1Þhðk2Þ is given by

dσψψ→hh

dt
¼ 1

32ð2jþ1Þ2πsðs−4m2Þ
�
2jFj2

ðp1p2ÞðaÞðaÞ
m4j þ2ð−1Þ2jδðaÞðaÞReF

2

þ16ReFv2jλj2
m4j

�ðp1ðp1−k1ÞÞðaÞðaÞ þ ð−1Þ2jðp2ðp1−k1ÞÞðaÞðaÞ
t−m2

þ
ðp1ðp1−k2ÞðaÞðaÞ þ ð−1Þ2jðp2ðp1−k2ÞÞðaÞðaÞ

u−m2

�

×
32v4jλj4
m8j

�ðp1ðp1−k1Þp2ðp1−k1ÞÞðaÞðaÞ þ ð2jþ1Þð−tm2Þ2j
ðt−m2Þ2 þ

ðp1ðp1−k2Þp2ðp1−k2ÞÞðaÞðaÞ þ ð2jþ1Þð−um2Þ2j
ðu−m2Þ2

þ 1

ðt−m2Þðu−m2Þððp1ðp1−k1Þp2ðp1−k2ÞÞðaÞðaÞ þ ðp1ðp1−k2Þp2ðp1−k1ÞÞðaÞðaÞ

þ2ð−1Þ2jððp1−k1Þðp1−k2ÞÞðaÞðaÞm
4jÞ

��
; ðE3Þ

where

FIG. 7. Diagrams contributing to the annihilation of two ψ particles into two SM ones. Dashed lines represent the Higgs boson h. The
label X corresponds either to a massive SM fermion or to a massive SM gauge boson.
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F ¼ 2λ

�
1þ 3m2

h

s −m2
h

−
2v2hλ
t −m2

−
2v2hλ
u −m2

�
; ðE4Þ

fðxÞ ¼ ½−ðxþm2 −m2
hÞ2 − xðs − 2m2Þ�2j þ ð−2m2xÞ2j; ðE5Þ

gðx; yÞ ¼ ½−ðxþm2 −m2
hÞðyþm2 −m2

hÞ − ðs − 2m2Þðm2 −m2
hÞ�2j þ ½−2m2ðm2 −m2

hÞ�2j; ðE6Þ

with s, t, and u being the usual Mandelstam variables. As s → 4m2,

σψψ→f̄fvrel ∼
2jλj2m2

fðm2 −m2
fÞ3=2

ð2jþ 1Þπm3ð4m2 −m2
hÞ2

�
1þ ð−1Þ2jc2θ þ

2

3
jðjþ 1Þjv2rel

�
; ðE7Þ

σψψ→VVvrel ∼
22jηV jλj2m4

Vðm2 −m2
VÞ1=2ð4 m4

m4
V
− 4 m2

m2
V
þ 3Þ

ð2jþ 1Þπm3ð4m2 −m2
hÞ2

�
1þ ð−1Þ2jc2θ þ

2

3
jðjþ 1Þjv2rel

�
; ðE8Þ

where, as in Eq. (18), we assumed c2θ ¼ ð−1Þ2j in the v2rel term.
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