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We investigate a perturbatively renormalizable Sq invariant model with N ¼ q − 1 scalar field
components below the upper critical dimension dc ¼ 10=3. Our results hint at the existence of multicritical
generalizations of the critical models of spanning random clusters and percolations in three dimensions.
We also discuss the role of our multicritical model in a conjecture that involves the separation of first and
second order phases in the ðd; qÞ diagram of the Potts model.
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I. INTRODUCTION

Universality classes characterized by a single real order
parameter are generally well understood, both qualitatively
and quantitatively, for all dimensions between d ¼ 2 and
the upper critical dimension dc of the underlying micro-
scopic model. The understanding is often based on a
combination of renormalization group (RG) and conformal
field theoretical (CFT) methods. The general picture
regarding universality classes with several order parame-
ters, which would correspond to multifield scalar theories,
is instead lacking. Borrowing some inspiring words from
Ref. [1], we do not yet have a mappa mundi giving us a
bird’s eye view of the whole spectrum of equilibrium
critical phenomena, even if this field of theoretical physics
is hardly a terra incognita due to decades of research on
the topic.
We do know, however, that symmetry must play a crucial

role when charting the atlas of critical phenomena. This can
be seen in a multitude of ways, but from our perspective it
is most interesting to point out two specific examples
related to the ϵ expansion. By solving the most general RG
fixed point equations in d ¼ 4 − ϵ [2] and d ¼ 6 − ϵ [3]
for a set number of scalar fields N, it can be shown that
solutions emerge with a definite symmetry content G,
which is, by construction, a subgroup of the maximal
symmetry group, OðNÞ [4].
Furthermore, RG deformations at a FP almost always

arrange as irreducible representations of the symmetry
group G, because the action of the group G commutes
with the generator of the dilatations, consequently

characterizing the labels of the spectrum of the underlying
CFT. Sometimes, when this does not happen, logarithmic
terms can be produced and the more general framework of
logarithmic CFT (log-CFT) must be introduced to accom-
modate the changes, in a way that is going to be relevant
later on in the paper. In a natural way, log-CFTs can be
obtained as special parametric limits of standard CFTs [5].
This is achieved also within RG methods [6,7].
In this paper, we concentrate on one of the most

recurring and important symmetry groups, the permutation
group Sq, which is a subgroup of OðNÞ for N ¼ q − 1 [8].
The group can be seen as representing the invariance of a
regular q symplex, the hypertetrahedron, embedded in RN ,
and therefore is relevant for the description of microscopic
crystal models of the same symmetry. Landau-Potts field
theories with Sq symmetry are well known in d ¼ 6 − ϵ, in
which the model displays a cubic interaction, and in
d ¼ 4 − ϵ, in which the model has a quartic interaction
that enhances the symmetry by a global reflection Sq × Z2.
The most important one is certainly the model in d ¼ 6 − ϵ,
because it is known to belong to the universality class of the
lattice Potts model. This implies that the limits q → 0 and
q → 1 reproduce the universality classes of critical span-
ning clusters (trees and forests) and of percolations (both
bond and site) [9,10], respectively.
In these regards, our point of view is that there can be

many more examples of Landau-Potts field theories, and
that their nature can be uncovered by appropriately using
the ϵ expansion, while changing the upper critical dimen-
sion. The first multicritical generalization of the critical
Landau-Potts field theory in d ¼ 6 − ϵ, which has also
genuine Sq symmetry, is a field theory with quintic
interactions and perturbative expansion constructed in
d ¼ 10=3 − ϵ dimensions. This happens because the theory
with quartic interaction has its symmetry group enhanced
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by a global parity, and therefore it is not a natural multi-
critical generalization. In this paper, we construct the
quintic model, discuss its critical properties, and assess
its relevance as a multicritical partner of the Potts model.
In so doing, the ϵ expansion becomes a primary tool to
search and discover universality classes. As long as we are
not interested in precise quantitative estimates of critical
exponents, the ϵ expansion, in a way, overcomes the
traditional limitations of perturbation theory by changing
the critical dimension at which it is performed.
The paper is organized as follows: in Sec. II, we

introduce the multicritical Sq-symmetric Landau-Potts field
theory and discuss its renormalization. In Sec. III, we
discuss the RG fixed points as functions of q. In Secs. IV
and V, we analyze more carefully the limits q ¼ 1 and
q ¼ 0, respectively. In Sec. VI, we draw our main con-
clusions by giving a physical interpretation to the multi-
critical point. We include in the Appendix all the relevant
RG formulas, including critical exponents and γ functions
for composite operators. We want to stress that all the
results listed in the Appendix, even though they have been
deferred to the end of the paper to avoid overburdening the
main discussion, are a central part of our work.

II. THE MULTICRITICAL MODEL IN dc = 10=3

General Landau-Potts field theories can be constructed
by placing a scalar field component on each vertex of a
regular q symplex, which realizes the permutation group as
the subset of rotations, Sq ⊂ OðNÞ, that leave the symplex
invariant. We normalize the vertices eα of the q symplex as

XN
i¼1

eαi e
β
i ¼ qδαβ − 1;

Xq
α¼1

eαi ¼ 0;

Xq
α¼1

eαi e
α
j ¼ qδij: ð1Þ

The order parameter is defined as ψα ¼ P
i ϕieαi , where we

introduced explicitly the field components ϕi. The sym-
metry group acts on ϕi as a subgroup ofOðNÞ, while on ψα

as the permutation group of the labels α ¼ 1;…; q.
A manifestly invariant action can be constructed through
monomials containing any power of ψα and summing over
the label α itself. To express the monomials in terms of the
fields ϕi, it is convenient to introduce the tensors of
arbitrary rank

qðnÞij���k ¼
1

q

Xq
α¼1

eαi e
α
j � � � eαk: ð2Þ

We define the invariant action

S½ϕ� ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þ VðϕÞ

�
;

VðϕÞ ¼ 1

5!

X
ijklm

�
uδðijq

ð3Þ
klmÞ þ vqð5Þijklm

�
ϕiϕjϕkϕlϕm; ð3Þ

where round parenthesis imply a full symmetrization of the
enclosed indices. The invariance of S½ϕ� on Sq is easily
proven by inserting the definition (2) and noticing that it is
actually a scalar function of powers and derivatives of ψα.
The potential VðϕÞ is the most general quintic singlet
function of ϕi.
In the potential of (3), we introduce the two couplings u

and v of the model. In d ¼ 10=3 dimensions, the action (3)
is perturbatively renormalizable in powers of the couplings.
The leading order RG flow for the potential VðϕÞ is known
in general, meaning with no restriction of an underlying
symmetry, in a procedure that has been given the name of
functional perturbative RG [1,11,12], which is also strongly
tied to a perturbative CFT approach [13–16]. It can be
obtained from the single component flow, shown in [17],
and introducing “flavor” indices appropriately, as done in
[6,18]. The result can be expressed diagrammatically

ð4Þ

in which vertices stand for derivatives of the potential with
respect to the fields and lines correspond to summations
over the flavor indices. The γ matrix is the anomalous
dimension matrix, which, upon diagonalization, yields half
of the anomalous dimension η. For this symmetry group,
the matrix is already diagonal at critical points and there is
only one anomalous dimension η, therefore γij ¼ δij

η
2
. The

diagrams of (4) are not Feynman diagrams, but the loop
count that they display agrees with the underlying dia-
grammatic computations, that is obtained by renormalizing
three loop contributions.
Inserting the potential (3) in (4) and iteratively simplify-

ing long strings of products of eαi with (1) gives the
anomalous dimension

η ¼ 1

300
u2ðq − 2Þðqþ 5Þ þ 1

15
uvðq − 2Þðq − 1Þ

þ 1

30
v2ðq − 2Þðq2 − 2qþ 2Þ; ð5Þ

and the beta functions
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βu ¼ −
3ϵ

2
u −

3

200
u3ð17q2 þ 799q − 4326Þ

þ 1

5
u2vð−97q2 þ 726q − 1061Þ

þ 1

4
uv2ð−25q3 þ 256q2 − 714qþ 1156Þ

þ 10

3
v3ð2q2 þ 21q − 48Þ;

βv ¼ −
3ϵ

2
v −

3

25
u3ð5qþ 139Þ

þ 1

40
u2vð−25q2 − 3483qþ 7546Þ

þ 1

2
uv2ð−217q2 þ 807q − 890Þ

þ 1

12
v3ð−459q3 þ 2296q2 − 4674qþ 3756Þ: ð6Þ

We have included the scaling terms proportional to ϵ by
going to d ¼ 10=3 − ϵ dimensions. The ϵ expansion can be
obtained by solving βu ¼ βv ¼ 0 perturbatively in powers
of ϵ and inserting the solution in critical exponents such
as η.
It is clear that q can be analytically continued in the

above formulas, so it does not necessarily need to be a
positive natural number bigger than one. This is particu-
larly useful considering that lattice models with Sq
symmetry can also be continued to arbitrary values of
q thanks to the Fortuin-Kasteleyn representation [19].
This is particularly relevant for the limits q → 1 and
q → 0, which are central in the theory of random cluster
models.
Several more RG related quantities can be computed

from (4) in the functional framework, as discussed in
some detail in [7]. All the RG quantities that we have
computed can be found in Appendix. Arbitrary composite
operators OðϕÞ can be introduced by coupling them to an
appropriate source JO in the path integral through the
replacement S½ϕ� → S½ϕ� þ JO ·OðϕÞ, in which JO
renormalizes multiplicatively when computing hOðϕÞi.
In general, JO mixes with other sources, unless OðϕÞ is
already a scaling operator. The operators OðϕÞ that we
consider are relevant (in the RG sense) and built from
powers of ϕi with no derivatives. Specifically, in this
manner we include in this work the complete spectrum of
symmetric operators that are quadratic or cubic in ϕi, and
the scalar operators that are quartic. For obvious reasons,
the operators must carry a representation label for Sq,
which comes from the tensor product of standard (vector)
representations of Sq.
For arbitrary values of q, the action of Sq and of the

generator of dilatations commute, resulting in some scaling
operators which carry an irreducible representation (irrep)

label of Sq [20,21].
1 A list of quadratic and cubic operators

that we consider here is already given in [7], so we simply
summarize it briefly to clarify the notation, but omit most
of the long explicit expressions for brevity. With two
copies of ϕi, we can construct a singlet Sð2Þ ¼ ϕ2, a vector

Vð2Þ
i ∼

P
jkqijkϕjϕk, and a symmetric tensor Tð2Þ

ij . Similarly,

with three copies of ϕi, we can construct a singlet Sð2Þ ¼P
ijk qijkϕiϕjϕk, two vectors Vð3Þ

i and Vð3Þ0
i , a symmetric

tensor Tð3Þ
ij , and a symmetric 3-tensor Zð3Þ

ij . We also include

the two scalar singlets Sð4Þ and Sð4Þ0 coming from four
copies of ϕi. We refer to Appendix for explicit forms of the
mixing cubic vectors and quartic scalars, while all other
operators are given explicitly in [7].
For each scaling operator O, the renormalization process

introduces a γ function and consequently a critical expo-
nent θO, which can be related to the CFT operator
scaling dimension as ΔO ¼ d − θO (if O is primary, if
not this formula is slightly modified to accommodate
ΔV 0 ¼ 2þ Δϕ).
The physical meaning of the critical exponents has to do

with observable quantities at criticality, in agreement with
their “quantum” numbers. For example, the leading critical
behavior of the energy is governed by the scaling of the first
singlet θSð2Þ , and all subleading corrections are given by
θSðnÞ for n ≥ 3. Similarly, the leading critical behavior of
the magnetization is governed by θVð1Þ ¼ ðdþ 2 − ηÞ=2
and subleading corrections are θVðnÞ for n ≥ 2.
For increasing rank of the operators, also the number of

available operators increases, and at any order there is a
correction to the energy and the magnetization. Further
symmetric n tensors describe the “propagation” of n
clusters at criticality [20]. For some special limits of q,
there can be a degeneracy in the spectrum in which two
operators transforming with a different irrep have the same
scaling dimension in the limit. This results in a non-
diagonalizable CFT Jordan cell [5,22] and, consequently,
in a universal logarithmic correction to an operator that
mixes the original two [7,20]. The only relevant case for
this paper happens when q → 1, in which ΔSð2Þ ¼ ΔTð2Þ .
In this case, relevant for percolations in the standard
universality class, the space of tensors actually has negative
dimension; if seen as an analytic continuation, the tensors
disappear from the spectrum by “colliding” with the
singlets. Notably, an observable displaying this logarithmic
behavior can be explicitly constructed [23] and the
coefficient α of the logarithm can be computed from
ΔTð2Þ − ΔSð2Þ ∼ αðq − 1Þ þOðq − 1Þ2. An explicit form of

1The space of cubic irreps operators is smaller than the one
generated by ϕiϕjϕk, as opposed to the quadratic case. In
d ¼ 6 − ϵ, it was observed, using the results of [3], that operators
that break Sq and cannot be arranged in terms of irreps have
critical exponents with ϵ expansion starting withOðϵ2Þ, even after
a global OðNÞ rotation has been factored out [7].
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the logarithmic correlator is given at the end of Appendix
and is discussed in much more detail in [23].

III. GENERAL FIXED POINTS ANALYSIS

We solve βu ¼ βv ¼ 0 for the system (6) and an arbitrary
value q. The solution exists analytically, but it is best
displayed numerically due to its complexity. We study all
the possible real non-Gaussian solutions as functions of q,
for q ≥ 0 and modulo reflections ðu; vÞ ↔ −ðu; vÞ, so we
can include all the interesting limits q ¼ 0; 1;… and so on.
The system is best analyzed by first rescaling ϵ away,
through the definitions u ¼ a

ffiffiffi
ϵ

p
and v ¼ b

ffiffiffi
ϵ

p
. The

fixed point equations become fqða; bÞ ¼ ϵ−3=2βu ¼ 0

and gqða; bÞ ¼ ϵ−3=2βv ¼ 0. Using the rescaled couplings
a and b, fixed points are thus solutions of two cubic
equations.
A particularly elegant way to find all possible real

solutions for a given value of q involves the use of a
“triangular” Gröbner basis for the polynomials in the
rescaled couplings ða; bÞ. Using this basis, an equation
for the coupling b can be found as its first element, and it
takes the form bPqðbÞ ¼ 0, with PqðbÞ being an even
polynomial of eighth order (having factored out the
Gaussian solution). The other equation is of the form
a ¼ bRqðbÞ, with RqðbÞ being an even polynomial of sixth
order. We do not give the explicit form of PqðbÞ here,
because it is rather long, but we provide it for the special
cases q ¼ 1 and q ¼ 0 in Secs. IV and V, respectively.
Notice that the Gaussian solution is the only solution with
zero couplings. The number of real zeroes of PqðbÞ
changes according with q and, as it should be evident, it

is in one-to-one correspondence with the nontrivial sol-
utions of the full system.
There are three special values of q, which we can give

numerically

q1 ¼ 0.2304; q2 ¼ 1.8940; q3 ¼ 3.8778: ð7Þ

For 0 ≤ q < q1 there are four distinct fixed points (modulo
reflections), labeled FPi for i ¼ 1;…; 4. Their location in
the ðu; vÞ roughly mimic the RG diagram of the special
case q ¼ 0, which is discussed in more detail in Sec. V.
Crossing q ¼ q1 ¼ 0.2304we see that FP3 and FP4 collide,
consequently for q1 < q < q2 there are two distinct fixed
points. In this second case, the RG diagram in the place
ðu; vÞ resembles the one of the special case q ¼ 1, which is
discussed in Sec. IV. Crossing q ¼ q2 ¼ 1.8940we see that
FP2 goes to infinity, so for q2 < q < q3 there is only one
fixed point. Finally, crossing q ¼ q3 ¼ 3.8778 the last
fixed point also goes to infinity and there are no solutions.
The q-dependent behavior of the fixed point solutions is
shown in Fig. 1.
There are four natural values of q contained in the

interval 0 ≤ q < q3, which could, in principle, lead to
interesting critical points. The cases q ¼ 0 and q ¼ 1 are in
fact interesting, and we study them in the respective
sections below. The case q ¼ 2 is probably less interesting:
the limit of 2-states reduces the symmetry to the one of an
Ising ferromagnet, S2 ≃ Z2, which cannot be realized
through an odd potential (at most there can be a conjugation
parity as in [17]). This can be seen in two ways: on the one
hand the critical exponents are Gaussian for q → 2 as
evident from (5), on the other hand the potential itself is
trivial, VðϕÞ ¼ 0 for q ¼ 2, when expressing it with the

0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.05

0.10

0.50

1

5

FIG. 1. Fixed points for varying q. The fixed points FP1 and FP2, respectively, located lower left and upper right, move roughly from
right to left for increasing q. We also have that FP2 goes to infinity for q ¼ q2 ≈ 1.89. The fixed points FP3 and FP4 start by moving
towards each other, and then merge at q ¼ q1 ≈ 0.23. The vertical axis is displayed on a logarithmic scale.
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basis eα ¼ �1 for α ¼ 1, 2, respectively. Finally, the case
q ¼ 3 is also trivial, but in a slightly less straightforward
way. For q ¼ 3, the two quintic invariants of (3) coincide
if explicitly computed, resulting in a potential VðϕÞ ∝
ð2uþ 5vÞðϕ2

1 þ ϕ2
2Þϕ2ðϕ2

2 − 3ϕ2
1Þ, but at the fixed point

2uþ 5v ¼ 0, even though the two couplings have nonzero
values. Consequently, VðϕÞ ¼ 0 also for q ¼ 3 and there is
only the Gaussian solution.
Nevertheless, we notice that FP1 still exists in the interval

containing q ¼ 2 and q ¼ 3, upon analytic continuation. In
the first case, it could imply the presence of an interesting
Z2 model, realized as one with Sq symmetry with q ¼
2þ ε for ε → 0, however, it would have η ¼ 0 from (5).
Therefore, the above analysis does not exclude the pos-
sibility that the cases q ¼ 2 and, to some extent, q ¼ 3 are
entirely trivial. For example, they could, in fact, still
produce logarithmic corrections in the way discussed in
Sec. I, and would represent Gaussian theories with some
logarithmic correlators if opportune observables are found,
similarly to what has happened for the case q ¼ 1 in [23]
(which, however, is non-Gaussian). Since we do not know
of interesting observables of this type yet, we take the
analysis of this section as an indication that the interesting
limits of this model that deserve a more careful analysis are
q ¼ 0 and q ¼ 1, that incidentally are related to the two
most important random cluster models (at least to our eyes).

IV. THE LIMIT q → 1: PERCOLATIONS

The limit q → 1 for microscopic random cluster models
is known to be related to the universality class of perco-
lations. In fact, the Landau-Potts field theory with cubic
interaction in d ¼ 6 − ϵ dimension is known to belong to
the same universality class as bond and site percolations.
When applying the same limit to our multicritical model,
we can argue that our findings suggest the existence of a
multicritical generalization of the standard percolation
universality class. One way to think at the generalization
is to recall how the standard Ising model, that has upper
critical dimension dc ¼ 4, is generalized to the tricritical
Ising model, that has dc ¼ 3, by including a new Z2

relevant parameter. Since our action (3) has dc ¼ 10=3, we
expect that the model is non-Gaussian in d ¼ 3 dimensions
given that the required ϵ ¼ 1

3
≲ 1 for the continuation is

relatively small, unless the perturbative expansion fails
rather miserably, that we have no reason to believe. Real-
world multicritical generalization of percolations appear,
for example, in the critical behavior of correlated perco-
lation [24,25].
The first polynomial of the Gröbner basis for q → 1 is

Pq¼1ðbÞ¼ 87480ð89038468249947b8−8972429711878b6

þ12888105748b4−536171880b2þ2211840Þ:
ð8Þ

As already hinted at in the previous section, the above
polynomial has two real zeroes, so we actually have two
nontrivial fixed points, FP1 and FP2 (apart from reflec-
tions). We plot them in Fig. 2. One can clearly see that FP2
is more IR relevant than FP1, so it is a more realistic
candidate for the multicritical universality class, but for
completeness we report the results for both.
For FP1 we find the anomalous dimension and the

critical exponent of the correlation length

η ¼ −0.000219126ϵ; ν−1 ¼ 2þ 0.00460164ϵ: ð9Þ

Geometric properties of the critical clusters are character-
ized by the fractal and resistivity dimensions

df ¼ 2þ 0.0121628ϵ; dr ¼ ν−1; ð10Þ

with the latter being determined by a scaling relation.
Crossover properties and logarithmic properties are gov-
erned by

Φ ¼ 1; Φ̄ ¼ 1þ 0.00378056ϵ;

αE ¼ −0.0069779ϵ; ð11Þ

and the formulas to obtain the above quantities are defined
in Appendix.
For FP2 we find the critical exponents

η ¼ −0.00431785ϵ; ν−1 ¼ 2þ 0.0906748ϵ: ð12Þ

The fractal dimensions

FIG. 2. RG flow in the limit q → 1. The arrows point towards
the infrared and marked dots are the fixed points (and their mirror
images). Notice that there are trajectories connecting the Gaus-
sian fixed point and FP1 to FP2 in the infrared.
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df ¼ 2þ 0.11886ϵ; dr ¼ ν−1; ð13Þ

the crossover exponents and logarithmic coefficient

Φ ¼ 1; Φ̄ ¼ 1þ 0.0140927ϵ;

αE ¼ −0.0222583ϵ: ð14Þ

All critical exponents and properties of both fixed points
FP1 and FP2 in the limit q → 1 are summarized in Table I.
The fractal dimensions of the critical cluster are probably
the most direct geometric consequence of the critical
regime. A naïve extrapolation to d ¼ 3, corresponding to
ϵ ¼ 1

3
, gives df ¼ 2.00405 and dr ¼ 2.00153 for FP1, and

df ¼ 2.03962 and dr ¼ 2.03022 for FP2. We are clearly
talking about very mild departures from the mean field
values, even smaller if df and dr are compared relatively to
each other. The most interesting fixed point FP2, however,
has also the most significant correction since it affects the
second digit. We hope that this could be a useful signature
for finding this critical point in a microscopic model that
generalizes the one of bond percolations with additional
tunable parameters.

V. THE LIMIT q → 0: SPANNING FORESTS

The limit q → 0 of random cluster models is known to be
related to models of spanning clusters, such as trees and
forests. As a consequence, and on the basis of the analogy
of the previous case and of the Potts model, the Landau-
Potts field theory at criticality is believed to belong to the
same universality class. The Gröbner polynomial in this
limit becomes

Pq¼0ðbÞ ¼ 41472ð736b2 − 25Þð342501160032b6
− 34407942288b4 þ 153295414b2 − 173889Þ:

ð15Þ

Clearly, Pq¼0ðbÞ is more factorized than its counterpart of
the previous section. We eliminate reflections of the fixed
points through the requirement b>0 (b → −b and a → −a
corresponding to completely equivalent solutions). There
are four real zeroes of Pq¼0ðbÞ, one corresponding to
the first factor, and the other three corresponding to the
second one. The first factor is solved by b ¼ 5=4

ffiffiffiffiffi
46

p
, that

corresponds to FP4; FPi with i ¼ 1, 2, 3 come as solutions
to the second.

We plot the solutions in Fig. 3. One can clearly see that
FP2 is more IR relevant than FP1, so it is a more realistic
candidate for the multicritical universality class, but for
completeness we report the results for both. Before
proceeding, we also notice that FP3 is also an IR fixed
point; as much as FP2, it is completely IR attractive, and
both have trajectories connecting them from FP2, FP4 and
the Gaussian fixed point.
The factorization property comes because there actually

is a more convenient coupling to work with, namely the
difference

χ ¼ u − 2v: ð16Þ

The new coupling has an independent beta function (in the
sense that it only depends on χ itself)2

βχ ¼ −
3

2
ϵχ þ 393

4
χ3: ð17Þ

The only possible solutions of βχ ¼ 0 are the Gaussian one

and χ� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ=131

p
. In the full system of solutions, the

Gaussian fixed point and FP4 share χ ¼ 0, while FPi for
i ¼ 1, 2, 3 share χ ¼ χ�.
The importance of the new coupling is evident also from

the explicit form of the standard critical exponents

η ¼ −
χ2

30
; ν−1 ¼ 2þ 7

10
χ2; ð18Þ

that are thus independent of any orthogonal coupling. This
implies that the critical exponents of FP4 are trivial, while
FPi for i ¼ 1, 2, 3 share the same η and ν. The same
happens for the critical exponent of the quadratic vector
operator is θVð2Þ ¼ 2þ 6

5
χ2, implying that also df and Φ̄ are

shared by the various fixed points. However, not all critical
exponents depend on χ, for example the quadratic tensor is

TABLE I. Summary of all critical exponents and properties for the two fixed points of the limit q → 1 of Sec. IV.

q → 1 η ν−1 df dr Φ Φ̄ αE

FP1 −0.000219126ϵ 2þ 0.00460164ϵ 2þ 0.0121628ϵ 2þ 0.00460164ϵ 1 1þ 0.00378056ϵ −0.0069779ϵ
FP2 −0.00431785ϵ 2þ 0.0906748ϵ 2þ 0.11886ϵ 2þ 0.0906748ϵ 1 1þ 0.0140927ϵ −0.0222583ϵ

2This seems to be a property exclusive to the case q ¼ 0, which
does not have an equivalent for the other values that we studied
(at least using a linear combination of the couplings). It is entirely
possible that the operator corresponding to this parametrization
has a special physical meaning. It could also be that the number of
couplings should be reduced to one in the limit q → 0, and this
could explain why one of the fixed points has almost Gaussian
critical properties (see later in the section), since a redundant
coupling often results in a duplicate of the Gaussian fixed point.
However, we have not been able to find any special property,
therefore this issue could deserve a deeper investigation using the
methods of [20,21].
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θTð2Þ ¼ 2þ ϵ
25
ð13u2 − 20uvþ 20v2Þ and does not only

depend on χ. A way to interpret this structure is that the
two groups of fixed points, FP4 and the Gaussian on the one
hand, and FPi for i ¼ 1, 2, 3 on the other hand, share several
critical properties, but not all of them. For example, the
spectrum of FP4 looks almost Gaussian, but deviates from
Gaussianity when higher point correlators are considered.
We still think that FP2 is the most interesting fixed point,

being completely IR attractive. Considering that FP1 and
FP2 interpolate continuously with the fixed points dis-
cussed in the previous section, we report some of their
critical properties. As already noticed, they share the
critical exponents

η ¼ −0.000508906ϵ; ν−1 ¼ 2þ 0.010687ϵ; ð19Þ

the fractal dimension df ¼ 2þ 0.0183206ϵ, and the cross-
over exponent Φ̄ ¼ 1þ 0.00381679ϵ. They differ however
in the determination of the exponent

Φ ¼ 1 − 0.0036637ϵ; for FP1;

Φ ¼ 1þ 0.0354856ϵ; for FP2; ð20Þ

and the resistivity dimension dr

dr ¼ 2þ 0.0033595ϵ; for FP1;

dr ¼ 2þ 0.0816582ϵ; for FP2: ð21Þ

As for the previous section, FP2 gives the most sizable
corrections and is more likely to be seen in a micro-
scopic model.

All critical exponents and properties of the fixed points
FP1 and FP2 in the limit q → 0, as well as those of the fixed
points FP3 and FP4 that have not been discussed in this
section, are summarized in Table II.

VI. PHYSICAL INTERPRETATION
AND DISCUSSION

In this paper, we have discussed a multicritical gener-
alization of the Landau-Potts field theory with quintic
interaction that admits a perturbatively renormalizable ϵ
expansion below the upper critical dimension dc ¼ 10=3
and is therefore non trivial in three dimensions. This model
has genuine Sq symmetry like the Landau-Potts theory with
cubic interaction, differently than the quartic hypertetrahe-
dral model, that could also be interpreted as a generaliza-
tion, but has symmetry enhanced by a global factor Z2.
Using the analytic continuation in the number of

states q and explicitly evaluating the potential for some
natural values q ≥ 2, we have observed that the only natural
values for which the model has nontrivial fixed points are
q ¼ 0 and q ¼ 1. This is an interesting observation,
because these two limits, if applied to a microscopic model
in the Fortuin-Kasteleyn representation, lead to models of
spanning random clusters and of percolations for q ¼ 0 and
q ¼ 1, respectively. This fact strongly suggests that it
should be possible, by opportunely introducing at least
one relevant deformation, to construct a multicritical point
in the phase diagram of the above random cluster models.
There are already multicritical points in the phase
diagram of percolations, so this model might be relevant
to discuss them.3

Here, however, we want to discuss an additional pos-
sibility to explain the physical meaning of the multicritical
point. First, we recall that an interesting diagram to study is
the “existence” diagram for nontrivial critical points of the
lattice Potts model as a function of the dimension d and the
number of states q. The fine details of this diagram are not
known [26,27], but a rough idea of this diagram can be
obtained combining information from CFT in d ¼ 2,
numerical simulations in d ¼ 3, and perturbation theory
of the Landau-Potts theory with cubic interaction in
d ¼ 6 − ϵ. This is shown in Fig. 4, from which we remove
the case q ¼ 2 corresponding to the Ising model because
the critical interaction is established to be quartic and would
represent a special case in the diagram [28]. Combining all
information together, and including a separatrix that vis-
ually aids the separation, the diagram is divided in two
parts, roughly corresponding to the top and bottom parts.
The bottom part includes the values of ðd; qÞ with a
nontrivial critical point for which we expect a phase
transition of the second order, while the top part includes

FIG. 3. RG flow in the limit q → 0. Arrows point towards the
infrared and marked dots are the fixed points (and their mirror
images). The most infrared stable fixed points are FP2 and FP3.

3More precisely, there is a multicritical point in the phase
diagram of the Ising model, in which spin clusters become
percolating [24,25].
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those without and for which we expect a first order
behavior.
The exact position of the separatrix is not well known.

Using CFT information in d ¼ 2, we know that it must
interpolate with the 4-states Potts model, thus crossing the
point (2,4) in the diagram [26,27,29,30]. Using RG in
d ¼ 6 − ϵ, we know that, for q < 10

3
[8], there is a real fixed

point (modulo reflection, as usual), that can be used to
discuss the cases q ¼ 0 and q ¼ 1 just like we have done in
the previous sections. Instead, in d ¼ 6 − ϵ for q > 10

3
there

is only a purely imaginary fixed point, that would corre-
spond to a complex CFT. The transition between first
and second order thus happens at the point ð6; 10=3Þ.
Furthermore, there are numerical simulations of the 3-states
Potts model in d ¼ 3, which suggest that the model has a
weak first order transition, implying that it is, probably, just
above the separatrix. The separatrix must therefore go

through the points (2,4) and ð6; 10=3Þ, but must also pass
below and close to (3,3), although the precise parametriza-
tion of the curve is unclear.
The mechanism with which some points are first order,

while some others are second order, is known in d ¼ 2 to be
related to a collision of fixed points in the RG diagram
thanks to the explicit results using CFT methods [26,27].
The collision involves two fixed points, the standard critical
one and a multicritical one, that merge and annihilate each
other into a complex pair as depicted in Fig. 5. We can
realistically conjecture that this mechanism applies to the
full diagram: in the region below the separatrix there are
two fixed points, critical and multicritical, while above
there is no real fixed point. In other words, the collision of
the fixed points causes an effective upper critical dimension
dclðqÞ. Notice that the two fixed points might not be easily
seen in the same RG diagram if perturbative methods are
used and the couplings controlling the respective pertur-
bative series are of different canonical dimension, in which
case the annihilation of the fixed points would be visible in
the respective RG diagrams as a fixed point going to
infinity, that is, the strong coupling regime. In fact, this is
precisely what happened to the critical point in d ¼ 6 − ϵ
when q → 10

3
[the coupling diverges as ðq − 10

3
Þ−½].

TABLE II. Summary of all critical exponents and properties for the four fixed points of the limit q → 0 of Sec. V.

q → 0 η ν−1 df dr Φ Φ̄

FP1 −0.000508906ϵ 2þ 0.010687ϵ 2þ 0.0183206ϵ 2þ 0.00335953ϵ 1 − 0.00366375ϵ 1þ 0.00381679ϵ
FP2 −0.000508906ϵ 2þ 0.010687ϵ 2þ 0.0183206ϵ 2þ 0.0816582ϵ 1þ 0.0354856ϵ 1þ 0.00381679ϵ
FP3 −0.000508906ϵ 2þ 0.010687ϵ 2þ 0.0183206ϵ 2þ 0.0189587ϵ 1þ 0.00413585ϵ 1þ 0.00381679ϵ
FP4 0 2 2 2þ 0.0434783 1þ 0.0217391ϵ 1

2 3 4 5 6

0

1

2

3

4

5

2 3 4 5 6

FIG. 4. Conjectured depiction of the separation between phase
transition orders for the q-states Potts universality class as a
function of ðd; qÞ. Above the line, whose exact position is
unknown, the transition is of first order, while below it is of second
order. Stars correspond to models for which the exact solution is
known through CFT methods in d ¼ 2. Filled diamonds indicate
that themodel exists and is nontrivial (notmean field), while empty
diamonds indicate the dimensions for which there is the onset of
mean-field critical exponents (logarithmic corrections to scaling).
The special point determined in Sec. VI is marked by a spade
symbol. Numerical simulations suggest that the point (3,3) is first
order, in agreement with the depicted separatrix. We intentionally
leave out the Ising universality class, because it is governed by a
quartic interaction with dc ¼ 4.

FIG. 5. Illustration of the mechanism for which two fixed points
collide. As a function of some couplings gi, a critical and a
multicritical fixedpoints exist independently ford < dcl, butmerge
at d ¼ dcl and become a complex conjugate pair above. The
dimension dcl plays the role of an effective upper critical dimen-
sion, to some extent. For the universality class of the q-states Potts
model, we expect the dimension at which they collide to be a
function of q, dcl ¼ dclðqÞ, according to Fig. 4. The same collision
mechanism is verified for varying q at fixed d ¼ 2 [27].
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A candidate fixed point for the multicritical model that
we want to push forward is our analytically continued FP2,
because it fits several of the expected properties that such
multicritical point should have. First, it is the most IR
relevant fixed point for each value of q that it exists.
Second, the only natural values of q for which we always
have a fixed point are q ¼ 0 and q ¼ 1. Third, we know
from the expansion in d ¼ 10=3 − ϵ that its maximum
value is q ¼ q2 ¼ 1.8940, therefore it ceases to exist at
the point ð10=3; 1.8940Þ, which is close enough to the
d ¼ 3 line to argue that (3,3) lies in the first order region.
Finally, it ceases to exist by going to infinity, so in the
strong coupling regime, in which only through nonpertur-
bative methods one would be able to observe the actual
merging.
If our hypothesis is correct, the multicritical theory

would provide a new analytically determined point through
which the separatrix should pass, giving a new valuable
information on the Potts ðd; qÞ diagram. Of course our
hypothesis should be checked somehow, and the most
natural way to do it would be to use a nonperturbative RG
method such as the functional renormalization group. We
therefore hope that the proof of this hypothesis is addressed
by somebody in a future publication.
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APPENDIX: A SUMMARY OF RG RESULTS
AND CRITICAL PROPERTIES

The general structure of Sq invariant operators has been
discussed in [20,21] on general CFT grounds. Following
that result, the relevant operators that are multiplicatively
renormalized have been discussed in [7] for the critical
model in d ¼ 6 − ϵ. The same operators are scaling ones in
this paper, so we follow the notation of [7], from which we
borrow the notation that S stands for singlet, V for vector, T
for 2-tensor or simply tensor, and Z for 3-tensor. We also
use an apex to indicate how many copies of the field are
needed to construct them. The exact form of the scaling
operators constructed with two fields (Sð2Þ, Vð2Þ, and Tð2Þ),
and the scaling operators constructed with three fields (Sð3Þ,
Tð3Þ, and Zð3Þ) can be found in [7]. These six operators are
scaling operators for each value of q, or, in other words, the
action of dilatations is already diagonalized and they do not
mix through renormalization.
The list of quadratic operators is a complete basis

for symmetric quadratic deformations ϕiϕj, because the
only missing irrep of Sq is the antisymmetric one, that is
obviously not realized without derivatives. At the cubic
level the above list is instead incomplete, because

there are also two vectors, Vð2Þ and Vð2Þ0, that arise from
diagonalizing

X
i

Z
ddx

�
1

2
ϕiϕ

2J i
3;1 −

X
jkl

qð4ÞijklϕjϕkϕlJ i
3;2

�
; ðA1Þ

in which we introduced two vector sources J i
3;1 and J i

3;2

that are mixed by renormalization. We do not attempt the
full generalization of the scaling analysis to the quartic
level in the fields. However, we give the scalar subsector,
that is responsible for two scaling operators Sð4Þ and Sð4Þ0

δS½ϕ� ¼
Z

ddx

�
λ4;1ðϕ2Þ2þλ4;2

X
ijkl

qð4Þijklϕiϕjϕkϕl

�
; ðA2Þ

for which it is sufficient to introduce two scalar sources λ4;1
and λ4;2.
A set of relevant operators OðϕÞ that do not involve

derivatives of the fields can be renormalized by performing
the replacement VðϕÞ → VðϕÞ þ JO ·OðϕÞ and renorm-
alizing the sources JO. If we treat them as composite
operators, the replacement requires the linearization of the
RG equation (4), so the sources are renormalized mutipli-
catively. If one is willing to go beyond the linear level,
however, the additional operators can be treated as full
deformations of the potential (as long as they are relevant
operators) and the sources acquire fully fledged beta
functions [12]. These are useful because the coefficients
of these beta functions allow for the determination of the
coefficients of the operator product expansion (OPE). See
also the leading order CFT results in [15] where quadratic
operatorswere studied and someOPE coefficients extracted.
In this Appendix, we give the renormalization of

composite relevant operators in terms of gamma functions,
as a useful bridge from RG and CFT methods. Given the
gamma function γO of a scaling operator O, that contains n
copies of the field ϕ and no derivatives, the critical
exponent θO and the scaling dimension ΔO are

θO ¼ d − n

�
d − 2þ η

2

�
þ γO;

ΔO ¼ n

�
d − 2þ η

2

�
− γO: ðA3Þ

In the latter formula we assume that O is a primary
operator, because if it is a descendant the formula is
adjusted to ensure that scaling dimensions are consistent
with the equations of motion □ϕ ∼ V 0ðϕÞ, therefore
2þ Δϕ ¼ ΔV 0 . From the RG point of view, the scaling
relation θϕ þ θV 0 ¼ d is always true and can be proven in
general. Obviously, if the operators do not diagonalize the
action of dilatations, like in (A1) and (A2), then we have a γ
matrix that requires further diagonalization.
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The most important critical exponents are the anomalous
dimension of the field η=2, and the exponent of the scaling
of the correlation length ν. The first important relation is the
one that determines ν, that is identified with the inverse of
the critical exponent of Sð2Þ ∼ ϕ2 (the energy)

ν−1 ¼ θSð2Þ ¼ 2þ γSð2Þ − η: ðA4Þ

Other interesting exponents can be found for the rest of the
n ¼ 2 sector, because they are identified with the fractal
dimensions

df ¼ θVð2Þ ¼ 2þ γVð2Þ − η;

dr ¼ θTð2Þ ¼ 2þ γTð2Þ − η: ðA5Þ

The dimension df is the fractal dimension of propagator
lines for the field theory [33], and therefore can be
interpreted as the fractal dimension of the clusters, since
they live in the reciprocal space. The dimension dr has a
similar meaning, but it is related to the property of the

cluster when seen as a resistivity network [34,35].
Nonsinglet deformation generally lead to a breaking of
the symmetry from Sq to a subgroup, which often ends up
to Z2 in a type of crossover phenomenon [36]. Close to the
critical temperature, they also have a critical behavior
(similarly to the thermodynamical exponent δ in the case
of the Ising model). The critical exponents governing this
behavior are called crossover exponents and are defined as

Φ̄ ¼ θVð2Þ

θSð2Þ
¼ 2þ γVð2Þ − η

2þ γSð2Þ − η
;

Φ ¼ θTð2Þ

θSð2Þ
¼ 2þ γTð2Þ − η

2þ γSð2Þ − η
: ðA6Þ

Crossover exponents for the standard critical universality
class and their scaling relations have been discussed in
[37–40]. A summary of all critical exponents for the limits
q → 0 and q → 1 appears in Tables I and II, respectively.
Now we collect all the gamma functions that have been

determined for this work. For the quadratic operators

γSð2Þ ¼ −
1

15
u2ðq − 2Þðqþ 5Þ − 4

3
uvðq − 2Þðq − 1Þ − 2

3
v2ðq − 2Þðq2 − 2qþ 2Þ;

γVð2Þ ¼ 1

150
u2ð−4q2 − 57qþ 175Þ − 2

15
uvð2q − 5Þð5q − 7Þ − 2

3
v2ðq3 − 5q2 þ 9q − 7Þ;

γTð2Þ ¼ 1

150
u2ð−q2 − 12qþ 73Þ − 2

15
uvðq − 5Þðq − 1Þ þ 2v2

3
: ðA7Þ

For the cubic scaling operators

γSð3Þ ¼
1

100
u2ð19q2 þ 399q − 1000Þ þ 1

5
uvð61q2 − 219qþ 200Þ þ v2ð7q3 − 35q2 þ 63q − 40Þ;

γTð3Þ ¼ 1

100
u2ð−q2 þ 157q − 738Þ þ 1

5
uvðq2 − 17qþ 58Þ þ 1

3
v2ð−2q3 þ 14q2 − 21q − 6Þ;

γZð3Þ ¼ 1

50
u2ð−q2 þ 6q − 71Þ − 2

5
uvðq − 5Þðq − 1Þ þ 2v2: ðA8Þ

The mixing matrix of (A1) that leads to Vð3Þ and Vð3Þ0 is

γVð3Þ ¼
�
γV

ð3Þ
11 γV

ð3Þ
12

γV
ð3Þ

21 γV
ð3Þ

22

�
;

γV
ð3Þ

11 ¼ 1

100
u2ðq2 þ 543q − 1126Þ þ 1

10
uvð131q2 − 483qþ 544Þ þ v2ð7q3 − 35q2 þ 72q − 58Þ;

γV
ð3Þ

12 ¼ −
3

25
u2ð19q2 − 141qþ 212Þ − 3

5
uvð3q3 − 27q2 þ 63q − 76Þ þ 2v2ð2q2 þ 3q − 12Þ;

γV
ð3Þ

21 ¼ 1

25
u2ð−4q − 41Þ þ 1

20
uvð−3q2 − 111qþ 188Þ þ 1

6
v2ð−23q2 þ 69q − 60Þ;

γV
ð3Þ

22 ¼ 1

100
u2ð7q2 þ 73q − 566Þ þ 1

10
uvðq − 1Þð5q − 56Þ − 2

3
v2ðq3 − 4q2 þ 6qþ 3Þ: ðA9Þ
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The mixing matrix of (A2) that leads to Sð4Þ and Sð4Þ0 is

γSð4Þ ¼
�
γS

ð4Þ
11 γS

ð4Þ
12

γS
ð4Þ

21 γS
ð4Þ

22

�
;

γS
ð4Þ

11 ¼ 3

100
u2ð13q2 þ 150q − 1051Þ þ 1

5
uvðq − 1Þð25q − 181Þ þ 1

3
v2ð−4q3 þ 7q2 − 6q − 75Þ;

γS
ð4Þ

12 ¼ 3

100
u2ðq2 þ 56qþ 583Þ þ 1

15
uvð23q2 þ 900q − 1499Þ þ 1

3
v2ð119q2 − 348qþ 311Þ;

γS
ð4Þ

21 ¼ 3

100
u2ð3q3 þ 166q2 − 1358qþ 2149Þ þ 1

5
uvð23q3 − 206q2 þ 498q − 603Þ þ v2ð−4q2 − 42qþ 87Þ;

γS
ð4Þ

22 ¼ 1

100
u2ð29q2 þ 2886q − 6251Þ þ 1

5
uvð363q2 − 1342qþ 1479Þ þ 1

3
v2ð115q3 − 575q2 þ 1170q − 921Þ: ðA10Þ

We conclude by briefly explaining the logarithmic
structure that appears in the limit q → 1, summarizing
[23], to which we remind for many more details. The
scaling dimensions of the operators Sð2Þ and Tð2Þ are
degenerate in the limit q → 1, so they form a logarithmic
pair for the case of percolations. Physically, they govern the
leading nontrivial behavior of the energy, E ∼ Sð2Þ, and of
the 2-cluster, Ẽ ∼ Tð2Þ, operators. The general q-dependent
form of the correlators for q ∼ 1 is

hEðxÞEð0Þi ¼ ðq − 1Þ A
jxj2ΔE

;

hẼijðxÞẼklð0Þi ¼
2

q2

�
δikδjl þ δikδjl −

δik þ δil þ δjk þ δjl
q − 2

þ 2

ðq − 1Þðq − 2Þ
�

A
jxj2ΔẼ

; ðA11Þ

given that the normalizations are constrained by the
requirement of Sq symmetry [23]. The limit q → 1 is
singular because the two operators fall into the same Jordan
cell and the dilatations are not diagonalized anymore,ΔE ¼
ΔẼ ≡ Δ for q → 1. In the limit, we keep the energy
operator, that scales as Δ, but also define a new operator

ÊijðxÞ≡ ẼijðxÞ þ
2

qðq − 1ÞEðxÞ: ðA12Þ

The requirement that the correlator of EðxÞ is regular in the
limit q → 1 fixes A ¼ AðqÞ, and the energy behaves as a
normal scaling operator. Using ÊijðxÞ, one finds a regular
q → 1 limit for the correlator

hÊijðxÞÊklð0Þi ¼ 2ðδikδjl þ δikδjl þ δik þ δil þ δjk

þ δjl þ 4αE log jxjÞ
A

jxj2Δ ; ðA13Þ

that, besides the leading scaling as Δ, has a logarithmic
term, differently from the energy. Interestingly, the coef-
ficient αE of the logarithm is universal,

αE ≡ lim
q→1

ΔẼ − ΔE

q − 1
¼ −

6u2

25
þ 4uv

5
−
2v2

3
; ðA14Þ

because it is determined as the limit of the difference
of scaling dimensions that are also universal. In the last
step, we used (A7) and explicitly performed the limit to
make a connection with the multicritical model of the
paper (3); the couplings are understood to be at one
of the fixed points of Sec. IV. The coefficient αE can be
measured on critical percolations through an opportune
observable [20,21,23,41].
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