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The presence of a massless spin-2 field in an effective field theory results in a t-channel pole in the
scattering amplitudes that precludes the application of standard positivity bounds. Despite this, recent
arguments based on compactification to three dimensions have suggested that positivity bounds may be
applied to the t-channel pole subtracted amplitude. If correct, this would have deep implications for UV
physics and the weak gravity conjecture. Within the context of a simple renormalizable field theory coupled
to gravity we find that applying these arguments would constrain the low-energy coupling constants in a
way which is incompatible with their actual values. This contradiction persists on deforming the theory.
Further enforcing the t-channel pole subtracted positivity bounds on such generic renormalizable effective
theories coupled to gravity would imply new physics at a scale parametrically smaller than expected, with
far-reaching implications. This suggests that generically the standard positivity bounds are inapplicable
with gravity, and we highlight a number of issues that impinge on the formulation of a three-dimensional
amplitude which simultaneously satisfies the required properties of analyticity, positivity, and crossing
symmetry. We conjecture instead a modified bound that ought to be satisfied independently of the precise
details of the high energy completion.
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I. INTRODUCTION

Over the past few decades effective field theories (EFTs)
have proven to be an incredibly powerful tool for studying
physical systems at both high and low energies, with
applications in all areas of physics ranging from particle
physics to cosmology and condensed matter. While it is
almost always possible to come up with an EFT valid in a
given energy range that correctly describes the physical
problem in question, a theoretically more compelling
question is whether a given low-energy EFT can be
successfully UV completed into another theory valid at
higher energies. The answer depends strongly on what
requirements one wishes to impose on the high-energy
theory. Requiring that the low-energy EFT has a standard
UV completion that is Lorentz invariant, local, and causal is
known to impose strong constraints on the coefficients in
the low-energy action [1–3]. These are known as the

positivity bounds and can be imposed on the scattering
amplitudes in the low-energy theory by using the axioms of
the S-matrix theory, mostly relying on its analyticity
properties. First developed for scalar field theories in the
forward limit, the positivity bounds have since been
generalized to particles with spin [4–14] and extended
away from the forward limit [15]. Including any additional
known information about the low-energy EFT (e.g., cal-
culable low-energy loop diagrams) has enabled one to further
expand the applications of the positivity bounds, going under
the name of improved positivity bounds [6,8,9].
From the point of view of practical applications of

positivity bounds to real world EFTs, one of the assump-
tions that turns out to be the most restrictive is that of
polynomial boundedness of the scattering amplitudes in
the complex s-plane, inferred from locality. The famous
Froissart bound [16,17], extended beyond the forward limit
in [18], states that in the presence of a mass gap, any local
2 − 2 scattering amplitude should not grow faster than the
fourth power of the center of mass energy at sufficiently
high energy. Technically speaking, the requirement of the
existence of a mass gap makes the positivity bounds not
directly applicable to one of the most intriguing low-energy
effective theories—general relativity (GR). Nevertheless, it
is typically expected, even with gravity, that the scattering
amplitude will be bounded at least in the Jin-Martin [18]
sense limjsj→∞ s−2Aðs; tÞ ¼ 0 at fixed t, as is argued to be
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the case in string theory for fixed momentum transfer
scattering [19], despite the violation of polynomial bound-
edness. This justifies attempting to apply the positivity
bounds to gravitational EFTs [20,21].
A more serious issue associated with applying positivity

bounds to gravitational theories is the presence of an
infamous t-channel pole whose residue grows faster than
the Froissart or Jin-Martin bound. This growth implies that
the pole cannot be subtracted, or else the resulting sub-
tracted amplitude would itself violate the Froissart bound.
More precisely, this would contradict the assumption that
we can write a dispersion relation for the pole subtracted
scattering amplitude with only two subtractions. More
importantly though, the pole at t ¼ 0, and the associated
branch point that arises from graviton loops, prevents the
analytic continuation of the partial wave expansion from
the physical region t < 0 to t ≥ 0 which is a crucial step in
deriving positivity bounds. As a result it is impossible to
use the positivity bounds in their standard form for
processes that exhibit a spin-J pole with J ≥ 2. See
Ref. [22] for a related recent discussion which parallels
some of our findings.
Recently, a novel way to deal with this t-channel pole

was suggested in [23], which relies on compactifying one
of the spatial dimensions on a circle. Since there are no
propagating massless gravitons in three dimensions (3D)
one would expect the unpleasant massless spin-2 t-channel
pole1 to be absent from the scattering amplitude. While
in fact the term is still present perturbatively in the amp-
litude written in Mandelstam variables, there is indeed
no physical massless graviton mediating the exchange.
Furthermore, in Mandelstam variables the problematic part
of the residue is removed after resumming the contributions
from higher order ladder diagrams (see, e.g., [24] and
Appendix A of [23]). Motivated by this observation, one can
then argue that the standard positivity bound should apply to
3D scattering amplitudes. This technique would then allow
us to constrain coefficients in the low-energy EFTs which
were previously beyond the reach of the positivity bounds
program in four spacetime dimensions (4D). Interestingly,
from the 4D point of view these bounds are equivalent to
what one would have deduced, would the t-channel pole
simply be disregarded. If applicable, this would be a
remarkable result with far-reaching implications. It could
potentially open a whole new window on investigating the
higher derivative corrections in either GR itself or in any
theory that includes massless spin-2 or higher fields. Wewill
refer to these as compactified positivity bounds.
In [23] the implications of these compactified positivity

bounds on the higher derivative corrections to the Einstein-
Maxwell theory were studied in relation to the weak gravity

conjecture (WGC) [25]. It was found that the positivity
bounds imply that extremal black holes of mass M and
charge Q must satisfy MPlQ=M > 1, exceeding the
extremal charge-to-mass ratio in GR and thus proving
one of the versions of the weak gravity conjecture as
suggested in [26,27]. Another remarkable example of
possible consequences of these positivity bounds was
studied in [28] where the impact of the backreaction of
matter fields on the propagation speed of the graviton was
studied. It was found that imposing the compactified
positivity bounds on the couplings of the higher curvature
terms arising after integrating out matter fields leads to
apparent superluminal propagation speed for gravity on
cosmological backgrounds. Nevertheless there remains no
violation of causality [29,30].
As the previous few examples already show, applications

of these compactified positivity bounds to gravitational
theories might provide genuine insights in our understand-
ing of gravity at high energy. Nevertheless, a few open
questions remain on the validity of the procedure. Besides
the subtleties associated with defining the massless asymp-
totic states in 3D, it may also be unclear whether the
forward limit necessarily commutes with the “decompacti-
fication” limit (where the size of the compactified circle is
sent to infinity) [31]. So far, in most cases where the
compactified positivity bounds have been applied, neither a
full nor a partial UV completion of the low-energy theories
analyzed was in fact known, and hence there was no
explicit way of testing their predictions. Motivated by the
current state of affairs, in this work we shall therefore apply
the compactified positivity bounds to an IR theory for
which a partial UV completion2 is in fact known, hence
providing an explicit framework where the validity of the
compactified positivity bounds can be put to the test.
In the absence of gravity, positivity bounds are auto-

matically satisfied for renormalizable field theories. If they
were not, it would be necessary to include irrelevant
operators to satisfy them, contradicting the assumption
of renormalizability. Our central interest will be renorma-
lizable theories coupled to gravity. By construction, any
terms that may potentially violate positivity will necessarily
vanish in the decoupling limit MPl → ∞. A fundamentally
important example of a renormalizable theory is none other
than QED. Upon minimally coupling QED to gravity,
renormalizability is of course spoiled, but this spoiling
is suppressed by the Planck scale. Naively, one would
expect QED or a generic renormalizable theory minimally
coupled to gravity to be a perfectly well-defined partial
UV completion. Moreover from decoupling arguments, at
sufficiently low-energy scales we would expect physics to

1In addition, when graviton loops are included, there is a
branch cut which extends to t ¼ 0. The two effects come in at a
different order in 1=M2

Pl which allows us to cleanly separate them.

2By partial UV completion we mean an effective theory valid
at a higher-energy scale than the original low-energy EFT. Our
partial UV completions shall be theories which are renormaliz-
able in the absence of gravity and for which the traditional
expectation would be that the cutoff of the EFT is Λ ∼MPl.
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be insensitive to how QED is fundamentally implemented
into a full UV complete quantum theory of gravity.
Inspired by QED, in this work we consider a scalar

photon QED toy model where both the vector field and the
electron are treated as scalar fields [30] while leaving the
case of the actual QED to a separate work [32]. As we shall
see, the compactified positivity bounds that we would have
derived from compactifying one dimension are inconsistent
with the knowledge obtained directly from the (partial) UV
theory. This represents an explicit example where the
positivity bounds inferred from 3D (or 4D compactified
on a circle) would have led to the wrong conclusions, hence
casting doubt on the generic validity of the procedure.
Naturally, the example we provide has its own limitations:

(i) First, the model we shall propose only has a known
partial UV completion and not a full one; its
nonrenormalizability arises entirely from graviton
exchange/loops. Nonetheless, this limitation is a
weak one as corrections from UV physics will be
suppressed by additional powers of MPl. Although
one may argue that our particular example of
renormalizable field theory belongs to the ‘swamp-
land,” we will show that these features are in fact
common to generic renormalizable field theories
including QED itself [32], and hence applicable to
theories which are known to arise from consistent
UV completions.

(ii) Second, and perhaps more to the point, the partial
UV completion we are dealing with is not a tree-
level completion (for example of the string/Regge
higher spin type [27])3 since the relevant effect from
the electron arises at one-loop. Yet the beauty of the
positivity bounds is that they are supposed to be
agnostic of the precise type of UV completions one
is dealing with, so long as it is local, Lorentz-
invariant, unitary, and causal. The argument of [23],
if valid, should apply equally well for these heavy
loop completions.

The derivation of the compactified positivity bounds
rests on the applicability of positivity bounds to 3D
gravitational scattering amplitudes. However, these are
notoriously poorly defined. We critically assess this in
Sec. VI where we note that in 3D there is no scattering
amplitude which simultaneously satisfies: (a) analyticity
and finiteness in the forward scattering limit, (b) positivity
of its imaginary part, and (c) crossing symmetry. Since
these are crucial assumptions in the derivation of positivity

bounds, this casts a significant doubt on the applicability of
positivity bounds with (massless) gravity. Interestingly
these issues disappear when considering the exchange of
massive spin-2 fields. On the other hand, for a massless
exchange, we show that the issue with the t-channel pole in
4D ends up manifesting itself through a slightly different
but ultimately equivalent violation of analyticity in 3D,
more precisely through the presence of a delta function.
Attempting to apply the positivity bounds to 3D amplitudes
where the delta function is removed is ultimately not
justified and can lead to incorrect implications.
The rest of this paper is organized as follows. In Sec. II

we review the various positivity bounds. We then introduce
the scalar photon QED in Sec. III, and present the core of
the inconsistency that one runs into when applying the
compactified positivity bounds of [23] to the low-energy
EFT. In Sec. IV we refine this discussion by introducing a
spectator field to probe the consistency of the partial UV
completion, and we summarize the calculation of the
amplitude in the low-energy effective theory and the partial
UV completion both before and after compactification. In
Sec. V we address the question of whether the failing lies in
our choice of partial UV completion by amending it with
both renormalizable and irrelevant operators indicative of
new UV physics. We find that only new physics at a
parametrically low scale Λ ∼ ðMMPlÞ1=2 can ensure the
compactified positivity bounds are satisfied and emphasize
the far-reaching implications of these arguments, particu-
larly when applied to other fields such as dark matter,
which would not have otherwise been expected to couple
directly to Standard Model fields at such a low scale. In
Sec. VI we take the opposite perspective and address
possible flaws with the derivation of [23], principally those
due to the ill-defined nature of 3D scattering amplitudes
with massless spin-2 exchange. We point out that positivity
bounds are cleanly respected for massive spin-2 states.
However for massless spin-2 states, the issue with the 4D
t-channel pole manifests itself through a delta function in
3D which ultimately precludes the application of the
positivity bounds in 3D, just as it was in 4D. We conclude
in Sec. VII by conjecturing a bound that ought to be
satisfied even in the presence of a t-channel pole, and that
requires no further assumptions or limitation on the UV
behavior other than the standard unitarity, locality, Lorentz
invariance, and causality requirements. All further details
and consistency checks are presented in the Appendixes. In
particular, in Appendix C we discuss the compactification
procedure applied to our particular partial UV completion.

II. POSITIVITY BOUNDS—THE RELEVANCE
OF THE t-CHANNEL POLE

In this section we lay out the procedure by which we
check the consistency and implications of the compactified
positivity bounds of [23]. We shall start from a known
partial UV theory containing a heavy field that can be

3Often in the literature this is referred to as a weakly coupled
UV completion on the grounds that there must be some
dimensionless parameter that suppressed loops, a role played
by the string coupling constant gs (dilaton) in string theory.
However, this terminology can be confusing since the completion
we consider is itself weakly coupled in the sense that perturbation
theory is under control, but the key contribution to the scattering
amplitudes arise at one-loop in the heavy field.

POSITIVITY BOUNDS AND THE MASSLESS SPIN-2 POLE PHYS. REV. D 102, 125023 (2020)

125023-3



integrated out leading to a known IR theory. Having both
the partial UV and the IR theory at hand allows us to
directly check whether the constraints that the new pos-
itivity bounds impose on the couplings in the low-energy
theory are satisfied by the information that we have from
the partial UV theory. As our UV theory we shall use a
QED-type scalar field theory with a massive “electron” that
we shall integrate out to obtain the IR theory—a scalar
analogue of the Einstein-Maxwell theory with higher
derivative corrections with specific calculable couplings
on which we then impose the new positivity bounds as
described below.

A. Positivity bounds

Let us start with a short review of the positivity bounds.
The standard positivity bounds (see, e.g., [1–4,6,15]) can
be applied to theories where all the fields have a mass
gap or are regulated by adding a small mass that can later
be sent to zero. We consider the elastic 2 − 2 scattering
(Aþ B → Aþ B) of particles of mass m1 and m2, which
necessarily respects s − u crossing symmetry, denoting by
s, t and u ¼ 2m2

1 þ 2m2
2 − s − t the standard Mandelstam

variables. The analyticity properties of the elastic scattering
amplitude Aðs; tÞ allows one to express it as a dispersion
relation:

Aðs; tÞ ¼ 1

2πi

I
C
ds0

Aðs0; tÞ
ðs0 − sÞ ; ð2:1Þ

where C is a contour in the complex s0-plane that includes
the point s and excludes poles and branch cuts.
The essence of the positivity bounds relies on the optical

theorem for elastic scatterings with the same particle
content, i, in the initial and final states of the scattering.
The imaginary part of the forward limit amplitude of such
scattering process is then

ImAiðs; 0Þ ¼
1

2

X
f

Z
dΠfjAi→fj2; ð2:2Þ

whereAi→f is the scattering amplitude for the process i → f
with f denoting all possible intermediate states and dΠf

stands for the phase volume. Importantly, this tells us that the
contribution from each of the possible intermediate scatter-
ing processes gives a positive contribution to the imaginary
part of the amplitude. In terms of the 2 − 2 elastic scattering
amplitude A, this tells us that within the physical region,
ImAðs; 0Þ > 0. Further positivity of the imaginary part of
individual partialwaves ImalðsÞ > 0, taken togetherwith the
partial wave expansion, implies ∂N

t ImAðs; 0Þ > 0 for all
integer N ≥ 0. Making use of the Jin-Martin [18] extension
of the Froissart bound limjsj→∞ s−2Aðs; tÞ ¼ 0 at fixed t, and
s − u crossing symmetry, we infer from (2.1) a dispersion
relation for the amplitude with two subtractions

Aðs; tÞ ¼ a0ðtÞ þ a1ðtÞsþ
X
I

λIðtÞ
m2

I − s
þ
X
I

λIðtÞ
m2

I − u

þ s2

π

Z
∞

ðm1þm2Þ2
ds0

ImAðs0; tÞ
s02ðs0 − sÞ

þ u2

π

Z
∞

ðm1þm2Þ2
ds0

ImAðs0; tÞ
s02ðs0 − uÞ ; ð2:3Þ

where we see clearly the separation between the poles at
s ¼ m2

I , u ¼ m2
I , and the left-hand and right-hand branch

cuts. Defining Ãðs; tÞ as the pole-subtracted amplitude

Ãðs; tÞ≡Aðs; tÞ −
X
I

λIðtÞ
m2

I − s
−
X
I

λIðtÞ
m2

I − u
; ð2:4Þ

we easily infer the positivity bounds:

d2Ãðs; tÞ
ds2

> 0; ð2:5Þ

valid for ðm1 −m2Þ2 − t < s < ðm1 þm2Þ2 together with
0 ≤ t < Minð4m2

1; 4m
2
2; m

2
JÞ4 wherem2

J is the smallest mass
of particles with spin J > 2 in the spectrum. For our present
purposes it is sufficient to utilize these in the forward limit
t ¼ 0

d2Ãðs; 0Þ
ds2

> 0; ðm1 −m2Þ2 < s < ðm1 þm2Þ2: ð2:6Þ

Additional extensions beyond the forward limit are given for
example in [15]. Note that Ãðs; tÞ denotes the s-channel and
u-channel pole-subtracted amplitude. Ideally we would also
like to remove the t-channel pole. Since the residue of a
t-channel pole associated with the exchange of a spin J
particle scales as sJ=t at large s, we can only subtract the
t-channel pole for exchanged states with spin J < 2 without
contradicting the assumption that the dispersion relation
(2.3) only has two subtractions. This brings us to the essential
point, in a gravitational theory with a massless graviton, the
t-channel pole scales as s2=t as in (4.11) and so cannot be
removed without contradicting the assumption of two sub-
tractions. Therefore, in what follows the amplitude Ãðs; tÞ
shall generically denote the amplitude for which only the
s- and u-channel poles of the massless graviton exchange
have been removed but keeping the t-channel pole, whereas
the s, t, andu channel poleswill be removed for particleswith
spinJ < 2. Since the t-pole cannot be subtracted it dominates
the forward limit rendering (2.6) contentless.
If a massless spin J ≥ 2 pole is present, there is a second

major problem with the standard arguments. The proof that

4The precise range of t depends on what processes are allowed
by symmetries and kinematics. It may for instance be the higher
value 0 ≤ t < ðm1 þm2Þ2.
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∂N
t ImAðs; 0Þ > 0 assumes that the partial wave expan-

sion can be continued from the physical region t ≤ 0 to
the unphysical region t > 0 at least in the neighborhood
of t ¼ 0. The presence of a pole and indeed the branch
point from graviton loops undermines this. This problem
is conveniently avoided for J < 2 by analytically con-
tinuing the partial wave expansion for ∂2

sÃðs; tÞ for

which the associated pole drops out. There remains the
branch cut, but these contributions are typically sup-
pressed by a loop counting parameter. For J ¼ 2 we can
continue the partial wave expansion for ∂3

sÃðs; tÞ, at
least provided we neglect graviton loops, but this
amounts to performing one additional subtraction in
the dispersion relation (2.3):

Aðs; tÞ ¼ a0ðtÞ þ a1ðtÞsþ a2ðtÞs2 þ
X
I

λIðtÞ
m2

I − s
þ
X
I

λIðtÞ
m2

I − u

þ s3

π

Z
∞

ðm1þm2Þ2
ds0

ImAðs0; tÞ
s03ðs0 − sÞ þ

u3

π

Z
∞

ðm1þm2Þ2
ds0

ImAðs0; tÞ
s03ðs0 − uÞ ; ð2:7Þ

with the J ¼ 2 t-channel pole now contained in a2ðtÞ. While we can infer positivity statements for higher order s-derivative
positivity bounds, we lose the most valuable information, namely the condition (2.6), since a2ðtÞ cannot be determined by
analyticity alone.

B. Positivity of spectral flow

When a massless spin J ¼ 2 pole is present, we cannot immediately prove positivity of the t-pole subtracted coefficient
a2ðtÞ for the reasons discussed; however, we can prove positivity of its spectral flow. Following a similar discussion in [29],
we may rewrite the dispersion relation (2.7) by performing the subtractions at an arbitrary scale s0 ¼ −μ0 to give

Aðs; tÞ ¼ b0ðμ0; tÞ þ b2ðμ0; tÞððsþ μ0Þ2 þ ðuþ μ0Þ2Þ þ
X
I

λIðtÞ
m2

I − s
þ
X
I

λIðtÞ
m2

I − u

þ ðsþ μ0Þ3
π

Z
∞

ðm1þm2Þ2
ds0

ImAðs0; tÞ
ðs0 þ μ0Þ3ðs0 − sÞ þ

ðuþ μ0Þ3
π

Z
∞

ðm1þm2Þ2
ds0

ImAðs0; tÞ
ðs0 þ μ0Þ3ðs0 − uÞ : ð2:8Þ

The subtraction constant b2ðμ0; tÞ is now a function of the chosen energy scale. However, since the amplitude cannot
depend on μ0, we may easily derive the “renormalization group” style equation

μ0
∂b2ðμ0; tÞ

∂μ0 ¼ −
3

π

Z
∞

ðm1þm2Þ2
ds0

μ0ImAðs0; tÞ
ðs0 þ μ0Þ4

< 0: ð2:9Þ

Defining the IR subtraction constant at the low scale μ0 ¼ M2
IR and the UV at the high scale μ0 ¼ M2

UV then we infer

bIR2 ðtÞ ¼ bUV2 ðtÞ þ 1

π

Z
∞

ðm1þm2Þ2
ds0ImAðs0; tÞ

�
1

ðs0 þMIRÞ3
−

1

ðs0 þMUVÞ3
�
; ð2:10Þ

which ensures

bIR2 ðtÞ > bUV2 ðtÞ; ð2:11Þ

for small positive t. At a practical level this amounts to the
fact that explicit contributions to the positivity bounds from
physics at intermediate scales are necessarily positive so
that the IR term is always larger than the UV term. Of
course, for sufficiently negative coefficients in the UV, a
positive spectral flow may still lead to a negative IR
coefficient. So while the spectral flow is indicative, by
itself this argument is not sufficient.

C. Improved positivity bounds

Returning to the standard case with only states with
J < 2, it is clear from the relation (2.2) that the optical
theorem carries much more information than what has been
used to infer the positivity bound (2.6). In particular, it is
clear from the relation (2.2) that the contribution from each
of the possible intermediate scattering processes gives a
positive contribution to the imaginary part of the amplitude.
We can make use of this fact by moving known contribu-
tions from the right-hand side of the theorem to the left-
hand side, thus making the positivity bounds stronger and
in fact generating further bounds on the couplings in the
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low-energy EFT. These go under the name of the improved
positivity bounds [6,8,9] and will be relevant in the
discussion below when comparing different contributions

to the 2 − 2 scalar scatterings. Specifically we can separate
the total imaginary part into two separately positive
contributions,

ImAðs; tÞ ¼ ImAknownðs; tÞ þ ImAunknownðs; tÞ; ð2:12Þ

and further defining

Ãimpðs; tÞ≡ Ãðs; tÞ − s2

π

Z
∞

ðm1þm2Þ2
ds0

ImAknownðs0; tÞ
s02ðs0 − sÞ −

u2

π

Z
∞

ðm1þm2Þ2
ds0

ImAknownðs0; tÞ
s02ðs0 − uÞ : ð2:13Þ

Then from (2.3) the improved amplitude Âimpðs; tÞ satisfies its own dispersion relation

Ãimpðs; tÞ ¼ a0ðtÞ þ a1ðtÞsþ
s2

π

Z
∞

ðm1þm2Þ2
ds0

ImAunknownðs0; tÞ
s02ðs0 − sÞ þ u2

π

Z
∞

ðm1þm2Þ2
ds0

ImAunknownðs0; tÞ
s02ðs0 − uÞ ; ð2:14Þ

from which follows the first of many improved positivity bounds

d2Ãimpðs; 0Þ
ds2

> 0; ðm1 −m2Þ2 < s < ðm1 þm2Þ2: ð2:15Þ

For instance, one obvious application is to take as “known” the loop contributions calculated within the low-energy
effective theory, valid for s < ϵ2Λ2

c where Λc is the cutoff of the effective theory, and ϵ ≪ 1 taken small enough that we can
reliably trust the calculations, with “unknown”—the remainder, i.e.,

ImAknownðs; tÞ ¼ θðϵ2Λ2
c − sÞImAðs; tÞ; ImAunknownðs; tÞ ¼ θðs − ϵ2Λ2

cÞImAðs; tÞ: ð2:16Þ

In the present context of a renormalizable theory coupled to
gravity we have processes involving both gravitational and
nongravitational intermediate states. The improved posi-
tivity bounds, assuming applicability once the t-pole is
removed, will enable us to remove the known nongravita-
tional contributions and focus instead on scatterings
involving graviton exchange only. We refer the reader to
[32] for a detailed analysis of the implications of the
improved positivity bounds in the context of QED and the
low-energy Euler-Heisenberg action.

D. Compactified positivity bounds

We have already highlighted the difficulties in applying
the positivity bound (2.6) to amplitudes that manifest a
massless t-channel pole with residue growing as s2 (or
faster), as is typically the case in processes that involve
a graviton exchange. In dealing with such a pole, the
authors of Ref. [23] provided a novel procedure for
regularizing scattering amplitudes involving a massless
graviton exchange. By compactifying one of the spatial
directions on a circle, the initial 4D scattering process
can effectively be reduced to a 3D one. Since in 3D the
graviton is nondynamical, there can be no physical t-pole in
the amplitude and thus naively no obstacle in applying the
standard positivity bounds leading to constraints on the

couplings in the original 4D low-energy action. In practice,
a t-channel pole does remain perturbatively but as reviewed
in Sec. VI is expected to be removed on resummation, as is
apparent in the eikonal approximation.
In this work we shall check the consistency of these

compactified positivity bounds by working with low-
energy (IR) effective field theories for which the partial
UV completion is known. We refer to Appendix C for
explicit details on the compactification process in our
example. The advantage of this approach is the fact that
the coefficients in the IR action are in fact determined by
the partial UV theory and a direct comparison between
these coefficients with the constraints that can be inferred
from the compactified positivity bounds is possible. We
will critically address issues with the compactification
argument and positivity bounds applied in 3D in Sec. VI.

III. SCALAR PHOTON QED

In this work we shall deal with a simplified version of
scalar QED where the photon is treated as a scalar field
[30]. An identical analysis can also be carried out for the
vector Maxwell field, and spinor QED where the electron is
a Dirac spinor [32]. Here we focus on a scalar field example
since it proves useful to highlight the apparent contra-
dictions that arise when ignoring the t-channel pole due to
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the graviton exchange. We denote the “scalar photon” by ϕ,
the “scalar electron” by ψ, and couple the two by a QED
type of interaction −αMϕψ2, where M is the mass of the
heavy field ψ and α is a dimensionless coupling constant.
This scalar photon QED Lagrangian is

LsQED ¼ ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂ϕÞ2 − 1

2
ð∂ψÞ2 − 1

2
M2ψ2 − αMϕψ2

�
:

ð3:1Þ
In distinction to the standard scalar QED with a massless
vector field, ignoring its couplings to gravity, this is a
superrenormalizable theory and thus has a different (and
better) UV behavior. Coupling this superrenormalizable
field theory to gravity necessitates both the introduction of
an Einstein-Hilbert term and covariant derivatives, together
with nonrenormalizable higher derivative interactions that
require new UV physics at (or below) the Planck scaleMPl.
We shall return to the impact of the latter corrections in
Sec. V. For now we content ourselves with this theory
minimally coupled to gravity

LpUV ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂ϕÞ2 − 1

2
ð∂ψÞ2

−
1

2
M2ψ2 − αMϕψ2

�
; ð3:2Þ

where pUV stands for partial UV completion. It is
straightforward to derive from (3.2) the low-energy effec-
tive theory that describes the dynamics of the photon well
below the electron mass. Explicitly integrating out the
massive electron in the presence of the gravitational
field following the heat-kernel methods as in [33,34]
(see [35–37] for the original works) then leads to the
low-energy effective action:

LðJÞ
IR ¼ ffiffiffiffiffiffi

−g
p �

M2
Pl

2
R −

1

2
ð∂ϕÞ2 − α3M

ð2πÞ2
ϕ3

3!
þ α4

2π2
ϕ4

4!

þ C
α2

M2
Rμν∂μϕ∂νϕþ C̃

α4

M4
ð∂ϕÞ4

�
; ð3:3Þ

with

C ¼ −
1

90ð4πÞ2 ; C̃ ¼ 1

30ð4πÞ2 : ð3:4Þ

Let us stress that the sign of the coefficient C in front of the
Rμν∂μϕ∂νϕ term is negative. This new interaction redresses
the kinetic term of the scalar field and thus directly affects
the propagation speed of the scalar ϕ on any gravitational
background with a nonvanishing Ricci tensor. Intriguingly,
the sign C < 0 leads to superluminal low-energy propa-
gation speeds relative to the background metric. It was
shown in [30], for a shock wave geometry, that despite the
apparent causality violations in the low-energy theory,

these are cleanly resolved in the high-frequency regime
and the front velocity remains luminal. This ensures that the
retarded propagator vanishes outside of the metric light
cone. The apparent low-energy superluminal phase and
group velocity can never lead to any resolvable effect and is
therefore never in tension with causality [29].
It is possible to rewrite the action (3.3) in a more familiar

form by performing a local field redefinition to remove the
nonminimal couplings with the Ricci curvature. Naturally,
such local transformations leave the scattering amplitudes
invariant. Transforming the metric as

gμν → gμν þ 2C
α2

M2M2
Pl

�
∂μϕ∂νϕ −

1

2
ð∂ϕÞ2gμν

�
ð3:5Þ

leads to the Einstein-frame IR action

LIR ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂ϕÞ2 − α3M

ð2πÞ2
ϕ3

3!
þ α4

2π2
ϕ4

4!

þ α2

M2

�
C
M2

Pl

þ C̃α2

M2

�
ð∂ϕÞ4 þ � � �

�
; ð3:6Þ

up to subleading corrections.

A. Compactified bounds

Consider now the tree-level ϕϕ → ϕϕ scattering as
inferred from this low-energy EFT (3.6). The IR observer,
only aware of the low-energy action (3.6) with operator

LIR ⊃
ffiffiffiffiffiffi
−g

p a
M4

ð∂ϕÞ4; ð3:7Þ

with coupling a would simply conclude that the coupling
needs to be positive, i.e., a > 0. This specific statement
has long been known for scalar field theories in the absence
of gravity [1–3]. It was presented again in [23] where it
was argued that a > 0 should hold also in the presence
of gravity for any weakly coupled5 UV completion of
(3.6) by means of the compactified positivity bounds. In the
present context, the compactified positivity bounds then
imply

C
M2

Pl

þ C̃α2

M2
> 0: ð3:8Þ

Comparing to (3.4) and naively using the fact that M ≪
MPl we could conclude that this bound is always satisfied.
Another way of seeing the bound above is to rewrite it as
bound on the charge-to-mass ratio, α=M, giving

α

M
>

1ffiffiffi
3

p 1

MPl
; ð3:9Þ

5In this context we may take weakly coupled to mean
calculable within a standard perturbative expansion.
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akin very much to similar arguments in QED made to
support the weak gravity conjecture [25,26]. Thus it
appears to be the case that the positivity bounds are
satisfied provided that (3.9) is respected.
This conclusion is, however, premature. The reason for

this is the fact that the operator C̃ α4

M4 ð∂ϕÞ4 in the IR action
(3.6) arises from a nongravitational loop diagram in the
UV theory, shown in Fig. 1 and computed in Appendix A.
Rather than working with the low-energy theory (3.6) we
may return to the partial UV completion (3.2) and apply the
improved positivity bounds [6,8,9] reviewed in Sec. II C to
remove the contribution from the box diagram. From the
low-energy point of view this amounts to removing the C̃
term, leading to a bound on the gravitational correction
alone. This is considered in more detail in [32]. In order to
avoid these technical subtleties, in what follows we shall
focus on related amplitudes that violate compactified
positivity without invoking the improved positivity bounds.

IV. SCALAR PHOTON QED
WITH A SPECTATOR FIELD

The discussion of the previous section can be consid-
erably sharpened by including an additional light spectator
field χ in the UV Lagrangian (3.2). We assume that the
spectator field χ interacts with the scalar QED theory only
via gravity.6 For simplicity but without loss of generality,
we keep both of the scalar fields ϕ and χ massless here.7

The scalar photon QED action minimally coupled to
gravity and including a light spectator field χ takes the form

LpUV ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂χÞ2 − 1

2
ð∂ϕÞ2 − 1

2
ð∂ψÞ2

−
1

2
M2ψ2 − αMϕψ2

�
: ð4:1Þ

We have assumed that the spectator χ is a scalar field here
but it could in principle be any other (fermion or vector)
field coupled to gravity. In this setup we can then focus on
the elastic ϕχ → ϕχ scattering that is always mediated by
the massless graviton exchange and only occurs via t-
channel scattering. We shall provide more details in
exploring the validity of the compactified positivity bounds
and analyzing the 2 − 2 scattering between the spectator
and matter both in the partial UV and low-energy EFT and
on the compactified manifold in the Appendixes.

A. Scattering in the low-energy EFT

To begin with, we determine the low-energy effective
theory associated with (4.1) that arises below the electron
mass. This is straightforward following the approach of the
previous section. Integrating out the scalar electron leads to
the IR action

LðJÞ
IR ¼ ffiffiffiffiffiffi

−g
p �

M2
Pl

2
R −

1

2
ð∂χÞ2 − 1

2
ð∂ϕÞ2 − α3M

ð2πÞ2
ϕ3

3!

þ α4

2π2
ϕ4

4!
þ C

α2

M2
Rμν∂μϕ∂νϕþ C̃

α4

M4
ð∂ϕÞ4

�
;

ð4:2Þ

which on applying the field redefinition (3.5) is seen to be
equivalent to

LIR ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

2
ð∂χÞ2 − 1

2
ð∂ϕÞ2 − α3M

ð2πÞ2
ϕ3

3!
þ α4

2π2
ϕ4

4!

þC0 α2

M2M2
Pl

ð∂ϕÞ4 þC
α2

M2M2
Pl

ð∂μϕ∂μχÞ2 þ � � �
�
;

ð4:3Þ

where we have neglected subleading terms and the coef-
ficient C0 is given by

C0α2

M2M2
Pl

≡ α2

M2

�
C
M2

Pl

þ C̃α2

M2

�
: ð4:4Þ

The new feature is the contact interaction ð∂μϕ∂μχÞ2 which
contributes directly to the χϕ → χϕ scattering. As usual the
scattering amplitude is a physical quantity and is indepen-
dent on the field redefinitions that we have performed
to get to the form of the IR action as in (4.3). The field
redefinition is merely used as a tool to make this interaction
more explicit.

FIG. 1. Nongravitational contribution to the ϕϕ → ϕϕ scatter-
ing in the UV theory. Bold lines represent propagators of the
heavy field ψ .

6The trick of introducing a spectator field to probe positivity
bounds was heavily used in [28]. As highlighted in Sec. III, we
can reach the same conclusions without introducing a spectator
field; however, this relies on implementing the improved pos-
itivity bounds. The inclusion of a spectator field is only
performed so as to bypass this need of going through improved
bounds. Indeed, when considering the elastic χϕ → χϕ scattering
there is no need to subtract other known contributions.

7One can in principle introduce a small mass m for either of
them for as long as m2=M2 ≪ 1. We shall do so in Appendix D
when considering possible extensions to the action (4.1) leading
to processes with light scalar loops. However, having a nonzero
scalar field mass does not provide any additional insights in the
scattering process considered in the current section.
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At the leading order the χϕ → χϕ scattering in the IR
theory occurs via two different scattering processes shown
in Fig. 2. As compared to the previous case, there is a new
contact interaction directly between the two fields ϕ and χ.
For the leading order scattering amplitude we then find

AIRðs; tÞ ¼ −
sðsþ tÞ
M2

Plt
þ Cα2

M2M2
Pl

�
sðsþ tÞ þ t2

2

�
: ð4:5Þ

As argued in [23] and as shown in Appendix C applying
the compactified forward limit positivity bounds for this
amplitude amounts to dropping the t-pole and requiring
that

d2AIR;no poleðs; 0Þ
ds2

¼ 2Cα2

M2M2
Pl

> 0; ð4:6Þ

leading to the requirement that C > 0. In other words, the
new positivity bounds state that for this IR theory (4.3)
to have a standard (local and Lorentz invariant) UV
completion the coupling constant C has to be positive.
However, comparing (4.5) to the corresponding amplitude
(4.11) computed below in the UV theory we read off

C ¼ −
1

90ð4πÞ2 < 0; ð4:7Þ

which contradicts the positivity bound above. It shows
that a theory can have an apparently healthy partial UV
completion [given in (4.1)] even though the compactified
positivity bounds are violated.

B. Scattering in the UV completion

In the previous subsection we have seen that on
introducing a spectator field into the partial UV completion,
the compactified positivity bounds applied to the low-
energy effective theory are violated, and no condition
analogous to (3.9) can be imposed to save them. Thus
(4.1) is a particularly straightforward example of a partial
UV completion that would be expected to be well-defined,
but for which compactified positivity bounds are violated.
In Sec. V we will discuss possible corrections to the partial
UV completion that may rectify this. For now we would
like to see how positivity bounds applied directly to the UV
theory (4.1) play out.
This calculation may be performed in two different ways.

We may first compute the scattering amplitude in the partial
UV completion in 4D Minkowski R3;1, and we use this to
match against the low-energy effective theory to confirm the
results in the previous section. The compactified positivity
bounds may then be applied directly in the IR EFTas per the
previous section. Alternatively we may apply the compacti-
fication procedure directly to the partial UV completion
(4.1). These two procedures are not identical because in the
former, the electron loop is computed in 4DMinkowskiR3;1,
whereas in the latter it is computed on a compactified space
R2;1 × S1. Performing the calculation both ways allows us to
test whether there is any issue in running the argument due
to failure of the limits L → ∞ and the low-energy limit
E=M → 0 to commute. The former calculation implicitly
assumes MKK ≪ M, whereas the latter is applicable also
when MKK ≫ M. We will save the technical details for
Appendix B for theR3;1 calculation and Appendix C for the
R2;1 × S1 and review the essential results here.

1. Electron loops in 4D Minkowski R3;1

The contributions to the tree-level and one-loop χϕ →
χϕ scattering amplitude ApUVðs; tÞ relevant for the pos-
itivity bounds in the partially UV complete theory (4.1)
come from the diagrams given in Fig. 3 and in the notations
of Appendix B are

ApUVðs; tÞ ¼ Zϕ ×Atree;0 þAϕψ2 þAϕψ2h: ð4:8Þ

FIG. 3. Leading contributions to the χϕ → χϕ scattering as seen from the point of view of the partial UV theory. Wiggly lines stand for
the graviton propagator while thick lines stand for the propagator of the heavy field ψ .

FIG. 2. Contributions to χϕ → χϕ scattering in the IR theory.
The wiggly line represents the graviton propagator.
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Given the wave function renormalization

Zϕ ¼ 1 −
α2

3ð4πÞ2 ; ð4:9Þ

explicitly this is

ApUVðs; tÞ ¼
su
M2

Plt
þ
�
−

α2

3ð4πÞ2
su
M2

Plt
þ 8M2α2

M2
Plt

Z
1

0

dx

×
Z

1−x

0

dy

�
Aðs; tÞ
32π2Δ

þ t
32π2

�
−1− log

Δ
M2

���
;

ð4:10Þ

with Aðs; tÞ≡ −sðsþ tÞð−1þ xþ yÞ2 þM2t and
Δ≡M2 − xyt. Let us note that, as expected, this amplitude
is independent of the renormalization scale. To see this
cancellation explicitly we have followed the same pro-
cedure as highlighted in Appendix 1 a. The role of the wave
function renormalization is to ensure that the terms in
square brackets contain no net contribution to the t-pole.
This confirms the equivalence principle at the quantum
level, namely that the graviton only couples to the
physical energy at the strength MPl. The remaining part
of the amplitude contains no s-channel branch cut or pole;
i.e., there is no imaginary part for physical values of s. This
is the virtue of introducing the spectator field whose
interactions only arise through gravity. Hence there are
no dispersive imaginary parts to remove via improved
positivity bounds and we may just apply the usual positivity
bounds.
Expanding at low energy, we confirm the amplitude

determined from the low-energy effective theory as
expected,

ApUVðs; tÞ ¼ −
s2

M2
Plt

−
α2s2

90ð4πÞ2M2M2
Pl

þOðt0Þ; ð4:11Þ

where Oðt0Þ stands for all other contributions to the
amplitude that are finite, are nonsingular, and have no s2

dependence. Applying the prescription suggested in
Ref. [23] allows us to ignore the t-pole so that the positivity
bound of Eq. (2.6) implies

d2ApUV;nopoleðs; 0Þ
ds2

¼ −
2α2

90ð4πÞ2M2M2
Pl

> 0; ð4:12Þ

which cannot be satisfied for any real values of the
coupling α.
Closer inspection of (4.10) shows that even with the

t-channel pole removed, the remaining part of the ampli-
tude in square brackets grows as s2 for fixed t at large s,
thus invalidating the assumption limjsj→∞ s−2Aðs; tÞ → 0.
This should not come as a surprise since (4.1) in itself is
only a partial UV completion by virtue of being gravita-
tional, and new physics will come in at higher energies to
resolve this. How precisely this new physics manifests
itself, i.e., whether new physics enters through higher spins
or through other fields is irrelevant to this point, the central
issue is rather about the scale at which this new physics
enters. The naive expectation would be that the cutoff is the
Planck scale, or the string scale, but as we shall see the
cutoff ought to be much lower for the compactified
positivity bounds to be satisfied. This possibility is indeed
explored in Sec. V where we show that in order for our
partial UV completion (4.1) to admit a full UV completion
for which the compactified positivity bounds apply, new
physics has to be introduced at a scale Λ significantly lower
than the Planck scale Λ ∼ ðMMPlÞ1=2. From the EFT
perspective, we know that this result is obtained in a
naively sensible effective field theory (4.1) where the EFT
cutoff—induced by the presence of the Einstein-Hilbert
term and the minimal coupling to gravity—would naively
be expected to coincide with the Planck scale, or a scale
close to it. Given the simplicity of the model in (4.1) and its
resemblance to the standard QED, this would be a very
strong statement with far-reaching implications to even
Standard Model physics. It seems more likely that these
findings point to some inconsistency in the handling of the
t-channel pole.

2. Electron loops in the compactified R2;1 × S1 space

In order to make sure that the simplified prescription of
dropping the t-pole does indeed follow from the regulari-
zation procedure suggested in [23] we shall repeat the same
strategy to the partial UV completion (4.1). The technical
details are found in Appendix C. This calculation is most
straightforwardly viewed by compactifying the 4D action
while maintaining the contribution from the Kaluza-Klein
(KK) modes that contribute to the loop processes. To the
order needed, the effective 3D action obtained from
compactification on a S1 of length L is

SUV;3d ⊃ L
Z

d3x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂χ0Þ2 − 1

2
ð∂ϕ0Þ2 −

1

2
ð∂ψ0Þ2 −

1

2
M2ψ2

0

− αMϕ0ψ
2
0 − 2αM

X∞
n¼1

ϕ0ψnψ
†
n −

X∞
n¼1

�
gμν∂μψn∂νψ

†
n þ

�
M2 þ 4π2n2

L2

�
ψnψ

†
n

��
; ð4:13Þ
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where ψ0, ϕ0, and χ0 are the KK zero modes and ψn the KK
modes with masses M2

n ¼ M2 þ 4π2n2

L2 . The zero mode
elastic scattering amplitude χ0ϕ0 → χ0ϕ0 is determined
to one-loop order by the analogous Feynman diagrams in
Figs. 7 and 8 in Appendix C. The structure of the one-loop
amplitude is similar,

ApUV;3dðs; tÞ ¼ Zϕ0
×Atree;0 þ

X∞
n¼0

Aϕ0ψ
2
n
þ
X∞
n¼0

Aϕ0ψ
2
nh0 :

ð4:14Þ

The wave function renormalization factor becomes

Zϕ0
¼ 1 −

α2M2

48πL

X∞
n¼−∞

1

M3
n
; ð4:15Þ

which is equivalent to (4.9) in the limit L → ∞. As before
this ensures the equivalence principle at the quantum level,
and the low-energy expansion of the 3D amplitude is

ApUV;3dðs; tÞ ¼ −
s2

M2
PlLt

−
α2M2

240ð4πÞL2M2
Pl

X∞
n¼−∞

s2

M5
n
þOðt0Þ:

ð4:16Þ

Assuming the validity of the eikonal argument that allows
us to remove the t-channel pole as argued in [23], we would
be led to the compactified positivity bound

d2ApUV;3dðs; 0Þ
ds2

¼ −
α̂2

120ð4πÞMM3

×
1

M2

�
1þ 2

X∞
n¼1

1

ð1þ 4π2n2

L2M2Þ5=2
�

> 0;

ð4:17Þ

where we have defined the 3D Planck mass M3 ¼ M2
PlL

and effective 3D coupling α̂ ¼ α=
ffiffiffiffi
L

p
. It is now clear that

this bound is violated for any L. In the limit L → ∞ it
reproduces (4.12)

lim
L→∞

L
d2ApUV;3dðs; 0Þ

ds2
¼ −

2α2

90ð4πÞ2M2M2
Pl

> 0; ð4:18Þ

whereas in the limit L → 0, only the zero mode contributes
in the loop and we obtain the pure 3D result

lim
L→0

d2ApUV;3dðs; 0Þ
ds2

¼ −
α̂2

120ð4πÞM3M3

> 0 ð4:19Þ

that would result from the pure 3D action

S0UV;3d ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
M3

2
R −

1

2
ð∂χ̂Þ2 − 1

2
ð∂ϕ̂Þ2

−
1

2
ð∂ψ̂Þ2 − 1

2
M2ψ̂2 − α̂Mϕ̂ψ̂2

�
; ð4:20Þ

which is obtained from (4.13) by canonically normalizing
ψ0 ¼ ψ̂=

ffiffiffiffi
L

p
, χ0 ¼ χ̂=

ffiffiffiffi
L

p
,ϕ0 ¼ ϕ̂=

ffiffiffiffi
L

p
and sendingL → 0,

for fixed α̂, to decouple the KK modes. The partial UV
completion (4.20) is itself superrenormalizable in the ab-
sence of gravity and by itself serves as an example of a partial
UV completion where 3D positivity bounds are violated.

V. NEW UV PHYSICS

The physical motivation of the specific interactions in
our UV theory (4.1) is clearly that of its resemblance to
the standard QED. As our computations in Sec. IV clearly
show, if we were to apply the compactified positivity
bounds of Ref. [23] to the IR theory (4.3) we would
conclude that the theory admits a standard UV completion
only if the coefficient C is positive. On the other hand,
the known partial UV completion (4.1) gives C < 0 in
Eq. (4.7). As already alluded to, there may be different
reasons for this disagreement:
(a) Either the compactified positivity bounds do not generi-

cally apply. This could be due to many reasons: One
issue highlighted in [31] is that the argument relies
on taking the forward limit before the large L limit.
However, as we have seen in the previous section,
positivity is violated for any L for t ∼ 0 and the 3D
theory (4.20) by itself violates positivity. This suggests
that any problems relate directly to the subtleties intrinsic
to 3D gravitational theories and 3D scattering ampli-
tudes. We will highlight some of these in the Sec. VI.

(b) Or the compactified positivity bounds are indeed
always valid and in this context they imply that by
itself the partial UV completion (4.1) [or (3.2)]
minimally coupled to gravity is not a valid one, at
least not without the existence of new UV physics at a
scale parametrically lower than the Planck scale.

In this sectionwe shall consider the second possibility. There
are two relatively straightforward possibilities for enhancing
the partial UV theory in attempting to satisfy the new
positivity bounds. Both rely on introducing interactions
already at the level of the partial UV theory, thus providing
a different UV completion from the one presented in (4.1).
The distinction between the two possibilities is whether the
new interactions would be renormalizable or nonrenorma-
lizable in the absence of gravity.

A. Renormalizable operators

In the actual QED case there are of course no further
renormalizable interactions in four dimensions. However,
in our scalar photon QEDmodel (4.1) we could supplement
(4.1) with the additional terms
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ΔL ¼ ffiffiffiffiffiffi
−g

p �
−aM

ϕ3

3!
− bMψ

ϕ2

2
−

λ

4!
ϕ4 −

γ

4
ψ2ϕ2

þ d1ψ3 þ d2ϕψ3 þ d3ψ4 þ d4ϕ3ψ

�
; ð5:1Þ

each of which is renormalizable in the absence of gravity.
The terms with coefficients di will not contribute to χϕ →
χϕ scattering at one-loop order, and we do not consider
them any further in what follows. The remaining inter-
actions are discussed in great detail in Appendix D. As
before in all cases once the wave function renormalization
is accounted for, the t-pole is universally −s2=ðM2

PltÞ. The
additional contributions to the positivity bound are

d2ΔApUV;3dð0; 0Þ
ds2

¼ −
a2M2

16π2
1

M2
Pl

ð45 − 8
ffiffiffi
3

p
πÞ

162m4
ph

−
b2

9ð4πÞ2M2M2
Pl

: ð5:2Þ

For any choice of coefficients a, b these contributions are
negative and so cannot solve the contradiction. Thus we see
that quite generically renormalizable field theories mini-
mally coupled to gravity tend to violate the compactified
positivity bounds.
We could also imagine introducing additional renorma-

lizable interactions between the spectator χ and the other
matter fields ϕ and ψ . These are considered in detail in
Appendix E. The story is quite analogous, and all con-
tributions to the positivity bounds are negative except that
from the box diagram pictured in Fig. 12(b) in Appendix E.
However, the reason this gives a positive contribution is
that it is a nongravitational contribution that itself satisfies
the Froissart bound. Hence it may be removed by appli-
cation of the improved positivity bounds. We thus find that
no introduction of renormalizable interactions, even with
the spectator field, resolves the contradiction.

B. Nonrenormalizable operators

We are thus led to looking at modifying the partial UV
completion by introducing new physics at a higher-energy
scale Λ ≫ M. For instance, this may be new physics at the
Planck scale, or a lower scale such as the string scale. In the
latter case the UV completion may require the introduction
of a tower of higher spin Regge states [27]. Regardless
of what this new physics is, it will show up at low energies
as irrelevant operators extending the partial UV comple-
tion (4.1). Indeed, it is straightforward to introduce new
irrelevant operators so as to satisfy the compactified
positivity bounds. The price to pay is the fact that these
irrelevant interactions must come in at a scale much lower
than the Planck scale—hence significantly reducing the
cutoff of the partial UV theory (4.1). We discuss this case in
detail in this section.

The most obvious way to ensure the compactified
positivity bounds are satisfied is to supplement that partial
UV completion (4.1) with the irrelevant operator

ΔL ¼ ffiffiffiffiffiffi
−g

p
BRμν∂μϕ∂νϕ; ð5:3Þ

where B is a dimensionful coupling. On integrating out the
ψ loop, the net contribution to the IR action (4.2) from this
interaction will then be

LðJÞ
IR ¼ ffiffiffiffiffiffi

−g
p �

Bþ C
α2

M2

�
Rμν∂μϕ∂νϕ; ð5:4Þ

and so by choosing

B > −C
α2

M2
; ð5:5Þ

the compactified positivity bound will be satisfied. The
problem is since this is an irrelevant operator, it will induce
a new cutoff in the effective theory. To determine this cutoff
it is helpful to perform in the partial UV completion (4.1)
with the additional operator (5.3) a field redefinition
analogous to (3.5)

gμν → gμν þ
2B
M2

Pl

�
∂μϕ∂νϕ −

1

2
ð∂ϕÞ2gμν

�
; ð5:6Þ

which generates corrections to (4.1) of the form

ΔL0 ¼ B
M2

Pl

ðð∂μϕ∂μϕÞ2 þ ð∂μϕ∂μψÞ2 þ ð∂μϕ∂μχÞ2Þ þ � � � :

ð5:7Þ
These obviously give another scattering channel contributing
to the χϕ → χϕ scattering amplitude in the UV theory
allowing one to satisfy the positivity bound as stated above.
Assuming α ∼Oð1Þ then this is an irrelevant operator8 of the
formM2

PlRð∂ϕÞ2=Λ4 with cutoff of at mostΛ ∼ ðMMPlÞ1=2.
Stated differently, we could add to (4.1) generic non-

renormalizable operators appearing at some scale Λ:

LpUV;2 ¼
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂χÞ2 − 1

2
ð∂ϕÞ2

−
1

2
ð∂ψÞ2 − 1

2
M2ψ2 − αMϕψ2 þ γ

Λ4
ð∂μχ∂μψÞ2

þ δ

Λ4
ð∂μχ∂μϕÞ2 þ β

Λ4
ð∂ϕÞ4

þ σ

Λ4
ð∂μϕ∂μψÞ2 þ � � �

�
: ð5:8Þ

8A priori the irrelevant operator contains a term behaving as
∂2hð∂ϕÞ2=ðMPlM2Þ which would suggest an even lower cutoff;
however, this particular term is removable by a field redefinition
and does not enter the amplitude. Ultimately the irrelevant
operator that has to be included in the EFT ought to affect the
amplitude at the scale Λ ∼ ðMMPlÞ1=2.
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Terms such as ð∂χÞ2ð∂ψÞ2 will not contribute to s depend-
ence of χϕ → χϕ scattering and may be ignored. The new
diagrams relevant for the one-loop χϕ → χϕ scattering are
shown in Fig. 4:

(i) The diagram in Fig. 4(a) is a simple contact diagram
that we have already computed in Sec. IVAwith the
corresponding vertex Vϕ2χ2 given in (B1). For the
scattering amplitude in the forward limit it gives

Aϕ2χ2ðs; 0Þ ¼
δ

Λ4
s2: ð5:9Þ

Hence, its contribution is positive for δ > 0. As
discussed it can be used to cancel the negative s2

contribution to the χϕ → χϕ scattering amplitude
provided

δ

Λ4
>

α2

90ð4πÞ2M2M2
Pl

: ð5:10Þ

Importantly, this implies that the scale of the new
nonrenormalizable interaction that we are adding in
(5.8) has to be Λ ≤ ðMMPlÞ1=2 ≪ MPl. Hence, the
new positivity bounds can be satisfied in a UV
theory with new derivative interactions that become
important at a scale Λ ≪ MPl. Notably, in compari-
son to our initial UV theory (4.1) this means that the
EFT cutoff decreases fromMPl to Λ. We will discuss
the implications of this low cutoff in more de-
tail below.

(ii) The diagram in Fig. 4(b) is new. The corresponding
interaction in (5.8) gives the same vertex, Vψ2χ2 , as in
the previous step with ϕ ↔ ψ and δ ↔ γ. The
amplitude of the process shown is

iAψ2χ2ðs; tÞ ¼
Z

ddp
ð2πÞd V

2
ϕψ2Vψ2χ2ΔψðpÞ

× Δψðk3 þ pÞΔψðp − k1Þ: ð5:11Þ

It has no t-channel pole and one can evaluate its s2

contribution in the forward limit by directly setting
t ¼ 0. We find

iAψ2χ2ðs; 0Þ ¼
16α2γM2

Λ4

Z
ddk
ð2πÞd

Z
1

0

dx

×
Z

1−x

0

dy
1
2
s2ð−1þ xþ yÞ2
½k2 þM2�3 :

ð5:12Þ

After integrating over momentum we are left with an
integral that we have already performed in (B16).
For the amplitude we thus get

Aψ2χ2ðs; 0Þ ¼
α2γ

48π2Λ4
× s2: ð5:13Þ

Comparing this with the scattering amplitude com-
puted in the initial UV theory we find again that in
order for the total contribution to the s2 term to
be positive the EFT cutoff scale should be Λ ≤
ðMMPlÞ1=2 ≪ MPl.

(iii) The operators considered in (5.8) contribute to the
χϕ → χϕ through other diagrams at up to one-loop
but all other contributions are suppressed compared
with the ones mentioned previously and depicted in
Fig. 4. Relying on those to ensure that the compac-
tified positivity bounds are satisfied for the χϕ → χϕ
amplitude would only lead to an even smaller cutoff.

We should also account for the role of irrelevant cubic
operators. For instance, the dimension-five operators

ΔLpUV;2 ¼
ffiffiffiffiffiffi
−g

p �
f1
Λ
ð∂ϕÞ2ψ þ f2

Λ
ð∂χÞ2ψ

�
ð5:14Þ

will contribute to the amplitude in two ways, one through
the process in Fig. 5 mediated partly by graviton exchange
within a loop. On dimensional grounds this contributes to
the positivity bounds by an amount

Δ
d2

ds2
ApUVð0; 0Þ ∼

f1f2
M2

PlΛ2
: ð5:15Þ

While the sign can be engineered to be positive, for this to
compensate the negative contributions, we would need the

FIG. 4. Feynman diagrams contributing to χϕ → χϕ scattering from the new UV operators in (5.8) up to one-loop. Bold lines
correspond to the propagators of the heavy field ψ . (a) Tree-level contribution from Aϕ2χ2 and (b) One-loop contribution from Aψ2χ2 .
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cutoff at the scale Λ ∼M which is worse than what is
needed for quartic interactions. In addition, this will lead to
a simple tree-level ψ exchange process but this does not
give rise to any s dependence.

C. ϕϕ → ϕϕ scattering

So far we have only explored the compactified posi-
tivity bounds for the χϕ → χϕ amplitude as the presence
of the spectator considerably simplifies the discussion.
However, as discussed in Sec. III, applying a similar type of
3D regularization argument to the improved positivity
bounds for the ϕϕ → ϕϕ scattering would lead to a similar
contradiction. Attempting to resolve this effect through the
introduction of new operators in the partial UV com-
pletion would, for instance, require the operator ð∂ϕÞ4 in
(5.8) to give a dominant contribution over that from the
electron loop, leading to the condition

β

Λ4
>

1

90ð4πÞ2M2
PlM

2
: ð5:16Þ

Hence also the irrelevant ϕ self-interactions have to occur at
or below the scale Λ ¼ ðMMPlÞ1=2.

D. EFT of two light scalars

The findings of the previous sections point strongly
toward the fact that scalar field theories that would
otherwise be renormalizable in the absence of gravity,
would be forced to carry nonrenormalizable interactions at
a scale much lower than the Planck scale in the presence of
gravity if we insisted on imposing the compactified
positivity bounds. As another argument in favor of this
finding is the example of two light scalar fields coupled to
gravity and described by the action

Lχ;ϕ ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂χÞ2 − 1

2
ð∂ϕÞ2 − 1

2
m2ϕ2

− aM
ϕ3

3!
−

λ

4!
ϕ4

�
: ð5:17Þ

We have computed all the necessary ingredients for the
χϕ → χϕ scattering in Secs. B 1, D 1 a, and D 2. All the s2

contributions to the scattering amplitude were found to
be negative and are thus in contradiction with the com-
pactified positivity bounds. We have also considered
possible renormalizable couplings between the two fields:
χϕ2;ϕχ2 in Appendix E. All of these are still negative.
Similarly as in the action (5.8) the only positive s2

contribution to the scattering amplitude can arise from
the derivative interaction

δ

Λ4
ð∂μχ∂νϕÞ2: ð5:18Þ

Combining it with the result (D22) from the scattering
process due to the ϕ3 vertex and applying the positivity
bounds gives the condition

δ

Λ4
≳ a2M2

M2
Plm

4
ph

; ð5:19Þ

leading again to Λ ≲ ðm2
phMPl=MÞ1=2. For the typical case,

naturalness arguments would suggest aM ∼OðmphÞ which
would then imply the presence of new UV physics
interactions at a scale at or below ðmphMPlÞ1=2 ≪ MPl.
For instance, applying this argumentation to light models of
dark matter would suggest that any such model with a dark
matter mass smaller than mph < 10−3 eV would also need
to include interactions with all the other fields in nature,
including all the other Standard Model fields at or below
the TeV scale.

E. Summary of new UV physics

To put in perspective the implications of the previous
bounds, let us go back to the analogy between the model
(5.8) and QED minimally coupled to gravity, where M
plays the role of the electron mass. The “need” for
operators of the form ð∂χ∂ϕÞ2 for any light (scalar) field
χ even if it had no contact with ϕ other than gravitationally,
would seem to suggest, in this analogy with QED, that
photons ought to couple for instance with dark matter
and with any other light field, including themselves at or
below the scale Λ ¼ ðMMPlÞ1=2. Taking M to be the
electron mass would lead to interactions at or below the
scale Λ ∼ 1016 eV. While this is a relatively high scale, it
would still have profound consequences for our under-
standing of the Standard Model. Even more interesting,
these bounds would seem to suggest that any model of say
dark matter that includes cubic interactions as depicted in
(5.17) would also need to include additional interactions
with all the fields of nature, including those of the Standard
Model at scale Λ ¼ ðMMPlÞ1=2, where M now is related to
the mass of the dark matter field. This would imply
interactions below the TeV scale for models of dark matter
with M ≲meV. While of course these contributions dis-
appear in the limitMPl → ∞ where gravity decouples, such

FIG. 5. One-loop contribution to χϕ → χϕ scattering from
cubic dimension-five operators. The wiggly line represents the
graviton propagator, while the bold line that of the heavy field ψ .
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a phenomenon would require a cutoff for gravity coupled to
matter well below the Planck scale, which would be a
statement of unprecedented magnitude.

VI. INFRARED REGULATOR
AND 3D GRAVITY

In the previous section we have seen that generic
renormalizable field theories coupled to gravity violate
the compactified positivity bounds unless new physics
is introduced at the low scale Λ ¼ ðMMPlÞ1=2. This is a
remarkably strong conclusion and to take its implications
seriously we should be clear that the assumptions taken in
its derivation are valid. One concern relates to the com-
pactification procedure and whether the limits t → 0 and
L → ∞ can be taken to commute as noted in [31]. Explicit
calculations at fixed L show that the positivity bounds are
violated for finite nonzero t and for any L so this seems
unlikely to be the issue. Furthermore it seems implausible
either that we are not allowed to consider 3D compacti-
fications or that we are not allowed to consider the 3D
theory (4.20) in its own right. Far more likely the issue lies
with the very poorly defined nature of 3D scattering
amplitudes with massless gravitons [24,38–40].

A. IR regulated 3D amplitudes

The central issue is that in three dimensions, a point
particle generates a conical deficit angle and as such its
influence is felt at arbitrarily large distances [41,42]. This
means that the traditional notion of an S-matrix is poorly
defined. In perturbation theory this shows up as infrared
divergences that need to be regulated. One way to regulate
the infrared behavior is to add a mass to the graviton. In this
section we shall focus on the effect of such a regulator on
the eikonal scattering amplitude. For instance, a static
particle with massM� can be described by the cosmic string
metric with deficit angle δ ¼ M�

2πM3
, where M3 is the 3D

Planck scale

ds2 ¼ −dt2 þ e−2δ ln rðdr2 þ r2dθ2Þ; ð6:1Þ

with θ ∈ ½0; 2π�. This can be regulated by

ds2 ¼ −dt2 þ e2ϕðrÞðdr2 þ r2dθ2Þ; ð6:2Þ

for which the regulated Newtonian potential satisfies

−∇2
2ϕðrÞ þm2

gϕðrÞ ¼
M�
2M3

δ2ðxÞ; ð6:3Þ

with mg the graviton mass. The large distance Yukawa
falloff of ϕ renders scattering in the regulated metric (6.2)
well-defined. For a massless particle of energy ω scattering
in this geometry, in the eikonal limit the scattering phase
shift is [24]

δlðsÞ ≈
1

8
ffiffiffi
s

p
Z

2π

0

dθ
2π

e−ilθ
su

M3ðt −m2
gÞ

≈
1

4sM3

Z
∞

−∞

dq
2π

e−iqb
s2

q2 þm2
g
¼ s

8M3mg
e−jbjmg

≈
s

8M3mg
−

s
8M3

jbj þOðmgÞ; ð6:4Þ

with impact parameter b ¼ l=ω, and with q2 ¼ −t, s ¼
ðM� þ ωÞ2 − ω2 ≈ 2M�ω, at high frequencies ω ≫ M�. It
is apparent that the phase shift is divergent as mg → 0. To
define the limit mg → 0 we may rescale the scattering
amplitude by an IR divergent phase (which should not
change the physics)

e2iδlðsÞ ¼ ei
s

4M3mge2iδ̃lðsÞ; ð6:5Þ

and use δ̃lðsÞ to define a scattering amplitude which is
finite in the limit mg → 0

lim
mg→0

δ̃lðsÞ ¼ −
s

8M3

jbj ¼ −
M�
4M3

jlj; ð6:6Þ

in the physical region where s > 0. This matches the
leading term obtained from the semiclassical conical deficit
calculation of [42], which gives

δ̃lðsÞ ¼ −
π

2
jlj

�
1

1 − M�
2πM3

− 1

�
: ð6:7Þ

Note, however, that the phase shift redefinition (6.5) is far
from innocent. The positivity bound arguments rely on the
assumption that the fixed t scattering amplitude respects the
Jin-Martin bound limjsj→∞ s−2Aðs; tÞ ¼ 0 for all complex s
on the first Riemann sheet. If this were not the case, we
could not have written the assumed dispersion relation.
When there is a mass gap, and for mg > 0, we expect the
3D Froissart bound to hold [43]. However, the redefinition
(6.5) factorizes out an entire function that is not poly-
nomially bounded and grows exponentially in the lower
half of the complex s-plane, undermining the boundedness
assumptions. We thus have no reason to expect that the
regulated 3D scattering amplitudes for mg ¼ 0 respect any
polynomial boundedness.

B. Unitarity in 3D

Even more damning though is the failure for the scattering
amplitude to have the assumed analyticity structure, pos-
itivity, and smoothness properties. By assumption, if the
scattering amplitude were to satisfy limjsj→∞ s−2Aðs; tÞ ¼ 0
for fixed t with only the usual poles and branch cuts, then up
to the unknown subtraction constants and known poles, it
should be entirely determined by its imaginary part
ImAðs; tÞ for s ≥ 0. From the 3D partial wave expansion
in the physical region, we have
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Aðs; tÞ ¼ 4
ffiffiffi
s

p
i

X∞
l¼−∞

eilθðe2iδlðsÞ − 1Þ: ð6:8Þ

The imaginary part [given δlðsÞ ¼ δ−lðsÞ and splitting the phase up to its real and absorptive parts δlðsÞ ¼
δrlðsÞ þ iδalðsÞ] is

ImAðs; tÞ ¼ 4
ffiffiffi
s

p �
ð1 − cosð2δr0ðsÞÞe−2δ

a
0
ðsÞÞ þ 2

X∞
l¼1

cosðlθÞð1 − cosð2δrlðsÞÞe−2δ
a
lðsÞÞ

�
: ð6:9Þ

In particular, for t ¼ 0

ImAðs; 0Þ ¼ 4
ffiffiffi
s

p �
ð1 − cosð2δr0ðsÞÞe−2δ

a
0
ðsÞÞ þ 2

X∞
l¼1

ð1 − cosð2δrlðsÞÞe−2δ
a
lðsÞÞ

�
> 0 ð6:10Þ

is obviously positive if the sum is convergent, as are ∂N
t ImAðs; 0Þ. Assuming the validity of the eikonal result formg → 0 (6.6)

at large l, or at least that limjlj→∞ δlðsÞ ¼ −αðsÞjlj, this series diverges. In the IR regulated case (6.4) it is by contrast
convergent for fixed s as the graviton mass enforces an effective maximum angular momentum lmax ∼ s

2mgM�
.

By contrast the usual implicit approach in the massless case [24,42] is to enforce convergence with an implicit iϵ
regulator, take

ImAðs; tÞ ¼ 4
ffiffiffi
s

p �
ð1 − cosð2δr0ðsÞÞe−2δ

a
0
ðsÞÞ þ 2

X∞
l¼1

cosðlθÞe−ϵjljð1 − cosð2δrlðsÞÞe−2δ
a
lðsÞÞ

�
: ð6:11Þ

This is qualitatively similar to the regulated case with ϵ ∼ 1=lmax, the difference being that the regulated problem enforces
convergence by having δlðsÞ → 0 for l > lmax. For a phase shift of the form δlðsÞ ¼ −αðsÞjlj the iϵ regulated expression
gives the imaginary part as a sum over delta functions,

ImAðs; tÞ ∼ 8
ffiffiffi
s

p X∞
l¼1

cosðlθÞe−ϵjljð1 − cosð2αjljÞÞ ð6:12Þ

¼ 4π
ffiffiffi
s

p ½2δ̃ðθÞ − δ̃ðθ þ 2αðsÞÞ − δ̃ðθ − 2αðsÞÞ�; ð6:13Þ

where δ̃ðθÞ denote the regulated periodic delta functions

δ̃ðθÞ≡ 1

2π

�
1

1 − eiθe−ϵ
þ 1

1 − e−iθe−ϵ
− 1

�
¼

X
n

δðθ þ 2πnÞ; ð6:14Þ

with the sum over n ensuring angular periodicity [42].
Evaluating in the forward scattering limit this expression is
divergent

ImAðs; 0Þ ¼ 8π
ffiffiffi
s

p
δ̃ð0Þ ∼ 8

ffiffiffi
s

p
ϵ−1: ð6:15Þ

As noted in [42] the optical theorem is no longer strictly
valid due to the lack of smoothness of these functions. Note
that the first delta function δ̃ðθÞ ¼ P

n δðθ þ 2πnÞ arising
in (6.13) is not the same one that arises from the no-
scattering process 1̂ in the S-matrix split Ŝ ¼ 1̂þ iT̂ since
this has already been subtracted out in (6.8). It is a direct
reflection of the ill-defined nature of the scattering ampli-

tude in 3D with massless gravitons due to the absence of
clearly defined asymptotic states. By contrast in the IR
regulated case the imaginary part of the forward amplitude
(6.10) is finite, and it only diverges as mg → 0.

C. Failure of positivity in 3D

It is the previous lack of smoothness for the amplitude
Aðs; tÞ near t ¼ 0 that is the root of the failure of positivity
in 3D as we now show. Given the divergence of the
imaginary part, we could just take the perspective of simply
discarding the contribution from the delta function δ̃ðθÞ ¼P

δðθ þ 2πnÞ from (6.13) leaving the other two δ̃’s, which
would amount to working with an amplitude in the form
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Âðs; tÞ ¼ 4
ffiffiffi
s

p
i

X∞
l¼−∞

eilθe2iδlðsÞe−ϵjlj: ð6:16Þ

This is in fact the approach of [24]. Again taking δlðsÞ ¼
−αðsÞjlj and then explicitly evaluating the sum in the
physical region gives

Âðs; tÞ ¼ 4

�
s

ffiffiffi
s

p
sinð2αðsÞ − iϵÞ

s cosð2αðsÞ − iϵÞ − s − 2t

�
: ð6:17Þ

Most importantly we see that this expression is finite in
the forward limit confirming the removal of the t-channel
pole. The eikonal approximation for the scattering of two
massless particles gives δlðsÞ ¼ −αðsÞjlj with αðsÞ ¼
β

ffiffiffi
s

p
with β ¼ 1=ð4M3Þ [24]. In the forward limit t ¼ 0,

the expression (6.17) becomes

Âðs; 0Þ ¼ −4
� ffiffiffi

s
p

sinð2β ffiffiffi
s

p
− iϵÞ

1 − cosð2β ffiffiffi
s

p
− iϵÞ

�
¼ −4

ffiffiffi
s

p
cotðβ ffiffiffi

s
p

− iϵÞ: ð6:18Þ

The s-poles are at the locations 2β
ffiffiffi
s

p ¼ 2jnjπ, and their
imaginary parts are consistent with (6.13)

ImÂðs; 0Þ ¼ 4π
ffiffiffi
s

p X∞
n¼−∞

½−δð2nπ þ 2β
ffiffiffi
s

p Þ

− δð2nπ − 2β
ffiffiffi
s

p Þ� ð6:19Þ

¼ −8π
X∞
n¼0

s
β
δðs − n2π2=β2Þ: ð6:20Þ

However, it is now apparent that ImÂðs; 0Þ < 0 and so
positivity is lost. Indeed, more generally working with
Âðs; tÞ we have

ImÂðs; tÞ ¼ −4
ffiffiffi
s

p �
cosð2δr0ðsÞÞe−2δ

a
0
ðsÞ

þ 2
X∞
l¼0

cosðlθÞ cosð2δrlðsÞÞe−2δ
a
lðsÞe−ϵjlj

�
;

ð6:21Þ

which is sign indefinite even in the forward limit, and so
destroys the crucial positivity property utilized in the
dispersion relation arguments. Unitarity is of course still
intact je2iδlðsÞj ≤ 1, but its implication for the positivity of
the dispersion relation is different.
The key point is that the standard statement of

unitary rests on the decomposition Ŝ ¼ 1̂þ iT̂, so that
−iðT̂ − T̂†Þ ¼ T̂T̂†, which relies on the notion that there is
some probability for no scattering. However, in 3D mass-
less gravity, it would be impossible to have a scenario

where no scattering occurs since each mass distorts the
metric at infinity by means of a deficit angle. This is why if
we try to enforce the split Ŝ ¼ 1̂þ iT̂ as in (6.8), then the
resulting scattering amplitude will result in a delta function
that compensates the 1̂ as in (6.13). The amplitude which is
well-defined is Â which follows directly from −iŜ, but this
does not have a positive imaginary part since unitarity9 is
realized through ð−iŜÞð−iŜÞ† ¼ 1̂.

D. Analytic structure of the amplitude in 3D

A closer inspection of (6.18) shows that it has the wrong
analytic structure. If we attempt to construct the function
from its imaginary part via a dispersion integral we obtain
rather

−
4

β
þ s
π

Z
∞

0

ds0
ImÂðs0; 0Þ

s0ðs0 − s − iϵÞ ¼ −
4

β

− 8
X∞
n¼0

1

β

s

ðn2π2
β2

− s − iϵÞ ¼ 4
ffiffiffi
s

p
cotðβ ffiffiffi

s
p þ iϵÞ; ð6:22Þ

which has the same imaginary part but opposite sign real
part in the physical region. The reason for this failure can
be traced to the eikonal expression for the partial wave
S-matrix e2iδlðsÞ ¼ e−2iβ

ffiffi
s

p jlj. Analytically continuing into
the Euclidean region via a counterclockwise rotation s ¼
eiπsE gives the exponentially growing behavior e2iδlðsÞ ¼
e2β

ffiffiffiffi
sE

p jlj for which the sum over l does not converge.10

This failure of analyticity can be attributed to the failure of
the eikonal approximation for the phase shift. This can be
solved by a variant application of the eikonal approxima-
tion for which the sum (6.16) is replaced by an integral over
l, giving for small t

Âðs; tÞ ∼ 4βs2

−t − β2ðs − iϵÞ2 : ð6:24Þ

Expressed in a crossing symmetric form (one of many)
[24], a suitable ansatz is

9It has been suggested that this may be resolved by working
with a redressed scattering amplitude for which the gravitational
interactions are removed [44]. However, while such a redressed
amplitude would certainly be unitarity, there is to date no explicit
construction that is crossing symmetric and analytic which are
crucial ingredients in the derivation of the positivity bounds.

10By contrast, if β has been of opposite sign β ¼ −β0 with
β0 > 0, then (6.17) would have been

Â0ðs; tÞ ¼ −4
�

s
ffiffiffi
s

p
sinð2β0 ffiffiffi

s
p þ iϵÞ

s cosð2β0 ffiffiffi
s

p þ iϵÞ − s − 2t

�
; ð6:23Þ

which has the correct analytic structure and for which the
bounded partial waves would be e2iδlðsÞ ¼ e−2β

0 ffiffiffiffi
sE

p jlj.

POSITIVITY BOUNDS AND THE MASSLESS SPIN-2 POLE PHYS. REV. D 102, 125023 (2020)

125023-17



Âðs; tÞ ¼ 4βsu
t − β2su

¼ aðtÞ þ bðtÞ
μðtÞ − s

þ bðtÞ
μðtÞ − u

; ð6:25Þ

with bðtÞ ¼ 2q2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ β2

4
q4

q
, μðtÞ ¼ 1

2
q2 þ 1

β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ β2

4
q4

q
,

aðtÞ ¼ − 4
β; and with q2 ¼ −t, we can see that these

expressions amount to replacing the naive eikonal phase
shift e2iδlðsÞ ¼ e−2iβjlj

ffiffi
s

p
with

e2iδ0ðsÞ ¼ 1 − iβ
ffiffiffi
s

p
ð1þ β2sÞ ; and

e2iδlðsÞ ¼ 1

ð1þ β2sÞ
�
1 − iβ

ffiffiffi
s

p
1þ iβ

ffiffiffi
s

p
�jlj

; jlj ≥ 1; ð6:26Þ

which are bounded analytic functions up to a right-hand
branch cut and multiple poles at s ¼ −β−2.
The expression (6.25) is a crossing symmetric, analytic

function of s for fixed t ≤ 0 up to poles at fixed t ≤ 0 with
positive imaginary parts ImÂðs; tÞ > 0 for t ≤ 0. It would
then appear to satisfy everything we desire for a 3D
scattering amplitude. Nevertheless this positivity of the
imaginary part is accidental rather than implied by unitarity
due to (6.21). This is most apparent from the fact that the
imaginary part vanishes in the forward limit

ImÂðs; 0Þ ¼ πbð0Þδðs − μð0ÞÞ ¼ 0; ð6:27Þ

which follows since

4
ffiffiffi
s

p
i

X∞
l¼−∞

e2iδl ¼ 4
ffiffiffi
s

p
i

�
1 − iβ

ffiffiffi
s

p
ð1þ β2sÞ

þ 2
X∞
l¼1

1

ð1þ β2sÞ
�
1 − iβ

ffiffiffi
s

p
1þ iβ

ffiffiffi
s

p
�

l
�
¼ −

4

β

ð6:28Þ
is purely real even though every partial wave contributes
with a nonzero imaginary part. Furthermore the imaginary
part of the fixed angle θ amplitude (6.25) is negative.
Even if the expression (6.25) is used within the context
of improved positivity bounds to remove the eikonal
contribution, there is no reason to expect that the remain-
ing imaginary part would be positive, due to the lack of
positivity of (6.21). We thus conclude that there is no form
of 3D scattering amplitude which is both smooth or at least
finite at t ¼ 0 and for which positivity of its imaginary part
is guaranteed to hold. Since both these properties are
needed together for the derivation of positivity bounds,
we conclude that they do not apply in three dimensions.

E. Perturbative expansion of 3D amplitude

In order to make clear that the crossing symmetric ansatz
Âðs; tÞ ¼ 4βsu=ðt − β2suÞ provided in [24] is the S-matrix

and not T-matrix element, it is helpful to compare with its
perturbative expansion in powers of the inverse Planck
mass. Since β ∼ 1=M3, we have for t ≠ 0

Âðs; tÞ ¼ 4βsu
t

þ 4β3s2u2

t2
þ � � � : ð6:29Þ

This matches the form of the terms we expect from a
perturbative expansion of the transition matrix, but the
expansion is ill-defined near t ¼ 0. To correctly identify the
forward limit delta function we denote t ¼ −q2 and
consider the integral for fixed s

Z
∞

−∞
dqÂðs;−q2Þ ¼

Z
∞

−∞
dq

4βsðs − q2Þ
q2 − β2sðs − q2Þ

¼
Z

∞

−∞
dq0

4sðs − β2q02Þ
q02 − sðs − β2q02Þ : ð6:30Þ

Taking the limit in which gravity decouples we have

lim
M3→∞

Z
∞

−∞
dqÂðs;−q2Þ ¼

Z
∞

−∞
dq0

4s2

q02− ðs− iϵÞ2 ¼−4iπs:

ð6:31Þ

Then combined with the fact that limM3→∞ Âðs;−q2Þ ¼ 0

for t ≠ 0, this implies limM3→∞ Âðs;−q2Þ ¼ −4iπsδðqÞ,
confirming that Âðs; tÞ is indeed the full S-matrix
amplitude.

F. Positivity recovered with a mass gap

If, as implied in the previous subsections, it is indeed
correct that the problems associated with the compactified
positivity derivation are the ill-defined IR behavior of the
amplitude A [as defined in (6.8)] and the associated lack of
positivity of the amplitude Â [as is apparent in (6.21)], then
these issues would be resolved if the spin-2 states were
massive, for which we may return to using A. As we shall
see, this is indeed the case and the positivity bounds are
only problematic in the case of a massless graviton
exchange, not for a massive one.
Returning to the four-dimensional amplitude, had we

considered the exchange of a massive spin-2 field of mass
mg, the corresponding result for the scattering amplitude
would be instead

ApUVmðs; tÞ ¼ −
s2

M2
Plðt −m2

gÞ
−

1

90ð4πÞ2
α2s2t

M2M2
Plðt −m2

gÞ
þOððt −m2

gÞ0Þ: ð6:32Þ
As expected, the only relevant effect is the shift of the
t-channel pole away from the origin, while the overall sign
remains unaffected. In particular, we emphasize that the
slight modification of the polarization structure of the
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massive vs massless spin-2 propagator bears no conse-
quences to this discussion.
The presence of a mass gap allows us to safely continue

the partial wave expansion from the physical region t ≤ 0

to the region 0 ≤ t < m2
g without fear of admonition. The

positivity bounds can then be applied for any t in the region
0 ≤ t < m2

g [15]. Remarkably, the amplitude ApUVm man-
ifestly satisfies the positivity bounds as expected. To see
this we denote t ¼ xm2

g þ τwith 0 < x < 1 and expand in τ

ApUVmðs; tÞ ¼
s2

M2
Plðð1 − xÞm2

g − τÞ

þ 1

90ð4πÞ2
α2s2ðxm2

g þ τÞ
M2M2

Plðð1 − xÞm2
g − τÞ

þOððt −m2
gÞ0Þ;

¼ s2

M2
Plð1 − xÞm2

g
þ 1

90ð4πÞ2
α2s2x

M2M2
Plð1 − xÞ

þ
X∞
n¼1

cnðsÞτn: ð6:33Þ

All coefficients of the expansion are manifestly positive
cnðsÞ > 0 as required, and furthermore

∂2ApUVmðs; τÞ
∂s2

				
τ¼0;0<x<1

> 0; ð6:34Þ

without any assumption on the magnitude of α. This
strongly suggests that any issue with satisfying the pos-
itivity bounds in the massless case is not an issue with the
partial UV theory considered in this work; rather, it
suggests that the contradiction apparent in (4.12) with
the compactified positivity bounds with a massless graviton
is due to the absence of a mass gap in the massless case and
the associated poor IR behavior. The fact that positivity
bounds are applicable for massive spin-2 states has been
used extensively in recent works [4,5,9,10,12,13,45,46].

VII. CONCLUSIONS

Positivity bounds are expected to apply to gravitational
theories whenever there exists a clean decoupling limit
MPl → ∞ for which the graviton decouples from other
degrees of freedom. This is the case whenever the low-
energy scattering amplitude takes the schematic form

Aðs; tÞ ∼ −
s2

M2
Plt

þ c
M4

s2 þ � � � ; ð7:1Þ

with c ∼Oð1Þ for which we may scale MPl → ∞ for fixed
M so that the nongravitational positivity bounds imply
c > 0. Related arguments have been given in Ref. [27],
where it is argued that positivity bounds should apply for
tree-level UV completions when the higher spin states
Reggeizing graviton exchange are subdominant in the

matter (e.g., photon) scattering.11 In the examples discussed
here, the scattering amplitude rather takes the form

Aðs; tÞ ∼ −
s2

M2
Plt

þ c̃
M2M2

Pl

s2 þ � � � ; ð7:2Þ

with c̃ ∼Oð1Þ. In this situation we can no longer decouple
gravity without making the whole effect vanish (or bringing
the cutoff to zero). Furthermore in all of our examples, c̃
arises from loop effects rather than tree-level/higher spin
UV physics and so is not covered by the argument of [27].
It is thus no longer clear whether we require c̃ > 0. As
discussed in [29], for the scaling (7.1), having c∼Oð1Þ< 0
clearly leads to superluminal propagation and violation of
causality, which is consistent with previous expectations on
the connection between positivity bounds [1,2] and cau-
sality [3]. By contrast for the scaling (7.2), c̃ ∼Oð1Þ < 0
does not lead to any resolvable violation of microcausality
[29,30]. Consequently we can no longer rely on causality
arguments to argue for any bound on c̃. The proposed
compactified positivity bounds of [23] attempt to bypass
this by using positivity of 3D scattering amplitudes to
indirectly infer c̃ > 0 even for the scaling choice (7.2). If
true, these would have profound consequences, most
notably for the weak gravity conjecture [23,25–27].
In the present article, we have shown that these proposed

compactified positivity bounds are generically violated for
typical renormalizable theories coupled to gravity unless new
physics is introduced at the parametrically low scale
Λ ∼ ðMMPlÞ1=2. One may take the perspective that this
simply implies that our renormalizable theory lies in the
swampland; however, this result remains relatively stable
under relevant and marginal deformations, and similar
observations hold for the more realistic case of QED [32].
Such a conclusion about the low scaleΛ ∼ ðMMPlÞ1=2would
have profound implications for our understanding of the
landscape of theories with consistent Lorentz invariant,
analytic, UV completions.
There are, however, as discussed in Sec. VI a number of

technical issues with the derivation of the compactified
positivity bounds proposed in [23] that prevents us from
immediately accepting these conclusions. Most critical is
the fact that 3D scattering amplitudes in the presence of
massless spin-2 particles are poorly defined, not least
because gravitational interactions do not vanish at infinity.
This shows up as singular behavior in the usual definition
of the scattering amplitude in the forward limit. We show

11Aweakly coupled tree-level UV completion is often assumed
“as a safety net” for practical computational purposes in applying
the positivity bounds so as to ensure that amplitudes are
dominated by tree-level diagrams; however, the positivity bounds
themselves as expressed for instance in (2.6) are derived with no
prior limitation on the type of UV realization, so long as it is a
standard one as far as locality, unitarity, Lorentz invariance, and
causality are concerned.
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explicitly that attempting to remove this singular behavior
gives a scattering amplitude that does respect analyticity
but no longer respects positivity of its imaginary part
(despite unitarity being intact). This undermines the appli-
cability of any positivity bound to 3D gravitational scatter-
ing amplitudes (at least for massless gravitons) and shows
how the issues with the 4D massless t-channel pole
manifest themselves through slightly different but ulti-
mately equivalent pathologies in 3D.

A. Conjecture

We conclude by postulating a conjecture on the implica-
tions of the t-channel pole subtracted positivity bounds and
the amount by which they may in principle be violated
assuming that the arguments of [23] are indeed flawed.Given
a theory with a scattering amplitude with low-energy
expansion of the form (7.1) where M is the cutoff of the
low-energy EFT, we can at most expect a bound in the weak
sense12

c > −
M2

M2
Pl

×Oð1Þ: ð7:3Þ

Generically this seems to suggest that even though negative
coefficients could in principle be compatible with standard
high-energy completion, they ought to be highly suppressed,
and the scaling with MPl is such that one recovers the
standard positivity bounds c > 0 whenever a decoupling
limit MPl → ∞ can be taken. Even if suppressed, allowing
for the very possibility of having a small negative coefficient
would have important implications for the weak gravity
conjecturewhere one of its manifestations relies precisely on
operators suppressed with the precise same powers of
MPl [26,27].
As mentioned previously, it is likely that the bound (7.3)

can be further refined to c > 0 using appropriate scaling
arguments for a restricted class of UV completions, for
instance for tree-level higher spin/Regge state UV com-
pletions with subdominant couplings to matter as argued in
[27]. Interestingly, this would imply that observing a
negative coefficient c experimentally could be interpreted
as indications against these types of completions.
The scaling of the bound (7.3) is similar to that found in

[29] where it was argued that superluminalities within low-
energy gravitational theories are consistent with causality
and can emerge from standard and causal high-energy
completions so long as the amount of superluminality
scales similarly at least as M−2

Pl and vanishes in a decou-
pling limit where gravity decouples for which traditional

causality arguments apply. In the specific case of scalar
QED this is consistent with the observations of [30]. Future
work is needed to better understand the role of both
causality and positivity in gravitational effective theories.
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APPENDIX A: ONE-LOOP ELECTRON
CONTRIBUTION TO PHOTON SCATTERING

IN SCALAR QED

In this appendix we shall provide the key steps for
determining the one-loop electron contribution to the ϕϕ →
ϕϕ scattering amplitude as illustrated in Fig. 1. Accounting
for the three channels, the amplitude is given by

Aψ-box ¼ Aψ-boxðs; t; uÞ þAψ-boxðs; u; tÞ þAψ-boxðt; u; sÞ;
ðA1Þ

where the individual amplitudes read

Aψ-boxðs; t; uÞ ¼
α4M4

π2

Z
R
dxdydz

1

Δ2
ðA2Þ

and the denominator is given by Δ ¼ M2 þ szðxþ yþ
z − 1Þ − txy. The integration region R is defined as
R¼ fx; y; z ∈ Rjx; y; z ≥ 0; xþ yþ z ≤ 1g. Going to the
forward limit (t ¼ 0) we can evaluate this amplitude in
an expansion of s2

M4. We find

Aψ-box ¼
α4

2π2

�
1þ s2

60M4

�
þO

�
s4

M8

�
: ðA3Þ

Matching these contributions to contact interactions in the
one-loop effective action leads to the following operators to
be included in (3.6):

LIR ⊃
ffiffiffiffiffiffi
−g

p �
α4

2π2
ϕ4

4!
þ 1

480π2
α4

M4
ð∂ϕÞ4

�
: ðA4Þ

12A similar conclusion was pointed out in the latest arXiv
version of [23] assuming an exact s2 UV behavior of the
amplitude. We make here no such assumptions in the derivation
of this result. Rather this conjecture is here tied to the requirement
of causality as emphasized in [28,29].
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APPENDIX B: AMPLITUDES FROM THE PERSPECTIVE OF THE PARTIAL UV THEORY

In this section we give the details for the computations of the χϕ → χϕ scattering amplitude in the UV theory (4.1). The
relevant Feynman diagrams are shown in Fig. 6. We introduce the following shorthand notations for the momentum-
dependent vertices

ðB1Þ

where we use the ð−;þ;þ;þÞ signature and all the momenta are taken to be ingoing. We also denote the scalar field
propagators by ΔϕðpÞ, ΔψðpÞ, ΔχðpÞ and assign Dμν;αβðpÞ to the graviton propagator in the harmonic gauge; the ϕψ2

interaction vertex is denoted by Vϕψ2 ≡ −2iαM. Finally, to evaluate the loop integrals we use the standard dimensional
regulation procedure that for d spacetime dimensions reads

μϵ
Z

ddk
ð2πÞd

ðk2Þp
ðk2 þ Δ − iεÞn ¼ μϵ

iΓðd
2
þ pÞΓðn − p − d

2
Þ

ð4πÞd=2Γðd
2
ÞΓðnÞ ðΔ − iεÞd2þp−n ≡ Ip

n : ðB2Þ

1. Tree-level

The amplitude of the tree-level diagram in Fig. 6(a) is found to be [using the notations of (B1)]

iAtree;0 ¼ Vμν
m ðk1; k3ÞDμν;αβðk1 þ k3ÞVαβ

0 ðk2; k4Þ

¼ −i
M2

Pl

1

t
sðsþ tÞ ¼ i

M2
Plt

su; ðB3Þ

where we have used the Mandelstam variables

FIG. 6. The detailed Feynman diagrams for the three scattering processes contributing to the χϕ → χϕ one-loop scattering in the UV
theory (4.1). The wiggly lines correspond to graviton propagators, while bold lines stand for propagators of the heavy field ψ . (a) Tree
diagram for Atree;0, (b) One-loop diagram for Aϕψ2, and (c) One-loop diagram for Aϕψ2h.
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s ¼ −ðk1 þ k2Þ2; t ¼ −ðk1 þ k3Þ2; u ¼ −ðk1 þ k4Þ2;
ðB4Þ

with k2i ¼ 0 for i ¼ 1, 2, 3, 4. This result is independent
of the spacetime dimension and shows the presence of a
t-channel pole in the tree-level scattering of two scalar
fields via a massless graviton exchange.
Before we set off computing the one-loop amplitudes let

us note that the −αMϕψ2 interaction introduces a shift in
the self-energy of ϕ in the resummed propagator and leads
to wave function renormalization Zϕ defined as

−i
p2 þm2 þ ΣðpÞ ¼

−iZϕ

p2 þm2
phys

; ðB5Þ

with the physical mass for ϕ determined from the relation

½p2 þm2 þ ΣðpÞ�p2¼−m2
phys

¼ 0; ðB6Þ

where in this case the bare mass m ¼ 0. In particular, the
shift in self-energy arising from the ψ loop to quadratic
order in α is found as

ðB7Þ

where the 1=2 on the first line is the symmetry factor of the
diagram and the latter equality is obtained for d ¼ 4 − ϵ.
Here we denote the standard minimal subtraction scheme
(MS) terms by MS≡ 2

ϵ − γ þ logð4πÞ. Up to leading order
in the coupling constant α we then find the renormalization
factor to be

Z−1
ϕ ¼ 1þ dΣ

dp2

				
p2¼−m2

¼ 1þ α2

3ð4πÞ2 : ðB8Þ

The total amplitude due to the tree-level scattering is then
given by the Lehmann-Symanzik-Zimmermann reduction
formula as

Atree ¼ Zϕ ×Atree;0: ðB9Þ

2. One-loop

There are two contributions to the one-loop amplitude
of the χϕ → χϕ scattering, shown in Figs. 6(b) and 6(c),
so that

A1-loop ¼ Aϕψ2 þAϕψ2h: ðB10Þ

a. Aϕψ2 amplitude

First, let us deal with the loop process supported by
the cubic interaction ϕψ2. This is depicted in Fig. 6(b)
and the corresponding amplitude is

iAϕψ2ðs; tÞ ¼
Z

ddp
ð2πÞd V

2
ϕψ2Δψ ðpÞΔψðpþ k3ÞΔψ ðp − k1Þ

× Vμν
M ðpþ k3; k1 − pÞDμν;αβðk2 þ k4ÞVαβ

0 ðk2; k4Þ: ðB11Þ

This gives

iAϕψ2ðs; tÞ ¼ 16M2α2

M2
Plt

Z
ddp
ð2πÞd

1

½p2 þM2�
1

½ðpþ k3Þ2 þM2�
1

½ðp − k1Þ2 þM2�

×

�
−
s2

4
−
st
4
þM2t

4
þ p2t

4
−
1

2
sp · ðk2 − k4Þ −

1

2
tp · ðk1 þ k2Þ þ ðp · k2Þðp · k4Þ

�
; ðB12Þ

where we have used momentum conservation k1 þ k2 þ k3 þ k4 ¼ 0. We then combine the three propagators in the
denominator by introducing the Feynman parameters x, y and transform the momentum integration variable as
pμ → kμ ≡ pμ − xkμ1 þ ykμ3. This leads to our final expression
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iAϕψ2ðs; tÞ ¼ 8M2α2

M2
Plt

μϵ
Z

1

0

dx
Z

1−x

0

dy
Z

ddk
ð2πÞd

Aðs; tÞ þ BðtÞk2
½k2 þ Δ�3 ; ðB13Þ

where we have used
R

ddk
ð2πÞd k

μ ¼ 0 and
R

ddk
ð2πÞd k

μkν ¼ 1
ð2πÞd

1
d k

2ημν and have defined

Aðs; tÞ≡ −sðsþ tÞð−1þ xþ yÞ2 þM2t;

BðtÞ≡ ðd − 2Þ
d

t;

Δ≡M2 − xyt: ðB14Þ

The integral over kμ can be taken using the dimensional regularization result (B2):

iAϕψ2ðs; tÞ ¼ i8M2α2

M2
Plt

Z
1

0

dx
Z

1−x

0

dy

�
Aðs; tÞ
32π2Δ

þ BðtÞ
16π2

�
−
1

2
þMS − log

Δ
μ2

��
: ðB15Þ

There are a few important features of this amplitude that
need to be discussed. First, it is easy to see that the quantity
Δ, appearing in both the denominator and the logarithm in
the expression above, vanishes for t ≥ 4M2 and implies that
there is a branch cut for these values of t. While it is thus
apparent that the amplitude Aϕψ2ðs; tÞ is nonanalytic for
t ≥ 4M2, we see that it is polynomial and thus analytic in s
[the only s-dependence appears in the quantity Aðs; tÞ
defined above]. Second, as we shall show in detail below,
the amplitude exhibits a t-channel pole, i.e., Aϕψ2ðs; tÞ∼
α2

M2
Pl

s2
t þ � � �. In the low-energy EFT such a contribution to

the scattering amplitude can be obtained in the presence
of a new operator ∼α2 ffiffiffiffiffiffi−gp ð∂ϕÞ2, corresponding to a
redressing of the kinetic term of ϕ. Indeed, as we shall
see, this pole cancels out in the total amplitude for the
χϕ → χϕ scattering once the wave function renormaliza-
tion of Eq. (B8) is taken into account. Finally, the amplitude
has a finite s2 contribution thus implying that the positivity
bounds (2.6) would give a nontrivial constraint on the
parameters of the theory. Let us address the two latter points
in detail now:

(i) t-pole: In order to find the contribution to the t-pole,
it is sufficient to evaluate the integrands of the full
amplitude Aϕψ2 at t ¼ 0. Since Bðt ¼ 0Þ ¼ 0, this
gives

iAϕψ2;poleðs; tÞ ¼
i8M2α2

M2
Plt

Z
1

0

dx
Z

1−x

0

dy
Aðs; tÞ
32π2Δ

				
t¼0

;

ðB16Þ

where Aðs; t ¼ 0Þ≡ −s2ð−1þ xþ yÞ2 and Δjt¼0 ¼
M2 making it easy to perform the integrals over
Feynman variables. As a result we obtain

iAϕψ2; poleðs; tÞ ¼ −
iα2

M2
Plt

s2

3ð4πÞ2 : ðB17Þ

This combines with the result from the tree ampli-
tude in (B9) as

iAt−pole ¼ iZϕ ×Atree;0 þ iAϕψ2; pole

¼ −
is2

4M2
Plt

þOðt0Þ; ðB18Þ

and we see that the Oðα2Þ contribution to the t-pole
has canceled leaving only the original tree-level
pole. From the definition of Aðs; tÞ and BðtÞ we see
that all their next order contributions are propor-
tional to t and the amplitude is thus finite in the
forward limit.

(ii) s2 contribution: To find the relevant s2 contribution
to the total amplitude (B15) it is sufficient to expand
the integrand around t ¼ 0. Indeed, we know that the
amplitude is analytic for t ≤ 4M2 and that the
positivity bounds will be applied in the forward
limit with t ¼ 0. This makes the small t expansion a
valid approximation. We are then only interested in
the s2t contribution in the integrand which cancels
the t in the overall denominator and leads to a finite
s2 contribution to the scattering amplitude. Since the
only s2 dependence is in the quantity Aðs; tÞ, we
obtain

iAϕψ2;s2ðs; tÞ ¼
i8M2α2

M2
Plt

Z
1

0

dx
Z

1−x

0

dy
−Aðs; tÞ
32π2Δ2

				
t¼0

×
dΔ
dt

× t

¼ −
iα2s2

90ð4πÞ2M2M2
Pl

þ � � � ; ðB19Þ

where the ellipsis stands for terms that do not have
any s2 contribution.
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b. Aϕψ2h amplitude

The last step in computing the total scattering amplitude for the process χϕ → χϕ is determining the contribution from
the one-loop process shown in Fig. 6(c). This is given by

iAϕψ2hðs; tÞ ¼ 2 ×
1

2

Z
ddp
ð2πÞd Vϕψ2Δψ ðpÞΔψðpþ k3ÞVμν

ϕψ2h
Dμν;αβðk2 þ k4ÞVαβ

0 ðk2; k4Þ

¼ −
4α2M2

M2
Pl

μϵ
Z

ddp
ð2πÞd

1

½p2 þM2�
1

½ðpþ k3Þ2 þM2� ; ðB20Þ

where again the 1=2 is the symmetry factor of the diagram
and there is an extra factor of 2 as the loop can be on either
external ϕ leg. After introducing the Feynman parameter x,
shifting the momentum to kμ ≡ pμ þ xkμ3, and taking the
integral as in dimensional regulation in (B2) for d ¼ 4 − ϵ,
we obtain

iAϕψ2hðs; tÞ ¼ −
4iα2M2

ð4πÞ2M2
Pl

Z
1

0

dx

�
MS − log

M2

μ2

�
: ðB21Þ

This amplitude is independent on both s and t and thus has
no impact on the positivity bounds.

APPENDIX C: COMPACTIFIED AMPLITUDES IN
THE PARTIAL UV THEORY

We now apply explicitly the procedure suggested in
Ref. [23] to our model and show how the contradiction
(4.12) manifests itself in that formalism. We compactify
one of the spatial directions (denoted here by z) on a circle
of length L. In this section we denote the 4D metric by ĝMN
where N;M ¼ 0;…; 3 and parametrize it as

ĝMN ¼ e−σ
�
e2σgμν þ VμVν Vμ

Vν 1

�
; ðC1Þ

where the Greek indices μ and ν are the 3D ones. The heavy
scalar ψ can be expanded into KK modes

ψðxMÞ ¼
X
n

e
2πinz
L ψnðxμÞ; ðC2Þ

so that ψðzþ LÞ ¼ ψðzÞ. A similar decomposition can be
used for all the other fields we are interested in. However, in
what follows we shall focus on scatterings of the zero KK
modes ϕ0χ0 → ϕ0χ0 for which (to the order we are working
in) only the zero modes of the gravitational fields σ; Vμ; gμν
contribute. Without loss of generality and in order to avoid
unnecessarily heavy notation, in what follows we shall
therefore simply denote by σ; Vμ; gμν the zero modes of the
gravitational fields. Focusing on the zero KK modes for all
fields aside from the heavy scalar ψ and integrating our
model (4.1) over the compactified direction, we thus get

SpUV;3d ¼ L
Z

d3x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2

�
R −

1

2
ð∂σÞ2 − 1

4
VμνVμνe−2σ

�
−
1

2
ð∂χ0Þ2

−
1

2
ð∂ϕ0Þ2 −

1

2
ð∂ψ0Þ2 −

1

2
M2eσψ2

0 − αMeσϕ0ψ
2
0 − 2αM

X∞
n¼1

eσϕ0ψnψ
†
n

−
X∞
n¼1

�
gμν∂μψn∂νψ

†
n þM2eσψnψ

†
n − 2

in
L
Vμψn∂μψ

†
n þ n2

L2
ðe2σ þ VαVαÞψnψ

†
n

��
; ðC3Þ

where now ð∂χ0Þ2 ≡ gμν∂μχ0∂νχ0, etc., with μ, ν ¼ 0, 1, 2 and gμν is the 3D metric. We have also defined Vμν ≡ ∂μVν −
∂νVμ and are treating the KK modes ψn as complex by identifying ψ−n ¼ ψ†

n. For the one-loop χ0ϕ0 → χ0ϕ0 scattering the
relevant terms in the above action are only

SUV;3d ⊃ L
Z

d3x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂χ0Þ2 − 1

2
ð∂ϕ0Þ2 −

1

2
ð∂ψ0Þ2 −

1

2
M2ψ2

0

− αMϕ0ψ
2
0 − 2αM

X∞
n¼1

ϕ0ψnψ
†
n −

X∞
n¼1

�
gμν∂μψn∂νψ

†
n þ

�
M2 þ 4π2n2

L2

�
ψnψ

†
n

��
: ðC4Þ

The scalar fields ψn acquire an effective mass Mn defined as
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M2
n ≡M2 þ 4π2n2

L2
: ðC5Þ

The diagrams contributing to the χ0ϕ0 → χ0ϕ0 scattering
up to one-loop order are shown in Fig. 7. Since we are only
interested in contributions to the scattering amplitude that
grow as s2, we have dropped other diagrams, such as the
one in Fig. 8. The computation of the scattering amplitude
is very similar to the 4D case shown in great detail in

Appendix B. Here we only show the main results of the
computation. Taking care of the appropriate canonical
normalizations the vertices expressed in (B1) get rescaled
by Vϕ0ψ

2
n
¼ −2iαM=

ffiffiffiffiffiffiffiffiffi
2πL

p
and Vμν

Mn
¼ Vμν

Mn
=

ffiffiffiffiffiffiffiffiffi
2πL

p
. Using

these rules in 3D, the tree-level amplitude gives

iAtree;0ðs; tÞ ¼ −
i

M2
PlL

s2 þ st
t

; ðC6Þ

and up to the factor 1=L coincides with the 4D result given
in (4.11). Most importantly, it also exhibits a t-pole. Taking
into account the shift in the self-energy of ϕ0 due to the
ψ0 and ψn loops, the tree-level amplitude receives α2

corrections as Atree ¼ Zϕ0
×Atree;0 where Zϕ0

is the wave
function renormalization factor

Zϕ0
¼ 1 −

α2M2

48πL

X∞
n¼−∞

1

M3
n
þOðα4Þ: ðC7Þ

The amplitude for the loop processes in Fig. 7 can be
written for both n ¼ 0 and n ≠ 0 as

iAϕ0ψ
2
n
ðs; tÞ ¼ N

Z
d3p
ð2πÞ3 V

2
ϕ0ψ

2
n
Δψn

ðpÞΔψn
ðpþ k3ÞΔψn

ðp − k1Þ

× Vμν
Mn
ðpþ k3; k1 − pÞDμν;αβðk2 þ k4ÞVαβ

0 ðk2; k4Þ; ðC8Þ
where the symmetry factor N ¼ 1 for n ¼ 0 and N ¼ 2 for n ≥ 1. Using dimensional regularization, this gives

iAϕ0ψ
2
n
ðs; tÞ ¼ −

8N α2M2

L2M2
Plt

Z
1

0

dx
Z

1−x

0

dy
Z

d3k
ð2πÞ3

ðs2 þ stÞð−1þ xþ yÞ2 − ðd−2Þ
d k2t −M2

nt

½k2 þM2
n − xyt�3 ; ðC9Þ

where x and y are the Feynman parameters and we have shifted the momentum as kμ ≡ pμ − xkμ1 þ ykμ3. After performing
the integration over momenta, as in Sec. B 2 a we find that there is an s2=t pole:

Aϕ0ψ
2
n;poleðs; tÞ ¼ −

α2M2

48πM2
PlL

2

X∞
n¼−∞

s2

t
1

M3
n
; ðC10Þ

which cancels out when added to the tree-level contribution leaving, as in 4D,

At-pole ¼ Zϕ0
×Atree;0 þAϕψ2

n;pole ¼ −
ðs2 þ stÞ
M2

PlLt
þOðt0Þ: ðC11Þ

FIG. 7. Principal contributions to χ0ϕ0 → χ0ϕ0 scattering. Here n ∈ ½1;∞Þ.

FIG. 8. Additional contributions to χ0ϕ0 → χ0ϕ0 scattering.
Here n ∈ ½0;∞Þ.
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We then find the s2 contribution—relevant for the positivity
bounds (2.6)—by evaluating the integrals in (C9) in the
t → 0 limit. Combined together with the tree-level result we
obtain the final expression of the regularized χ0ϕ0 → χ0ϕ0

scattering amplitude:

ApUV;3dðs; tÞ ¼ −
s2

M2
PlLt

−
α2M2

240ð4πÞL2M2
Pl

×
X∞
n¼−∞

s2
1

M5
n
þOðt0Þ: ðC12Þ

As a consistency check, we can take the continuum limit of
the above amplitude by sending L → ∞ in the expression
ApUV;3dðs; tÞ×L. Using the relation limL→∞

P∞
n¼−∞M−5

n ¼
2L

3πM4 we indeed recover (4.11).
We note that formally the pole s2=t is also present in the

regularized amplitude (C12). However, since there are no
propagating massless spin-2 fields in 3D, this pole cannot
be physical. This can be seen in the eikonal approximation
as discussed in Sec. VI. Roughly speaking the eikonal
resummation of the t-channel pole in (C12) amounts to the
replacement (6.25)

su
M2

PlLt
→

su
M2

PlLðt − 4su=ðM4
PlL

2ÞÞ ; ðC13Þ

which remains finite as t → 0 and furthermore asymptotes
to a constant at large s for fixed t. For this approximation to
work, the forward limit must be taken before decompacti-
fying the z-direction by L → ∞. In other words, one must
ensure that t ≪ 1=L2. Following the prescription of [23]
one can then further argue that the eikonal approximation
will bear no effect on the contributions to the scattering
amplitude from the second term in (C12). This can easily
be understood from the partial wave expansion of the finite
terms in the amplitude (C12). When expanded in terms
of partial waves, these only have contributions at low l.
In contrast, the eikonal approximation is dominated by
the resummation of the large l partial waves of the total
amplitude and thus leaves specific small l contributions
unscathed. The validity of applying positivity bounds in 3D

is critically discussed in Sec. VI; however, assuming for
now that they would be applicable, we would infer

d2ApUV;3dðs; 0Þ
ds2

¼ −
α2

120ð4πÞMM2
Pl

×
1

L2M2

�
1þ 2

X∞
n¼1

1

ð1þ 4π2n2

L2M2Þ5=2
�

> 0:

ðC14Þ

Clearly this cannot be satisfied for any choice of partial UV
completion parameters.

APPENDIX D: ADDING INTERACTIONS
TO THE UV THEORY

In this section we shall contemplate the possibility that
our partial UV completion is to be blamed and establish
whether adding other operators that would otherwise
be renormalizable in the absence of gravity could help
satisfy the compactified positivity bounds. Following this
approach, we consider cubic and quartic nonderivative
operators that introduce additional ϕ;ψ interactions in our
UV theory (4.1) and discuss their implications for the
positivity bounds applied to the χϕ → χϕ scattering
amplitude.

1. Cubic operators

We start by supplementing our model with the following
additional cubic interactions:

Lð3Þ ¼
ffiffiffiffiffiffi
−g

p �
−aM

ϕ3

3!
− bMψ

ϕ2

2

�
; ðD1Þ

where a and b are dimensionless constants and we have
fixed the mass scale in front of the operators to coincide
with the mass of the heavy scalar, M. The new processes
contributing to the χϕ → χϕ scattering are shown in Figs. 9
and 10, and we define the corresponding interaction
vertices as Vϕ3 ¼ −iaM and Vψϕ2 ¼ −ibM.

FIG. 9. Feynman diagrams contributing to scattering processes χϕ → χϕ from the additional −aM ϕ3

3!
operator in (D1), up to one-loop.

The wiggly lines correspond to graviton propagators. (a) One-loop diagram for Aϕ3;1 and (b) One-loop diagram for Aϕ3;2.
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a. The ϕ3 interaction

The presence of the ϕ3 interaction allows for two more
one-loop scattering channels for the χϕ → χϕ scattering
shown in Figs. (9a) and (9b). Together with the tree-level
amplitude, the total scattering amplitude due to the ϕ3

vertex is given by the sum

Aϕ3
¼ Zϕ ×Atree;0 þAϕ3;1 þAϕ3;2; ðD2Þ

where Zϕ is the corresponding wave function normalization
factor. Due to the presence of the light loops we add the
mass term − 1

2
m2ϕ2 to the total action. Let us emphasize

that, when calculating the amplitudes, the mass appearing
in the propagators and in the vertices is this bare mass m.
On the other hand, when substituting the external momenta
we use k21 ¼ k23 ¼ −m2

ph and u ¼ −s − tþ 2m2
ph wheremph

is the physical mass. We determine the relation between the
two below.
Renormalization.—The ϕ3 interaction renormalizes the

mass and the kinetic term of ϕ while the cubic coupling
aM does not get renormalized in 4D. Let us find the
renormalized quantities up to one-loop order. For this we
first find the self-energy up to quadratic order in the
coupling aM:

ðD3Þ

Under the assumption −p2 ≤ 4m2 this can be integrated to

Σðp2Þ ¼ −
a2M2

32π2

h
log

μ2

m2
þ fðp2Þ

i
−
a2M2

32π2
MSþOða4M4Þ; ðD4Þ

fðp2Þ≡ 2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
4m2

p2
− 1

s
arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 4m2

p2 − 1
q : ðD5Þ

We determine the physical mass from the relation

½p2 þm2 þ Σðp2Þ�p2¼−m2
ph
¼ 0: ðD6Þ

Substituting the above expression for Σðp2Þ we find the exact expression for the one-loop mass renormalization:

m2
ph ¼ m2 þ a2M2

32π2

�
log

m2

μ2
− fð−m2

phÞ −MS
�
þOða4M4Þ: ðD7Þ

Since in fact m2 ¼ m2
ph þOða2M2Þ we can substitute m2 ¼ m2

ph in the logarithm above and use that also fð−m2
phÞ ¼

fð−m2Þ þOða2M2Þ ¼ 2 − πffiffi
3

p and derive the one-loop renormalization group (RG) equation for the bare mass:

dm2

d log μ
¼ a2M2

16π2
þOða4M4Þ; ðD8Þ

FIG. 10. The Feynman diagrams for the one-loop scattering processes contributing to χϕ → χϕ from the additional cubic EFT
operators in (D1). Wiggly lines correspond to graviton propagators, while bold lines correspond to the propagators of the heavy field ψ .
(a) One-loop diagram for Aψϕ2;1 and (b) One-loop diagram for Aψϕ2;2.
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needed to ensure that the physical mass does not depend on
the renormalization scale. The latter equation can be solved
for m to find m2 ¼ a2M2

16π2
logðcμÞ where c is an integration

constant. Substituting this in (D7) we obtain

m2
ph ¼

a2M2

32π2
log

m2

c̃2
; ðD9Þ

where we have redefined the integration constant as log c̃ ¼
− log cþ 2 − πffiffi

3
p þMS.

Similarly, we find the wave function renormalization
factor

Z−1
ϕ ¼ 1þ dΣ

dp2

				
p2¼−m2

¼ 1 −
a2M2

32π2
1

m2
ph

×

2
641 − 4m2

m2
ph

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

m2
ph
− 1

4

q arctan
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

m2
ph
− 1

4

q
3
75þOða4M4Þ:

ðD10Þ

Using again that m2
ph ¼ m2 þOða2M2Þ we obtain up to

one-loop order

Zϕ ¼ 1 −
a2M2

32π2

�
−9þ 2

ffiffiffi
3

p
π

9m2
ph

�
: ðD11Þ

The tree-level amplitude.—The tree-level amplitude of
the χϕ → χϕ scattering is given by Atree ¼ Zϕ ×Atree;0
with

Atree;0 ¼ −
1

M2
Pl

ðs −m2
phÞ2 − ðs −m2Þt

t
; ðD12Þ

where we have made the distinction between the physical
and bare masses entering the above relation. Expressing the
bare mass in terms of the physical mass as in (D7) we
obtain the following expression for the full tree-level
amplitude with Oða2M2Þ corrections,

Atree ¼
ðm2

ph − sÞðm2
ph − uÞ

M2
Plt

�
1 −

a2M2

32π2

�
−9þ 2

ffiffiffi
3

p
π

9m2
ph

��

−
a2M2

32π2M2
Pl

�
log

m2
ph

μ2
− fð−m2

phÞ −MS
�
: ðD13Þ

The first loop process.—The scattering amplitude for the
process in Fig. 9(a) schematically reads

iAϕ3;1ðs; tÞ ¼
Z

ddp
ð2πÞd V

2
ϕ3ΔϕðpÞΔϕðk1 − pÞΔϕðpþ k3Þ

× Vμν
m ðpþ k3; k1 − pÞDμν;αβðk2 þ k4Þ

× Vαβ
0 ðk2; k4Þ: ðD14Þ

Performing the simplifications needed and transforming the
integration momentum as kμ ≡ pμ − ðxkμ1 − ykμ3Þ leads to

iAϕ3;1ðs; tÞ ¼
2M2a2

M2
Plt

μϵ
Z

1

0

dx
Z

1−x

0

dy

×
Z

ddk
ð2πÞd

Aðs; tÞ þ BðtÞk2
½k2 þ ΔðtÞ�3 ; ðD15Þ

where we have again defined

Aðs; tÞ≡ −½ðs −m2
phÞ2 þ st�ð−1þ xþ yÞ2 þm2t;

BðtÞ≡ ðd − 2Þ
d

t;

ΔðtÞ≡m2 þm2
phð−1þ xþ yÞðxþ yÞ − xyt: ðD16Þ

As before, we shall use m2
ph ¼ m2 þOða2M2Þ. On evalu-

ating the momentum integral we have

lim
ϵ→0

Aϕ3;1 ¼
2a2M2

M2
Plt

Z
1

0

dx
Z

1−x

0

dy

�
Aðs; tÞ
32π2Δ

þ t
32π2

�
−1þMSþ log

μ2

Δ

��
; ðD17Þ

where we have also used the explicit form of BðtÞ since it
involved an additional d-dependence. We thus obtain for
the full one-loop amplitude for the process in Fig. 9(a)

Aϕ3;1ðs; tÞ ¼ −
a2M2

16π2M2
Pl

ððs −m2
phÞ2 þ stÞ
t

Z
1

0

dx
Z

1−x

0

dy
ð−1þ xþ yÞ2

ΔðtÞ

þ a2M2

32π2M2
Pl

�
−1þMSþ log

μ2

m2
ph

þ 2

Z
1

0

dx
Z

1−x

0

dy

�
m2

ph

ΔðtÞ þ log
m2

ph

ΔðtÞ
��

: ðD18Þ

The analysis of the amplitude in (D17) then continues in a
manner very similar to Sec. B 2 a where the cubic ϕψ2

interaction was analyzed in detail. As before we note that

the amplitude has a branch cut in the complex t-plane
starting from the point where the denominator Δ becomes
negative. In the expression for Δ given above it is apparent
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that in the integration region the first two terms are
greater than zero and also xy ≥ 0; therefore the branch
cut lies along the real positive values of t. In particular,
we find that there is a branch cut for t ≥ 4m2

ph. As before
when analyzing the ϕψ2 interaction, we find that the first
line of the one-loop amplitude Aϕ3;1 has both a t-channel
pole and an s2 contribution. The second line is inde-

pendent of s, t, but depends on the renormalization scale.
There is no s-dependence on the third line of the amp-
litude; moreover, it is finite and nonzero in the t → 0
limit. Hence, it can easily be disregarded in the context of
positivity bounds.
The second loop amplitude.—The scattering amplitude

for the process in Fig. 9(b) reads

iAϕ3;2ðs; tÞ ¼
Z

ddp
ð2πÞd Vϕ3ΔϕðpÞΔϕðpþ k3ÞVμν

ϕ3hDμν;αβðk2 þ k4ÞVαβ
0 ðk2; k4Þ

¼ −
a2M2

M2
Pl

μϵ
Z

1

0

dx
Z

ddk
ð2πÞd

1

½k2 þm2 −m2
phxð1 − xÞ�2 ; ðD19Þ

where kμ ≡ pμ þ xkμ3 and the vertex Vμν
ϕ3h ≡ −iaM

2MPl
ημν. Integrating we obtain

Aϕ3;2ðs; tÞ ¼ −
a2M2

16π2M2
Pl

�
MSþ log

μ2

m2
ph

þ fð−m2
phÞ

�
; ðD20Þ

where fð−p2Þ is defined in (D5).
The total amplitude.—Adding all the contributions in (D13), (D18), and (D20) we get the total amplitude for the

χϕ → χϕ scattering in the ϕ3 theory. As expected, the prefactors to the scale-dependent terms cancel out,
a2M2

16π2M2
Pl
log μ2

m2
ph
ð1
2
þ 1

2
− 1Þ ¼ 0 and so do the MS terms. The total amplitude thus becomes

Aϕ3ðs; tÞ ¼ −
ðm2

ph − sÞðm2
ph − s − tÞ

M2
Plt

þ a2M2

32π2
ððs −m2

phÞ2 þ stÞ
M2

Plt

�
−9þ 2

ffiffiffi
3

p
π

9m2
ph

− 2

Z
1

0

dx
Z

1−x

0

dy
ð−1þ xþ yÞ2

ΔðtÞ
�

−
a2M2

32π2M2
Pl

�
fð−m2

phÞ þ
2

ffiffiffi
3

p
π

9
− 2

Z
1

0

dx
Z

1−x

0

dy

�
m2

ph

ΔðtÞ þ log
m2

ph

ΔðtÞ
��

þOða4M4Þ; ðD21Þ

where as before fð−m2
phÞ ¼ 2 − πffiffi

3
p þOða4M4Þ. The first line contains the pure tree-level result. All the s-dependence

and the apparent one-loop contribution to the t-channel pole appear on the second line, while the third line only
depends on t. We see from here that the one-loop t-channel pole present on the second line cancels out exactly: when
the integrand on the second line is evaluated at t ¼ 0, the whole contribution in the square brackets equals zero.
Similarly, the term on the third line vanishes once the integral is evaluated at t ¼ 0. For the forward limit answer we
thus have

lim
t→0

Aϕ3ðs; tÞ ¼ −
ðm2

ph − sÞ2
M2

Plt
þ ðm2

ph − sÞ
M2

Pl

þ a2M2

32π2
ðs −m2

phÞ2
M2

Pl

ð−45þ 8
ffiffiffi
3

p
πÞ

162m4
ph

þOða4M4Þ; ðD22Þ

where −45þ 8
ffiffiffi
3

p
π ¼ −1.49. As for the one-loop ampli-

tude due to the ϕψ2 interaction for the process shown in
Fig. 6(b) the contribution to the s2 term is negative.

b. The ψϕ2 interaction

The addition of the ψϕ2 interaction leads to two new
diagrams contributing to the χϕ → χϕ scattering, shown in

Figs. 10(a) and 10(b). The analytic properties of the
corresponding scattering amplitudes are very similar to
what was discussed for the QED interaction term −αMϕψ2

discussed in Sec. B 2 a. We briefly analyze the amplitudes
for the new processes below:

(i) The process in Fig. 10(a). For this scattering process
the amplitude reads
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iAψϕ2;1ðs; tÞ ¼
Z

ddp
ð2πÞd V

2
ψϕ2ΔψðpÞΔϕðk1 − pÞΔϕðpþ k3ÞVμν

m Dμν;αβðk2 þ k4ÞVαβ
0 : ðD23Þ

It can again be manipulated in the familiar form

iAψϕ2;1ðs; tÞ ¼
2M2b2

M2
Plt

μϵ
Z

1

0

dx
Z

1−x

0

dy
Z

ddk
ð2πÞd

Aðs; tÞ þ BðtÞk2
½k2 þ Δ�3 ; ðD24Þ

and we have defined

Aðs; tÞ≡ −sðsþ tÞð−1þ xþ yÞ2;

BðtÞ≡ ðd − 2Þ
d

t;

Δ≡ −M2ð−1þ xþ yÞ − xyt: ðD25Þ

Again this amplitude carries both a s2=t pole and a regular s2 contribution. Expanding the integrand abound t ¼ 0we
obtain

Aψϕ2;1ðs; tÞ ¼ −
b2

ð4πÞ2M2M2
Pl

Z
1

0

dx
Z

1−x

0

dyxy × s2 þOðsÞ; ðD26Þ

whereOðsÞ stands for all the other terms in the amplitude, growing with at most one power of s. The integral over the
Feynman parameters gives 1=24. Hence we conclude that the s2 contribution to the scattering amplitude Aψϕ2;1 is
again negative.

(ii) The process in Fig. 10(b). Similarly, for the second diagram, the amplitude reads again

iAψϕ2;2ðs; tÞ ¼
2M2b2

M2
Plt

μϵ
Z

1

0

dx
Z

1−x

0

dy
Z

ddk
ð2πÞd

Ãðs; tÞ þ B̃ðtÞk2
½k2 þ Δ̃�3 ; ðD27Þ

where this time

Ãðs; tÞ≡ −sðsþ tÞð−1þ xþ yÞ2 þM2t;

B̃ðtÞ≡ ðd − 2Þ
d

t;

Δ̃≡M2ðxþ yÞ − xyt: ðD28Þ

Again, expanding the integrand abound t ¼ 0 we obtain the following s2 contribution to the scattering amplitude

Aψϕ2;2ðs; tÞ ¼ −
b2

ð4πÞ2M2M2
Pl

Z
1

0

dx
Z

1−x

0

dy
xyð−1þ xþ yÞ2

ðxþ yÞ2 × s2 þOðsÞ: ðD29Þ

Also here the integral is positive and for m ¼ 0 integrates to 1=72, leading to a negative contribution to the
amplitude.

As for the s2=t pole appearing in both amplitudes calculated above, it vanishes once added to the properly normalized
tree-level scattering amplitudeAtree ¼ Zϕ ×Atree;0. Here the wave function renormalization factor Zϕ needs to be computed
from the self-energy correction due to the ψϕ2 vertex. As in all the previous cases we then find that the t-pole cancels,
leaving only the original pole due to the tree-level graviton exchange

At−pole ¼ Zϕ ×Atree;0 þAψϕ2;1 þAψϕ2;2 ¼ −
s2

M2
Plt

þOðt0Þ: ðD30Þ
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2. Quartic operators

One can also introduce quartic nonderivative interactions
between the light field ϕ and the heavy field ψ as

Lð4Þ ¼
ffiffiffiffiffiffi
−g

p �
−

λ

4!
ϕ4 −

ϖ

4
ψ2ϕ2

�
; ðD31Þ

where λ, ϖ are dimensionless couplings. These give new
interaction vertices Vϕ4 ¼ −iλ and Vψ2ϕ2 ¼ −iϖ allowing

for new processes contributing to the χϕ → χϕ scattering,
shown in Fig. 11.

a. The ϕ4 interaction

The scattering amplitude for the process in Fig. 11(a)
involves a loop of the light field ϕ, so we regularize it by
adding a mass term − 1

2
m2ϕ2. The amplitude can then be

written as

iAϕ4ðs; tÞ ¼ 1

N

Z
ddp
ð2πÞd Vϕ4ΔϕðpÞΔϕðk1 þ k3 − pÞVμν

m Dμν;αβðk2 þ k4ÞVαβ
0 ; ðD32Þ

where N is the symmetry factor of the diagram. After the usual manipulations we find

Aϕ4ðs; tÞ ¼ iλ
NM2

Pl

μϵ
Z

1

0

dx
Z

ddk
ð2πÞd

d−2
d k2 þm2

½k2 þm2 − txð1 − xÞ�2 : ðD33Þ

This amplitude only depends on t and thus does not contribute to the positivity bounds (2.6). Moreover, it has a branch cut
for t ≥ 4m2, but does not have a t-pole. It is thus finite in the forward limit.

b. The ψ2ϕ2 interaction

The quartic ψ2ϕ2 interaction leads to an additional scattering process depicted in Fig. 11(b). Since this process only
contains a heavy loop we can again set m ¼ 0. The scattering amplitude is found to be

iAψ2ϕ2ðs; tÞ ¼
Z

ddp
ð2πÞd Vψ2ϕ2ΔψðpÞΔψ ðk1 þ k3 − pÞVμν

MDμν;αβðk2 þ k4ÞVαβ
0 ; ðD34Þ

giving for the final result

Aψ2ϕ2ðs; tÞ ¼ iϖ
M2

Pl

μϵ
Z

1

0

dx
Z

ddp
ð2πÞd

d−2
d k2

½k2 þM2 − txð1 − xÞ�2 : ðD35Þ

As for the ϕ4 vertex, this amplitude is finite at t ¼ 0 and does not affect the positivity bounds. As expected, it has a branch
cut for t ≥ 4M2.

FIG. 11. The Feynman diagrams for the one-loop scattering processes contributing to χϕ → χϕ from the additional quartic EFT
operators in (D31). Wiggly lines correspond to graviton propagators, while bold lines correspond to the propagators of the heavy field ψ .
(a) One-loop diagram for Aϕ4 and (b) One-loop diagram for Aψ2ϕ2.

POSITIVITY BOUNDS AND THE MASSLESS SPIN-2 POLE PHYS. REV. D 102, 125023 (2020)

125023-31



APPENDIX E: RENORMALIZABLE SPECTATOR FIELD INTERACTIONS

An obvious way of deforming the UV completion in (4.1) would be to introduce nonderivative13 interactions between the
spectator χ and ψ . Trying to be as minimalistic as possible let us consider

LpUV;3 ¼
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂χÞ2 − 1

2
ð∂ϕÞ2 − 1

2
ð∂ψÞ2 − 1

2
M2ψ2 − αMϕψ2 − ϱMχψ2

�
; ðE1Þ

where we have only added the interaction −ϱMχψ2 leading
to a new vertex Vχψ2 ¼ −2iϱM. This introduces two
new diagrams contributing to the χϕ → χϕ scattering
shown in Figs. 12(a) and 12(b). Note that as in (3.3) this
new interaction would also introduce new terms such as
ϱ2

M2 Rμν∂μχ∂νχ in the IR theory. We shall not work out the IR
action explicitly here since it is equivalent to working at the
level of scattering amplitudes.

(i) The first diagram in Fig. 12(a) is entirely analogous
to the diagram shown in Fig. 6(b) and the amplitude
reads

iAχψ2ðs; tÞ

¼
Z

ddp
ð2πÞd V

2
χψ2ΔψðpÞΔψðpþ k2ÞΔψ ðp− k4Þ

×Vμν
M ðpþ k2; k4 −pÞDμν;αβðk1 þ k3ÞVαβ

0 ðk1; k3Þ:
ðE2Þ

Although slightly different in details the final result
for the finite s2 contribution gives again the second
equality in (B19) with α ↔ ϱ thus leading to the
same negative contribution

Aχψ2;s2ðs; tÞ ¼ −
ϱ2s2

90ð4πÞ2M2M2
Pl

þ � � � : ðE3Þ

(ii) The box diagram in Fig. 12(b) is new. Its amplitude
can be computed as

iAboxðs; t;uÞ ¼
Z

ddp
ð2πÞd V

2
ϕψ2V2

χψ2ΔψðpÞΔψðpþ k3Þ

×Δψðpþ k3þ k4ÞΔψðp− k1Þ
þ crossed diagrams; ðE4Þ

FIG. 12. The Feynman diagrams for the one-loop scattering processes contributing to χϕ → χϕ arising from the new UVoperators in
(E1). Wiggly lines correspond to graviton propagators, while bold lines correspond to the propagators of the heavy field ψ . (a) One-loop
diagram for Aχψ2 and (b) One-loop diagram for Abox.

FIG. 13. Scattering processes contributing to χϕ → χϕ at one-
loop from the ϕχ2 interaction. The wiggly line corresponds to the
graviton propagator. Note that the diagram on the right also
requires a χ4 self-interaction.

13One could in principle also introduce nonderivative inter-
actions directly between the light scalars χ and ϕ. The possible
cubic operators are ϕχ2 and χϕ2 with the corresponding addi-
tional scattering processes shown in Figs. 13 and 14. The
presence of light χ and ϕ loops in some of these diagrams will
again require that we introduce small nonzero masses for χ and ϕ
to regulate the amplitude. All these diagrams have been computed
earlier and always give negative s2 contributions to the total
amplitude. In turn, as was shown in Sec. D 2 quartic nonderiva-
tive interactions do not depend on s.
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where one also has to add the contributions from the
crossed diagrams, similarly as was done in Appen-
dix A. For the specific diagram in Fig. 12(b), the
various denominators can be combined by introduc-
ing three Feynman parameters x, y, z leading to

iAboxðs; tÞ ¼
16α2ϱ2M4

4

Z
ddp
ð2πÞd

Z
R

3!dxdydz
½k2 þ Δ�4 ;

where Δ≡M2 þ szðxþ yþ z − 1Þ − txy and the
factor 1=4 appears due to the symmetry of the dia-
gram; the integration region is R ¼ fx; y; z ∈
Rjx; y; z ≥ 0; xþ yþ z ≤ 1g. The momentum inte-
gral can easily be taken using (B2) leaving at t ¼ 0

Aboxðs; tÞ ¼
3α2ϱ2M2

4π2

Z
R
dxdydzz2ð−1þ xþ yþ zÞ2

× s2þOðt0Þ: ðE5Þ

Since in the integration region R the integrand is
positive, so is the integral (and equal to 1=1260)
and so is the contribution to the s2 term in the
scattering amplitude. Hence, the positive contribu-
tion of the box diagram could naively be used to
cancel the negative s2 contributions coming from
the processes shown in Figs. 6(a) and 12(a).
However, the situation here is in fact very similar
to what we have seen earlier in Sec. III when
discussing the positivity bounds (3.8) obtained
from the UV theory in (3.2). Also here the positive
contribution coming from the loop diagram in
Fig. 12(b) can be subtracted by the procedure of
improved positivity bounds.

We thus conclude that none of the possible renormalizable
interactions of the spectator field satisfy the new positivity
bounds.
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