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A Schrödinger picture description of the evolving quantum state of Hawking radiation is given, based
on an ADM decomposition using time slicings that smoothly cross the horizon. This treatment avoids
requiring a role for trans-planckian excitations, which can be viewed as artifacts of Hawking’s original
calculation, and also supports arguments that radiation from black holes is produced in a “quantum
atmosphere” with thickness comparable to the horizon size, rather than microscopically far from it.
Particularly explicit formulas are given for the two-dimensional analog of the Schwarzschild geometry.
This analysis is expected to generalize to other black holes, and to cosmology. The resulting quantum
evolution also provides important background for investigating corrections to the Hawking process, as are
necessary for restoring unitary evolution of black hole decay.
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I. INTRODUCTION

Hawking’s discovery [1] that black holes radiate has
had a continuing profound effect on the study of quantum
gravity, in large part through its challenge to unitarity of
quantum evolution. Its central role implies the importance
both of fully understanding the calculation, and of possible
modifications to it which can restore unitarity.
In particular, Hawking’s original calculation exhibited

certain pathologies, which have continued to be discussed
and debated both for black holes and in the analogous
treatment of cosmological production of fluctuations: a role
for ultrahigh-energy excitations, in principle far beyond
the Planck scale, as seen by observers falling through the
BH horizon.1

The role of these modes is related to the S-matrix form
of Hawking’s calculation, in which he considers specific
outgoing modes and traces them back to an origin near the
horizon. In contrast, it has seemed desirable to have a
description of the dynamical evolution of the state, to have
a more explicit description of the emergence of excitations
from the near-horizon region. Specifically, we might seek a
Schrödinger picture description of the time-dependent
evolution of the state near the black hole. One obstacle
here is that the usual Schwarzschild time becomes

pathological near the horizon, again leading one to consider
ultrahigh energy modes. But, other time slicings of the
geometry exist, with better behavior near the horizon, and
this suggests a regular dynamical description can be given
by following evolution on such a slicing.
Having an improved description of the evolving quan-

tum state of a black hole and its surroundings is also
important because we seek to understand modifications to
Hawking’s evolution, which restore unitary evolution.
These are expected to take the form of corrections that
transfer information (or entanglement) from the internal
state of the black hole to the outgoing radiation. If these are
small corrections, in an appropriate sense, to the Hawking
evolution, better understanding the background provided
by the latter is a key first step to describing their effect [3].
The question of the transplanckian modes and that of

unitary evolution are both connected to another question,
that of where radiation from a black hole originates.
A common view has been that Hawking radiation origi-
nates in high-energy excitations that are very near the
horizon, but physical tests, based for example on the
Stefan-Boltzman law and on the behavior [4–6] of
the stress tensor, have suggested a different interpretation,
in which these excitations originate in a “quantum atmos-
phere” with depth comparable to the Schwarzschild radius
[7] (see also [8], and [9–11] for earlier related arguments).
This question is important because it also helps guide
understanding of where Hawking’s analysis might be
modified. For example, if high-energy modes near the
horizon did play an important role, and their evolution is
also assumed to be modified, the result is a state that an
infalling observer perceives to contain high energy exci-
tations [12–15]. Such a “firewall” description was particu-
larly advocated in [14].
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1For one discussion of this problem, with connections to the
present analysis, see [2].
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If, on the other hand, the Hawking radiation originates
in a broader vicinity of the horizon, say comparable to its
size, and if Hawking’s description is modified on these
scales, that suggests a very different, “nonviolent” picture
[16–18, 3] of the unitarization of the Hawking process.
This paper will investigate the evolution of the Hawking

state, in a Schrödinger picture treatment that is based on
smooth slices that cut through the horizon and into the
black hole interior.2 This achieves an improved description
of the state, complementary to that of [1]. It also addresses
the transplanckian problem: as expected, the evolution does
not exhibit a role for very high-energy, or short wavelength,
excitations near the horizon. By comparing with the
original description given by Hawking, it is seen that
transplanckian effects are an artifact of the mode basis
that Hawking chose to analyze the radiation, and that basis
of course becomes singular at the horizon. This artifact is
removed in a different, “regular,” basis.
This regular description of the state then supports the

arguments [7] that the Hawking radiation does indeed
originate in excitations with horizon-size wavelengths, in a
comparably sized region of the horizon. The description of
the evolving quantum state of Hawking radiation then can
serve as a background on which to study effects that
unitarize the evolution, which are expected to be operative
on macroscopic rather than microscopic scales, for a large
black hole, extending the work of [3].
In outline, the next section describes various time

slicings of a Schwarzschild background, and describes
general Schrödinger evolution on such slicings. Section III
turns to study Hawking evolution on smooth slicings that
enter the horizon. Very explicit examples can be provided
for two-dimensional black holes. Calculation of the quan-
tum Hamiltonian reveals a description of the creation of
the Hawking excitations, and this occurs at longer wave-
lengths, rather than microscopic wavelengths. Other
aspects of the evolving state are also studied, including
the pairing (entanglement) between excitations inside and
outside the horizon. The last section closes with further
discussion of the transplanckian question, of generaliza-
tions to other black holes and to cosmology, and of a
possible connection to tunneling calculations of Hawking
radiation [21]. It also discusses the question of including
backreaction and evolution of the black hole spacetime, and
that of the ultimate unitarization of the evolution.

II. SCHRÖDINGER EVOLUTION
BETWEEN SLICES

A. Slicing black hole spacetimes

A dynamical description of the evolution of the quantum
state in the vicinity of a black hole (BH) can be given by

introducing a time slicing for the BH spacetime. We will
focus on Schwarzschild BHs, but the discussion should
extend to more general BHs. The D-dimensional
Schwarzschild geometry is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
D−2; ð2:1Þ

with dimension-dependent function fðrÞ ¼ 1 − μðrÞ. For
dimensions D > 3,

μðrÞ ¼
�
R
r

�
D−3

; ð2:2Þ

where R is the Schwarzschild radius. Equation (2.1) also
extends to two-dimensional BHs [6,22], with

μðrÞ ¼ e−2ðr−RÞ: ð2:3Þ

In general μðRÞ ¼ 1, and μðrÞ diverges at the singularity,
r ¼ 0 for D > 3, and r ¼ −∞ for D ¼ 2. It is also useful
to consider the metric in ingoing Eddington-Finkelstein
coordinates,

ds2 ¼ −fðrÞdxþ2 þ 2dxþdrþ r2dΩ2
D−2; ð2:4Þ

to eliminate the coordinate singularity at the horizon.
The geometry (2.1) does not fully describe a quantum

BH, since BH radiation will decrease the mass M of the
BH. However, the fractional change in M due to the
emission of one quantum of typical energy ∼1=R, over
a time ∼R, is Oð1=MRÞ, so a large quantum BH is
expected to be approximately described over a period
of many emissions by a stationary geometry of the form
(2.1) or (2.4). Stationarity corresponds to the symmetry
xþ → xþ þ ϵ in (2.4).
Spacelike Schwarzschild slices of constant t remain

outside the horizon. Smooth transhorizon spatial slices3

can be defined as in [17,3] by introducing a function sðrÞ
that asymptotes to r as r → ∞. Then, for a given time
parameter T, the slice is given by the solution to the
equation

T ¼ xþ − sðrÞ: ð2:5Þ

Asymptotically as r → ∞, these slices match the constant t
slices with t ¼ T, and under T → T þ ϵ, the slices translate

2For a preliminary discussion of this approach, see [3]; for a
related discussion, see [19,20].

3Previous use of certain such slices to study Hawking radiation
includes [23–26]. In particular, [24,25] used Lemaître coordi-
nates, in which the metric is explicitly time dependent, and used
approximation methods to derive certain properties of Hawking
radiation; this paper will instead focus on a general family of
coordinates in which the metric has a time-independent form,
with a resulting simplification in describing exact aspects of the
state.
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by the Schwarzschild time-translation symmetry. The
configuration of the slice near and within the BH depends
on the behavior of sðrÞ there. If sðrÞ is finite at the
singularity, the slices hit the singularity. We refer to such
slices as natural slices [27], since they exhibit the behavior
corresponding to time evolution naturally pulling observers
to r ¼ 0. A very simple example is the case [3] sðrÞ ¼ r
of “straight” slices, and another arises from Painlevé-
Gullstrand coordinates (see, e.g., [28]). If sðrÞ → −∞ at
some r ¼ Rn before reaching the singularity, the slices
instead avoid the singularity. Taking Rn < R gives exam-
ples of nice slices [29–31,17,3]. A special case of Rn ¼ R
returns one to the Schwarzschild t slices. The different
cases are illustrated in Fig. 1.
We will study the evolution of the quantum states on

such slices. To do so, it is useful to put the metric (2.1),
(2.4) in Arnowitt Deser Misner (ADM) form [32],

ds2 ¼ −N2dT2 þ qijðdxi þ NidTÞðdxj þ NjdTÞ: ð2:6Þ

The lapse N, shift Ni, and spatial metric qij for the slicing
determined by (2.5) are given by [3]

N2 ¼ 1

s0ð2− fs0Þ ; Nr ¼ 1− fs0; qrr ¼ s0ð2− fs0Þ;

ð2:7Þ

where Ni ¼ qijNj and s0 ¼ ds=dr. A useful alternate
choice of radial coordinate is to use

ρ ¼ sðrÞ: ð2:8Þ

Stationarity of (2.6) is seen through its T independence.
The unit normal to the slices is given by

nμ ¼ ð1;−NiÞ=N: ð2:9Þ

B. Schrödinger picture evolution
in curved spacetime

For simplicity we consider evolution of a massless scalar
ϕ, with Lagrangian

L ¼ −
1

2
gμν∂μϕ∂νϕ; ð2:10Þ

but the general analysis extends to other fields. Schrödinger
evolution is based on the canonical evolution. With the
metric in ADM form (2.6), the canonical momentum is

π ¼ ∂Tϕ − Ni∂iϕ

N
¼ nμ∂μϕ; ð2:11Þ

and the Hamiltonian becomes

H ¼
Z

dD−1x
ffiffiffi
q

p �
1

2
Nðπ2 þ qij∂iϕ∂jϕÞ þ Niπ∂iϕ

�
:

ð2:12Þ

Quantization is described by introducing the canonical
commutators

½πðxi; TÞ;ϕðxi0; TÞ� ¼ −i
δD−1ðx − x0Þffiffiffi

q
p ð2:13Þ

and the corresponding representation π ¼ −iδ=δϕ. Then,
the evolution operator is

UðT2; T1Þ ¼ exp

�
−i

Z
T2

T1

HdT

�
: ð2:14Þ

For a time-dependent Hamiltonian H, which would result
from a time-dependent background metric (2.6), there
are subtleties in defining the corresponding Schrödinger

FIG. 1. Shown are the four types of slices described in the
text, in an Eddington-Finkelstein diagram based on ingoing
coordinates. In addition to the familiar Schwarzschild slices,
there are nice slices, which asymptote to a constant r ¼ Rn,
natural slices, which reach r ¼ 0, and straight slices, which are
a special case of the latter. All slices asymptote to Schwarzs-
child time slices as r → ∞. The family of slices used to
parametrize the geometry is found by translating one of these
slices vertically in the figure, which corresponds to a Schwarzs-
child time translation, t → tþ Δt.
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evolution [33–36], but those are avoided for the stationary
geometries (2.6), (2.7).
In order to give a Fock space representation for the states

and their evolution, we need to introduce an appropriate
basis of mode functions. In general there is arbitrariness
in this choice. We can think of specifying such solutions to
the equations of motion by giving the data γiðxÞ ¼
ðϕiðxÞ; πiðxÞÞ at some time T. To quantize, one needs a
division into the analog of positive and negative frequency
modes, which can be provided by giving a mode basis that
has a complex structure [37,38,35] J distinguishing the
modes,

JγA ¼ iγA; Jγ�A ¼ −iγ�A: ð2:15Þ

(Examples will be provided shortly.) Then we use the
expansions

ϕðxi; TÞ ¼
X
A

½aAϕAðxiÞ þ a†Aϕ
�
AðxiÞ�;

πðxi; TÞ ¼
X
A

½aAπAðxiÞ þ a†Aπ
�
AðxiÞ�: ð2:16Þ

If the mode basis is normalized such that

ðγA; γBÞ ¼ δAB; ðγA; γ�BÞ ¼ 0; ð2:17Þ

with the norm (inherited from the symplectic form)

ðγ1; γ2Þ ¼ i
Z

dD−1x
ffiffiffi
q

p ðϕ�
1π2 − π�1ϕ2Þ ð2:18Þ

then the operators aA; a
†
B satisfy the commutators

½aA; a†B� ¼ δAB; ½aA; aB� ¼ ½a†A; a†B� ¼ 0: ð2:19Þ

The state that corresponds to the vacuum in this choice of
basis at an initial time T ¼ T0 is the state jψ ; T0i ¼ j0i
satisfying

aAj0i ¼ 0; ð2:20Þ

and excitations on this are built with the a†A. Schrödinger
evolution of an initial state is then described by the operator
(2.14), which can be rewritten in terms of the ladder
operators aA; a

†
A. In general, the initial vacuum state

evolves into a state that does not satisfy the vacuum
condition (2.20) at a later time. This contrasts with the
usual Heisenberg picture evolution, in which the state is
constant but the operators ϕ and π evolve with time.

III. HAWKING EVOLUTION ON SMOOTH SLICES

We next combine the preceding general description of
Schwarzschild evolution with the slicings of the previous

subsection, to describe dynamics in a BH background.
For simplicity, this paper will focus on the two-dimensional
case, but this work can be extended to higher dimensions
by using a spherical wave decomposition and the resulting
2d evolution with effective potentials.

A. Mode bases

Consider evolution on slices determined by a general
choice of sðrÞ. A first step is to describe a suitable basis of
modes. A 2d massless scalar decomposes into separate left-
and right-moving parts. This is seen explicitly by rewriting
the 2d metric (2.1), (2.3) as

ds2 ¼ −
dXþdX−

M − XþX− ; ð3:1Þ

using4

e2r ¼ M − XþX−; ð3:2Þ

X� ¼ �e�x� , and 2t ¼ xþ þ x−. Here the horizon r ¼ R
corresponds to X− ¼ 0 or Xþ ¼ 0, and M ¼ e2R; the right
BH exterior is Xþ > 0, X− < 0. Left and right movers are
then general functions of Xþ and X−, respectively. Since
we are interested in radiation, we focus on right-moving
modes. In the slice coordinates T, r, the right-moving
condition ∂þϕ ¼ 0 becomes

∂Tϕ ¼ −
f

2 − s0f
∂rϕ; ð3:3Þ

or, with π given by (2.11),

π ¼ −
∂rϕffiffiffiffiffiffi
qrr

p : ð3:4Þ

There are two particularly natural choices for mode bases
for these right movers.

1. Energy eigenmodes

The first choice is to consider definite frequency modes
with respect to T; in the exterior region, these are e−iωx

−
.

These modes feature prominently in Hawking’s original
calculation [1]. Using the coordinate relation

X− ¼ −e−x− ¼ −2 sinhðr − RÞeR−T−sðrÞþr; ð3:5Þ

derived from (2.5) and (3.2), we see that these modes
become singular at the horizon. Similar modes are defined
inside the horizon, X− > 0, by using a new coordinate x̂−,

X− ¼ ex̂
−
; ð3:6Þ

4We work in units where the parameter λ of [6] is set to one.
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to define modes e−iωx̂
−
. These are also clearly singular at

the horizon.
On a given time T slice, the outside modes correspond to

the initial data [from (3.4)]

γωðrÞ ¼
�
e−iωx

−ðrÞ;
iωffiffiffiffiffiffi
qrr

p ∂x−
∂r e−iωx

−ðrÞ
�

ð3:7Þ

and similarly for the inside modes. The inner product (2.18)
then becomes

ðγω; γω0 Þ ¼ 4πωδðω − ω0Þ; ð3:8Þ

and we can expand outside and inside solutions in the forms

ϕðxÞ ¼
Z

dω
4πω

½bωe−iωx− þ b†ωeiωx
− �;

ϕðxÞ ¼
Z

dω
4πω

½b̂ωe−iωx̂− þ b̂†ωeiωx̂
− �; ð3:9Þ

with normalizations

½bω; b†ω0 � ¼ ½b̂ω; b̂†ω0 � ¼ 4πωδðω − ω0Þ: ð3:10Þ

Corresponding to the singularity of these modes at the
horizon, the vacuum j0iB ¼ j0ij0̂i annihilated by bω and
b̂ω is also singular there; it is the 2d version of the Boulware
vacuum [39]. While states obtained by acting on this
vacuum by the corresponding creation operators are eigen-
states of the Hamiltonian, they are consequently not
expected to be physical states.

2. Regular modes

Physical states can be more easily described by using
modes that are regular at the horizon. Useful examples are
either the modes

ϕk ¼ eikr or ϕk ¼ eikρ; ð3:11Þ

on a constant T slice, with the latter defined using the radial
coordinate (2.8). The right-moving condition (3.4) then
implies corresponding momenta

πk ¼ −
ikffiffiffiffiffiffi
qrr

p eikr or πk ¼ −
ikffiffiffiffiffiffiffiqρρ

p eikρ; ð3:12Þ

respectively. In either case the modes γk ¼ ðϕk; πkÞ satisfy
the orthonormality condition

ðγk; γk0 Þ ¼ 4πkδðk − k0Þ; ð3:13Þ

as in (3.8). Both inside and outside the horizon, the field
and momentum can be written

ϕ ¼
Z

∞

0

dk
4πk

½akϕk þ a†kϕ
�
k�;

π ¼
Z

∞

0

dk
4πk

½akπk þ a†kπ
�
k�; ð3:14Þ

with commutators

½ak; a†k0 � ¼ 4πkδðk − k0Þ: ð3:15Þ

The vacuum j0i, satisfying

akj0i ¼ 0; ð3:16Þ

is now regular at the horizon, but since it is not an energy
eigenstate, has nontrivial evolution.
An important feature of these regular modes is that they

match the energy eigenmodes increasingly well as r → ∞.
This can be seen directly from the coordinate transforma-
tion (3.5), and the fact that sðrÞ → r in this limit.5

B. Quantum Hamiltonian

Evolution in either basis of modes is determined by the
quantum version of the Hamiltonian, found by inserting the
mode expansions (3.9) or (3.14) into (2.12). For right-
movers, using the sliced metric (2.7) and the right-moving
condition (3.4), the ADM Hamiltonian (2.12) simplifies to

H ¼
Z

dr
f

2 − fs0
ð∂rϕÞ2: ð3:17Þ

For the energy eigenmodes (3.7), this Hamiltonian
becomes

H ¼ 1

2

Z
dω
4πω

ωðb†ωbω − b̂†ωb̂ω þ H:c:Þ

¼
Z

dω
4πω

ωðb†ωbω − b̂†ωb̂ωÞ; ð3:18Þ

as anticipated; note that the normal-ordering constant
cancels. Notice also that this expression exhibits negative
energies for the modes inside the horizon, in line with
common statements. For the regular modes, we find the
more complicated expression

H ¼
Z

dk
4π

dk0

4π
½Aðk; k0Þa†kak0 þ Bðk; k0Þa†ka†k0 þ H:c:�

¼
Z

dk
4π

dk0

4π
½2Aðk; k0Þa†kak0 þ Bðk; k0Þa†ka†k0

þ B�ðk; k0Þakak0 � þ E0: ð3:19Þ

5They also closely match the modes e−ikX
−
near the horizon,

where the latter are also regular, but these X− modes are not well
behaved at infinity.
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with coefficients

Aðk; k0Þ ¼
Z

∞

−∞
dr

f
2 − fs0

∂rϕ
�
k∂rϕk0

kk0
;

Bðk; k0Þ ¼
Z

∞

−∞
dr

f
2 − fs0

∂rϕ
�
k∂rϕ

�
k0

kk0
; ð3:20Þ

and with E0 a normal-ordering constant which can be
subtracted from H. The form of the Hamiltonian (3.19)
makes the nontrivial evolution in the regular bases clear; it
includes creation of excitations through time evolution, in
these bases.

C. Evolution and structure of the state

We now consider evolution of a state that is the vacuum
j0i of (3.16) at an initial time, which may be chosen to be
T ¼ 0, so

jψ ; Ti ¼ e−iHT j0i: ð3:21Þ

This state is regular at the horizon, and is a good
candidate for the initial state of the BH. Other states that
are regular at the horizon can include additional initial
excitations in its vicinity, but those excitations in general
either evolve to infinity or to the singularity in a short
time; the condition of regularity at the horizon is expected
to be the key condition governing the correct long-time
evolution.
The long-time evolution of (3.21) will then yield con-

tinual production of excitations from the vicinity of r ¼ R,
as seen from the Hamiltonian (3.19). At r ¼ ∞, as noted
above, these behave just like ordinary positive-energy flat
space excitations; they comprise the Hawking emission
from the BH.
There are various checks on this. For example, while

the full evolution of the regular modes via H of (3.19) is
somewhat complicated, the high-energy spectrum of the
Hawking radiation can be inferred directly from this
expression. Consider, for simplicity, the case of straight
slices, sðrÞ ¼ r. In this case we find

Bðk; k0Þ ¼ −e−iðkþk0ÞR
Z

∞

−∞
dx tanh xe−iðkþk0Þx

¼ iπ
sinh½πðkþ k0Þ=2� e

−iðkþk0ÞR: ð3:22Þ

At large k, k0, Bðk; k0Þ ∝ e−πðkþk0Þ=2; for k ¼ k0 this
gives the expected thermal spectrum with temperature6

T ¼ 1=ð2πÞ. Notice also from (3.22) that the dominant

excitations are produced at wavelengths with k ¼ Oð1Þ,
and so there is no direct role for very high-energy modes;
these are only produced with the corresponding exponential
suppression.
Another aspect of the Hawking state is the characteristic

correlation between outgoing excitations and BH modes;
their entanglement is central to the information problem/
unitarity crisis. These correlations are of course present in
the description in terms of regular modes, but are more
obscure. One sees directly that the Hamiltonian (3.19)
creates correlated pairs of k excitations, and the phase in
(3.22) indicates that they are created in the vicinity of
r ¼ R. One way of characterizing the state jψ ; Ti is to
rewrite the condition akj0i ¼ 0 as

e−iHTakeiHT jψ ; Ti ¼ 0; ð3:23Þ

and the correlation between excitations can for example
be seen by expanding (3.23) in H. While in this basis it is
more difficult to exhibit the transhorizon nature of the
correlations, one finds an initial indication of this by
examining the time evolution of the T ¼ 0 mode
ϕ̃k ¼ eikðr−RÞ, which also simplifies in the straight slicing
to the form, from (3.5),

ϕ̃kðT; rÞ ¼ eik sinh
−1 ½e−T sinhðr−RÞ�: ð3:24Þ

This solution has an outgoing part with r ∼ T þ R, and an
ingoing part with r ∼ R − T.
The transhorizon correlations are most easily seen by

using the energy eigenbasis, and the equality of the
expressions (3.18) and (3.19) for the Hamiltonian. For
example, approaching infinity, as we have seen, the out-
going modes in the two bases become identical. Moreover,
the time translation symmetry ensures conservation of H.
From the expression (3.18), this conservation shows that an
outgoing positive energy excitation should be paired with
an effectively negative energy excitation, created by the
internal operators b̂ω.
This pairing can be made more explicit, in an

argument extending [41,42,40]. First, we have noted that
the transform to exterior coordinate x− given by (3.5) is
singular at r ¼ R,

x− ¼ − ln ½2 sinhðr − RÞ� þ T − Rþ sðrÞ − r: ð3:25Þ

However, if we analytically continue in the complex r
plane by placing the branch cut in the lower half plane,
the resulting analytic continuation f−ðrÞ is analytic
in the upper half r plane [assuming analyticity for sðrÞ],
and gives6See, e.g., [40].
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f− ¼
(
x− if r > R

−iπ − ln ½2 sinhðR − rÞ� þ T − Rþ sðrÞ − r ¼ −iπ − x̂− if r < R
: ð3:26Þ

Therefore, the functions

e−iωf
−ðrÞ ¼ θðr − RÞe−iωx− þ θðR − rÞe−πωeiωx̂− ð3:27Þ

are positive frequency with respect to r, and the corresponding operators

cω ¼ ζωðbω − e−πωb̂†ωÞ; ð3:28Þ

with ζω ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω

p
, annihilate the state jψ ; 0i ¼ j0i. Likewise, we can define the analytic continuation f̂−ðrÞ of x̂−

that places the branch cut in the lower half r plane and is analytic in the upper half plane, giving

f̂− ¼
�
x̂− if r < R

−iπ þ ln ½2 sinhðr − RÞ� − T þ R − sðrÞ þ r ¼ −iπ − x− if r > R
: ð3:29Þ

So, the functions

e−iωf̂
−ðrÞ ¼ θðR − rÞe−iωx̂− þ θðr − RÞe−πωeþiωx− ð3:30Þ

are also positive frequency with respect to r, and the
corresponding operators

ĉω ¼ ζωðb̂ω − e−πωb†ωÞ ð3:31Þ

also annihilate jψ ; 0i.
The equations

0 ¼ ðc†ωcω − ĉ†ωĉωÞjψ ; 0i ¼ ðb†ωbω − b̂†ωb̂ωÞjψ ; 0i; ð3:32Þ

for each ω, then imply the precise pairing and entanglement
between inside and outside excitations. Schematically, the
equality of the number operators in (3.32) implies

jψ ; 0i ∼
X
fnωg

CðfnωgÞjfcnωgijfnωgi; ð3:33Þ

where jfnωgi, jfcnωgi are occupation number eigenstates,
and CðfnωgÞ are coefficients that can be determined by the
conditions that cω and ĉω annihilate the state. The result is

jψ ; Ti ∼ C
X
fnωg

e−π
R

dωωnω jfcnωgijfnωgi; ð3:34Þ

with C a normalization constant. However, this expression
is somewhat formal, since the state jψ ; Ti does not actually
lie in the product Hilbert space, due to the type-III property
of the von Neumann algebra (i.e., infinite entanglement).
The pairing conditions for jψ ; Ti can alternately be for-
mulated in terms of the ak operators, by transforming back
to that basis. This pairing condition also ensures regular

behavior of interactions with infalling matter. This looks
unexpected from the viewpoint of the energy eigenbasis,
since the state contains high energy b†ω and b̂†ω excitations
near the horizon, but their pairing leads to a cancellation
between the corresponding pieces of the stress tensor [43]
and its contribution to gravitational interactions.
Another aspect of the state that is evident from (3.17) is

the freezing of the evolution [30] at r ¼ Rn in the case of a
nice slicing, due to infinite s0 forcing the Hamiltonian
density to vanish. Other features of the state can be
investigated, but are deferred for future work, where
modifications [3] that unitarize evolution will also be
further investigated.

IV. CONSEQUENCES, CONNECTIONS, AND
GENERALIZATIONS

Hawking’s original derivation [1], and subsequent reder-
ivations, have used methods which exhibit a transplanckian
problem, of referring to ultrahigh-energy excitations near
the horizon. In the present description, that corresponds to
formulating the description of the state in terms of the
energy eigenmodes, which are singular at the horizon
precisely due to this transplanckian behavior. This has
led to a lot of discussion of the role and meaning of
transplanckian modes, suspicion that the calculation should
be modified, etc.
However, the preceding analysis should help make it

clear that these problems are an artifact of using a singular
basis for the modes. If one alternately uses a regular basis,
like that of the regular modes, we have seen that there is no
explicit role for transplanckian excitations. The price paid
is that the evolution, governed by (3.19), is more compli-
cated to describe. The relevant dimensionful scales are of
order the Hawking temperature T ¼ 1=ð2πÞ and the state
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evolves adiabatically on shorter length scales. Indeed, it
appears possible (though we will not explicitly do
so here) to formulate the description of the evolving state
jψ ; Ti in the context of a cutoff version of the theory, with
cutoff at a subplanckian k, eliminating any transplanckian
dependence.7

While for simplicity the preceding analysis focused on
the two-dimensional case, the analysis should generalize
to the higher-dimensional case. Then, the scales entering
the expressions (3.19), (3.20), and (3.22) will be set by the
horizon radius R.
The role of the ultrahigh-energy modes in Hawking’s

calculation has also led some to conclude that the Hawking
radiation is “produced” in a region microscopically close to
the horizon. In contrast, arguments have been given based
on physical tests that it is more physical to describe the
Hawking radiation as produced in a “quantum atmosphere”
region of size Δr ∼ R near the horizon [7] (see also [8]).
The description of the evolving state given above also
supports the latter interpretation: the Hawking modes,
which escape to infinity with characteristic wavelength
λ ∼ R, are produced by the Hamiltonian (3.19) in a region
of size ∼R near the horizon; this is directly connected to the
absence of a role for ultraplanckian modes, which are also
those ultranear the horizon.
The analogy between Hawking radiation and cosmo-

logical production of fluctuations during inflation is well
known, and we expect that similar conclusions extend to
that case as well: evolution can be described without
invoking transplanckian excitations, and fluctuations are
produced at a characteristic length scale given by the
horizon size. However, the nontrivial time dependence
there is an additional complication which we defer to
future work.
It is likewise expected that a similar analysis can be

carried out for the cases of charged and rotating
black holes.
It also appears that it should be possible to connect the

analysis we have described, based on a stationary slicing of
the metric, to efforts to provide a tunneling description of
the Hawking process. In particular, the analysis of [21] is
based on the Painlevé coordinates, which give a special
case of a stationary slicing. It seems plausible that a more
general analysis, connecting to a first quantized picture,
might be given.

Of course, the most important questions involve depar-
tures from the stationary evolution of the Hawking state.
Specifically, we can work perturbatively in the gravitational
coupling G. The outgoing particles will be gravitationally
dressed [44], and will carry away energy and lower the BH
mass. It is plausible that a perturbative description of the
effect of this backreaction can also be treated, beginning
with the evolving state description that we have given, by
including the metric perturbations and their coupling to the
stress tensor.
Once backreaction is accounted for, we know that we

will encounter the ultimate problem of unitarity. The
preceding analysis reproduces the known entanglement
of the Hawking radiation with internal excitations of the
BH. Local quantum field theory does not provide a
mechanism for this entanglement to transfer to the outgoing
radiation, so if the BH shrinks and disappears, unitarity is
violated. Thus, in order to save unitarity, new interactions
appear to be required to transfer this entanglement to the
outgoing state [3,16–18,27]. If one assumes that these
interactions are only present to modes within a microscopic
cutoff scale of the horizon, a firewall results [12–15]. While
such a hypothesis is motivated by a picture in which the
Hawking radiation is produced at these microscopic scales,
the contrasting view, advocated in [7] and supported by the
analysis here, that Hawking excitations are produced in a
vicinity of size ∼R near the horizon, also suggests that the
new interactions that unitarize evolution are operative on
these scales [3,16–18].
It has been argued that such unitarizing interactions might

be viewed as a small, in an appropriate sense, correction to
the Hawking evolution. If so, the analysis of this paper is
also helpful for that, as it provides the background evolution
of the state, on top of which the additional corrections of
the interactions can be described [3]. Specifically, starting
with a parametrization of Schrödinger evolution, it should
be possible to describe these interactions in an effective
approach in terms of additional contributions to the
Hamiltonian, which transfer entanglement from the BH
state to outgoing radiation. The explicit parametrization of
the background Hawking state and evolution should serve as
a useful tool in this analysis.
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