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The regularization of quantum electrodynamics in the space of functions ψaðxÞ, which depend on both
the position x and the scale a, is presented. The scale-dependent functions are defined in terms of the
continuous wavelet transform in R4 Euclidean space, with the derivatives of Gaussian served as mother
wavelets. The vacuum polarization and the dependence of the effective coupling constant on the scale
parameters are calculated in one-loop approximation in the limit p2 ≫ 4m2.
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I. INTRODUCTION

This paper was initially conceived as an erratum to the
paper [1], where we have found technical errors in the
evaluation of one-loop diagrams [Eqs. (34) and (36)] in
wavelet-based quantum electrodynamics (QED). However,
it was found later that a simple model of wavelet-based
QED, briefly described in the aforementioned paper, can
shed some new light on the scale dependence of the
coupling constant on the observation scale in an Abelian
gauge theory—starting from completely finite quantum
field theory model with no need of renormalization.
In the previous papers [1,2], the possibility to construct a

finite theory of scale-dependent fields ψaðxÞ was devel-
oped, where the field ψaðxÞ describes the fluctuations of
typical size a. In this paper, we make a simplifying
assumption that all measurable quantities can be deter-
mined in terms of effective fields ψAðxÞ ∼

P
A≤a≤∞ ψaðxÞ

(with the meaning of the sum clarified later in the text),
which are the sums of all fluctuations larger than the
observation scale A. This approach allows us to start with a
standard QED Lagrangian at large scales, with the “bare”
coupling constant understood as a physical electron charge
e2
0

4π ≈
1

137
. In this sense, our approach of integrating from

large scales to small scales is opposite to that used in
standard renormalization group (RG) calculations [3],

where the bare charge is formally located at infinitely
small scales. The physical results at any finite observation
scale, of course, should not depend on the direction in
which we sum the fluctuations of different scales.
Wavelets have been entering different branches of

physics since the late 1980s as an efficient tool for data
processing. The main idea of wavelet transform is to unfold
a function, an image, or other types of data gradually, scale
by scale, from the coarsest scale to the finest details. In
some sense, the idea of wavelet transform is reverse to the
renormalization procedure, Kadanoff’s blocking, etc.
Renormalization gradually integrates out the details of
finer scales in order to obtain effective interaction at a
coarser scale. The wavelet representation gradually adds
the details of finer scales to reconstruct the detailed picture
starting from the coarsest snapshot. Both procedures are
essentially related to the idea of self-similarity, which can
be easily implemented in Euclidean space. That is why
most known applications of wavelets to quantum field
theory problems deal either with the lattice regularization or
with the Euclidean versions of quantum field theory (QFT)
models [4,5]. More recent applications of wavelets to lattice
theories are related to the so-called multiscale entanglement
renormalization [6]; some recent results can be found
in [7,8].
Naively, one could expect that the results obtained with

wavelets in Euclidean QFT models can be analytically
continued to the Minkowski space. This is not so straight-
forward, since the introduction of a new scale variable
implies the ordering of field operators in both the time and
the scale arguments. The construction of consistent theory
directly in Minkowski space still remains an open problem.
Most likely, the solution of this problem can be found using
the light-front coordinates, as suggested in [9–12]. The
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research in this direction is going on but is not a subject of
this paper. Since this is not done yet, we study quantum
field theory problems in Euclidean settings.
The remainder of this paper is organized as follows: In

Sec. II, we summarize the scale-dependent approach to
QED, described in the previous paper [1], and present the
results of one-loop calculations performed in Euclidean R4

space, with two different wavelets, viz. the first and the
second derivatives of the Gaussian. Section III accounts for
the role of gauge invariance and corresponding Ward-
Takahashi identities, which stem from this invariance. We
have shown by direct calculation that in the theory with
local gauge invariance, ψðxÞ → e−{eΛðxÞψðxÞ, defined for
local fields, the Ward identity ∂μΠμν ¼ 0 is violated for any
finite scale A > 0. In the Conclusions, we summarize the
reasons for violation of a locally defined gauge invariance
by finite-scale wavelet calculations and propose to sub-
stitute it by the scale-dependent gauge invariance, which
has been already considered by different authors [2,13].

II. WAVELET-BASED REGULARIZATION
IN QUANTUM ELECTRODYNAMICS

Quantum electrodynamics was the first quantum field
theory model to face the problem of deriving finite
observable quantities—physical charge and physical mass
of the electron—from formally divergent Feynman inte-
grals. A formal solution of this problem has been found in
terms of the renormalization group (RG) formalism
[14,15], which is physically related to the assumption of
self-similarity of underlying physical processes [16]. The
renormalization procedure consists of two steps. The first
step is the regularization—formal subtraction of the
divergent parts of Feynman integrals. The second step is
the multiplicative renormalization of the fields and the
model parameters so that the theory of new (renormalized)
fields becomes finite. Different technical means of regu-
larization have been proposed, see, e.g., [17,18]. Most of
them are essentially based on subtracting infinities from the
Green functions defined in a space of square-integrable
functions of either Minkowski or Euclidean coordinate.
However, there is an alternative point of view on the

divergences in quantum field theory [19]. An attempt to
measure any physical field sharp at a point x, with an
infinite resolution a → 0, inevitably demands an infinite
energy injection with a momentum of order ℏ

a, which
would certainly destroy the system to be measured. This
makes the pointwise definition of fields physically
meaningless. As it concerns phenomenology, the initial
and the final states of particles in high-energy physics
experiments are usually determined in momentum space,
i.e., in the basis of plane waves. For this reason, the
results of measurements are considered as functions of
different form factors, dependent on squared momentum
transfer Q2 [20]. Q2 partially plays the role of an

observation scale, but this approach cannot completely
reveal the spatial structure of interactions. This is because
the Fourier transform, being based on the group of
translations, is nonlocal, and the study of the Q2

dependence does not allow for revealing of local details.
There is a counterpart of such incompleteness in classical

physics. Suppose we have a system with two high-fre-
quency harmonics ω1 andω2, the difference between which
is a low-frequency harmonic: Δω ¼ jω1 − ω2j ≪ ω1þω2

2
.

Measuring the spectrum of such system we can observe a
low-frequency harmonic Δω, but we cannot be sure,
whether it originates from the existing large-scale struc-
tures, or it is just an artifact of beating between the two
high-frequency harmonics—unless we extend the fre-
quency measurements (ω) to frequency-scale measure-
ments (ω, a), and find out whether our observation
comes from large a or from small a values. This method
is often used in geophysics [21].
By analogy, we think a phenomenologically consistent

description of physical fields should incorporate both the
position (x) and the scale (a). The more parameters we have
the more detailed information we can get.
A technical way to the construction of quantum field

theory models for the fields ψaðxÞ that depend on both the
coordinate and the scale (resolution) from the very begin-
ning is provided by continuous wavelet transform [1,19].
The scale-dependent Green functions hψa1ðx1Þ…ψanðxnÞi
are finite by construction.
The simplest way to construct a field theory for the scale-

dependent fields ψaðxÞ is to express the fields ψðxÞ ∈
L2ðRdÞ in terms of their wavelet transform

ψðxÞ ¼ 1

Cχ

Z
Rþ⊗Rd

1

ad
χ

�
x − b
a

�
ψaðbÞ

daddb
a

ð1Þ

in the original quantum field theory model built for the
fields ψðxÞ. Here χðxÞ is some well-localized function (see,
e.g, [22] for more details of the wavelet transform), usually
referred to as amother wavelet, or a basic wavelet. Cχ is the
normalization constant defined below. The coefficients

ψaðbÞ ≔
Z
Rd

1

ad
χ̄

�
x − b
a

�
ψðxÞddx ð2Þ

are known as wavelet coefficients of ψ with respect to the
mother wavelet χ. In fact, the transform (1) is a particular
case of the partition of unity with respect to square-
integrable representation UðgÞ; g ∈ G of a Lie group G:

1̂ ¼ 1

Cχ

Z
G
UðgÞjχidμLðgÞhψ jU†ðgÞ;

for the case of G being the affine group G∶x0 ¼ axþ b;
a ∈ Rþ; b; x ∈ Rd [23]. Here we have simplified the matter
assuming the basic wavelet χ to be isotropic, and exclude
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SOðdÞ rotations from the left-invariant measure dμLðgÞ on
the Lie group G.
For an isotropic wavelet χ the sufficient condition to

ensure that the wavelet transform (2) is invertible and its
inverse (1) identically recovers the function ψðxÞ, is a finite
normalization of the basic wavelet χ with respect to the
group of scale transformations, defined as

Cχ ¼
Z

∞

0

jχ̃ðakÞj2 da
a

< ∞: ð3Þ

Tilde means the Fourier transform: χ̃ðkÞ ¼ R
e{kxχðxÞdx.

More details on continuous wavelet transform can be found
in many monographs, e.g., in [22,24].
In common quantum field theory models, say in the ϕ4

model, the field function ϕðxÞ is a scalar product of the state
vector of the field jϕi, and a state vector which corresponds
to localization at the point x: ϕðxÞ ≔ hxjϕi. Similarly, in
wavelet-based theory

ψaðxÞ ¼ hx; a; χjψi;
where the lhs of the scalar product corresponds to the
settings of measurement, which can be potentially per-
formed on the field ψ by a device described by the aperture
function χ—this is an interpretation borrowed from optics
[25]. The reason for the introduction of the parameters of
observation ðχ; aÞ into the definition of fields is a potential
benefit of getting a field theory finite by construction.
Why should we use something else than the standard

basis of plane waves? The basis of plane waves is the
simplest basis used for analytical calculations in QED, and
it is phenomenologically adequate to the registration of
particles far from reaction domain. However, it is not the
ultimate one. Depending on the symmetry of the problem,
some other bases may be used to effectuate the calculations.
For the symmetry reason, considering the QED of an atom
near a curved metallic surface the calculations can be
performed in a basis of spherical functions [26].
In high-energy physics experiments the detectors are far

from the reaction center, and there is no need to look for
localized solutions to effectuate the calculations. On the
other hand, the calculations in the basis of plane waves
suffer from formal divergences, and for this reason, since
the restrictions on the basic wavelet χ in (1) are very loose,
we can attempt to use a localized basis to find a better
solution than the standard one.
By analogy with optics, we can expect that the best basic

function would be the aperture function of measuring
device [25], but such functions are not feasible for
analytical calculations. For this reason, we have either to
use some simple function, which enables for analytical
calculations, and in some sense resembles the aperture, or
to do the calculations numerically.
Clearly, it still remains practically unfeasible to use a real

aperture function of a physical device in analytical calcu-
lations. For this reason, we have to use some simple

localized functions, satisfying the admissibility condition
(3), as a mother wavelet in our calculations. Alternatively,
the use of (discrete) wavelet transform in gauge theories has
been first proposed in the context of QCD [27], but has not
succeeded for a number of reasons. First, the wavelet
transform is a linear integral transform. Hence, it respects
the linearity of the gradient transform of gauge fields in the
Abelian gauge theory, but does not behave so for non-
Abelian (i.e., nonlinear) gauge theories. Second, the lin-
earity of wavelet transform imposes a question of whether
we can respect the local gauge invariance of the matter
fields: ψðxÞ → e−{αðxÞψðxÞ. This question is partially dis-
cussed in [2]. Third, the introduction of the scale argument
into the definition of quantum fields imposes two types of
causality conditions: the standard (signal) causality, which
provides the time ordering in Minkowski space, and the
causality between the small and the large scales (the part—
the whole relations) [28–30]. Of course, this does not
preclude either to use discrete wavelet transform with the
summation over a discrete set of scales [4,31] or to combine
wavelet transform with light-front variables, which seems
better from the standpoint of causality [11,12].
The results obtained with different basic wavelets may be

different from each other—same as the pictures in optical
microscopy obtained with different apertures. The invari-
ants, such as the total current, should be the same. This is
rather similar to standard calculations, where we have to
integrate over the momentum range of the detector to
estimate the probability of particle detection. In the case of
wavelets, one should perform the integration in both the
momentum range and the scale range, which depend on the
chosen basic wavelet.
We skip these difficult questions now (but keep them for

future research), and will concentrate on the Euclidean
model, where the scale parameter, considered in Euclidean
space, is merely the best attainable resolution. In this way,
we assume that “physical” fields are sums of all scale
components up to the best resolution A:

ψ ðAÞðxÞ ¼ 1

Cχ

Z
a≥A

χ

�
x − b
a

�
ψaðbÞ

dadb

a
: ð4Þ

In this sense, wavelet-based regularization in quantum field
theory is similar to the momentum cutoff Λ, but has an
advantage of respecting translation invariance and the
momentum conservation of each vertex of the Feynman
diagrams.
We start with the (Euclidean) QED Lagrangian,

LE ¼ ψ̄ðxÞðDþ {mÞψðxÞ þ 1

4
FμνFμν þ

1

2α
ð∂μAμÞ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gauge fixing

;

where Fμν ¼ ∂μAν − ∂νAμ; Dμ ¼ ∂μ þ {eAμ; ð5Þ
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and α is the gauge-fixing parameter, with the Euclidean
gamma matrices obeying the anticommutation relation

γμγν þ γνγμ ¼ −2δμν ð6Þ
in d ¼ 4 dimensions. Slashed vectors mean the convolution
with the Dirac gamma matrices: D≡ γμDμ. In this paper
we use Euclidean notation, so all indices are the sub-
scripts: ab≡ aμbμ.
The generating functional of the quantum field theory

model

ZE½J;η; η̄�

¼
Z

DADψ̄Dψ exp
�
−
Z

LEddx

−
Z

ðJμðxÞAμðxÞþ {ψ̄ðxÞηðxÞþ {η̄ðxÞψðxÞÞddx
�

ð7Þ

[where ηðxÞ and η̄ðxÞ are formal Grassman-valued source
fields, and JμðxÞ is a formal vector source corresponding to
electromagnetic field] can be made into the generating
functional for the scale-dependent fields [Aμ;aðxÞ; ψ̄aðxÞ;
ψaðxÞ] by the expression of the original fields in terms of
(1). This gives

ZW ½Ja; ηa; η̄a�

¼
Z

DAaDψ̄aDψa

× exp

�
−SW ½Aa; ψ̄a;ψa� −

Z
Jμ;aðxÞAa;μðxÞ

ddxda
Cχa

− {
Z

ψ̄aðxÞηaðxÞ
ddxda
Cχa

− {
Z

η̄aðxÞψaðxÞ
ddxda
Cχa

�
;

ð8Þ

where the “action functional” SW ½Aa; ψ̄a;ψa� is a nonlocal
functional obtained by substitution of (1) into Euclidean
action functional SE ¼ R

LEddx, see [1] for details.
This substitution takes the most simple form in Fourier

representation, where the convolutions become products. In
momentum space, the inverse wavelet transform (1) for any
field ψ becomes

ψðxÞ ¼ 1

Cχ

Z
∞

0

da
a

Z
ddk
ð2πÞd e

−{kxχ̃ðakÞψ̃aðkÞ; ð9Þ

where

ψ̃aðkÞ ¼ χ̃ðakÞ ψ̃ðkÞ ð10Þ

is wavelet image of the field ψ written in Fourier repre-
sentation. The relations (9) and (10) provide a set of simple
rules for building Feynman diagrams for scale-dependent
fields [19]:

(i) Each field ψ̃ðkÞ will be substituted by the “scale
component” (10): ψ̃ðkÞ → ψ̃aðkÞ ¼ χ̃ðakÞ ψ̃ðkÞ.

(ii) Each integration in momentum variable is accom-
panied by corresponding scale integration:

ddk
ð2πÞd →

ddk
ð2πÞd

da
a

1

Cχ
:

(iii) Each interaction vertex is substituted by its wavelet
transform; for the Nth power local interaction vertex
this gives multiplication by factor

Q
N
i¼1 χ̃ðaikiÞ.

This means we have changed the coordinates x [or p] on the
translation group to the coordinates (x, a) [or (p, a)] on the
affine group and we go on with the integration over the left-
invariant measure on the affine group.
Since Eq. (9) contains the integration in a full range of

scales
R
∞
0

da
a , providing an identity (1) by doing so, the

integration over all scale arguments in infinite limits would
certainly drive us back to the common divergent theory.
Here is a point to make some physical assumptions. If we

admit that our hypothetical equipment has the best reso-
lution scale A—which corresponds to the minimal of all
scales of the external lines of a Feynman diagram of a
process we are going to measure—then the integration over
the scale arguments of all internal lines will be restricted to
the range

R
∞
A . This is an assumption that the modes of

scales smaller than the best resolution are not excited [32].
It makes all Feynman diagrams integrated in this way UV
finite.
In Euclidean QED we have the following elements of

Feynman diagrams:
propagator of the spin-half fermion:

photon propagator (taken in Feynman’s gauge):

fermion-photon vertex:

Since each internal line in a Feynman diagram is connected
to two vertexes, from the left and from the right, the
integration in the left and the right scale arguments,
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according to the above imposed scale-limitation rule,
results in a multiplier

Z
∞

A

jχ̃ðaLkÞj2
aLCχ

daL

Z
∞

A

jχ̃ð−aRkÞj2
aRCχ

daR ¼ f2ðAkÞ; ð11Þ

where

fðxÞ ¼ 1

Cχ

Z
∞

x

χ̃ðaÞ
a

da ð12Þ

is the wavelet cutoff function, which satisfies an evident
condition fð0Þ ¼ 1. If we are not interested in how the
fields of different scales ψ̄aðxÞ, ψa0 ðx0Þ and Aμ;a00 ðxÞ interact
with each other but are interested only in the total effect of
all fluctuations of scales larger than a, we can merely insert
the wavelet cutoff factors in all internal lines of Feynman
diagrams.
In our calculations, we use different derivatives of the

Gaussian as mother wavelets. The admissibility condition
(3) is rather loose: practically any well-localized function
with the Fourier image vanishing at zero momentum
χ̃ð0Þ ¼ 0 obeys this requirement. As for the Gaussian
functions

χnðxÞ ¼ ð−1Þnþ1
dn

dxn
e− x2

2ffiffiffiffiffiffi
2π

p ; n > 0; ð13Þ

where x is a dimensionless argument, they are easy to
integrate in Feynman diagrams. The graphs of the first two
wavelets of the (13) family,

χ1ðxÞ ¼ −
xe−

x2
2ffiffiffiffiffiffi

2π
p ; χ2ðxÞ ¼

ð1 − x2Þe−x2
2ffiffiffiffiffiffi

2π
p ;

are shown in Fig. 1. Their Fourier images are

χ̃nðkÞ ¼ −ð{kÞne−k2
2 : ð14Þ

Respectively, the normalization constants and the wavelet
cutoff functions are

Cχn ¼
ΓðnÞ
2

; fχnðxÞ ¼
Γðn; x2Þ
ΓðnÞ ;

where Γð·Þ is the Euler gamma function, and Γð·; ·Þ is the
incomplete gamma function. For the first two wavelets the
wavelet cutoff functions are

fχ1ðxÞ ¼ e−x
2

; fχ2ðxÞ ¼ ð1þ x2Þe−x2 : ð15Þ

We will now proceed to the calculation of one-loop
diagrams in wavelet-based Euclidean QED. These are the
vacuum polarization diagram and the fermion self-energy
diagram, shown in Figs. 2 and 3.

A. Vacuum polarization diagram

First we calculate the vacuum polarization diagram
shown in Fig. 2. For the convenience of calculations, we
symmetrize the loop momenta. The external lines of the
diagram are labeled by scale arguments a and a0. So,
according to the assumptions made above, the integration
in scale arguments in the fermion loop is limited from
below by the minimal scale A ¼ minða; a0Þ. In contrast to
the paper [1], intended for calculation of the Green
functions of scale-dependent fields hψa1ðx1Þ…ψanðxnÞi,
here we do not specify any propagators on external lines so
that the results can be taken as usual diagrams regularized
to a scale A. That is why the wavelet factors are omitted in
the definitions of 1PI diagrams. Doing so, we get the
expression for the vacuum polarization diagram:

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-4 -2  0  2  4

χ(
x)

x

χ1 (x)
χ2 (x)

FIG. 1. First two wavelets of the Gaussian wavelet family (13).

FIG. 2. Vacuum polarization diagram in scale-dependent QED.

FIG. 3. Fermion self-energy diagram in scale-dependent QED.
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ΠðAÞ
μν ðpÞ ¼ −e2

Z
Spðγμðqþ p

2
−mÞγνðq − p

2
−mÞÞ

½ðqþ p
2
Þ2 þm2�½ðq − p

2
Þ2 þm2�

× FAðp; qÞ
d4q
ð2πÞ4

¼ −4e2
Z

2qμqν − 1
2
pμpν þ δμνðp

2

4
− q2 −m2Þ

½ðqþ p
2
Þ2 þm2�½ðq − p

2
Þ2 þm2�

× FAðp; qÞ
d4q
ð2πÞ4 : ð16Þ

Here we use the function SpðÞ to denote the trace of the
Dirac gamma matrices. The wavelet cutoff function
FAðp; qÞ is the product of wavelet cutoff functions of
the loop momenta:

FAðp; qÞ ¼ f2
�
A
�
p
2
− q

��
f2
�
A
�
p
2
þ q

��
: ð17Þ

Let us start the calculations with χ1 wavelet. In this case
[Eq. (15)],

FAðp; qÞ ¼ e−A
2p2−4A2q2 ;

and we have the integral

ΠðA;χ1Þ
μν ¼ −

e2p2

π3
e−A

2p2

Z
∞

0

dyye−4A
2p2y2

Z
π

0

dθ sin2θ

×
2yμyν − 1

2

pμpν

p2 þ δμνð14 − y2 − m2

p2Þ

½
1
4
þy2þm2

p2

y þ cos θ�½
1
4
þy2þm2

p2

y − cos θ�
; ð18Þ

where we have introduced a dimensionless vector y in the
direction of loop momentum: q ¼ jpjy, with θ being the
angle between p and q. The integral (18) can be evaluated
analytically in relativistic limit p2 ≫ 4m2. This gives

Πμν ¼ IT

�
δμν −

pμpν

p2

�
þ IL

pμpν

p2
;

IT ¼ e2p2

48π2s3
½ð4s2 − 2s − 1Þe−2s þ ð1þ s − 4s2Þe−s

þ 4s3ðEi1ðsÞ − 2Ei1ð2sÞÞ�;

IL ¼ e2p2

16π2s3
e−2sððs − 1Þes þ 1Þ; ð19Þ

where s≡A2p2 is a dimensionless scale argument,
Ei1ðzÞ ¼

R∞
1

e−xz
x dx is an exponential integral of the first

type. The details of the calculations are presented in the
Appendix A. As we can see from Eqs. (A10) and (A11),
the longitudinal part of Πμν does not vanish in the limit of
s → 0. In this sense, the wavelet observation scale A plays
the role of inverse regularizing mass 1

M of the Pauli-Villars
regularization [33]. In contrast to dimensional regulariza-
tion, where qμqν and 2q2 terms cancel each other in the
sense of leading divergences, this does not happen in the
theory with a finite scale A and local gauge invariance.
There may be different reasons for that. First, the finite
terms, neglected by dimensional regularization turn into
the scale-dependent contributions, which cannot be
neglected in our case. Second, the scale A is a scale in
Euclidean space and we cannot match it exactly to what is
measured in Minkowski space. Third, changing the
coordinates from x to ðx; aÞ we need to pay extra attention
to what is gauge invariance in scale-dependent settings
[2]—the consideration presented above ignored this com-
pletely by making the standard assumption of local gauge
invariance.

B. Fermion self-diagram

The loop integral of the fermion self-energy diagram,
shown in Fig. 3, has the form

ΣðAÞðpÞ ¼ −{e2
Z

d4q
ð2πÞ4

FAðp; qÞγμ½p2 − q −m�γμ
½ðp
2
− qÞ2 þm2�½p

2
þ q�2 : ð20Þ

As in the previous example, A is the minimal scale of all
external lines A ¼ minða; a0Þ. We will calculate the dia-
gram (20) with the wavelet-cutoff functions FAðp; qÞ for
both χ1 and χ2 wavelets (15).
Using the identities for Euclidean gamma matrices, and

assuming the relativistic limit p2 ≫ 4m2 for simplicity of
calculations, we rewrite (20) in the form

ΣðAÞðpÞ ¼ −{e2
Z

d4y
ð2πÞ4 FAðp; jpjyÞ

ðpþ 4m − 2jpj=yÞ
½y2 þ 1

4
− y cos θ − m2

p2 �½y2 þ 1
4
þ y cos θ� ; ð21Þ

where the term proportional to =y in the numerator can be ignored, if we make the denominator symmetric with respect to the
inversions by omitting the mass term in the fermion propagator. For the same reason of relativistic approximation
p2 ≫ 4m2, we can regard the mass term in the numerator as negligible in comparison to =p.
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Under the above-made assumptions, taking the wavelet cutoff function of the type χ1 [Eq. (15)], we can easily see that

ΣðAÞ
χ1 ðpÞ ¼ −

{e2pe−s

16π4

Z
dyye−4sy

2

sin2θdθ
ðyþ 1

4yÞ2 − cos2θ
¼ −

{e2e−s

4π3
Jp;

where the integral J is given by (A5). Thus we get

ΣðAÞ
χ1 ðpÞ ¼ −

{e2

16π2

�
2Ei1ð2sÞ − Ei1ðsÞ −

e−2s

s
þ e−s

s

�
p: ð22Þ

C. Fermion-photon vertex

The one-loop contribution to the fermion-photon vertex is shown in Fig. 4. Since the bare fermion-photon vertex is−{eγρ,
we similarly normalize the vertex function:

−{eΓðAÞ
ρ ðp1; p2; p3Þ ¼ −{eγρ þ ð−{eÞ3

Z
d4l
ð2πÞ4

γμ{ð=l2 þmÞγρ{ð=l1 þmÞγμ
ðl22 þm2Þðl21 þm2Þl23

f2ðAl1Þf2ðAl2Þf2ðAl3Þ; ð23Þ

where fðxÞ is the wavelet-cutoff function given by (12). To
get rid of the angle dependence in the wavelet cutoff factors
we have symmetrized the loop momenta:

l1¼ lþp3−p2

3
; l2¼ lþp1−p3

3
; l3¼ lþp2−p1

3
:

To calculate the one-loop contribution to the vertex let us
consider the decay of a photon with momentum p3 ¼ p
into a fermion-antifermion pair. This corresponds to the
loop momenta

l1 ¼ lþ p
2
; l2 ¼ l −

p
2
; l3 ¼ l: ð24Þ

Considering the relativistic case p2 ≫ 4m2 we can omit the
mass terms. This gives

Aρ ¼ γμ

�
=l −

p
2

�
γρ

�
=lþ p

2

�
γμ

¼ 2

�
=lþ p

2

�
γρ

�
=l −

p
2

�
:

The one-loop contribution to the vertex then takes the form

Λρ

�
−
p
2
;−

p
2
; p

�
¼ −e2

Z
d4l
ð2πÞ4

AρFAðp; lÞ
ðl − p

2
Þ2ðlþ p

2
Þ2l2 :

ð25Þ

The vertex wavelet cutoff factor is the product of three
wavelet cutoff functions:

FAðp; lÞ ¼ f2
�
A
�
l −

p
2

��
f2
�
A
�
lþ p

2

��
f2ðAlÞ:

ð26Þ

For the case of χ1 wavelet, see Eq. (15), we have

FAðp; lÞ ¼ exp ð−A2p2 − 6A2l2Þ:

The calculation of the integral (25) with this cutoff
function, presented in Appendix, gives

Λρ

�
−
p
2
;−

p
2
; p

�

¼ e2γρ
3π2

�
e

s
2Ei1ð3sÞ −

e
s
2Ei1ð3s2 Þ
2

−
e−

5s
2

8s
þ e−s

12s
−
5e−sEi1ð3s2 Þ

16
þ e−s

36s2
−

e−
5s
2

36s2

�
: ð27Þ

In terms of the fine structure constant αðsÞ ¼ e2ðsÞ
4π the one-

loop contribution to the QED vertex (27) can be cast in the
form

FIG. 4. One-loop contribution to the fermion-photon vertex in
QED. p1 þ p2 þ p3 ¼ 0.
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αðsÞ ¼ α

�
1þ 4

3π
αRðsÞ

�
2

; ð28Þ

RðsÞ ¼ e
s
2Ei1ð3sÞ −

e
s
2Ei1ð3s2 Þ
2

−
e−

5s
2

8s

þ e−s

12s
−
5e−sEi1ð3s2 Þ

16
þ e−s

36s2
−

e−
5s
2

36s2
: ð29Þ

The graph of the running coupling constant αðsÞ, calculated
according to the formula (28), is shown in Fig. 5. Decom-
posing Eq. (27) in a series for small scales (s → 0)

Λρ ≈ γρe2
3
2
− 9

16
γ þ 13

16
ln 3

2
− 3

16
ln s − ln 3

3π2
þOðsÞ;

we get the logarithmic derivative

∂eðsÞ
∂ ln s ¼ −

e3

16π2
: ð30Þ

The calculations performed with χ2 wavelet, presented in
Appendix B, give similar results.

III. WARD IDENTITIES

Formally, the Ward-Takahashi identities follow from a
requirement that the Green function generating functional,
designed on an action S½ϕ�, should be invariant under the
same symmetry transformations ϕðxÞ → ϕðxÞ þ δϕðxÞ that
leave the action invariant. For the case of spinor electro-
dynamics, the infinitesimal gauge transformations δϕ take
the form

δAμ ¼ ∂μΛðxÞ; δψ ¼ −{eΛðxÞψ ; δψ̄ ¼ {eΛðxÞψ̄ :

Since the Lagrangian is gauge invariant by construction, to
make the generation functional Z½J; η̄; η� gauge invariant,
we need to ensure that the variations of the source terms and
the gauge-fixing terms compensate each other. This implies

Z
DADψ̄Dψ ½e−

R
d4xðLEþJμAμþ{η̄ψþ{ψ̄ηÞeδΛ �

¼
Z

DADψ̄Dψe−
R

d4xðLEþJμAμþ{η̄ψþ{ψ̄ηÞ;

where

δΛ ≡
Z

d4x

�
−
1

α
∂2ð∂μAμÞ þ ∂μJμ þ eðψ̄η − η̄ψÞ

�
ΛðxÞ:

ð31Þ

Considering an infinitesimal transform we can approximate
eδΛ ≈ 1þ δΛ, and hence, in view of arbitrariness of ΛðxÞ,
the equality hδΛi ¼ 0 can be written in a form of variational
equation:

�
−
1

α
∂2ð∂μAμÞ þ ∂μJμ þ eðψ̄η− η̄ψÞ

�
Z½J; η̄;η� ¼ 0;

where ψðxÞ ¼ {
δ

δη̄ðxÞ ; ψ̄ðxÞ ¼ {
δ

δηðxÞ ; Aμ ¼ −
δ

δJμðxÞ
:

ð32Þ

TheWard-Takahashi identities can be obtained by taking an
appropriate number of functional derivatives of the equa-
tion (32). This is usually done by changing from the
generating functional Z to the generating functional for the
connected Green’s functions:

Z½J; η̄; η� ¼ e−W½J;η̄;η�;

and then applying the Legendre transform to get an
effective action functional:

Γ½A;ψ ; ψ̄ � ¼ W½J; η̄; η� − JA − {η̄ψ − {ψ̄η:

The latter enables us to work with proper vertices and write
the Ward-Takahashi identities generating equation in the
form

∂2

α
∂μAμ þ ∂μ

δΓ
δAμ

þ {e

�
ψ
δΓ
δψ

− ψ̄
δΓ
δψ̄

�
¼ 0: ð33Þ

The first derivative of (33) with respect to Aμ gives the
Ward identity [34] that demands the transversality of the
vacuum polarization diagram:

FIG. 5. Running coupling constant calculated for both wavelets
χ1 and χ2 according to the formula (28). The value of the fine
structure constant is α∞ ¼ 1=137.036.
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∂μΠμν ¼ 0: ð34Þ

The integrals in the vacuum polarization diagram will
satisfy the requirement (34) only in case they are invariant
under the shift of the loop momenta. This is not always true
when a regularization procedure is applied. In QED, the
condition (34) is observed by dimensional regularization,
but not by the momentum cutoff. That is why dimensional
regularization has become the most common regularization
method in QFT models [35].
To fulfill the Ward-Takahashi identities, a regulator is

usually assumed to satisfy the requirement of the type
[36,37]

Z
d4l
ð2πÞ4

lμlν
ðl2 þ ΔÞ2 ¼

δμν
2

Z
d4l
ð2πÞ4

1

l2 þ Δ
ð35Þ

(the integration over the Feynman x parameter used to get
rid of angle integrations is not shown here). This is
definitely true for dimensional regularization, but is not
true for momentum cutoff and is not true for the wavelet
regularization we consider in this paper. In our case of finite
theory we cannot use a relation like (35) as a “rule,” but
have to evaluate everything explicitly.
Regardless of the undoubted merits of dimensional

regularization, it deals only with the main singular parts
of Feynman diagrams, and cannot tackle the amplitudes at
finite scales. In this respect, the finite cutoff regularization
and the wavelet regularization has the potential advantage
of describing what happens at a finite observation scale
[19,38]. The goal of the wavelet-cutoff technique, provided
by continuous wavelet transform, is to get a capability of
calculations at finite observation scale. The respect to the
gauge invariance can be also imposed in a cutoff-momen-
tum regularization scheme by assuming the gauge trans-
formations to act below the momentum cutoff Λ [13]:

aμðkÞ → aμðkÞ − {kμλðkÞ; with λðjkj > ΛÞ ¼ 0: ð36Þ

In the case of continuous wavelet transform regularization,
there is an alternative—to consider gauge transformations
which directly depend on the scale argument a:

ψaðxÞ → e−αaðxÞψaðxÞ: ð37Þ

Doing so, we get a theory that is gauge invariant separately
at each given scale [2].
We do not consider scale-dependent modifications of

gauge invariance in this paper, leaving this subject for
future studies. Instead, the above considered wavelet cutoff
factors of Gaussian type are rather similar to already
proposed exponential modifications of the momentum
cutoff [39], based on the Schwinger proper time method
[40]. Using wavelet regularization, in the case of small
scales s ≪ 1, when in the final limit of s → 0 the

integration over all scales
R
∞
0

da
a would definitely restore

the symmetries of the original theory, we can use the
approximation formulas that follow fromWard identities of
the full (nonregularized) theory.
Technically, the Ward identities follow from the obser-

vation that a proper vertex of the fermion-photon inter-
action can be associated with the fermion self-energy
diagram by inserting a photon line in the internal fermion
line of the latter. Ward noticed that for the bare inverse
electron propagator

S−1ðeÞðpÞ ¼ {ðpþmÞ;

the derivative with respect to the momentum pμ gives the
fermion-photon interaction vertex:

∂S−1ðeÞðpÞ
∂pμ

¼ {γμ:

He proved the same for the inverse full propagator:

∂G−1
ðeÞðpÞ
∂pμ

¼ {Γμ; ð38Þ

where −{eγμ and −{eΓμ are the bare and the full vertex of
the fermion-photon interaction. (Here we use the Euclidean
notation, in contrast to the original paper of Ward [34],
written in Minkowski space.)
More generally, the Ward-Takahashi [41] identity in

spinor electrodynamics, written in integral form, relates the
vertex function to the difference of fermion propagators:

qμΓμðp;−p − q; qÞ ¼ G−1ðpþ qÞ −G−1ðpÞ: ð39Þ

Here GðpÞ is the full fermion propagator. The identity (39)
is a helpful constraint which ensures the gauge invariance
of the renormalized QED in any order of perturbation
theory [34,41]. The constraint (39) makes the perturbation
expansion gauge invariant at the presence of the gauge
fixing terms in the QED generating functional.
The most direct application of Ward’s finding is the

calculation of the full fermion-photon vertex in the limit of
zero photon momentum. In this case,

Γμðp;−p; 0Þ ¼ γμ þ Λμðp;−p; 0Þ: ð40Þ

As it follows from the Dyson equation, the inverse full
propagator is equal to

G−1ðpÞ ¼ S−1ðpÞ − ΣðpÞ; ð41Þ

where ΣðpÞ is the electron self-energy. Taking the deriv-
atives of both sides of (41) by ∂

∂pμ
we get
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Λμðp;−p; 0Þ ¼ {
∂ΣðpÞ
∂pμ

: ð42Þ

Formula (42) can now be applied to our wavelet-
regularized calculations of one-loop diagrams. Since we
are interested only in the contributions to the vertex,
proportional to −{eγμ, it is sufficient to differentiate only

the last multiplier in (22): ∂p
∂pμ

¼ γμ. This gives the one-

loop equation for the fermion-photon vertex regularized at
scale A:

−{eΓðAÞ
χ1;μðpÞ ¼ −{eγμ

�
1þ e2

16π2
Rχ1
1 ðsÞ

�
þ � � � ;

Rχ1
1 ðsÞ≡ 2Ei1ð2sÞ − Ei1ðsÞ −

e−2s

s
þ e−s

s
: ð43Þ

Since whole dependence on the scale in our model is
contained in function R1ðsÞ, we can now calculate the
dependence on the scale of the effective charge. The
wavelet regularization scheme includes the integration over
all scale components from observation scale A to infinity.
Equation (43) thus gives the value of the effective charge
eeffðsÞ, i.e., the effective charge measured at scale A, in
terms of physical electron charge measured at infinity
e0 ¼ eð∞Þ. It is convenient to rewrite it in terms of the
fine structure constant

αðsÞ ¼ e2ðsÞ
4π

;

the physical value of which is α ≈ 1=137.036 [42,43].
Then, the scale dependence of the effective charge, given in
one-loop approximation by the equation (43), is

αðsÞ ¼ α

�
1þ α

4π
R1ðsÞ

�
2

: ð44Þ

Since we use the coordinate scale a as the scale argument
the sign will be opposite to that in dimensional regulari-
zation s ∂

∂s → −μ2 ∂
∂μ2. The scaling equation for the effective

charge—we do not call it RG equation, since there is no
field renormalization in our model—takes the form

s
∂eeff
∂s ¼ e3eff

16π2
s
∂R1ðsÞ
∂s ;

s
∂R1ðsÞ
∂s ¼ e−s

s
ðe−s − 1Þ: ð45Þ

The scaling equation (45) can be integrated in a usual RG-
like form:

deeff
e3eff

¼ ds
16π2

e−s

s2
ðe−s − 1Þ: ð46Þ

The solution of the equation (46) is given by

e2effðsÞ ¼
e20

1 − e2
0

8π2
R1ðsÞ

;

which can be cast in terms of the fine structure constant:

αðsÞ ¼ α

1 − α
2πR1ðsÞ

: ð47Þ

Similar results can be obtained using other wavelets. In this
way using χ2 wavelet cutoff, see Eq. (B3) in Appendix B,
we get

Rχ2
1 ðpÞ ¼ 2Ei1ð2sÞ − Ei1ðsÞ −

e−2sðsþ 5Þ
2s

þ e−sðs3 þ 18s2 þ 134sþ 640Þ
256s

: ð48Þ

The scale dependences of αðsÞ, calculated for both cases of
(15) wavelet cutoff functions, are shown in Fig. 6. Since the
value of α is small, the value of αðsÞ given by Eq. (47) is
practically indistinguishable from that given by (43). The
Landau singularity in Eq. (47) matters only when s ∼ e−

2π
α ,

so that

2π

α
≈ R1ðsÞ ¼ 1 − γ − 2 ln 2 − ln sþ 3

2
sþOðs2Þ; ð49Þ

with γ ≈ 0.5772 being the Euler-Mascheroni constant.

FIG. 6. Scale dependence of the fine structure constant

αðsÞ ¼ e2eff ðsÞ
4π . Two curves correspond to the one-loop approxi-

mation (47), performed with χ1 and χ2 wavelet cutoff, respec-
tively.
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IV. CONCLUSIONS

The basic symmetries of quantum electrodynamics are
the relativistic invariance and the gauge invariance. In the
standard approach to QED, which assumes the quantum
fields to be local square-integrable functions, the calcu-
lations of observable quantities may violate both the
Lorentz symmetry and the gauge symmetry due to the
formal infinities of the calculated Green functions.
Different regularization schemes have been used to get
rid of divergences. The momentum cutoff regularization
was historically the first. In low-energy effective theories
there is a natural cutoff momentum Λ, above which the
theory loses its validity. However, this cannot be applied
considering a fundamental theory rather than effective
theory. The dimensional regularization has become the
most common, utmost a standard way of regularization,
because it does not violate the gauge symmetry; although it
is not ubiquitous being incapable of treating supersym-
metric theories [44].
Wavelet regularization is different from all above-

mentioned regularizations. It changes the space of functions
from the space of square-integrable functions to the space
of functions ψaðxÞ, depending on both the coordinate x,
and the scale a. The former is dynamical—it enters the
dynamical equations, the latter describes only the settings
of observations and does not enter any dynamical equa-
tions. In this sense, we extend the description of observed
physical fields by incorporating the conditions of obser-
vation (a, χ) in the field definition. A physical field per se is
then a collection of all physical fields that can be potenti-
ally observed: Ψ ¼ fψaðx; ·Þga;χ;…. It cannot keep the
perturbation expansion locally gauge invariant. Since
the scale-dependent fields are defined not in a sharp point
x, but in a region of typical size a, there is no need of
infinite momentum injection to measure such fields, and
there are no physical reasons for the appearing of UV
divergences.
The key issue of the theory of scale-dependent fields is

the problem of how the physical particles interact with each
other. The description of physical interactions is deter-
mined by the symmetry of the problem. In this way, the
symmetry with respect to local Uð1Þ transformations
determines electromagnetic interaction, the symmetry with
respect to SUð3Þ gauge transformations determines the
strong interactions, and so on. In the present paper, we have
followed exactly the same way: electrodynamics is under-
stood as a theory with Uð1Þ gauge group, acting on the
space of square-integrable local functions. This definition
immediately implies that the physically observed fields
ψaðxÞ are merely projections of square-integrable fields
ψðxÞ performed with the help of a mother wavelet χ. This is
a rather strong restriction: it states that gauge interactions
take place in the space of local square-integrable functions
and inverse wavelet transform is used to reconstruct the
local fields from a set of their projections; the interaction

then takes place between the reconstructed fields. In this
sense, wavelet regularization is similar to momentum cutoff
regularization and gives the dependence of physical param-
eters on the observation scale.
Having performed the calculations, presented in this

paper, we have found out that wavelet regularization can
give a qualitatively adequate description of the QED
running coupling constant (in one-loop approximation),
which increases with the logarithm of the inverse obser-
vation scale. The advantage of wavelet regularization, if
compared to dimensional regularization and other methods,
is that it does not need any external tools, such as
renormalization, which is always demanded by dimen-
sional regularization to get physically interpretable results.
The reason is that the wavelet transform itself is already
based on the group of scale transformations, similar to the
renormalization group. That is why instead of the renorm-
alization group equations we have just a logarithmic
derivative of the effective charge with respect to the
dimensionless scale argument s. This s ¼ ðApÞ2 is similar
to the normalization scale 1=μ2 in dimensional regulariza-
tion but has a physical interpretation in terms of the
measurement scale. The crucial difference from standard
renormalization group approach is that we face no diver-
gences to get rid of and we have no field renormalization.
The latter is due to the fact that by extending the space of
fields ψðxÞ to the space of scale-dependent fields ψaðxÞ we
already get the collections of all scales rather than a poor
man collection of two scales only. At the same time, our
calculations show that known results such as Landau pole
of the form 1

1−αX also take place in a wavelet theory finite by
construction, but in the latter case they have a more mild
form of 1þ αX, where αX is small and there is no threat of
a pole.
At the same time, we have to admit that our persistence

on keeping the standard definition of gauge invariance in
the space of local field does not allow to preserve the
transversality of the vacuum polarization operator at the
one-loop level: pμΠμνðpÞ ≠ 0. This has long been known
for the momentum cutoff and other regularization schemes
and is quite expected for the wavelet regularization of a
locally defined gauge theory: having declared the scale-
dependent fields to be the physically observed fields we
still insist that gauge interaction acts on local fields. It
might be more reasonable do define the interaction directly
in the space of scale-dependent fields, as is proposed in [2]
in the context of QCD, but this is planned for future
research.
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APPENDIX A: CALCULATIONS WITH χ 1
WAVELET

1. Vacuum polarization diagram

Substituting the integration measure d4q ¼
4πq3dqsin2θdθ into the integral (16) and dividing both
the numerator and the denominator by p2q2 we arrive at
Eq. (18):

ΠðA;χ1Þ
μν ¼ −

e2p2

π3
e−A

2p2

Z
∞

0

dyye−4A
2p2y2

×
Z

π

0

dθsin2θ
2yμyν − 1

2

pμpν

p2 þ δμνð14− y2 − m2

p2Þh1
4
þy2þm2

p2

y þ cosθ
ih1

4
þy2þm2

p2

y − cosθ
i :

ð18Þ

The angle part of integral (18) can be evaluated explic-
itly. The corresponding integrals have the form

Ik½βðyÞ� ¼
Z

π

0

dθ
sin2θcos2kθ
β2 − cos2θ

;

I0½βðyÞ� ¼ πð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β−2

q
Þ;

I1½βðyÞ� ¼ −
π

2
þ β2I0½β�; ðA1Þ

where in our case β depends on y. To make the calculations
analytically feasible, we simplify the matter by considering
the relativistic limit p2 ≫ 4m2. In this limit

βðyÞ ¼ yþ 1

4y
: ðA2Þ

In this approximation the vacuum polarization integral
takes the form

ΠðA;χ1Þ
μν ¼ −

e2p2

π3
e−A

2p2

Z
∞

0

dyye−4A
2p2y2

×
Z

π

0

dθsin2θ
2yμyν − 1

2

pμpν

p2 þ δμνð14 − y2Þ
β2ðyÞ − cos2θ

:

There are two basic integrals here: the scalar integrals,
which do not contain yμyν, and the tensor integrals, which
contain these terms. The scalar integral has the form

J ≡
Z

∞

0

dyye−4sy
2

I0½βðyÞ�: ðA3Þ

As it follows from Eqs. (A1) and (A2),

I0½βðyÞ� ¼
8<
:

8πy2

1þ4y2 ; 0 ≤ y ≤ 1
2

2π
1þ4y2 ; y ≥ 1

2

;

I1½βðyÞ� ¼
�
2πy2; 0 ≤ y ≤ 1

2

π
8y2 ; y ≥ 1

2

; ðA4Þ

and hence

J ¼ 8π

Z 1
2

0

dyy3e−4sy
2

1þ 4y2
þ 2π

Z
∞

1
2

dyye−4sy
2

1þ 4y2

¼ π

4

�
2Ei1ð2sÞes − Ei1ðsÞes −

e−s

s
þ 1

s

�
: ðA5Þ

The other scalar integral is a derivative of J:

I0q ¼
Z

∞

0

dyy3I0½βðyÞ�e−4sy2

¼ −
1

4

dJ
ds

¼ −
π

16

�
2Ei1ð2sÞes − Ei1ðsÞes −

e−s − 1

s
þ e−s − 1

s2

�
:

The terms of the integral, which contain yμyν, and which do
not, can be evaluated separately. Since our problem has
only one preferable direction—the direction of vector p, we
can evaluate the tensor integral

Ið2Þqμν ¼
Z

ydysin2θdθe−4sy
2 yμyν
ðyþ 1

4yÞ2 − cos2θ
ðA6Þ

by substituting yμyν → By2δμν þ Cy2 pμpν

p2 in the integrand,

where B and C are the constants to be determined.
The integral to be evaluated takes the form

Iμν ¼
Z

ydy sin2θdθe−4sy
2
By2δμν þ Cy2 pμpν

p2

ðyþ 1
4yÞ2 − cos2θ

: ðA7Þ

The constants B and C are determined from a system of
two linear equations,

TrIð2Þqμν ¼ TrIμν; Ið2Þqμνpμpν ¼ Iμνpμpν ⇔ 4BþC¼ 1;

I1q ¼ ðBþCÞI0q;

where

I1q ¼
Z

∞

0

y3dye−4sy
2

I1½βðyÞ� ¼
π

32

e−s

s3
½es − s − 1�:

Hence we can determine the constants B and C in terms of

η≡ I1q
I0q
:
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B ¼ 1 − η

3
; C ¼ 4η − 1

3
;

η ¼ 1

2

1þ s − e−s

s3e2sð2Ei1ð2sÞ − Ei1ðsÞÞ þ sðs − 1Þðes − 1Þ ;

and now can evaluate the vacuum polarization diagram:

Πμν¼−
e2p2

π3
e−sðIqþIpþItÞ≡ITδμνþ IP

pμpν

p2
; ðA8Þ

It ¼
1

2

�
δμν −

pμpν

p2

�
J; Ip ¼ −

δμν
4

J;

Iq ¼ 2Ið2Þqμν − δμνI0q ¼
�
δμνð2B − 1Þ þ 2C

pμpν

p2

�
I0q;

IT ¼ −
e2p2

π3
e−s

�
ð2B − 1ÞI0q þ

J
4

�
;

IP ¼ −
e2p2

π3
e−s

�
2CI0q −

J
2

�
: ðA9Þ

After simple algebra, we get the final expressions:

IT ¼ e2p2

48π2s3
½ð4s2 − 2s − 1Þe−2s þ ð1þ s − 4s2Þe−s

þ 4s3ðEi1ðsÞ − 2Ei1ð2sÞÞ� ðA10Þ

IP ¼ e2p2

48π2s3
½ð−4s2 þ 2sþ 4Þe−2s þ 2ð2s2 þ s − 2Þe−s

− 4s3ðEi1ðsÞ − 2Ei1ð2sÞÞ�;

IL ¼ IT þ IP ¼ e2p2

16π2s3
e−2sððs − 1Þes þ 1Þ: ðA11Þ

We can represent the vacuum polarization diagram in a
standard form:

Πμν ¼ IT

�
δμν −

pμpν

p2

�
þ IL

pμpν

p2
:

2. One-loop corrections to the QED vertex
calculated with χ 1 wavelet cutoff

To evaluate the integral (25) we take the tensor structure
in the form

Aρ ¼ 2=lγρ=l −
1

2
pγρp;

omitting the terms linear in l and using the massless limit.
Thus the whole integral in (25) takes the form

I△ ¼
Z

d4y
y4p2ð2πÞ4

e−6A
2p2y2ð2p2=yγρ=y − 1

2
pγρpÞ

ðyþ 1
4yÞ2 − cos2θ

¼ 2γαγργβI△αβ −
pγρp

2p2
IC; ðA12Þ

I△αβ ¼
1

4π3

Z
dθsin2θdyye−6A

2p2y2

ðyþ 1
4yÞ2 − cos2θ

yαyβ
y2

;

IC ¼ 1

4π3

Z
dθsin2θdyye−6A

2p2y2

ðyþ 1
4yÞ2 − cos2θ

1

y2
; ðA13Þ

where we have used dimensionless momentum:
l ¼ jpjy, and have changed to the integration in spherical
coordinates.
First, we evaluate the scalar integral IC. Integrating over

the angle variable θ, we get

IC ¼ 1

4π3

Z
∞

0

ydy
y2

I0½βðyÞ�e−6A2p2

:

Since I0½βðyÞ� is a piecewise defined function (A4), we get

IC ¼ 1

4π2

Z
1

0

dte−
3
2
st

1þ t
þ 1

4π2

Z
∞

1

dte−
3
2
st

tð1þ tÞ

¼ 1

4π2

�
Ei1

�
3s
2

��
1þ e

3s
2

�
− 2Ei1ð3sÞe3s

2

�
;

where we have changed to a new variable t ¼ 4y2 and used
dimensionless scale argument s ¼ A2p2.
Next, we evaluate the tensor integral. Since we have only

one preferable direction—that of p⃗—we can find the
integral I△αβ in the form

Z
dθsin2θdyye−6A

2p2y2

ðyþ 1
4yÞ2 − cos2θ

yαyβ
y2

¼
�
Bδαβ þ C

pαpβ

p2

�Z
dθsin2θdyye−6A

2p2y2

ðyþ 1
4yÞ2 − cos2θ

; ðA14Þ

where B and C are unknown constants to be determined.
Tracing both sides of equality (A14) gives the constraint
4Bþ C ¼ 1. Taking the convolution of both sides of (A14)
with pμpν

p2 , we get another constraint:

Bþ C ¼ I1=I0; I1 ¼
Z

dθcos2θsin2θdyye−6A
2p2y2

ðyþ 1
4yÞ2 − cos2θ

;

I0 ¼
Z

dθsin2θdyye−6A
2p2y2

ðyþ 1
4yÞ2 − cos2θ

: ðA15Þ

The integral I0 in Eq. (A15) coincides with the integral J,
given by (A5) up to the change of scale s → 3

2
s. This gives

I0 ¼
π

4

�
2Ei1ð3sÞe3s

2 − Ei1

�
3s
2

�
e
3s
2 −

2e−
3s
2

3s
þ 2

3s

�
: ðA16Þ

After the angle integration in I1, we get I1 ¼R∞
0 ydye−6sy

2

I1½βðyÞ�, with I1½βðyÞ� given by Eq. (A4),
from where we get
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I1 ¼
π

16

Z
1

0

dtte−
3
2
st þ π

16

Z
∞

1

dt
e−

3
2
st

t
¼ π

16

�
Ei1

�
3s
2

�
þ 4

9s2
−
4e−

3s
2

9s2
−
2e−

3s
2

3s

�
; ðA17Þ

where t ¼ 4y2.
We can rewrite (A12) in the form

I△¼2γαγργβ
I0
4π3

�
BδαβþC

pαpβ

p2

�
−
pγρp

2p2
IC¼

�
I0
2π3

ð2BþCÞ−IC
2

�
γρþ

ppρ

p2

�
IC−

CI0
π3

�
; ðA18Þ

where the last term is not proportional to γρ and will be ignored. Now we can substitute the found constants:

B ¼ 1 − η

3
; C ¼ 4η − 1

3
; η≡ I1

I0

into Eq. (A18) to obtain the one-loop contribution to the fermion-photon vertex:

Λρð−p=2;−p=2; pÞ ¼ e20e
−sI△ ¼ e20e

−s
�
I0
6π3

þ I1
3π3

−
IC
2

�
γρ

¼ e20γρ
3π2

�
e

s
2Ei1ð3sÞ −

e
s
2Ei1ð3s2 Þ

2
−
e−

5s
2

8s
þ e−s

12s
−
5e−sEi1ð3s2 Þ

16
þ e−s

36s2
−

e−
5s
2

36s2

�
: ðA19Þ

APPENDIX B: CALCULATIONS WITH χ 2 WAVELET

1. Electron self-energy diagram

Similarly to the case of the χ1 wavelet, we make the one-loop calculation with the χ2 wavelet by symmetrizing the loop
momenta (p

2
þ q; p

2
− q) for both the vacuum polarization and the electron self-energy diagrams. Thus, the wavelet cutoff

factor in this diagrams is

FAðp; qÞ ¼ f2
�
A
�
p
2
þ q

��
f2
�
A
�
p
2
þ q

��
;

with fðxÞ for χ2 given by (15):

FAðp; qÞ ¼ A8

��
q2 þ p2

4
þ 1

A2

�
2

− p2q2cos2θ

�
2

e−A
2p2−4A2q2 ¼ s4e−s

��
yþ 1

4y
þ 1

sy

�
2

− cos2θ

�
2

e−4sy
2

y4: ðB1Þ

Now we can substitute FAðp; jpjyÞ into the equation for the electron self-energy (21). We omit the term 4m − 2jpj=y in the
numerator, sincem is small in comparison to =p in our approximation, and =y does not contribute for symmetry reasons. This
gives

ΣðAÞðpÞ ¼ −{e2ps4e−s
Z

d4y
ð2πÞ4 y

2e−4sy
2
½ðyþ 1

4y þ 1
syÞ2 − cos2θ�2

ðyþ 1
4yÞ2 − cos2θ

:

Using the notation β≡ yþ 1
4y and the integration measure d4y ¼ 4πsin2θdθy3dy, we get

ΣðAÞðpÞ ¼ −{
e2e−sp
4π3

Z
½ðβ2 − cos2θÞ2s4y4 þ 4βðβ2 − cos2θÞs3y3 þ 2ð3β2 − cos2θÞs2y2 þ 4βsyþ 1� sin

2θdθdyye−4sy
2

β2 − cos2θ
:

We perform the angle integration first:
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ΣðAÞðpÞ ¼ −{
e2e−sp
4π3

Z
∞

0

dyye−4sy
2

Z
π

0

dθsin2θ

�
ðβ2 − cos2θÞs4y4 þ 4βs3y3

þ 2s2y2
�

2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

�

¼ −{
e2e−sp
4π3

Z
∞

0

dyye−4sy
2

�
π

2

��
β2 −

1

4

�
s4y4 þ 4βs3y3 þ 2s2y2

�
þ I0½β�ð4s2y2β2 þ 4βsyþ 1Þ

	
: ðB2Þ

Since the angle integral I0½βðyÞ�, given by Eq. (A1), is defined piecewise (A4), we split ΣðAÞðpÞ into a sum of two integrals:

ΣðAÞðpÞ≡ J1 þ J2;

with the second one, which depends on I0½βðyÞ�, to be split as
R
∞
0 ¼ R 1=2

0 þ R
∞
1=2. The integrals are

J1 ¼ −{
e2e−sp
32π2

Z
∞

0

�
s4y4

�
4y2 þ 1

4y2
þ 1

�
þ 16s3y3

�
yþ 1

4y

�
þ 8s2y2

�
e−4sy

2

ydy ¼ −{
e2e−sp
32π2

s2 þ 18sþ 70

128
;

J2 ¼ −{
e2e−sp
4π3

Z
∞

0

I0½βðyÞ�ð4s2β2y2 þ 4βsyþ 1Þe−4sy2ydy

¼ −{
e2e−sp
4π2

�Z
1=2

0

8y2

1þ 4y2
ð4s2y2β2 þ 4βsyþ 1Þe−4sy2ydyþ

Z
∞

1=2

2

1þ 4y2
ð4s2y2β2 þ 4βsyþ 1Þe−4sy2ydy

	

¼ −{
e2e−sp
64π2

�Z
1

0

t
tþ 1

ðs2ðtþ 1Þ2 þ 4sðtþ 1Þ þ 4Þe−stdtþ
Z

∞

1

1

tþ 1
ðs2ðtþ 1Þ2 þ 4sðtþ 1Þ þ 4Þe−stdt

¼ −{
e2e−sp
64π2

�
4esð2Ei1ð2sÞ − Ei1ðsÞÞ þ

10

s
ð1 − e−sÞ þ 1 − 2e−s

�
:

The final result is

ΣðAÞ
χ2 ðpÞ ¼ −

{e2p
16π2

�
2Ei1ð2sÞ − Ei1ðsÞ −

sþ 5

2s
e−2s þ s3 þ 18s2 þ 134sþ 640

256s
e−s

�
: ðB3Þ

2. Vacuum polarization diagram

Calculation of vacuum polarization diagram for the case of the χ2 wavelet cutoff function (15) is completely analogous to
that performed with the χ1 wavelet cutoff. To simplify analytical calculation here we also assume relativistic limit p2 ≫ 4m2

and omit appropriate terms. In this way, Eq. (16) becomes

ΠðAÞ;χ2
μν ðpÞ ¼ −

e2p2

π3

Z
∞

0

dyy
Z

π

0

dθsin2θFAðp; qÞ
2yμyν − δμνy2 þ 1

2
ðδμν − pμpν

p2 Þ − δμν
4

β2ðyÞ − cos2θ
:

The wavelet cutoff function FAðp; qÞ is given by Eq. (B1). In dimensionless variables ðs; yÞ it has the form

FAðyÞ ¼ e−se−4sy
2

s4y4
��

βðyÞ þ 1

sy

�
2

− cos2θ

�
2

:

So, the integral to be evaluated is

ΠðAÞ;χ2
μν ðpÞ ¼ −

e2p2e−s

π3

Z
∞

0

dyye−4sy
2

Z
π

0

dθsin2θs4y4
��

βðyÞ þ 1

sy

�
2

− cos2θ

�
2 2yμyν − δμνy2 þ 1

2
ðδμν − pμpν

p2 Þ − δμν
4

β2ðyÞ − cos2θ
:

Similar to the evaluation of the self-energy diagram, we expand the polynomial part of the wavelet cutoff function and get
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ΠðAÞ;χ2
μν ðpÞ ¼ −

e2p2e−s

π3

Z
∞

0

dyye−4sy
2

Z
π

0

dθsin2θ

�
s4y4ðβ2 − cos2θÞ þ 4βs3y3

þ 2s2y2
�

2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

�
×

�
2yμyν − δμνy2 þ

1

2

�
δμν −

pμpν

p2

�
−
δμν
4

�
: ðB4Þ

To calculate the vacuum polarization diagram, Eq. (B4), we need two integrals: the scalar integral, and the tensor integral
dependent on yμyν. They are

J ¼
Z

∞

0

dyye−4sy
2

Z
π

0

dθsin2θ

�
s4y4ðβ2 − cos2θÞ þ 4βs3y3 þ 2s2y2

�
2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

�
; ðB5Þ

Ið2Þqμν ¼
Z

∞

0

dyye−4sy
2

Z
π

0

dθsin2θ

�
s4y4ðβ2 − cos2θÞ þ 4βs3y3 þ 2s2y2

�
2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

�
yμyν: ðB6Þ

The integral J is identical to that calculated for electron self-energy diagram in Eq. (B2). Its value is

J ¼ π

4

�
s3 þ 18s2 þ 134sþ 640

256s
−
e−sðsþ 5Þ

2s
þ esð2Ei1ð2sÞ − Ei1ðsÞÞ

�
: ðB7Þ

The integral (B6) is evaluated by changing yμyν → By2δμν þ Cy2 pμν

p2 :

Iμν ¼
Z

∞

0

dyye−4sy
2

Z
π

0

dθsin2θ

�
s4y4ðβ2 − cos2θÞ þ 4βs3y3

þ 2s2y2
�

2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

��
By2δμν þ Cy2

pμpν

p2

�
:

The unknown constants B and C are determined from the equality Ið2Þqμν ¼ Iμν, exactly in the same way as for the χ1 wavelet.
Taking the trace of both sides we get the constraint 4Bþ C ¼ 1. The other constraint is obtained by convolution of both

sides of Ið2Þqμν ¼ Iμν with pμpν

p2 . This gives I0qðBþ CÞ ¼ I1q, where

I0q ¼
Z

∞

0

dyy3e−4sy
2

Z
π

0

dθsin2θ

�
s4y4ðβ2 − cos2θÞ þ 4βs3y3 þ 2s2y2

�
2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

�

¼
Z

∞

0

dyy3e−4sy
2

�
π

2
ðβ2s4y4 þ 4βs3y3 þ 2s2y2Þ − π

8
s4y4 þ I0½βðyÞ�ð4β2s2y2 þ 4βsyþ 1Þ;

I1q ¼
Z

∞

0

dyy3e−4sy
2

Z
π

0

dθsin2θcos2θ

�
s4y4ðβ2 − cos2θÞ þ 4βs3y3 þ 2s2y2

�
2β2

β2 − cos2θ
þ 1

�
þ 4βsyþ 1

β2 − cos2θ

�

¼
Z

∞

0

dyy3e−4sy
2

�
π

8
ðs4y4β2 þ 4βs3y3 þ 2s2y2Þ − π

16
s4y4 þ I1½βðyÞ�ð4β2s2y2 þ 4βsyþ 1Þ

�
:

The part of the integral, which depends on piecewise-defined functions I0½βðyÞ�; I1½βðyÞ�, given by Eq. (A4), is integrated inR 1=2
0 þ R

∞
1=2 limits, accordingly. This gives

I0q ¼
9πð1 − e−sÞ

32s2
þ 7π

512s
−
πe−s

32
−
3πe−s

32s
þ 19π

2048
þ πs
2048

−
πes

16
ð2Ei1ð2sÞ − Ei1ðsÞÞ; ðB8Þ

I1q ¼
7πð1 − e−sÞ

32s3
þ 5π

64s2
þ 39π

2048s
−
19πe−s

64s2
−
5πe−s

32s
−
πe−s

32
þ πs
8192

þ π

512
: ðB9Þ

Using the expression (A9) we get the equation for the vacuum polarization diagram in the form
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ΠðAÞ;χ2
μν ¼ ITδμν þ IP

pμpν

p2
; IT ¼ −

e2p2e−s

π3

�
−
1

3
I0q −

2

3
I1q þ

J
4

�
; IP ¼ −

e2p2e−s

π3

�
2

3
ð4I1q − I0qÞ −

J
2

�
:

This gives

IT ¼ e2p2

π2

�
−

1

12
ð2Ei1ð2sÞ − Ei1ðsÞÞ

− s2e−s

4096
−
17se−s

4096
−
427e−s

48s
þ 7e−s

48s2
þ 7e−s

48s3
−
29e−s

1024
þ e−2s

48s
−
7e−2s

24s2
−
7e−2s

48s3

�
; ðB10Þ

IP ¼ e2p2

π2

�
1

12
ð2Ei1ð2sÞ − Ei1ðsÞÞ þ

s2e−s

2048
þ 9se−s

1024
þ 13e−s

48s
−

e−s

48s2
−
7e−s

12s3
þ 17e−s

256
þ e−2s

24s
þ 29e−2s

48s2
þ 7e−2s

12s3

�
:

ðB11Þ

3. One-loop corrections to the QED vertex calculated with χ 2 wavelet cutoff

In complete analogy to the calculations performed with χ1 wavelet, we can express the wavelet cutoff function
corresponding to the diagram shown Fig. 4 in the relativistic limit p2 ≫ 4m2, in the form

FAðp; lÞ ¼ e−se−6sy
2

s4y4
��

yþ 1

4y
þ 1

sy

�
2

− cos2θ

�
2

ð1þ sy2Þ2; where l ¼ yjpj: ðB12Þ

The one-loop contribution to the fermion-photon vertex calculated with this cutoff is

Λρ

�
−
p
2
;−

p
2
; p

�
¼ −e20s4e−s

Z
d4y
ð2πÞ4

2=yγρ=y −
pγρp
2p2

ðyþ 1
4yÞ2 − cos2θ

e−6sy
2

��
yþ 1

4y
þ 1

sy

�
2

− cos2θ

�
2

ð1þ sy2Þ2 ≡ −e20e−ss4I△:

ðB13Þ

The integral (B13) is a sum of two integrals: I△ ¼ 2γαγργβI△αβ −
pγρp
2p2 IC, where

IC ¼
Z

d4y
ð2πÞ4

e−6sy
2

ðyþ 1
4yÞ2 − cos2θ

��
yþ 1

4y
þ 1

sy

�
2

− cos2θ

�
2

ð1þ sy2Þ2;

I△αβ ¼
Z

d4y
ð2πÞ4

yαyβe−6sy
2

ðyþ 1
4yÞ2 − cos2θ

��
yþ 1

4y
þ 1

sy

�
2

− cos2θ

�
2

ð1þ sy2Þ2:

The evaluation of these integrals is identical to the case of the χ1 wavelet, described by Eqs. (A13) and (A12). Using the
variable βðyÞ ¼ yþ 1

4y, we get

IC ¼
Z

d4y
ð2πÞ4

e−6sy
2

β2 − cos2θ
ð1þ sy2Þ2

�
β2 − cos2θ þ 2β

sy
þ 1

s2y2

�
2

¼ 1

4π3

Z
dydθy3sin2θe−6sy

2ð1þ sy2Þ2ðβ2 − cos2θÞ þ 1

2π3

Z
dydθy3sin2θe−6sy

2ð1þ sy2Þ2
�
2β

sy
þ 1

s2y2

�

þ 1

4π3

Z
dydθy3sin2θe−6sy

2ð1þ sy2Þ2
β2 − cos2θ

�
2β

sy
þ 1

s2y2

�
2

¼ 1

8π2

Z
∞

0

dyy3e−6sy
2ð1þ sy2Þ2

�
β2 −

1

4

�
þ 1

4π2

Z
∞

0

dyy3e−6sy
2ð1þ sy2Þ2

�
2β

sy
þ 1

s2y2

�

þ 1

4π3

Z
1=2

0

dyy3e−6sy
2ð1þ sy2Þ2

�
2β

sy
þ 1

s2y2

�
2 8πy2

1þ 4y2
þ 1

4π3

Z
∞

1=2
dyy3e−6sy

2ð1þ sy2Þ2
�
2β

sy
þ 1

s2y2

�
2 2π

1þ 4y2
;

where we have used the angle integration rule (A4). After the change of variable t ¼ 4y2, the final result is
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IC ¼ 25

27648π2s
þ 211

13824π2s2
þ 469

5184π2s3
þ 161

432π2s4
−

e−
3
2
s

π2s2

�
1

288
þ 7

96s
þ 161

432s2

�

þ e
3
2
s

4π2s2

�
Ei1

�
3

2
s

�
− 2Ei1ð3sÞ

��
1

16
−

1

2s
þ 1

s2

�
þ Ei1ð32 sÞ

4π2s2

�
1

4
þ 1

s
þ 1

s2

�
: ðB14Þ

The tensor integral I△αβ can be decomposed with respect to two basic tensors δαβ and pαpβ

p2 :

I△αβ ¼
1

4π3

Z
dydθsin2θy3e−6sy

2

β2 − cos2θ
ð1þ sy2Þ2

��
β þ 1

sy

�
2

− cos2θ

�
2

yαyβ

¼ 1

4π3

Z
dydθsin2θy3e−6sy

2

β2 − cos2θ
ð1þ sy2Þ2

��
β þ 1

sy

�
2

− cos2θ

�
2
�
By2δαβ þ Cy2

pαpβ

p2

�
; ðB15Þ

where B and C are unknown constants to be determined. Tracing of both sides of Eq. (B15) gives the constraint
4Bþ C ¼ 1. The other constraint is identical to (A15):

I1 ¼ ðBþ CÞI0;

where

I0 ¼
Z

dydθsin2θy5e−6sy
2

β2 − cos2θ
ð1þ sy2Þ2

��
β þ 1

sy

�
2

− cos2θ

�
2

; ðB16Þ

I1 ¼
Z

dydθsin2θcos2θy5e−6sy
2

β2 − cos2θ
ð1þ sy2Þ2

��
β þ 1

sy

�
2

− cos2θ

�
2

: ðB17Þ

The remaining calculations are analogs to previous integrals:

I0 ¼
Z

dydθsin2θy5e−6sy
2ð1þ sy2Þ2ðβ2 − cos2θÞ þ 2

Z
dydθsin2θy5e−6sy

2ð1þ sy2Þ2
�
2β

sy
þ 1

s2y2

�

þ
Z

dydθsin2θy5e−6sy
2ð1þ sy2Þ2

β2 − cos2θ

�
2β

sy
þ 1

s2y2

�
2

¼ π

2

Z
∞

0

dyy5e−6sy
2ð1þ sy2Þ2 16y

4 þ 4y2 þ 1

16y2
þ π

Z
∞

0

dyy5e−6sy
2ð1þ sy2Þ2 4y

2sþ sþ 2

2s2y2

þ
Z

1=2

0

dyy5
8πy2

1þ 4y2
e−6sy

2ð1þ sy2Þ2
�
4y2sþ sþ 2

2s2y2

�
2

þ
Z

∞

1=2
dyy5

2π

1þ 4y2
e−6sy

2ð1þ sy2Þ2
�
4y2sþ sþ 2

2s2y2

�
2

¼ −
πe−

3s
2

124416s5

�
14976sþ 7056s2 − 64896e

3s
2 þ 432s3 − 1376se

3s
2 − 3048s2e

3s
2 þ 64896 − 15552e3ss2Ei1

�
3s
2

�

þ 31104e3ssEi1

�
3s
2

�
þ 1944e3ss3Ei1

�
3s
2

�
− 62208se3sEi1ð3sÞ

− 3888s3e3sEi1ð3sÞ þ 31104s2e3sEi1ð3sÞ − 99s3e
3s
2

�
;
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I1 ¼
Z

dydθsin2θcos2θy5e−6sy
2ð1þ sy2Þ2ðβ2 − cos2θÞ þ 2

Z
dydθsin2θcos2θy5e−6sy

2ð1þ sy2Þ2
�
2β

sy
þ 1

s2y2

�

þ
Z

dydθsin2θcos2θy5e−6sy
2ð1þ sy2Þ2

β2 − cos2θ

�
2β

sy
þ 1

s2y2

�
2

¼ π

8

Z
∞

0

dyy5e−6sy
2ð1þ sy2Þ2 16y

4 þ 1

16y2
þ π

4

Z
∞

0

dyy5e−6sy
2ð1þ sy2Þ2 4y

2sþ sþ 2

2s2y2

þ
Z

1=2

0

dyy52πy2e−6sy
2ð1þ sy2Þ2

�
4y2sþ sþ 2

2s2y2

�
2

þ
Z

∞

1=2
dyy5

π

8y2
e−6sy

2ð1þ sy2Þ2
�
4y2sþ sþ 2

2s2y2

�
2

¼ πe−
3s
2

497664s6

�
99s4e

3s
2 þ 12608s2e

3s
2 þ 1584s3e

3s
2 þ 46848se

3s
2 þ 94976e

3s
2 − 94976 − 189312s − 121536s2 − 1728s4

− 28224s3 þ 7776s4e
3s
2Ei1

�
3s
2

�
þ 31104s3e

3s
2Ei1

�
3s
2

�
þ 31104s2e

3s
2Ei1

�
3s
2

��
;

where we have used the angle integration rules (A4). Substituting these integrals into the final equation (B13), and
comparing it to (A19), we get

Λχ2
ρ

�
−
p
2
;−

p
2
; p

�
¼ e20s

4e−s
�
I0
6π3

þ I1
3π3

−
IC
2

�
γρ

¼ −
γρe20e

−5s
2

1492992π2s2

�
59856s3e

3s
2 þ 319104s − 126720s2 − 12096s3 þ 262848s2e

3s
2 − 176640se

3s
2

− 94976e
3s
2 þ 38880s4e

3s
2Ei1

�
3s
2

�
þ 155520s3e

3s
2Ei1

�
3s
2

�
þ 248832e3ss2Ei1

�
3s
2

�

− 124416e3ss3Ei1

�
3s
2

�
þ 248832s3e3sEi1ð3sÞ − 497664s2e3sEi1ð3sÞ þ 155520s2e

3s
2Ei1

�
3s
2

�

þ 94976þ 675s5e
3s
2 þ 11097s4e

3s
2 þ 15552e3ss4Ei1

�
3s
2

�
− 31104s4e3sEi1ð3sÞ

�
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