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During the last fifty-one years, the effect of excitation of the quantum vacuum field induced by its
coupling with a moving object has been systematically studied. Here, we propose and investigate a
somewhat inverted setting: an object, initially at rest, whose motion becomes induced by an excitation of
the quantum vacuum caused by the object itself. In the present model, this excitation occurs asymmetrically
on different sides of the object by a variation in time of one of its characteristic parameters, which couple it
with the quantum vacuum field.
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I. INTRODUCTION

In 1969, Gerald T. Moore published the prediction that a
mirror in movement can excite the quantum vacuum,
generating photons [1]. This effect is nowadays known
as the dynamical Casimir effect (DCE) and was inves-
tigated, during the 1970s, in other pioneering articles by
DeWitt [2], Fulling and Davies [3,4], Candelas and
Deutsch [5], among others. Since then, many other authors
have dedicated to investigate the DCE (some excellent
reviews on the DCE can be found in Refs. [6–9]).
In his pioneering work, Moore remarked that “to

practical experimental situations, the creation of photons
from the zero-point energy is altogether negligible” [1]. In
an attempt to overcome this difficulty, several ingenious
proposals have been made aiming to observe the particle
creation from vacuum by experiments based on the
mechanical motion of a mirror [10–15], but this remains
as a challenge [9]. However, the particle creation from the
vacuum occurs, in general, when a quantized field is
submitted to time-dependent boundary conditions, with
moving mirrors being a particular case. Therefore, it is not
necessary to move a mirror to generate real particles from
the vacuum. Within this more general view, alternative
ways to detect particle creation from vacuum were inspired
in the ideas of Yablonovitch [16] and Lozovik et al. [17],
which consist in exciting the vacuum field by means of
time-dependent boundary conditions imposed to the field
by a motionless mirror whose internal properties rapidly

vary in time. In this context, Wilson et al. [18] observed
experimentally the particle creation from vacuum, using a
time-dependent magnetic flux applied in a coplanar wave-
guide (transmission line) with a superconducting quantum
interference device (SQUID) at one of the extremities,
changing the inductance of the SQUID, and thus yielding a
time-dependent boundary condition [18]. Other experi-
ments have also been done [19–21], and other have been
proposed [22–32].
In a typical situation of the DCE, the quantum vacuum

offers resistance to the motion of an object, extracting
kinetic energy from it, which is converted into real
particles. In this case, one can say that the net action of
the quantum vacuum is against the motion. Here, we
propose and investigate a somewhat inverted situation:
an object, initially at rest, isolated from everything and just
interacting with the quantum vacuum, whose motion
becomes induced by an excitation of the vacuum field
caused by the object itself. In other words, we are focusing
on a situation where the vacuum field acts in favor of the
motion in a preferred direction, instead of against as it
occurs in the usual situations investigated in the DCE. With
this in mind, we propose a model where an object imposes a
change to the quantum field by the time variation of the
properties of the object. Resisting to this change, the
vacuum field extracts energy from the object, exciting
the quantum field and converting the energy into real
particles. A fundamental point of the model presented here
is that, to get in motion in a preferred direction, the object
has to excite the quantum vacuum differently on each side,
which requires that an asymmetry must be introduced in the
object. Taking into account the same simplified one-
dimensional model considered in the pioneering articles
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on the DCE [1–5], we consider the coupling of a static point
object with a quantum real scalar field in ð1þ 1ÞD via a
δ − δ0 potential, which simulates a partially reflecting object
with asymmetric scattering properties on each side [33,34].
When the coupling parameters vary in time, this model
simulates an object exciting asymmetrically the fluctuations
of the quantum vacuum, which produces a non-null mean
force acting on the object, so that it can get in motion. Then,
instead of against, the vacuum acts in favor of themotion in a
preferred direction. But, not completely in favor, since, once
in motion, a dynamical Casimir force acts on the object, so
that part of its kinetic energy is extracted by the vacuum
fluctuations and goes to the field.

II. THE INITIAL MODEL

We are interested in an object whose interaction with the
field is described by an asymmetric scattering matrix,
intending to excite asymmetrically the quantum vacuum
fluctuations. The interaction between the object and the
field described by a Dirac δ potential produces a (left-right)
symmetric scattering matrix [35,36]. Therefore, to generate
an asymmetry, we also consider the presence of an odd δ0
term in the description of the interaction, so that our starting
point is the following Lagrangian for a real massless scalar
field in ð1þ 1ÞD:

L ¼ L0 − ½μðtÞδðxÞ þ λ0δ
0ðxÞ�ϕ2ðt; xÞ; ð1Þ

where L0 ¼ ½∂tϕðt; xÞ�2 − ½∂xϕðt; xÞ�2 is the Lagrangian
for the free field, and the real parameters μ and λ0, together
with δ and δ0 functions, describe the coupling between the
quantum field and a static object located at the point x ¼ 0.
As we shall see, these coupling parameters control the
transparency properties of the object. The parameter μ is a
prescribed function of time: μðtÞ ¼ μ0½1þ ϵfðtÞ�, where
μ0 ≥ 0 is a constant, fðtÞ is an arbitrary function such that
jfðtÞj ≤ 1 and ϵ ≪ 1. In this way, the parameter μ is a
perturbation in time around the value μ0. We consider that
this time variation of μ occurs at the expense of the internal
energy of the object, with null heat transfer between the
object and the environment. Hereafter, we consider that
c ¼ ℏ ¼ 1, tilde indicates the Fourier transform, and the
subscript þð−Þ indicates the right (left) side.
The field equation for this model is ð∂2

t − ∂2
xÞϕðt; xÞþ

2½μðtÞδðxÞ þ λ0δ
0ðxÞ�ϕðt; xÞ ¼ 0. It will be convenient to

split the field as ϕðt; xÞ ¼ ΘðxÞϕþðt; xÞ þ Θð−xÞϕ−ðt; xÞ,
where ΘðxÞ is the Heaviside step function and the fields
ϕþ and ϕ− are the sum of two freely counterpropagating
fields, namely ϕþð−Þðt; xÞ ¼ φoutðinÞðt− xÞ þψ inðoutÞðtþ xÞ,
where the labels “in” and “out” indicate, respectively, the
incoming and outgoing fields with respect to the object [see
Fig. 1(a)]. In terms of the Fourier transforms, we can write
ϕþð−Þðt; xÞ ¼

R
dω
2π ϕ̃þð−Þðω; xÞe−iωt, where ϕ̃þð−Þðω; xÞ ¼

φ̃outðinÞðωÞeiωx þ ψ̃ inðoutÞðωÞe−iωx. From the field equation,

we get the matching conditions ϕ̃ðω; 0þÞ ¼ ½ð1þ λ0Þ=
ð1 − λ0Þ�ϕ̃ðω; 0−Þ and ∂xϕ̃ðω; 0þÞ ¼ ½ð1 − λ0Þ=ð1þ λ0Þ�×
∂xϕ̃ðω; 0−Þ þ ½2=ð1 − λ20Þ�

R
dω0
2π μ̃ðω − ω0Þϕ̃ðω0; 0−Þ. After

an algebraic manipulation in these equations, we obtain

ΦoutðωÞ ¼ S0ðωÞΦinðωÞ þ
Z

dω0

2π
δS1ðω;ω0ÞΦinðω0Þ

þ
Z

dω0

2π

Z
dω00

2π
δS2ðω;ω0;ω00ÞΦinðω00Þ; ð2Þ

with

ΦoutðinÞðωÞ ¼
�
φ̃outðinÞðωÞ
ψ̃outðinÞðωÞ

�
;

S0ðωÞ ¼
�
sþðωÞ rþðωÞ
r−ðωÞ s−ðωÞ

�
;

where S0ðωÞ is the scattering matrix, with s�ðωÞ ¼
ωð1 − λ20Þ=½iμ0 þ ωð1þ λ20Þ� and r�ðωÞ¼−ðiμ0∓2ωλ0Þ=
½iμ0þωð1þλ20Þ� being the transmission and reflec-
tion coefficients, respectively. Notice that the change

(a)

(b)

(c)

FIG. 1. Illustration of an object, initially at rest (a) but free to
move [(b) and (c)], whose motion becomes induced by an
excitation of the quantum vacuum caused by the object itself.
The object, characterized by an asymmetric scattering matrix, is
represented by a circle with two parts, one in gray and the other in
black. The dashed wavy lines represent the unperturbed “in”
fields φinðt − xÞ (left) and ψ inðtþ xÞ (right). (a) The object for
t < −τ, when μðtÞ ≈ μ0. The solid-gray and solid-dark wavy lines
represent the unperturbed “out” fields ψoutðtþ xÞ (left) and
φoutðt − xÞ (right), respectively. (b) The object at an instant t,
when the parameter μ is varying in time. The irregular parts of the
solid-gray and of the solid-dark wavy lines represent the
perturbed parts of the “out” fields ψoutðtþ xÞ and φoutðt − xÞ,
respectively. Under this situation, the object is subjected to

the force Fð1Þ
μq ðt; _qðtÞÞϵþFð2Þ

μq ðt; _qðtÞÞϵ2þFqð∂3
t qðtÞ;∂4

t qðtÞ;…Þ
and gets in motion. (c) The object for t > τ, when μðtÞ ≈ μ0, and
we calculate the number of created particles (represented by the
dark points), moving with a final constant mean velocity vf. Note
that we have more particles produced (dark points) in the left side,
which coincides, in this illustration, with a larger flux of particle
momentum.
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λ0 → −λ0 leads to rþðωÞ ↔ r−ðωÞ; i.e., the object shifts its
properties from one side to the other. Moreover, S0ðωÞ is
analytic for Imω > 0 (as required by causality [37,38]),
unitary and real in the temporal domain. The terms
δS1ðω;ω00Þ and δS2ðω;ω0;ω00Þ represent the first-order
and second-order corrections to S0ðωÞ due to the time-
dependence of μ via fðtÞ. They are given by δS1ðω;ω0Þ ¼
ϵαðω;ω0ÞSðω0Þ and δS2ðω;ω0;ω00Þ¼ ϵ2αðω;ω0Þαðω0;ω00Þ×
Sðω00Þ, where αðω;ω0Þ ¼ −iμ0f̃ðω−ω0Þ=½iμ0 þωð1þ λ20Þ�
and

SðωÞ ¼
�

sþðωÞ 1þ rþðωÞ
1þ r−ðωÞ s−ðωÞ

�
: ð3Þ

Particularly, μ0 → ∞ leads to a perfectly reflecting object
[s�ðωÞ → 0] imposing to the field the Dirichlet boundary
condition in both sides [r�ðωÞ → −1], for which δS1 → 0
and δS2 → 0, recovering the configuration of a perfectly
reflecting object whose properties do not vary in time. On
the other hand, the limit λ0 → 1 (λ0 → −1) also leads to a
perfectly reflecting object, but imposing to the field the
Dirichlet and Robin (Robin and Dirichlet) boundary con-
ditions at the left and right sides of the object, respectively.
In this case, δS1 ≠ 0 and δS2 ≠ 0.

III. SPECTRUM, ENERGY AND MOMENTUM

Let us consider the initial situation (t < −τ) (τ > 0)
when the characteristic parameters of the object are con-
stant [λ0 and μðt < −τÞ ≈ μ0] and the state of the field is the
quantum vacuum. At a certain instant −τ, the properties of
the object start to vary [μ0 → μðtÞ], changing the boundary
conditions imposed to the field, exciting the fluctuations of
the quantum vacuum in the interval −τ < t < τ. The final
situation (t > τ) is when the object recovers its constant
characteristic parameters [λ0 and μðt > τÞ ≈ μ0] and real
particles are created. The spectrum of created particles can
be computed by nðωÞ ¼ 2ωTrh0injΦoutð−ωÞΦT

outðωÞj0ini
[38]. From Eq. (2), calculated at order up toOðϵ2Þ, we have
that nðωÞ ¼ nþðωÞ þ n−ðωÞ, where

n�ðωÞ ¼
ϵ2

2π2
ð1� λ0Þ2ð1þ λ20Þ

Z
∞

0

dω0ηðω;ω0Þ; ð4Þ

with ηðω;ω0Þ ¼ϒðωÞϒðω0Þjf̃ðωþω0Þj2 andϒðωÞ ¼ μ0ω=
½μ20 þω2ð1þ λ20Þ2�. Therefore, we get n−ðωÞ ¼ ½ð1 − λ0Þ=
ð1þ λ0Þ�2nþðωÞ, which means that the spectrum for one
side of the object differs from the other one by a frequency-
independent global factor. For λ0 > 0 (λ0 < 0) n−ðωÞ is
smaller (greater) than nþðωÞ.
The total number of created particles is given by

N ¼ R∞
0 dωnðωÞ, and the number in each side of the

object is N � ¼ R∞
0 dωn�ðωÞ, so that we can write

N − ¼ ½ð1 − λ0Þ=ð1þ λ0Þ�2N þ. Note that N is greater in
the right side of the object if λ0 > 0 and smaller if λ0 < 0.

Particularly, for the perfectly reflecting case where λ0 ¼ 1
ðλ0 ¼ −1Þ, we get N − ¼ 0 ðN þ ¼ 0Þ, so that the particles
are created only in one side of the object.
The energy and momentum of the created particles in

each side are given, respectively, by E� ¼ R
∞
0 dωωn�ðωÞ

and P� ¼ �E�. The total energy E and momentum P are
E ¼ Eþ þ E− and P ¼ Pþ þ P−. Specifically,

P ¼ 2ϵ2

π2
λ0ð1þ λ20Þ

Z
∞

0

dω
Z

∞

0

dω0ωηðω;ω0Þ; ð5Þ

which is negative for λ0 < 0 and positive for λ0 > 0.
Then, a static object, initially fixed at x ¼ 0, with its
properties varying in time, can excite asymmetrically the
fluctuations of the quantum vacuum, generating into the
field a net momentum P ≠ 0. For instance, for the perfectly
reflecting case where λ0 ¼ 1 ðλ0 ¼ −1Þ, we obtain P− ¼ 0
ðPþ ¼ 0Þ, so that momentum is transferred to the field (by
exciting it) just in one of the sides of the object. This net
momentum implies in a net force acting on the object.

IV. FORCE ON THE STATIC OBJECT

Let us now obtain the expression for the mean force
acting on the object at x ¼ 0 due to the field fluctuations.
The components of the energy-momentum tensor for a
scalar field in 1þ 1 dimensions are given by T00 ¼
T11 ¼ ½φ0ðt − xÞ�2 þ ½ψ 0ðtþ xÞ�2 ≡ Eðt; xÞ, and T01 ¼
T10 ¼ ½φ0ðt − xÞ�2 − ½ψ 0ðtþ xÞ�2 ≡ Pðt; xÞ, where Eðt; xÞ
and Pðt; xÞ are the energy and momentum densities,
respectively, and their mean values can be written as
hEjðt;xÞi¼Tr½∂t∂t0 hΦjðt;xÞΦT

j ðt0;xÞi�t¼t0 and hPjðt; xÞi ¼
Tr½diagð1;−1Þ∂t∂t0 hΦjðt; xÞΦT

j ðt0; xÞi�t¼t0 , where j ¼
out; in. The force acting on the object due to the field
fluctuations can be found as the difference between the
radiation pressure (T11), on the left and on the right sides
of the object. Therefore, the mean force is given by
FμðtÞ ¼ hPinðt; 0Þ − Poutðt; 0Þi, and it can be written as

FμðtÞ ≈ Fð1Þ
μ ðtÞϵþ Fð2Þ

μ ðtÞϵ2: ð6Þ
Taking its Fourier transform and considering Eq. (2), we

obtain F̃μðωÞ ≈ F̃ð1Þ
μ ðωÞϵþ F̃ð2Þ

μ ðωÞϵ2, where the mean
value was taken considering a vacuum as the initial state
of the field,

F̃ð1Þ
μ ðωÞ ¼ 2λ0ω

2f̃ðωÞ
πρ2ðλ20 þ 1Þ

×

�
ρþ i
ρþ 2i

½2i arctan ρ − lnðρ2 þ 1Þ� − iρ

�
;

F̃ð2Þ
μ ðωÞ ¼ ϵ2

Z
dω0

2π

Z
dω00

2π
sgnðω0Þhðω0Þαðω00;ω0Þ

×½ω0ðω0 − ωÞαðω − ω0;ω00Þ þ ω0 ↔ ω00�;
with ρ ¼ ðλ20 þ 1Þω=μ0 and hðωÞ ¼ 2λ0=½iμ0 þωð1þ λ20Þ�.
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V. FREE TO MOVE

So far, the object has been assumed to be fixed at x ¼ 0,
as described by the Langrangian (1). Now, let us consider
that for t < −τ the object is kept at x ¼ 0 [Fig. 1(a)], but for
t > −τ it is free to move. Even if μðtÞ ¼ μ0 for t > −τ, a
fluctuating force from the quantum vacuum field would
act on the object, so that it would start a Brownian motion
[39–42]. On the other hand, one can use one of the degrees
of freedom of the model, namely the initial mass of the
object (M0), to simplify the problem. Assuming M0

sufficiently large, the mean-squared displacement in the
position of the object, during the interval −τ < t < τ, can
be neglected, and therefore, the object remains at x ≈ 0 in
the mentioned interval.
Now, let us consider again μðtÞ ¼ μ0½1þ ϵfðtÞ� in the

interval −τ < t < τ [Fig. 1(b)], with M0 remaining large
enough to the Brownian motion be neglected, and the
object free to move for t > −τ [Fig. 1(c)]. For this case, the
boundary condition imposed to the field on the static object
at x ¼ 0 must now be replaced by a boundary condition
considered in the instantaneous position x ¼ qðtÞ of the
moving object, observed from the point of view of an
inertial frame where the object is instantaneously at rest
(called tangential frame), and then be mapped into a
boundary condition viewed by the laboratory system
[34,37,43–45]. This means that the force FμðtÞ [Eq. (6)]
needs to be replaced by a modified Fμqðt; _qðtÞÞ, which now
can depend on the velocity of the object [for consistency,
we consider that Fμqðt; 0Þ ¼ FμðtÞ]. In addition to the force
Fμqðt; _qðtÞÞ, the motion of the object gives rise to an extra
disturbance to the vacuum field, from which arises an
additional (dynamical Casimir) force acting on the object.
This force is here represented by Fqð∂3

t qðtÞ; ∂4
t qðtÞ;…Þ, so

that it acts on nonuniformly accelerating objects (see, for
instance, Refs. [3,46]). For consistency, we assume that, for
a static object, Fqð0; 0;…Þ ¼ 0. As an example, if one
considers, for instance, λ0 → −1, the object imposes to
the field on the left (right) side the Robin (Dirichlet)
boundary condition. For this case, Fqð∂3

t qðtÞ; ∂4
t qðtÞ;…Þ ≈

1=ð6πÞ∂3
t qðtÞ − 1=ð6πμ0Þ∂4

t qðtÞ [37,46,47]. In summary,
two forces act on the object free to move, a force
Fμqðt; _qðtÞÞ (related to the time-varying properties of the
object) and a force Fqð∂3

t qðtÞ; ∂4
t qðtÞ;…Þ (related to the

motion of the object).
From the energy conservation, and assuming that the

excitation of the quantum vacuum occurs at the expense
of the energy of the object [so that its initial mass M0

becomes time-dependent: M0 → MðtÞ], we have MðtÞ≈
M0½1 − EfieldðtÞ=M0�=½1þ _qðtÞ2=2�, where EfieldðtÞ is the
energy stored in the field, and the velocities of the object are
considered nonrelativistic, ½ _qðtÞ�2 ≪ 1 (c ¼ 1). We con-
sider, now, the approximation EfieldðtÞ=M0 ≪ 1, which
means that the energy EfieldðtÞ is negligible if compared

to the initial energy of the object. Then we have
MðtÞ ≈M0.
Considering all forces acting on the object, we have the

equation of motion Fμqðt; _qðtÞÞ þ Fqð∂3
t qðtÞ; ∂4

t qðtÞ;…Þ≈
M0q̈ðtÞ. We also consider that, up to second order in ϵ,
the force Fμqðt; _qðtÞÞ can be written as Fμqðt; _qðtÞÞ≈
Fð1Þ
μq ðt; _qðtÞÞϵþ Fð2Þ

μq ðt; _qðtÞÞϵ2, which is an extension of

Eq. (6), assuming Fð1Þ
μq ðt; 0Þ ¼ Fð1Þ

μ ðtÞ, and Fð2Þ
μq ðt; 0Þ ¼

Fð2Þ
μ ðtÞ. Then, we write the equation of motion as

Fð1Þ
μq ðt; _qðtÞÞϵþ Fð2Þ

μq ðt; _qðtÞÞϵ2 þ Fqð∂3
t qðtÞ; ∂4

t qðtÞ;…Þ≈
M0q̈ðtÞ. Now, one can use two of the degrees of freedom
of the model, namely the value of ϵ and the initial mass
M0, to simplify the problem. For instance, let us consider
the changes ϵ → 10pϵ, and M0 → 102pM0 (with p > 0)
to build a new situation for which the equation of mo-

tion is Fð1Þ
μq ðt; _qðtÞÞϵ=10p þ Fð2Þ

μq ðt; _qðtÞÞϵ2 þ Fqð∂3
t qðtÞ;

∂4
t qðtÞ;…Þ=102p ≈M0q̈ðtÞ. Increasing the value of p,

we can inhibit the effect of the first and third terms in
the last equation, so that we can set up a situation where
these terms can be neglected in comparison with the second
one, resulting in the approximate equation of motion

Fð2Þ
μq ðt; _qðtÞÞϵ2 ≈M0q̈ðtÞ. In other words, for a suitable

choice of the initial mass M0, the force Fð2Þ
μq ðt; _qðtÞÞ

defines effectively the mean trajectory of the object.
By keeping increasing the mass M0, one can produce
smaller accelerations and velocities of the object, so that

Fð2Þ
μq ðt; _qðtÞÞ ≈ Fð2Þ

μq ðt; 0Þ ¼ Fð2Þ
μ ðtÞ. With this approxima-

tion, we have the equation of motion given by

Fð2Þ
μ ðtÞϵ2 ≈M0q̈ðtÞ. Integrating in time,

Rþ∞
−∞ Fð2Þ

μ ðtÞϵ2dt,
using the mentioned formula shown for F̃ð2Þ

μ ðωÞ, the
property ηðω;ω0Þ ¼ ηðω0;ωÞ ¼ ηð−ω;−ω0Þ, and also con-
sidering that _qðt < −τÞ ¼ 0, we get

vf ≈ −P=M0; ð7Þ

where vf ¼ _qðt > τÞ is the mean final velocity. Note that
−P is the opposite of the net momentum transferred from
the object to the field [see Eq. (5)], so that the momentum
transferred to the object, caused by the action of the force

Fð2Þ
μ ðtÞϵ2, is directly correlated with the particle creation

process. This situation is illustrated in Figs. 1(c) and 2(a).
Let us give attention to another situation. The values

of ϵ and p can be chosen in such way that the term

related to Fð1Þ
μq ðt; _qðtÞÞ becomes dominant in relation to

Fð2Þ
μq ðt; _qðtÞÞϵ2. We consider [as done in a similar way

for Fð2Þ
μq ðt; _qðtÞÞϵ2] the approximation Fð1Þ

μq ðt; _qðtÞÞ≈
Fð1Þ
μq ðt; 0Þ ¼ Fð1Þ

μ ðtÞ. It can be shown that
Rþ∞
−∞ Fð1Þ

μ ðtÞ×
dt ¼ 0, which means that, although this force makes the
position of the object vary in time, the total net momentum
transferred to the object is null. This situation is illustrated
in Fig. 2(b).
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Another situation can be obtained by manipulating the

values of ϵ and p in such way that Fð1Þ
μ ðtÞϵ and Fð2Þ

μ ðtÞϵ2
have similar magnitudes. The presence of Fð1Þ

μ ðtÞϵ disturbs
the mean trajectory but does not change the final velocity

vf obtained if only Fð2Þ
μ ðtÞϵ2 was considered. This case is

illustrated in Fig. 2(c).
We can also set up the values of ϵ and p so that we have

to consider all terms, Fð1Þ
μq ðtÞϵ, Fð2Þ

μq ðtÞϵ2 and Fqð∂3
t qðtÞ;

∂4
t qðtÞ;…Þ. One can see that

Rþ∞
−∞ Fqð∂3

t qðtÞ;
∂4
t qðtÞ;…Þ _qðtÞdt < 0, so that the net action of

Fqð∂3
t qðtÞ; ∂4

t qðtÞ;…Þ is to dissipate energy of the object.
This leads to a mean final velocity v0f with a smaller
magnitude if compared with vf ðjvfj > jv0fjÞ obtained if

only Fð1Þ
μ ðtÞϵþ Fð2Þ

μ ðtÞϵ2 was considered. This situation is
illustrated in Fig. 2(d).

VI. SUMMARY OF THE RESULTS AND
FINAL REMARKS

In the model proposed here, a static object, isolated from
everything and just interacting with the quantum vacuum,
gets in motion by exciting the vacuum. Then, the net action
of the vacuum field is in favor of the motion, instead of
against, as it occurs in the usual dynamical Casimir effect.
This motion requires a time variation of one of the
parameters of the object, which couple it with the quantum
vacuum field. Resisting to this change, the vacuum field
extracts energy from the object (reducing its rest mass),
converting this energy into real particles. The motion also
requires an asymmetrical vacuum excitation on each side,

which can be achieved by an interaction field-object
described by an asymmetric scattering matrix.
The mean force acting on the object due to μðtÞ can be

divided in two parts, the forces Fð1Þ
μ ðtÞϵ and Fð2Þ

μ ðtÞϵ2.
These forces only exist (are non-null) owing to the
asymmetry of the object, which means that the asymmetry
is fundamental to the rise of these quantum forces.

The part of the force related to Fð1Þ
μ ðtÞ is a manifestation

of the disturbed vacuum field at order ϵ, and the corre-
spondent force can remove the object from the rest but
gives no contribution to the net momentum. On the other

hand, the term related to Fð2Þ
μ ðtÞ is a manifestation of the

disturbed vacuum field at order ϵ2, and it is a direct
consequence of the momentum transferred to the object
by the created particles.

The mean forces, Fð1Þ
μ ðtÞϵ and Fð2Þ

μ ðtÞϵ2, described in the
present paper, are quantum forces emerged from the
asymmetry and time-varying properties of the object. In
conjunction with the dynamical Casimir force Fqð∂3

t qðtÞ;
∂4
t qðtÞ;…Þ, these three forces define, in the approximation

considered here, the mean trajectory of the object. Thus, the
object, starting from the rest, gets a non-null mean final
velocity, so that, exciting the vacuum, it moves.
Finally, to obtain an estimate of the physical quantities

involved in such motion, let us consider an object, free to
move, capable to produce, asymmetrically, the same
amount of particles of that obtained in the experiment
using a SQUID performed by Wilson et al. [18]. Thus, due
to the created particles, it would act on the object a net
mean force ∼10−23 N. A possible manufacture of such
object could require, in a first moment, some minor
adaptations in our original theoretical proposal but pre-
serving its essence. Then, for practical purposes, one can
consider the object in the presence of an external agent,
acting as the inductor of the time change in the coupling
parameter μ, and also as a source of energy (but not
momentum) to the object. Considering the object with a
mass density ∼103 kg=m3 (order of the density of Al, used
in the SQUID [18,21]), with a radius ∼10 μm (vertical
dimension of the SQUID [18]), exciting the quantum
vacuum asymmetrically during a time ∼103 s, it would
get, neglecting dissipation of its kinetic energy, a final
velocity ∼10 nm=s, and a displacement ∼10 μm (order of
the radius) from its initial position. Thus, from these
estimates, it does not seem infeasible to build such object
and measure its net displacement or mean final velocity.
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(a) (b) (d)(c)

FIG. 2. Mean trajectories qðtÞ (continuous lines) of an object
initially ðt < −τÞ at rest. (a) Illustration of qðtÞwhen just the term
Fð2Þ
μ ðtÞϵ2 is considered. The mean final velocity vf is indicated by

the dashed line. (b) Illustration of qðtÞ when only the term

Fð1Þ
μ ðtÞϵ is taken into account. The null contribution of this force

to the mean final velocity of the object is indicated by the vertical
inclination of the curve qðtÞ for t > τ. (c) Illustration of qðtÞwhen
the sum Fð1Þ

μ ðtÞϵþ Fð2Þ
μ ðtÞϵ2 is considered. The mean trajectory is

drawn by introducing deformations on the curve shown in the
case (a), but maintaining the same mean final velocity vf.

(d) Situation when all terms are considered: Fð1Þ
μ ðtÞϵþ

Fð2Þ
μ ðtÞϵ2 þ Fqð∂3

t qðtÞ; ∂4
t qðtÞ;…Þ. The net dissipation of the

kinetic energy by Fqð∂3
t qðtÞ; ∂4

t qðtÞ;…Þ is indicated by the mean
final velocity v0f, with jv0fj < jvfj. For comparison purposes, the
figure also shows, in gray lines, the situation described in (a),

when only Fð2Þ
μ ðtÞϵ2 was considered.
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