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We focus on the geometrical reformulation of free higher spin supermultiplets in 4D, N ¼ 1 flat
superspace. We find that there is a de Wit-Freedman like hierarchy of superconnections with simple gauge
transformations. The requirement for sensible free equations of motion imposes constraints on the gauge
parameter superfields. Unlike the nonsupersymmetric case, we find several different constraints that can
decouple the higher superconnections. By lifting these constraints nongeometrically via compensators we
recover all known descriptions of arbitrary integer and half-integer gauge supermultiplets. In the
constrained formulation we find a new description of half-integer supermultiplets, generalizing the
new-minimal and virial formulations of linearized supergravity to higher spins. However this description
can be formulated using compensators. The various descriptions can be labeled as geometrical or
nongeometrical if the equations of motion can be expressed purely in terms of superconnections or not.
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I. INTRODUCTION

The study of higher spins plays a special role in the
search for underlying principles and symmetries of nature.
Depending on your viewpoint this statement can be under-
stood in two different ways. On the one hand, their
contribution to string theory is crucial [1–7] and higher
spin symmetry may control the UV completion of gravity
[8,9]. On the other hand, various no-go results [10–14]
under specific assumptions constrain the list of nontrivial
interactions among particles.
Most of the progress done in higher-spin theories

falls under two categories: (i) constructing consistent
interactions involving higher spin gauge fields and (ii)
the geometrical reformulation of free higher spins on
Minkowski and anti–de Sitter (AdS) backgrounds. The
correlation between these two directions is evident in
the case of gravity, where the geometrical formulation of

the theory dictates its interactions. By analogy, under-
standing the underlying geometrical structure of higher
spin theory, assuming one exist, may provide a deeper
insight to higher spin interactions.
Nontrivial higher spin interactions have been constructed

employing a variety of techniques such as the Noether
method [15–21], BRST [22–29], light cone [30–33], and
framelike formulation [34–49]. The framelike description
has been the most successful and provides an economy of
ideas [50]. However, the metriclike approach offers an
economy of fields which makes the geometrical interpre-
tation of the theory more direct [51]. This was first
demonstrated by de Wit and Freedman in [54]. They found
that for a bosonic spin s, the object replacing the usual
connection of Riemannian geometry is a tower of s − 1

connectionlike objects [55], each being the derivative of the
previous one. The top connection allowed the definition of
an invariant curvature tensor which is the s-th spacetime
derivative of the higher spin gauge field. Extracting
Frønsdal’s second order equation of motion required
imposing a traceless constraint on the gauge parameter
in order to decouple the higher order connections [56], thus
reducing the symmetry group. Later an unconstrained,
geometrical but nonlocal description [59,60] was found
together with an unconstrained, local but nongeometrical
description [61,62].
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Higher spin theories with manifest N ¼ 1 supersym-
metry were first formulated in [63–65] and later works
include [66–73]). Recently there has been some progress in
the direction of constructing consistent interactions [74–85]
for such theories. Nevertheless, no steps have been taken
towards the geometrical reformulation of these theories.
This paper is a first analysis in that direction.
We study the properties of a set of natural objects which

define the notion of generalized higher spin superconnec-
tion and the corresponding supercurvature superfield. We
find that these objects arrange into a hierarchy à la de Wit
and Freedman [54] in superspace. The top member of this
hierarchy is a proper superconnection in the sense that it
allows the definition of an invariant supercurvature super-
field. These supercurvatures match the known higher spin
superfield strengths. Demanding sensible superspace equa-
tions of motion for free theory, generates a variety of
nonequivalent constraints that one can impose on the gauge
parameter superfield. This is in contrast to nonsupersym-
metric theories, where there is a unique constraint, the
traceless condition of the parameter. In superspace, we find
that there is more than one ways one can decouple the
higher order superconnections and that gives rise to all
these different constraints. Breaking our geometrical
approach, we use the method of compensators to lift the
constraints and show that all known descriptions of higher
and lower spin supermultiplets correspond to one of such
constraints. However, for one of the constraints this can not
be done. For that case, the constrained formulation gives a
new description of the half integer superspin supermultiplet
ðsþ 1; sþ 1=2Þ. This new description is a higher spin
generalization of the known new-minimal and new-new-
minimal descriptions of linearized supergravity. Finally, we
find that in the constrained formulation some of the theories
have the property that their equation of motion can be
written purely in terms of superconnections. This property
gives a sense of geometrical origin for these theories.
The paper is organized as follows. In Sec. II, getting

inspiration from super Yang-Mills theory, we define the
notion of a generalized superconnection and its correspond-
ing supercurvature tensor. In Sec. III, we focus on the ðsþ1;
sþ1=2Þ class of supermultiplets which are described by a
bosonic gauge superfield and show that there is a hierarchy
of (sþ 1) superconnection-like objects, which at compo-
nent level contains the known de Wit-Freedman connec-
tions. In Sec. IV, we present standard equations of motions
by constraining the gauge parameter. In Sec. V, we
introduce nongeometrical compensators in order to lift
constraints and compare with known results. In Sec. VI, the
analysis is repeated for the ðsþ 1=2; sÞ class of super-
multiplets described by a fermionic gauge superfield. In
this case there are two independent hierarchies, with s and
sþ 1 members respectively and use them to generate all
appropriate constraints in order to extract free equations
of motion.

II. SUPERCONNECTIONS

Gauge redundancy has been proven crucial in construct-
ing manifestly supersymmetric field theories for higher
spins and a particular set of their interactions. However, as
it stands the formulation used in these constructions is not
very geometrical. This is because the superspace actions
[63–65,67,68] for free integer and half-integer superspins
have been determined by hand, and there is no obvious way
of rewriting them in terms of higher spin superfield
strengths that involve higher derivatives. A step towards
a more geometrical description would require a generali-
zation of the notion of superconnection, in the context of
higher spins.
Following de Wit and Freedman [54], the signal of a

proper connection is its ability to allow the definition of a
gauge invariant tensor in terms of its derivatives. To identify
this signal in manifestly supersymmetric theories and set
the stage for later examinations, let us review the results
[86] regarding super Yang-Mills theory. For a Uð1Þ gauge
group [87], the theory is described by a real scalar gauge
superfield VðzÞ with the following gauge transformation:

egV → eiΛ̄egVe−iΛ ⇒
Uð1Þ

δV ¼ 1
g ðD̄2Lþ D2L̄Þ where L is the

propoetential of chiral superfield Λ and is unconstrained.
The covariant derivatives ∇A ¼ f∇α;∇ _α;∇α _αg are consis-
tent with the gauge transformation of matter (chiral)
superfields that couple to V∶ ∇A → eiΛ∇Ae−iΛ. A consis-
tent and convenient choice of covariant derivatives is the
following:

∇α ¼ e−gVDαegV; ∇ _α ¼ D̄ _α; ∇α _α ¼ −if∇α;∇ _αg:
ð1Þ

Their algebra [88] gives the corresponding super-
curvatures Wα ¼ D̄2ðe−gVDαegVÞ and W̄ _α ¼ e−gV ×

½D2ðegVD̄ _αe−gVÞ�egV ¼Uð1Þ
D2ðegVD̄ _αe−gVÞ. The superconnec-

tions ΓA are defined as the difference between the Uð1Þ
covariant derivatives ∇A and the supersymmetry covariant
derivatives DA: (∇A ¼ DA þ ΓA),

Γα ¼ e−gVðDαegVÞ; Γ _α ¼ 0; Γα _α ¼ −iD̄ _αΓα; ð2Þ

and the supercurvature can be written as Wα ¼ D̄2Γα. For
the linearized theory we get the following:

Γα ¼ gDαV; Γ _α ¼ 0; Γα _α ¼ −igD̄ _αDαV; Wα ¼ D̄2Γα

ð3Þ

δΓα ¼ DαD̄2L; δΓ _α ¼ 0; δΓα _α ¼ ∂α _αD̄2L; δWα ¼ 0:

ð4Þ

Projecting [90] the above to components we find
(in W.Z gauge): ΓαjW:Z ¼ 0, Γ _αj ¼ 0, Γα _αjW:Z: ¼ iAα _α
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(δAα _α ¼ ∂α _αξ) which is exactly what is expected from field
theory.
In the above, we recognize the role of Γα as a proper

connection. The properties that give it this characterization
are (i) its transformation has the structure DαD̄2L and (ii) it
allows the definition of an invariant field strength Wα by
acting with D̄2 on it. Getting inspiration from the above we
define a notion of a generalized superconnection in the
following way. In the context of a linearized theory we will
call a superfield to be a superconnection if it has a gauge
transformation of the form,

δΓα… ¼ DαD̄2ð…Þ; ð5Þ

and therefore it allows the definition of an invariant
supercurvature,

Wα… ¼ D̄2Γα…; δWα… ¼ 0: ð6Þ

III. HIERARCHY OF DE WIT-FREEDMAN
SUPERCONNECTIONS FOR HALF INTEGER

SUPERSPINS

Consider a supersymmetric, irreducible system of mass-
less higher spins, in 4D Minkowski spacetime. This system
will include a bosonic and a fermionic higher spin gauge
field, which are related by supersymmetry transformations;
hence their spin values must differ by 1=2. There are two
cases, either the fermion is at the bottom ðsþ 1; sþ 1=2Þ
[half-integer superspin supermultiplet] or the boson is at the
bottom ðsþ 1=2; sÞ [integer superspin supermultiplet].
In this section we focus on the half-integer supermul-

tiplet where the highest propagating spin is (sþ 1). The
appropriate superfield for the description of such a super-
multiplet is a real bosonic ðs; sÞ-superfield tensor [91]
HαðsÞ _αðsÞ. Its highest rank component [92] field is a sym-
metric (sþ 1)-rank spacetime tensor which will play
the role of the highest spin boson hαðsþ1Þ _αðsþ1Þ ∝

1
ðsþ1Þ!2 ½Dðαsþ1

; D̄ð _αsþ1
�HαðsÞÞ _αðsÞÞj. It is easy to verify that

the most general transformation of HαðsÞ _αðsÞ that
gives hαðsþ1Þ _αðsþ1Þ the correct gauge transformation
ðδhαðsþ1Þ _αðsþ1Þ ∝ ∂ðαsþ1ð _αsþ1

ξαðsÞÞ _αðsÞÞÞ and is consistent with
its reality is

δHαðsÞ _αðsÞ ¼
1

s!
Dðαs L̄αðs−1ÞÞ _αðsÞ −

1

s!
D̄ð _αsLαðsÞ _αðs−1ÞÞ: ð7Þ

Looking back to the super Yang-Mills example, the goal is
starting from H-superfield and by acting with spinorial
covariant derivatives, to construct a set of objects with
simple transformations under (7). Consider the following
quantities [94]:

ΓβαðsÞ _αðsÞ ¼ DβHαðsÞ _αðsÞ; ð8aÞ

δΓβαðsÞ _αðsÞ ¼ −
1

s!
CβðαsD

2L̄αðs−1ÞÞ _αðsÞ

−
1

s!
DβD̄ð _αsLαðsÞ _αðs−1ÞÞ; ð8bÞ

ΓβαðsÞ_β _αðsÞ ¼ D̄ _βDβHαðsÞ _αðsÞ; ð9aÞ

δΓβαðsÞ _β _αðsÞ ¼ −
1

s!
CβðαsD̄ _βD

2L̄αðs−1ÞÞ _αðsÞ

−
i

ðsþ 1Þ! ∂βð _βD̄ _αsLαðsÞ _αðs−1ÞÞ

−
1

ðsþ 1Þ!C _βð _αsDβD̄2LαðsÞ _αðs−1ÞÞ

−
1

ðsþ 1Þ!C _βð _αsD̄
2DβLαðsÞ _αðs−1ÞÞ

þ s − 1

ðsþ 1Þ!C _βð _αsD̄
_γDβD̄ _αs−1LαðsÞj_γj _αðs−2ÞÞ;

ð9bÞ

ΓγβαðsÞ _β _αðsÞ ¼ DγD̄_βDβHαðsÞ _αðsÞ; ð10aÞ

δΓγβαðsÞ _β _αðsÞ ¼ −
i
s!
Cβðαs∂γ _βD

2L̄αðs−1ÞÞ _αðsÞ

−
i

ðsþ 1Þ! ∂βð _βDγD̄ _αsLαðsÞ _αðs−1ÞÞ

þ 1

ðsþ 1Þ!C _βð _αsCγβD2D̄2LαðsÞ _αðs−1ÞÞ

þ s − 1

ðsþ 1Þ!C _βð _αsDγD̄_γDβD̄ _αs−1LαðsÞj_γj _αðs−2ÞÞ

−
1

ðsþ 1Þ!C _βð _αsDγD̄2DβLαðsÞ _αðs−1ÞÞ: ð10bÞ

By imposing various (anti)symmetrizations of indices we
can simplify the above transformations. Also notice that the
last term in (10a) has the characteristic structure of the
transformation of a superconnection (5). So let us consider
the following quantity:

Γαðsþ2Þ _αðs−1Þ ¼
1

ðsþ 2Þ!Dðαsþ2
∂αsþ1

_αsHαðsÞÞ _αðsÞ;

δΓαðsþ2Þ _αðs−1Þ ¼ −
i

sðsþ 2Þ!Dðαsþ2
D̄2Dαsþ1

LαðsÞÞ _αðs−1Þ

−
s− 1

ðsþ 2Þ!s!Dðαsþ2
D̄ð _αs−1∂αsþ1

_γLαðsÞÞj_γj _αðs−2ÞÞ:

Because of the second term in the above equation,
Γαðsþ2Þ _αðs−1Þ is not quite yet a superconnection. However,
for the special case of s ¼ 1 [linearized supergravity:
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ð2; 3=2Þ-supermultiplet] this term drops and Γαβγ ¼
1
3!
Dðα∂β

_γHγÞ_γ is the superconnection for linearized super-
gravity. One can confirm that its θ̄-component is the
linearized Christoffel symbol D̄ _αΓαβγjW:Z: ∝ ∂ðα _γhβγÞ_γ _α.
As expected by (6), it defines a supercurvature tensor
Wαβγ ¼ D̄2Γαβγ ∝ D̄2Dðα∂β

_γHγÞ_γ which is exactly the

known supergravity superfield strength [95,96], which
includes the bosonic and fermionic linearized curvature
tensors.
It is now straightforward to define generalized higher

spin superconnections by recursive application of super-
space derivatives,

ΓðtÞ
αðsþtþ1Þ _αðs−tÞ ¼

1

ðsþ tþ 1Þ!Dðαsþtþ1
∂αsþt

_γ1…∂αsþ1

_γtHαðsÞÞ_γðtÞ _αðs−tÞ; ð11aÞ

δΓðtÞ
αðsþtþ1Þ _αðs−tÞ ¼ −i

t
s

1

ðsþ tþ 1Þ!Dðαsþtþ1
D̄2Dαsþt

∂αsþt−1
_γ1…∂αsþ1

_γt−1LαðsÞÞ_γðt−1Þ _αðs−tÞ

−
s − t
s

1

ðsþ tþ 1Þ!ðs − tÞ!Dðαsþtþ1
D̄ð _αs−t∂αsþt

_γ1…∂αsþ1

_γtLαðsÞÞj_γðtÞj _αðs−t−1ÞÞ: ð11bÞ

This is a hierarchy of (sþ 1) superconnectionlike objects
à la de Wit and Freedman [54], parametrized by the values
of t (t ¼ 0; 1; 2;…; s). Each of which is defined in terms of
superspace derivatives of the previous one, via the recursive
relation,

ΓðtÞ
αðsþtþ1Þ _αðs−tÞ ¼

1

ðsþ tþ 1Þ!Dðasþtþ1
D̄_γtΓðt−1Þ

αðsþtÞÞ_γt _αðs−tÞ:

ð12Þ

Only the top one (t ¼ s) is a proper superconnection in the
sense that

δΓðsÞ
αð2sþ1Þ ¼ −

i
ð2sþ 1Þ!

× Dðα2sþ1
D̄2Dα2s∂α2s−1

_γ1…∂αsþ1

_γs−1LαðsÞÞ_γðs−1Þ;

ð13Þ

and as such it defines the higher spin supercurvature,

Wαð2sþ1Þ ¼ D̄2ΓðsÞ
αð2sþ1Þ: ð14Þ

This is the exactly the invariant higher spin superfield
strength constructed in [63] and later found in [67] by
studying the transition from irreducible, massive higher
superspin representation to irreducible, massless higher
superspin representations.
Therefore, there actually exist a geometrical structure

for higher spin gauge superfields which naturally extends
the known super Yang-Mills and Supergravity cases. This
hierarchy of higher spin superconnections provides the
supersymmetric extension of the bosonic and fermionic
de Wit-Freedman higher spin connections. One can check
that they correspond to the θ̄ and θ̄2 components of

ΓðtÞ
αðsþtþ1Þ _αðs−tÞ respectively,

D̄ _βΓ
ðtÞ
αðsþtþ1Þ _αðs−tÞj ∝ ∂ðαsþtþ1

_αs…∂αsþ2

_αs−tþ1hαðsþ1ÞÞβ _αðsÞ;

D̄2ΓðtÞ
αðsþtþ1Þ _αðs−tÞj ∝ ∂ðαsþtþ1

_αs…∂αsþ2

_αs−tþ1ψαðsþ1ÞÞ _αðsÞ:

IV. EXTRACTING FREE EQUATIONS
OF MOTION

Ordinary free field theory requires a second (first) order
equation for bosons (fermions) which translates to four
(two) spinorial superspace derivatives. However, the
previous geometrical approach to higher spin supermul-
tiplets indicates that the only gauge invariant quantities
involve higher derivatives. Therefore, it is not clear how
one can obtain reasonable free superfield equations. The
answer [97] is that only if appropriate constraints are
imposed on the gauge parameter this can be achieved.
This behavior is homologous to nonsupersymmetric
higher spins where a traceless condition must be imposed
and the fields are restricted to SOðDÞ irreducible tensors
instead of GLðDÞ tensors and thus forcing the constrained
formulation.
Motivated from (14), one can define its t-generalization,

WðtÞ
αðsþtþ1Þ _αðs−tÞ ¼ D̄2ΓðtÞ

αðsþtþ1Þ _αðs−tÞ: ð15Þ

This is an interesting, secondary hierarchy because its top is
the invariant superfield strength, but the members of it are
not superconnectionlike objects because their gauge trans-
formation is

δWðtÞ
αðsþtþ1Þ _αðs−tÞ ¼ −

iðs − tÞ
sðsþ tþ 1Þ!ðs − tÞ!

× D̄2∂ðαsþtþ1ð _αs−t∂αsþt
_γ1…∂αsþ1

_γt

× LαðsÞÞj_γðtÞj _αðs−t−1ÞÞ: ð16Þ
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In [67] a deep relationship between the invariant superfield strength and the on shell equations of motion was discovered. It
was shown that the quantity Dα2sþ1Wαð2sþ1Þ is expressed as the sum of higher derivative operators acting on the free
equations of motion. It is natural to attempt this for the entire secondary hierarchy. One can show that

Dαsþtþ1WðtÞ
αðsþtþ1Þ _αðs−tÞ ¼

1

ðsþ tþ 1Þ! ∂ðαsþt
_γt…∂αsþ1

_γ1fðsþ tþ 1ÞDβD̄2DβHαðsÞÞj_γðtÞj _αðs−tÞ

þ sDαsD̄
2DβHjβjαðs−1ÞÞj_γðtÞj _αðs−tÞg

− i
t

ðsþ tþ 1Þ!Dðαsþt
∂αsþt−1

_γt−1…∂αsþ1

_γ1D̄2D2D̄_γtHαðsÞÞj_γðtÞj _αðs−tÞ: ð17Þ

The answer is similar; we get the sum of higher derivative operators acting on terms that have the correct characteristics
(engineering dimensions and index structures) to appear in the equations of motions. The t ¼ 0 level seems appropriate in
order not to have higher derivatives. Under the gauge transformation we get

δðDαsþtþ1WðtÞ
αðsþtþ1Þ _αðs−tÞÞ ¼

ðs − tÞðsþ 1Þ
sðsþ tþ 1Þ

1

ðsþ tÞ!ðs − tÞ! D̄ð _αs−tD
2D̄2∂ðαsþt

_γt…∂αsþ1

_γ1LαðsÞÞj_γðtÞj _αðs−t−1ÞÞ

þ ðs − tÞt
sðsþ tþ 1Þ

1

ðsþ tÞ!ðs − tÞ! D̄
_γtD̄2D̄2∂ðαsþtð _αs−t∂αsþt−1

_γt−1…∂αsþ1

_γ1LαðsÞÞj_γðtÞj _αðs−t−1ÞÞ

−
s − t

sþ tþ 1

1

ðsþ tÞ!ðs − tÞ!Dðαsþt
D̄ð _αs−tD

βD̄2∂αsþt−1
_γt…∂αs

_γ1Ljβjαðs−1ÞÞj_γðtÞj _αðs−t−1ÞÞ; ð18Þ

and for t ¼ 0 it simplifies

δðDαsþ1Wð0Þ
αðsþ1Þ _αðsÞÞ ¼

1

s!
D̄ð _αsD

2D̄2LαðsÞ _αðs−1ÞÞ

−
s

sþ 1

1

s!s!
DðαsD̄ð _αsD

βD̄2Ljβjαðs−1ÞÞ _αðs−1ÞÞ: ð19Þ

A. Nonminimal constraints

Based on the above transformation law, the quantity

Dasþ1Wð0Þ
αðsþ1Þ _αðsÞ is invariant if we constraint the gauge

parameter LαðsÞ _αðs−1Þ as follows:

D̄2LαðsÞ _αðs−1Þ þ Dαsþ1Λαðsþ1Þ _αðs−1Þ ¼ 0; ð20Þ

whereΛαðsþ1Þ _αðs−1Þ is an arbitrary superfield consistent with
the condition D̄ _βD

αsþ1Λαðsþ1Þ _αðs−1Þ ¼ 0. It is evident that,
under this constraint, the gauge invariant equation,

EαðsÞ _αðsÞ ∝ Dαsþ1D̄2Γð0Þ
αðsþ1Þ _αðsÞ ¼ 0; ð21Þ

can play the role of free equation of motion for the
ðsþ 1; sþ 1=2Þ supermultiplet. This equation is geomet-
rical in nature because it involves only superconnection
Γð0Þ. Using (17), Eq. (21) can be decomposed to the
following two equations:

DβD̄2DβHαðsÞ _αðsÞ ¼ 0; D̄2DβHβαðs−1Þ _αðsÞ ¼ 0; ð22Þ

which are both gauge invariant due to (20). Later we will
show that (22) and (20) generate the known nonminimal
description of ðsþ 1; sþ 1=2Þ supermultiplets.

B. Minimal constraints

Transformation (19) can be written in a different way
by realizing that (7) allows the decomposition of it to the
sum of δH-dependent terms and the remainder. The δH-
terms can then be absorbed to the left-hand side of the
equation. By isolating as many as possible δH-terms, the
remainder will provide an alternative structure of softer
constraints. Specifically, the first term of (19) can be
written as

1

s!
D̄ð _αsD

2D̄2LαðsÞ _αðs−1ÞÞ

¼ −
sðsþ 1Þ
2sþ 1

1

s!
D̄ð _αsD

2D̄_ρδHαðsÞj_ρj _αðs−1ÞÞ

þ s2

2sþ 1

1

s!s!
D̄ð _αsDðαsD̄

_ρDρδHjρjαðs−1ÞÞj_ρj _αðs−1ÞÞ

−
s2

2sþ 1

1

s!s!
D̄ð _αsDðαsD̄

2DρLjρjαðs−1ÞÞ _αðs−1ÞÞ

þ sðs − 1Þ
2sþ 1

1

s!s!
D̄ð _αsDðαsD̄ _αs−1D

ρD̄_ρLjρjαðs−1ÞÞj_ρj _αðs−2ÞÞ:

ð23Þ

Similarly the second term,
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1

s!s!
DðαsD̄ð _αsD

βD̄2Ljβjαðs−1ÞÞ _αðs−1ÞÞ

¼ þ s2

2sþ 1

1

s!
DðαsD̄

2DρδHjρjαðs−1ÞÞ _αðsÞ

−
sðsþ 1Þ
2sþ 1

1

s!s!
DðαsD̄ð _αsD

ρD̄_ρδHjρjαðs−1ÞÞj_ρj _αðs−1ÞÞ

−
sðsþ 1Þ
2sþ 1

1

s!s!
DðαsD̄ð _αsD

2D̄_ρL̄αðs−1ÞÞj_ρj _αðs−1ÞÞ

þ ðsþ 1Þðs − 1Þ
ð2sþ 1Þs!s! DðαsD̄ð _αsDαs−1D̄

_ρDρL̄jρjαðs−2ÞÞj_ρj _αðs−1ÞÞ:

ð24Þ
Therefore, by considering the quantity,

IαðsÞ _αðsÞ ¼ Dαsþ1Wð0Þ
αðsþ1Þ _αðsÞ

þ sðsþ 1Þ
2sþ 1

1

s!
D̄ð _αsD

2D̄_ρHαðsÞj_ρj _αðs−1ÞÞ

þ s3

ð2sþ 1Þðsþ 1Þ
1

s!
DðαsD̄

2DρHjρjαðs−1ÞÞ _αðsÞ

−
s2

2sþ 1

1

s!s!
D̄ð _αsDðαsD̄

_ρDρHjρjαðs−1ÞÞj_ρj _αðs−1ÞÞ

−
s2

2sþ 1

1

s!s!
DðαsD̄ð _αsD

ρD̄_ρHjρjαðs−1ÞÞj_ρj _αðs−1ÞÞ;

ð25Þ

we get the following transformation law:

δIαðsÞ _αðsÞ ¼ −
s2

2sþ 1

1

s!s!
D̄ð _αsDðαs

�
D̄2DγLjγjαðs−1ÞÞ _αðs−1ÞÞ −

s − 1

s
D̄ _αs−1D

γD̄_γLjγjαðs−1ÞÞj_γj _αðs−2ÞÞ

�

þ s2

2sþ 1

1

s!s!
DðαsD̄ð _αs

�
D2D̄_γL̄αðs−1Þj_γj _αðs−1ÞÞ −

s − 1

s
Dαs−1D̄

_γDγL̄jγjαðs−2ÞÞj_γj _αðs−1ÞÞ

�
: ð26Þ

Gauge invariance is achieved if we constrained the gauge
parameter LαðsÞ _αðs−1Þ in the following way:

s > 1∶

DγD̄_γLγαðs−1Þ_γ _αðs−2Þ þ
s

s − 1
D̄_γDγLγαðs−1Þ_γ _αðs−2Þ

þ s
ðs − 1Þ! D̄ð _αs−2Jαðs−1Þ _αðs−3ÞÞ ¼ 0; ð27aÞ

s ¼ 1∶ D̄2DγLγ ¼ 0; ð27bÞ
where Jαðs−1Þ _αðs−3Þ is an arbitrary superfield. These are
weaker constraints that will be later shown to generate the
known minimal description of the half-integer superspin
supermultiplet. In this constraint formulation the gauge
invariant equation,

EαðsÞ _αðsÞ ∝ IαðsÞ _αðsÞ ¼ 0; ð28Þ
should be considered the free equations of motion. This
equation of motion yields the following two equations:

DβD̄2DβHαðsÞ _αðsÞ

þ sðsþ 1Þ
2sþ 1

1

s!
½DðαsD̄

2DγHjgjαðs−1ÞÞ _αðsÞ þ c:c:�

−
s2

ð2sþ 1Þs!s! ½DðαsD̄ð _αsD̄
_γDγHjγjαðs−1ÞÞj_γj _αðs−1ÞÞ þ c:c:�

¼ 0; ð29Þ

s > 1∶ D̄_γDγD̄_ρHγαðs−1Þ_γ _ρ _αðs−2Þ ¼ 0 or ð30aÞ
s ¼ 1∶ D̄2DγD̄_γHγ _γ ¼ 0: ð30bÞ

An interesting observation is that this minimally constraint
formulation, unlike the previous nonminimally constraint
formulation, does not have a geometrical origin, in the
sense that the equation of motion (28) can not be written

purely in terms of the superconnection Γð0Þ
αðsþ1Þ _αðsÞ, but

additional terms depending on the gauge superfield had
to be added.

C. More minimal constraints

There is yet another way of constraining the gauge
parameter in order to find sensible equations. Using the
approach of extracting δH-terms, we can rewrite (19)
alternatively as follows:

δðDαsþ1Wð0Þ
αðsþ1Þ _αðsÞÞ

¼ s
sþ 1

sc�

sðc� þ 1Þ þ 1

1

s!
DðαsD̄

2DρδHjρjαðs−1ÞÞ _αðsÞ

−
s

sðcþ 1Þ þ 1

1

s!
D̄ð _αsD

2D̄_ρδHαðsÞj_ρj _αðs−1ÞÞ

þ s
sðcþ 1Þ þ 1

1

s!s!
D̄ð _αsDðαs ½D̄_ρD̄2L̄αðs−1ÞÞj_ρj _αðs−1ÞÞ

− cDρD̄2Ljρjαðs−1ÞÞ _αðs−1ÞÞ�

−
s

sðc� þ 1Þ þ 1

1

s!s!
DðαsD̄ð _αs ½DρD̄2Ljρjαðs−1ÞÞ _αðs−1ÞÞ

− c�D̄_ρD2L̄αðs−1ÞÞj_ρj _αðs−1ÞÞ�; ð31Þ

for arbitrary complex number c. However if c is chosen to
be a phase [98], then we can impose the constraint,
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DρD̄2Lραðs−1Þ _αðs−1Þ � D̄_ρD2L̄αðs−1Þ_ρ _αðs−1Þ ¼ 0: ð32Þ

Under the assumption of this constraint, we conclude that
the equation,

EαðsÞ _αðsÞ ¼ Dαsþ1Wð0Þ
αðsþ1Þ _αðsÞ

−
s

sþ 1

sc
sðcþ 1Þ þ 1

1

s!
DðαsD̄

2DρHjρjαðs−1ÞÞ _αðsÞ

þ s
sðcþ 1Þ þ 1

1

s!
D̄ð _αsD

2D̄_ρHαðsÞj_ρj _αðs−1ÞÞ

¼ 0; ð33Þ
with c ¼ −1, 1 is suitable to play the role of the equation of
motion. As in the previous case, this is not a geometrical
equation because of the explicit H-terms. Unlike the
previous cases, the above equation yields only one gauge
invariant equation of motion for H,

0 ¼ DβD̄2DβHαðsÞ _αðsÞ

þ s
sðcþ 1Þ þ 1

1

s!
DðαsD̄

2DγHjγjαðs−1ÞÞ _αðsÞ

þ s
sðcþ 1Þ þ 1

1

s!
D̄ð _αsD

2D̄_γHαðsÞj_γj _αðs−1ÞÞ: ð34Þ

The s ¼ 1 case is special. For s ¼ 1, constraint (32) has a
solution in superspace,

Lα ¼
�
iDαLþ D̄ _αΛα _α; for c ¼ −1
DαLþ D _αΛα _α; for c ¼ þ1

; ð35Þ

where L is an arbitrary real scalar (L ¼ L̄) and Λα _α is an
arbitrary vector superfield. Therefore, the s ¼ 1 version of
(34) remains valid for the unconstrained gauge trans-
formation,

δHαα ¼
� 1

2
∂α _αLþ 1

2
ðD2Λα _α þ D̄2Λα _αÞ; c ¼ −1

1
2
½Dα; D̄ _α�Lþ 1

2
ðD2Λα _α þ D̄2Λα _αÞ; c ¼ 1

:

ð36Þ
The first one corresponds to the new-minimal [99–102]
description of linearized supergravity supermultiplet and
the second one to the new-new-minimal (or virial) [103–
105] description of linearized supergravity. However, for
general s, Eq. (34) is only valid under the assumption of the
constraint (32) and corresponds to the higher spin version
of the new minimal and new-new minimal descriptions.
It is important to emphasize that all the different con-

strained formulations presented above based on minimal or
nonminimal constraints describe the same physical degrees
of freedom, on shell. All of them have the same invariant
superfield strength Wαð2sþ1Þ, and their equations of motion
are such that when substituted in (17) give the same on shell
condition Dαðsþ1ÞWαðsþ1Þ ¼ 0.

V. NONGEOMETRICAL UNCONSTRAINED
FORMULATION: COMPENSATORS

It would be desirable if we could have unconstrained
formulations, for the above descriptions. An easy method
of doing that is via the introduction of so-called compen-
sator superfields. Unfortunately, this approach is not
geometrical because the compensators are unrelated to
the superconnections or the supercurvatures. The way it
works is that we lift the various constraints by introducing
appropriate compensators and assigning them transforma-
tions laws proportional to the constraints. The compensa-
tors will modify the right-hand size of the proposed
equations of motion accordingly such that the gauge
invariance of the equation is maintained under the full,
unconstrained transformation.
In particular, one can lift constraint (20) by introducing a

fermionic compensator χαðsÞ _αðs−1Þ equipped with the trans-
formation law,

δχαðsÞ _αðs−1Þ ∝ D̄2LαðsÞ _αðs−1Þ þ Dαsþ1Λαðsþ1Þ _αðs−1Þ: ð37Þ

This compensator will modify the right-hand side of
Eqs. (22) according to (19) so they remain invariant for
arbitrary gauge parameter LαðsÞ _αðs−1Þ. This process will give
the known nonminimal description of ðsþ 1; sþ 1=2Þ
supermultiplet [63,67]. Likewise for (27), introduce com-
pensators χαðs−1Þ _αðs−2Þ for s > 1 and chiralΦ for s ¼ 1 with
transformations,

δχαðs−1Þ _αðs−2Þ ∝ D̄_γDγLγαðs−1Þ_γ _αðs−2Þ

þ s − 1

s
DγD̄_γLγαðs−1Þ_γ _αðs−2Þ

þ 1

ðs − 2Þ! D̄ð _αs−2Jαðs−1Þ _αðs−3ÞÞ; ð38aÞ

δΦ ∝ D̄2DγLγ; ð38bÞ

which will modify Eqs. (29), (30a) according to (26).
The result will be identical to the minimal description of
ðsþ 1; sþ 1=2Þ supermultiplet [63,67] and for the s ¼ 1
case this will give the old-minimal description of linearized
supergravity. Finally, constraint (32) requires the introduc-
tion of a real (imaginary) linear compensator Uαðs−1Þ _αðs−1Þ
with the following transformation law:

δUαðs−1Þ _αðs−1Þ ¼ DρD̄2Lραðs−1Þ _αðs−1Þ
� D̄_ρD2L̄αðs−1Þ_ρ _αðs−1Þ; ð39Þ

however such a transformation completely eliminates the
compensator [106] itself, forcing back on us the constraint
(32). Therefore, the nongeometrical method of compensa-
tors can not provide an unconstrained formulation for this
case. However at the constrained formulation, this is a new
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and consistent description of the ðsþ 1; sþ 1=2Þ super-
multiplet which generalizes the s ¼ 1 limit of new-minimal
and virial linearized supergravity. Of course, as we pre-
viously mentioned, for s ¼ 1 the constraint can be explic-
itly solved in superspace introducing new unconstrained
gauge parameters and thus effectively making the formu-
lation unconstrained without the need of introducing a
compensator.

VI. DOUBLE HIERARCHY OF DE
WIT-FREEDMAN SUPERCONNECTIONS

FOR INTEGER SUPERSPINS

Now let us consider integer superspin supermultiplets
ðsþ 1=2; sÞ where the highest propagating spin is a
fermion. The appropriate superfield for the description of
this supermultiplet is a fermionic ðs; s − 1Þ-superfield
tensor ΨαðsÞ _αðs−1Þ with a transformation [107],

δΨαðsÞ _αðs−1Þ ¼
1

s!
DðαsKαðs−1ÞÞ _αðs−1Þ þ

1

ðs − 1Þ! D̄ð _αs−1ΛαðsÞ _αðs−2ÞÞ: ð40Þ

The highest rank component of this superfield is a sym-
metric rank s spinor tensor ψαðsþ1Þ _αðsÞ ∝ 1

ðsþ1Þ!s! ×
½Dðαsþ1

; D̄ð _αs �ΨαðsÞÞ _αðs−1ÞÞj, and the transformation law (40)
is the most general which will give the proper gauge
transformation to the above gauge field (δψαðsþ1Þ _αðsÞ ∝
∂ðαsþ1ð _αsζαðsÞÞ _αðs−1ÞÞ).
Immediately, one can observe a very important qualita-

tive difference with the half-integer case. There are two
independent symmetries. One is parametrized by gauge
parameter Kαðs−1Þ _αðs−1Þ and the other by gauge para-
meter ΛαðsÞ _αðs−2Þ. For the half integer superspin case, the
reality condition of superfield HαðsÞ _αðsÞ forced a relation
between the two parameters by complex conjugation
and thus collapsed the two symmetries into one. The
implications of this are that we can construct two
types of superconnections: K-superconnections and Λ-
superconnections. Each type will have it’s own hierarchy,
and supercurvatures.

A. Λ-superconnections
Gauge parameter ΛαðsÞ _αðs−2Þ appears in (40) exactly the

same way as LαðsÞ _αðs−1Þ appears in (7). Therefore, we can
immediately inherit the results of Sec. III. There is a
hierarchy of s Λ-superconnection-like objects parametrized
by t (t ¼ 0; 1; 2;…; s − 1),

ΓðtÞ
αðsþtþ1Þ _αðs−t−1Þ ¼

1

ðsþ tþ 1Þ!
× Dðαsþtþ1

∂αsþt
_γ1…∂αsþ1

_γtΨαðsÞÞ_γðtÞ _αðs−t−1Þ;

ð41Þ

which satisfy the recursive relation,

ΓðtÞ
αðsþtþ1Þ _αðs−t−1Þ ∝ Dðasþtþ1

D̄_γtΓðt−1Þ
αðsþtÞÞ_γt _αðs−t−1Þ; ð42Þ

and have the following gauge transformation law:

δΓðtÞ
αðsþtþ1Þ _αðs−t−1Þ ¼ i

t
s − 1

1

ðsþ tþ 1Þ!Dðαsþtþ1
D̄2Dαsþt

∂αsþt−1
_γ1…∂αsþ1

_γt−1ΛαðsÞÞ_γðt−1Þ _αðs−t−1Þ

þ s − t − 1

s
1

ðsþ tþ 1Þ!ðs − t − 1Þ!Dðαsþtþ1
D̄ð _αs−t−1∂αsþt

_γ1…∂αsþ1

_γtΛαðsÞÞj_γðtÞj _αðs−t−2ÞÞ: ð43Þ

The top member Γðs−1Þ
αð2sÞ is a proper superconnection and

defines an invariant supercurvature,

Wαð2sÞ ¼ D̄2Γðs−1Þ
αð2sÞ : ð44Þ

This is identical to the invariant superfield strength con-
structed in [64] and later in [67].

B. K-superconnections

Gauge parameter Kαðs−1Þ _αðs−1Þ appears in (40) exactly
the same way as L̄αðs−1Þ _αðsÞ in (7). Hence, if we use
Ψ̄αðs−1Þ _αðsÞ instead of ΨαðsÞ _αðs−1Þ in the construction of

superconnections we can also use the results of Sec. III.
There is a hierarchy of (sþ 1) K-superconnection like
objects,

ΔðtÞ
αðsþtÞ _αðs−tÞ ¼

1

ðsþ tÞ!
× Dðαsþt

∂αsþt−1
_γ1…∂αs

_γtΨ̄αðs−1ÞÞÞ_γðtÞ _αðs−tÞ;

ð45Þ

which is not related to the hierarchy in (41) by complex
conjugation and must be studied independently. Their
gauge transformation is
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δΔðtÞ
αðsþtÞ _αðs−tÞ ¼

t
s

i
ðsþ tÞ!Dðαsþt

D̄2Dαsþt−1
∂αsþt−2

_γ1…∂αs
_γt−1K̄αðs−1ÞÞ_γðt−1Þ _αðs−tÞ

þ s − t
s

1

ðsþ tÞ!ðs − tÞ!Dðαsþt
D̄ð _αs−t∂αsþt−1

_γ1…∂αs
_γt K̄αðs−1ÞÞj_γðtÞj _αðs−t−1ÞÞ: ð46Þ

The top member of this hierarchy, ΔðsÞ
αð2sÞ is a super-

connection, and it defines the following supercurvature:

Zαð2sÞ ¼ D̄2ΔðsÞ
αð2sÞ: ð47Þ

C. Free equations of motion

Again, the invariant tensors involve higher derivatives.
Hence, the extraction of proper equations of motion for
the ðsþ 1=2; sÞ supermultiplet must relay on constraining
the gauge parameters, to decouple the higher order mem-
bers in at least one of the two hierarchies. The relevant

quantities to investigate are D̄ _αsΔð0Þ
αðsÞ _αðsÞ, D̄

_αsΔ̄ð0Þ
αðsÞ _αðsÞ and

DαsΓð0Þ
αðsþ1Þ _αðs−1Þ. For, s > 1, we find

δðD̄ _αsΔð0Þ
αðsÞ _αðsÞÞ¼−

1

s!
DðαsD̄

2K̄αðs−1ÞÞ _αðs−1Þ

−
1

s!
D̄2Dðαs K̄αðs−1ÞÞ _αðs−1Þ

þs−1

s!s!
D̄ð _αs−1DðαsD̄

_ρK̄αðs−1ÞÞj_ρj _αðs−2ÞÞ;

δðD̄ _αsΔ̄ð0Þ
αðsÞ _αðsÞÞ¼−

sþ1

s
1

s!
D̄2DðαsKαðs−1ÞÞ _αðs−1Þ;

δðDαsþ1Γð0Þ
αðsþ1Þ _αðs−1ÞÞ¼

sðsþ2Þ
ðsþ1Þ!D

2D̄ð _αs−1ΛαðsÞ _αðs−2ÞÞ:

By constraining gauge parameter Kαðs−1Þ _αðs−1Þ in the
following way:

K̄αðs−1Þ _αðs−1Þ � Kαðs−1Þ _αðs−1Þ ¼ 0;

DβKβαðs−2Þ _αðs−1Þ ¼ 0 ⇒ Kαðs−1Þ _αðs−1Þ ¼ DαsLαðsÞ _αðs−1Þ;

ð48Þ

we get the following gauge invariant equation of motion:

EαðsÞ _αðs−1Þ ∝ D̄ _αsþ1

�
sþ 1

s
Δð0Þ

αðsÞ _αðsÞ � Δ̄ð0Þ
αðsÞ _αðsÞ

�
: ð49Þ

The equation of motion is expressed purely in terms of
superconnection Δð0Þ and in the constrained formulation it
produces the following two gauge invariant equations for
superfield ΨαðsÞ _αðs−1Þ:

1

s!
D̄ _αsDðαsΨ̄αðs−1Þ _αðsÞ ∓ D̄2ΨαðsÞ _αðs−1Þ ¼ 0; ð50aÞ

DαsD̄2ΨαðsÞ _αðs−1Þ � D̄ _αsD2Ψ̄αðs−1Þ _αðsÞ ¼ 0: ð50bÞ

Constraint (48) is lifted via a real (imaginary) bosonic
compensator Vαðs−1Þ _αðs−1Þ, with transformation,

δVαðs−1Þ _αðs−1Þ ∝ DαsLαðsÞ _αðs−1Þ � D̄ _αs L̄αðs−1Þ _αðsÞ: ð51Þ

The compensator will modify the right-hand side of (50)
accordingly so they remain invariant under the full sym-
metry without constraint (48). This unconstrained formu-
lation gives precisely the integer superspin description
of [64,67].
However, for the special case of s ¼ 1 there is an

alternative constraint that one can impose. In that case,
we find

δðD̄ _αΔð0Þ
α _α Þ ¼ −

1

2
DαD̄ _αδΨ̄ _α þ

1

2
D2D̄ _αDαΛ̄ _α − D̄2DαK̄;

δðD̄ _αΔ̄ð0Þ
α _α Þ ¼ −2D̄2DαK; δðDβΓð0Þ

βαÞÞ ¼
3

2
D2D̄2Λα:

Therefore, we get

δ

�
D̄ _αΔð0Þ

α _α � 1

2
D̄ _αΔ̄ð0Þ

α _α � 1

3
DβΓð0Þ

βα

�
¼ −

1

2
DαD̄ _αδΨ̄ _α − D̄2DαfK̄ � Kg þ 1

2
fD2D̄ _αDαΛ̄ _α � D2D̄2Λαg:

Under the constraints,

K̄ � K ¼ 0 ⇒ K ¼
�
i L; for þ
L; for −

ð52aÞ

and

D2D̄ _αDαΛ̄ _α � D2D̄2Λα ¼ 0 ⇒ Λα ¼
�
DαΛ; for þ
iDαΛ; for − ;

ð52bÞ

where L, Λ are arbitrary real scalar superfields, we get the
following equation of motion:
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EαðsÞ _αðs−1Þ ∝ D̄ _αΔð0Þ
α _α � 1

2
D̄ _αΔ̄ð0Þ

α _α � 1

3
DβΓð0Þ

βα þ 1

2
DαD̄ _αΨ̄ _α:

ð53Þ

This gives an alternative to Eq. (50) for Ψα,

D̄ _αDαΨ̄ _α ∓ D̄2Ψα þ
1

2
DαD̄ _αΨ̄ _α �

1

2
D2Ψα ¼ 0: ð54Þ

Constraints (52), as indicated, are solved explicitly in
superspace in terms of new unconstrained parameters L,
Λ thus making this description automatically unconstrained
without requiring a compensator. This equation of motion
for superfield Ψα corresponds to the description in [108].

VII. CONCLUSIONS AND DISCUSSION

The description of free, manifestly supersymmetric,
higher spin supermultiplets and some of their interactions
found in literature have no geometrical interpretation. The
corresponding superspace actions or equations of motion
have been determined on the base of some ansatz and gauge
invariance had to be checked. Rewriting them in terms of
geometrical objects like connections and curvatures is not
obvious and far from trivial if it can be done.
In this work we focus towards a more geometrical

formulation of free higher superspins as described in
[63,64] and later in [67]. Starting from generic trans-
formations of bosonic and fermionic higher spin gauge
superfields, we find an underlying geometrical structure
based on the notion of higher spin superconnections. These
superconnections are seated on top of a hierarchy of
superconnectionlike objects which are recursively defined
by the action of supersymmetric covariant derivatives. At
the component level they include the de Wit-Freedman
connections. Specifically, for half-integer superspin super-
multiplets, we find an (sþ 1)-hierarchy and for integer
superspin supermultiplets we find two independent hier-
archies with s and sþ 1 members respectively.
The top superconnections define corresponding higher

spin supercurvatures which involve higher derivatives and
match the known higher spin superfield strengths. These
are the only gauge invariant objects, which makes the
identification of proper superspace equations of motion
unclear. An answer is reducing the symmetry group by
imposing constraints on the gauge parameters such that the
higher derivative members of the hierarchy decouple. In
contrast to nonsupersymmetric higher spins, we find
several different ways of decoupling which lead to different
classes of constraints. All of these constraints, with one
exception, generate all known descriptions of higher and
lower gauge supermultiplets. This was demonstrated non-
geometrically by introducing compensators and compering

with known theories. For the exception, the constrained
formulation provides a new description of the half-
integer supermultiplet which mimics the new-minimal
[99–102] and virial [103–105] description of linearized
supergravities.
Furthermore, in the constrained formulation we find that

for a few cases the equations of motion are expressed
purely in terms of the superconnections and thus having
directly a geometrical interpretation. Whereas for the rest
this is not possible because terms that depend on the gauge
superfield had to be added. In this sense we label theories as
geometrical and nongeometrical. Out of all possible
descriptions of ðsþ 1; sþ 1=2Þ supermultiplet only one
of them is geometrical, and the same holds true for
ðsþ 1; sþ 1=2Þ supermultiplet.
We hope that this geometrical structure suggested by free

higher spin supermultiplets can play a role in describing
consistent and nontrivial interactions in superspace. For
nonsupersymmetric theories this has been demonstrated in
the framelike formulation, where the de Wit-Freedman
connections are related to extra, auxiliary higher spin
connections appearing in the theory. At the free field level
these extra auxiliary fields can be decoupled [57] precisely
offering second order field equations; however they are
required for the construction of several types of nontrivial
interactions [38,49,58,109]. Furthermore in [110] it was
demonstrated that the construction of a covariant theory for
the higher spin algebra requires the presence of additional
higher spin connections which can be expressed in terms of
the de Wit-Freedman connections.
Additionally we would like to investigate whether

alternative methods of lifting the various constraints can
exist in superspace that preserve the geometrical character
of the approach presented here. For nonsupersymmetric
theories such unconstrained formulations have been found
by relaxing locality [59,60] or exploiting generalized
versions of the Poincaré lemma [111–113]. It would also
be interesting to investigate whether this geometrical
structure holds in AdS superspace. In standard field theory
this has been demonstrated in [114].
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