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We develop a nonperturbative functional framework for computing real-time correlation functions in
strongly correlated systems. The framework is based on the spectral representation of correlation functions
and dimensional regularization. Therefore, the nonperturbative spectral renormalization setup here respects
all symmetries of the theories at hand. In particular, this includes space-time symmetries, as well as internal
symmetries such as chiral symmetry, and gauge symmetries. Spectral renormalization can be applied within
general functional approaches such as the functional renormalization group, Dyson-Schwinger equations,
and two- or n-particle irreducible approaches. As an application, we compute the full, nonperturbative,
spectral function of the scalar field in the ϕ4-theory in 2þ 1 dimensions from spectral Dyson-Schwinger
equations. We also compute the s-channel spectral function of the full ϕ4-vertex in this theory.
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I. INTRODUCTION

The study of the dynamics and resonance structure of
strongly correlated systems requires the knowledge of real-
time (timelike) correlation functions. In particular, the
evolution of slow modes is dominated by the low-energy
regime and is crucial for transport approaches and hydro-
dynamics. Spectral functions encode the full, nonperturba-
tive, information of the respective degrees of freedom and
open the door to additional real-time quantities such as
transport coefficients. They are also a particularly useful
tool when discussing resonances and bound states, since
they give direct access to the spectrum of excitations in a
given theory. Emergent composite states are of central
interest not just in particle and nuclear physics, but in most
physics areas.
The treatment of strongly correlated systems asks for

nonperturbative techniques. In recent years, functional and
lattice approaches have been applied very successfully to
the low-energy regime of theories ranging from QCD to
condensed matter systems. The general framework for the
quantum-field theoretical description of bound states with
functional methods was introduced by Bethe and Salpeter
[1,2]. For a recent review, see [3]; for a review of respective
lattice results, see [4].

Despite this rapid and very impressive progress in
particular in the last decade, the reliable direct nonpertur-
bative calculation of real-time correlation functions is still
in its infancy. Functional approaches have matured in
recent years and are by now quantitatively competitive
in QCD in Euclidean space-time. The extension of such
calculations to Minkowski space-time is yet hindered by
technical and conceptual complications; for recent advances,
see [5–34].
In this work. we develop a novel approach for the direct

computation of real-time (Minkowski) observables that is
basedonspectral representations of correlation functions.The
approach comes with the advantage that we can use dimen-
sional regularization for the analytic computation of momen-
tum integrals in fully numerical nonperturbative calculations.
Accordingly, the respective renormalization scheme, spectral
renormalization, is based on standard dimensional regulari-
zation and respects the space-time symmetries, internal
symmetries such as chiral symmetry, and gauge symmetries
of the theory at hand. Clearly, this method is applicable to a
broad range of theories, including non-Abelian gauge theo-
ries, within a regularization and renormalization scheme
which is manifestly gauge invariant.
In the present work, we apply our novel approach to the

scalar ϕ4-theory in d ¼ 2þ 1 dimensions. This theory is a
simple strongly correlated system and serves as a good
benchmark for new techniques before applying them more
involved theories such as non-Abelian ones. It is also
interesting in its own right and has many applications
as a model theory for perturbative and nonperturbative
phenomena.
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The numerical application in the present work is done
within the spectral Dyson-Schwinger approach. We com-
pute the spectral function of the scalar field from the gap
equation for the propagator, using its Källén-Lehmann
spectral representation. In a first step, all vertices are
approximated with the classical ones, and the two-loop
diagrams in the Dyson-Schwinger equations (DSEs) are
included. In a second step, the use of skeleton expansion of
the DSE with a bubble-resummation of the s-channel four-
point function. The nonperturbative s-channel spectral
function of the vertex is computed and used in the DSE.
The setup gives us direct numerical access to Minkowski
space-time correlation functions due to the spectral repre-
sentation. This also allows for a (physical) on-shell reno-
rmalization via the spectral renormalization scheme.
The paper is organized as follows: in Sec. II, we introduce

spectral renormalization as the example of the Dyson-
Schwinger approach along with the necessary technical
tools. In particular, we discuss dimensional spectral renorm-
alization and a Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ)-type spectral renormalization. Section III works
out the calculational details of solving the DSE in the
developed scheme, followed by our results in Sec. IVA for
classical vertices and in Secs. IV B–IV E for the skeleton
expansion. Finally, our conclusion is presented in Sec. V.

II. SPECTRAL RENORMALIZATION

The general real-time renormalization scheme developed
here aims at combining a practical numerical implementa-
tion in nonperturbative applications while maintaining all
underlying symmetries including gauge symmetries. This
is achieved by utilizing dimensional regularization, which
respects all space-time, internal and gauge symmetries of
the theory at hand. We also develop a BPHZ-type sub-
traction scheme which facilitates the analytical computa-
tions significantly. If such a subtraction schemes does not
violate any symmetries in the theory at hand, it is the
scheme of choice.
A practical implementation of dimensional regulariza-

tion requires an analytic momentum structure of the
propagators and vertices in the given loop integrals.
While this allows for its use in perturbation theory, non-
perturbative applications, with their necessarily numerical
computation of propagators and vertices, usually rely on
ultraviolet momentum cutoffs. The latter are neither con-
sistent with space-time symmetries nor with gauge sym-
metries. It is well known that in gauge theories and
supersymmetric theories such a regularization requires
symmetry-breaking counterterms. This is not a conceptual
problem, but it typically triggers additional power-counting
relevant terms that may leads to additional fine-tuning
tasks; see e.g., [35,36]. Moreover, the Wick rotation to
Minkowski space-times is hampered by the deformation of
the momentum integrals, which can lead to additional poles
and cuts in the integration contours.

The present renormalization scheme achieves the require-
ment of analytic momentum integrals by using spectral
representations of correlation functions. For the propaga-
tors, this is the Källén-Lehmann spectral representation,
similar spectral representations also exist for the vertices,
though getting increasingly difficult. We call this renorm-
alization scheme spectral renormalization: after inserting the
spectral representations in the loop integrals, themomentum
integrands take an analytic form. This form is well suited for
using dimensional regularization or related analytic com-
putation techniques. The loop-momentum integrations can
be performed analytically and we are left with spectral
integrals. The whole nonperturbative information is con-
tained in the spectral functions of propagators and vertices.
In most nonperturbative applications, the respective spectral
integrals can only be computed numerically.
The scheme can be practically applied to any divergent

diagram that scales in the UV with loop momentum to
some natural power qm, m ∈ N (with m < nmax and nmax
given by the renormalizability constraint). This is always
the case when using spectral representations for all corre-
lation functions, but also works for classical vertices. This
will be detailed in the present work within the example of
the Dyson-Schwinger approach introduced in the next
section, Sec. II A. The functional DSE for the effective
action, (4), is depicted in Fig. 2, that for the inverse
propagator is depicted in Fig. 3. For classical vertices,
all momentum integrals in functional approaches, see e.g.,
Fig. 3, are of the standard perturbative form, but with
different spectral masses for all lines. Most of these
integrals are known from perturbation theory results,
e.g., [37]. Note that this reparametrization comes at the
cost of spectral integrals for each propagator. Spectral
representations of vertices lead to further spectral integrals
as well as further classical propagators with spectral
masses. In summary, in a spectral functional approach,
all momentum integrals are perturbative. Hence, we can
implement a symmetry-preserving regularization such as
dimensional regularization, leading to a renormalization
scheme with symmetry-consistent counterterms.
A relevant example for this important symmetry-

preserving property are gauge theories. There, a momentum
cutoff or standard subtraction scheme requires explicitly or
implicitly a mass counterterm for the gauge field in order
to keep the renormalized gauge field massless. In four

FIG. 1. Diagrammatic notation used throughout this work: lines
stand for full propagators, small black dots stand for classical
vertices, and larger gray dots stand for full vertices.
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dimensions, this leads to a quadratic fine-tuning task
instead of a logarithmic one; for a detailed discussion,
see [35,36]. Spectral renormalization with spectral regu-
larization removes the (explicit or implicit) necessity of a
mass counterterm for the gauge field, and hence the
quadratic fine-tuning task.
After briefly introducing Dyson-Schwinger equations,

Sect. II A, and the Källén-Lehmann spectral representation,
Sec. II B, we set up spectral renormalization in Secs. II C
(spectral dimensional renormalization) II D (spectral
BPHZ-renormalization). Further examples and the discus-
sion of the fully nonperturbative setup can be found in
Secs. II E and II F. The explicit example used for demon-
strating the properties and computational details of the
spectral renormalization scheme is the gap equation for
scalar ϕ4- and ϕ3-theories.

A. Dyson-Schwinger equations

The central object in functional approaches such as
Dyson-Schwinger equations or functional renormalization
group equations is the quantum effective action Γ½ϕ�. It is
related to the generating functional Z½J� of correlation
functions including their disconnected parts via a Legendre
transformation,

Γ½ϕ� ¼ sup
J

�Z
ddxJðxÞϕðxÞ −W½J�

�
: ð1Þ

Here, W½J� ¼ lnZ½J� is the Schwinger functional that
generated connected correlation functions. The effective
action Γ½ϕ� is the generating functional for one-particle
irreducible (1PI) correlation functions. They are obtained
from nth derivative of the effective action with respect to
the fields. In momentum space, this reads

ΓðnÞ½ϕ�ðp1;…; pnÞ ¼
δnΓ½ϕ�

δϕðp1Þ…δϕðpnÞ
: ð2Þ

A pivotal role in all functional approaches is played by the
full, field-dependent propagator G½ϕ�. It is simply the
inverse of the 1PI two-point function,

G½ϕ�ðp; qÞ ¼ 1

Γð2Þ ½ϕ�ðp; qÞ: ð3Þ

With these prerequisites, we straightforwardly arrive at the
master DSE, the quantum equation of motion,

δΓ½ϕ�
δϕ

¼ δS
δφ

�
φ ¼ G ·

δ

δϕ
þ ϕ

�
; ð4Þ

where G·δ=δϕ¼R
ddq=ð2πÞdGðp;qÞδ=δϕðqÞ in momen-

tum space, and S½ϕ� is the classical action. A more detailed
derivation can be found e.g., in [38]. By taking functional
derivatives of (4) with respect to ϕ, all higher-order 1PI
correlation functions are generated. For example, the DSE
for the two-point function is generated by taking one
derivative of (4) and is depicted in Fig. 3.
For our explicit example of a ϕ4-theory, the classical

action in (4) is given by

S½φ� ¼
Z

ddx

�
1

2
ð∂μφÞ2 þ

m2
ϕ;0

2
φ2 þ λϕ;0

4!
φ4

�
: ð5Þ

It depends on two parameters or couplings, the bare four-
point coupling λϕ;0, and the bare mass parameter mϕ;0. The
third parameter required for renormalization, the wave
function renormalization Zϕ can be scaled out. This is
conveniently done by setting it to unity at the renormaliza-
tion scale.
We close this section with a few comments: to begin with,

the underlying Z2-symmetry of the theory, φ → −φ implies
the same symmetry for the effective action under trans-
formations of themean field,ϕ → −ϕ. Accordingly, the odd
vertices vanish at vanishing mean field Γð2nþ1Þ½ϕ ¼ 0�≡ 0.
Moreover, restricting ourselves to constant background
fields ϕc, we can formally expand the three-point function
in powers of the field,

FIG. 2. Functional DSE for the effective action of the scalar
theory under investigation in this work. The notation is given in
Fig. 1.

FIG. 3. DSE of the two-point function for a general background field ϕ ≠ 0. The vacuum polarization and squint diagrams are
proportional to Sð3Þ½ϕ� ∝ ϕ. They vanish for ϕ ¼ 0, where the standard form with tadpole and sunset diagrams is obtained. The notation
is given in Fig. 1.
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Γð3Þ½ϕc�ðp1; p2; p3Þ ¼ ϕc½Γð4Þðp1; p2; p3; 0Þ þOðϕ2
cÞ�;

ð6Þ

due to the odd vertices vanishing at the expansion point
ϕ ¼ 0. In (6), we used the Fourier transform ϕ̃cðpÞ ¼
ð2πÞdϕcδðpÞ of the constant field. We also introduced
ΓðnÞðp1; p2; p3; 0;…; 0Þ, the n-point functions at a vanish-
ing background and n − 3 vanishing momenta. The relation
(6) gives rise to the polarization and squint diagram in Fig. 3
forϕc ≠ 0, which are absent forϕc ¼ 0. In the broken phase,
the equation ofmotion (EoM)ϕ0 for constant fields is solved
for a nonvanishing expectation value of the field, i.e.,
ϕ0 ≠ 0. Accordingly, if evaluating the DSEs for correlation
functions on the EoM, these diagrams are present.

B. Källén-Lehmann spectral representation

Using the Källén-Lehmann spectral representation
[39,40], the propagator can be recast in terms of its spectral
function ρ,

Gðp0Þ ¼
Z

∞

0

dλ
π

λρðλ; jp⃗jÞ
p2
0 þ λ2

: ð7Þ

For asymptotic states, the spectral function can be under-
stood as a probability density for the transition to an excited
state with energy λ. In this way, the spectral function acts as
a linear response function of the two-point correlator,
encoding the energy spectrum of the theory. The existence
of a spectral representation imposes tight restrictions on the
analytic structure of the propagator. In turn, the Euclidean
propagator also constrains the spectral function; for a rather
nontrivial example for the latter constraints, see [41].
From a complex analysis perspective, the spectral

function naturally arises as the set of nonanalyticities of
the propagator, which are severely restricted in the complex
plane by Cauchy’s theorem. This results into the following
inverse relation between spectral function and the retarded
propagator:

ρðω; jp⃗jÞ ¼ 2 ImGð−iðωþ i0þÞ; jp⃗jÞ; ð8Þ

where ω is the real time zero momentum component. This
formulation allows us to work only with the frequency
argument and set the spatial momentum to zero in practice,
since the full phase space can be restored from Lorentz
invariance. Hence, for the remainder of this work, jp⃗j will
be dropped.
The existence of a spectral representation restricts all

nonanalyticities of the propagator to lie on the real
momentum axis, as is manifest in (7) and (8). This crucial
condition as well as the generic structure in the complex
plane already mentioned above allows us to recast the
spectral function into the form

ρðλÞ ¼ π

λ

X
i

Ziδðλ −miÞ þ ρ̃ðλÞ: ð9Þ

The spectral function is split into a set of δ-functions and a
continuous scattering part ρ̃, arising from branch cuts in the
complex plane of the propagator. For a classical propagator,
the spectral function reduces to one mass-shell δ-function
with Z1 ¼ 1. There are no further poles, Zi>1 ¼ 0, and the
scattering part is absent, ρ̃ ¼ 0. Further details can be found
e.g., in [42].
In the scalar ϕ4-theory, the spectral function of the scalar

field is that of an asymptotic state, and hence is positive
semidefinite and has the interpretation of a probability
density. Therefore, it is convenient to normalize its inte-
grated weight to unity within an appropriate renormaliza-
tion scheme. Within this scheme, we have the sum ruleZ

λ
λρðλÞ ¼ 1 with

Z
λ
≡
Z

∞

0

dλ
π
; ð10Þ

which implies Zi ≤ 1. The spectral weight is distributed
between poles and cuts, and in the presence of scattering
states the weight of the poles is less than 1.

C. Spectral dimensional renormalization

Next, we discuss the spectral renormalization scheme,
which is fully based on dimensional regularization.
Dimensional regularization renders the loop diagrams finite,
andwe can swap orders of the initially outer momentum and
inner spectral integrals integrals (cf. upper part of Fig. 4).

λ q

f(q, λ)

divergent 

Initial integral

F̃(p) :=
q

f(q, λ)

divergent 

q

f(q, λ)

momentum  
renormalization

divergent 

λ q

f(q, )
spectral 

renormalization 

Performed integral

RENORMALIZATIO
N

0

0

0

dim. reg.

FIG. 4. Schematic illustration of the spectral renormalization
scheme. The function f is some arbitrary divergent integrand.
The dependence on the external momentum p is suppressed. The
upper two boxes have to be understood as finite by dimensional
regularization, but divergent in the limit ε → 0 in d − ε dimen-
sions. In a first step, the momentum integrals are analytically
evaluated via dimensional regularization. Subsequently, the
spectral integrals are renormalized via spectral renormalization,
either within the dimensional (Sec. II C) or BPHZ-approach
(Sec. II D).
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This allows us to first perform the momentum integrals
analytically. We are left with finite spectral integrals at finite
ϵ > 0, that in general have to be done numerically since the
spectral functions may only be known numerically.
Generally, the numerical integration of the spectral

integrals can be performed for finite ϵ, and in gauge
theories full manifest gauge consistency of spectral renorm-
alization requires that the limit ϵ → 0 is taken only after
performing all integrals. However, it is convenient for the
numerical performance to do the spectral integration at
ϵ ¼ 0. The same holds for the access to the analytic
momentum structure required for extracting Minkowski
properties. In this case, for the limit ϵ → 0, we have to set
up a consistent renormalization procedure before perform-
ing the spectral integrals, which is worked out in detail in
Sec. II D. In particular, it is not sufficient to only remove the
1=ϵ-divergences that originate in the momentum integra-
tions, as the spectral integrations lead to further 1=ϵ-terms.
This relates to the swapping of the integration order and
performing the limit ϵ → 0 before evaluating all integrals.
This section is dedicated to the fully gauge-consistent

renormalization scheme we call spectral dimensional
renormalization. In this scheme, the divergent parts of the
spectral integrals are performed analytically before taking
the limit ε → 0. A simple example is the tadpole contribu-
tion to the gap equation in Fig. 3 in d ¼ 3 dimensions, which
comes with a momentum-independent linearly divergent
term. This example is also relevant for our later computation
in Secs. III and IV. After the momentum integration is
performed, we arrive at a finite result proportional toZ

∞

0

dλλ
μ2ϵλ1−2ϵ

ðλ2 þm2Þ ¼ −
π

2

1

cosðπϵ
2
Þm

�
μ2

m2

�
ϵ

: ð11Þ

In (11), we used a trial spectral function that decays for large
spectral values λ according to its momentum or spectral
dimension,

ρtrialðλ; mÞ ¼ 1

λ2 þm2
; ð12Þ

with a positive mass m > 0. The trial spectral function in
(12) approximates the correct leading ultraviolet behavior, if
we neglect logarithmic corrections. For large spectral
values, the UV asymptotic of the spectral function can be
extracted from the leading momentum dependence of the
respective propagator. In the present example, the latter is
assumed to decay quadratically on its branch cut on the real
momentum axis.
The finiteness of the result of the momentum integration

used on the left-hand side of (11) also points at a specific
property of dimensional regularization: in odd dimensions,
d ¼ 2nþ 1, it already removes all momentum divergences.
In even dimensions, d ¼ 2n, it removes subclasses of
divergent ones, a prominent being the (one-loop) tadpole
in a massless theory such as a gauge theory.

If we had put ϵ ¼ 0 before the integration, (11) simply is
(linearly) divergent. This is the price to pay for the
swapping of integration orders: the divergences are not
fully covered by the momentum integrals any more. The
example also entails that in odd dimensions including our
explicit computation in the ϕ4-theory in d ¼ 3, all diver-
gences come via the spectral integrals.
In spectral dimensional renormalization, spectral singu-

larities in even dimensions show up as 1=ϵ-terms. In
dimensional regularization in perturbation theory, these
divergences are typically removed recursively by introduc-
tion of appropriate counterterms. In spectral dimensional
renormalization, this procedure is applied too, while keep-
ing a finite ϵ as well as isolating analytically the singular
part of the spectral integrals with

ρðλÞ ¼ ρIRðλÞ þ ρUV;anðλÞ: ð13Þ
In (13), the numerical “infrared” part ρIRðλÞ decays
sufficiently fast for large spectral values and renders the
respective spectral integrals finite. In turn, the ultraviolet
part ρUV;anðλÞ carries the ultraviolet asymptotics analyti-
cally. Therefore, the respective spectral integrals can be
treated analytically with dimensional regularization as done
in (11). With (12), we use the IR-UV split,

ρðλÞ ¼ ρIRðλ; kÞ þ ρtrialðλ; kÞ: ð14Þ
We also emphasize that the theory does not depend on the
mass parameter k that regularizes (in the infrared) the UV
part of the spectral function. In particular, we have
∂kρðλÞ≡ 0, which entails the k dependence of the infrared
part of the spectral function.
The (leading) ultraviolet behaviour of the spectral

function at large spectral values is governed by ρUV;an ¼
ρtrial and the infrared part decays with the fourth power of
the spectral value,

lim
λ→∞

ρIRðλ → ∞Þ ∝ 1

λ4
ð15Þ

Inserting the split (14) into (11) leads us to the final finite
result with ϵ ¼ 0,Z

∞

0

dλμ2ϵλ2−ϵρðλÞ ¼
Z

∞

0

dλλ2ρIRðλÞ −
π

2
k; ð16Þ

with a finite (in general numerical) integral over the
infrared part of the spectral function due to (15). The
numerical convergence of this integral can be further
improved systematically, if the UV part ρUVðλÞ also
includes subleading UV terms of the full spectral function.
The finite result of (16) was obtained without the

introduction of any possibly symmetry-breaking counter-
terms. Since the systematics of this example is general, it
can be applied to all divergences of general diagrams. As
the demonstrated spectral dimensional renormalization
procedure is entirely based on dimensional regularization
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and the use of spectral representation, it preserves all
symmetries of the theory at hand. Especially, for the case
of gauge theories, it is manifestly gauge invariant or rather
gauge consistent. For example, it reflects the peculiarity of
dimensional regularization that integrals without any exter-
nal scale vanish identically. For k ¼ 0, the integral over the
UV part of the spectral function vanishes and we are left
with the finite IR part. Accordingly, no mass counterterms
are needed in a massless theory such as a gauge theory.
Figure 4 illustrates the general renormalization work-

flow, including spectral renormalization. The schematic
representation holds for the case of spectral dimensional
renormalization as well as for the subtraction based and
more universal approach of spectral BPHZ-renormalization,
which is introduced in the following section.

D. Spectral BPHZ-renormalization

In fully symmetry-consistent spectral dimensional
renormalization as described in Sec. II C, one has to
perform analytic spectral integrals with dimensional regu-
larization on top of the momentum integrations. Already
the latter are more complicated than in standard perturba-
tion theory at the same order, since the spectral represen-
tations lead to different masses for each line. While the
momentum integration has to be necessarily analytic in
order to access Euclidean and Minkowski space-time, this
is not necessary for the spectral integration, whose non-
perturbative infrared part has to be done numerically in
most cases anyway.
The need for additional analytic computations of spectral

integrals can be circumvented by performing subtractions
on the spectral integrals which render the spectral integrals
finite. This can be done by subtracting a Taylor expansion
of the spectral integrand in momenta according to the
BPHZ-scheme with Dyson’s formula. The procedure is
called spectral BPHZ-renormalization. We shall see, that its
work flow is still described within Fig. 4. It is the last
“spectral” step from the bottom right to the bottom left
which is changed by moving from spectral dimensional to
the spectral BPHZ-procedure. We emphasize that the
underlying BPHZ-regularization in general does not pre-
serve all symmetries of a given theory and in particular
breaks gauge symmetry. This is not a conceptual problem,
as the counterterms also break gauge invariance and the
final result is gauge consistent; see e.g., [43]. However,
in numerical applications to gauge theories the gauge-
consistent spectral dimensional renormalization is arguably
worth its price, in particular for investigations of the Gribov
problem and the confinement mechanism.
In the present example of a scalar ϕ4-theory, the BPHZ-

scheme is consistent with both space-time and the internal
Z2 symmetry. We will therefore utilise it for explicit
computation. We introduce and explain the setup within
a specific example, the sunset graph in the gap equa-
tion of the scalar ϕ4-theory in d dimensions; see Fig. 3.

This diagram also carries subdivergences while still being
relatively simple. In Sec. II E, we additionally analyze an
explicit one-loop example.
Due to the spectral representation of the sunset graph, the

fully perturbative momentum integrals including the sub-
traction can be solved analytically in both d ¼ 3 and d ¼ 4:
In d ¼ 4, the sunset graph is superficially quadratically

divergent with logarithmic divergences in the subdiagrams.
The respective spectral power counting follows from the
momentum dimension of the spectral value, ½λ� ¼ 1, where
½O� counts the momentum dimension of O. In particular,
that of the spectral function is ½ρðλÞ� ¼ −2. This can be read
off from the classical spectral function of a field with mass
m with ρclðλÞ ¼ 2πδðλ2 −m2Þ. Trivial examples for such a
power counting of spectral integrals are (11) and the
propagator itself with ½R dλλρðλÞÞ=ðω2 þ λ2Þ� ¼ −2. We
subtract the zeroth and first orders of the Taylor expansion
in external momentum about p2 ¼ μ2 as well as the zeroth
term in Taylor expansions about the external momenta of
the subdiagrams. These counterterms contribute to the mass
renormalization as well as the wave function renormaliza-
tion of the scalar field. The subtractions remove the leading
and also the next-to-leading order (NLO) contributions in
the spectral parameters λi in the integrand of the spectral
integral for λi → ∞. Consequently, the integrand decays
faster by two powers of λ2i and the spectral integrals over λi
with i ¼ 1, 2, 3 are UV-finite.
In d ¼ 3, there are no divergent subdiagrams and the

sunset is superficially logarithmically divergent. We only
subtract the zeroth order of the Taylor expansion, which
contributes to the mass renormalization.
We are left with finite spectral integrations for the sunset

graph in d ¼ 3, 4 at ϵ ¼ 0. The integrand depends
analytically on the external momentum, the spectral values
λi with i ¼ 1, 2, 3 of the three internal lines as well the
respective spectral functions ρðλiÞ. In general, the remain-
ing spectral integrals have to be performed numerically.
In summary, spectral BPHZ-renormalization, as

described in detail above, has the same work flow as in
the last section and is depicted in Fig. 4: first, we apply
dimensional regularization to the momentum integrations
and swap the order of momentum and spectral integrals.
Then we perform the momentum integration analytically,
right bottom corner in Fig. 4. Finally, we apply the spectral
BPHZ-step: the Taylor expansion in all momenta about
the renormalization scale μ, which allows us to take the
limit ϵ → 0. This leaves us with the task to perform the
finite spectral integrals either analytically or numerically,
depending on the application.

E. One-loop example: ϕ3-theory in d = 6

For further illustration, we now apply spectral BPHZ-
renormalizationwithin the simple perturbative example of the
one-loop DSE for the two-point function of the (renormaliz-
able) ϕ3-theory in d ¼ 6 dimensions with a coupling
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g=ð3!Þ Rx ϕ3. The advantage of this example is that already at
one loop it requires both a mass renormalization and a wave
function renormalization. Hence, both can be discussed
within a simple one-loop computation. In contrast, in the
ϕ4-theory, the wave function renormalization only arises at
two-loop from the sunset diagram (even for ϕc ≠ 0).

In the ϕ3-theory, the only diagrams in the gap equation
Fig. 3 are the polarization diagram and the squint diagram.
At one loop, we only have to consider the polarization
diagram. In d ¼ 6, this diagram is quadratically divergent.
The respective DSE for the (inverse) propagator reads
schematically,

Γð2ÞðpÞ ¼ Zϕ;0ðμÞðp2 þm2
ϕ;0ðμÞÞ þ g2

Z
λ1;λ2

λ1λ2ρðλ1Þρðλ2ÞFðp; μ; λ1; λ2Þ: ð17Þ

The integrand F results from the momentum integration and depends on the renormalization group scale μ due to
dimensional regularization. Zϕ;0 is the wave function renormalization and m2

ϕ;0 is the bare mass squared. Both bare
parameters contain counterterms that remove the divergences in the diagrams within an expansion about p2 ¼ μ2: the
constant quadratic divergence as well as the logarithmic divergence proportional to p2. This amounts to the choices

Zϕ;0ðμÞ ¼ 1 − g2
Z
λ1;λ2

λ1λ2ρðλ1Þρðλ2Þ
Fðp; μ; λ1; λ2Þ

∂p2

����
p2¼μ2

;

Zϕ;0ðμÞm2
ϕ;0ðμÞ ¼ m2

ϕ − g2
Z
λ1;λ2

λ1λ2ρðλ1Þρðλ2Þ
�
Fðp; μ; λ1; λ2Þ − μ2

Fðp; μ; λ1; λ2Þ
∂p2

����
p2¼μ2

�
ð18Þ

for wave function and mass renormalization, respectively. The counterterms proportional to g2 in (18) provide the first two
terms of the Taylor expansion about p2 ¼ μ2 of the diagram. To see this, we insert (18) in DSE (17),

Γð2ÞðpÞ ¼ p2 þm2
ϕ þ g2

Z
λ1;λ2

λ1λ2ρðλ1Þρðλ2Þ
�
Fðp; μ; λ1; λ2Þ − Fðμ; μ; λ1; λ2Þ − ðp2 − μ2ÞFðp; μ; λ1; λ2Þ∂p2

����
p2¼μ2

�
: ð19Þ

Equation (19) is depicted in Fig. 5. Accordingly, (18)
implements the standard renormalization conditions, that
the quantum corrections vanish at p2 ¼ μ2,

Γð2Þðp2 ¼ μ2Þ ¼ Zϕðμ2 þm2
ϕÞ

∂p2Γð2Þðp2 ¼ μ2Þ ¼ Zϕ ð20Þ

for the two-point function with Zϕ ¼ 1. In the present ϕ3-
example, these two renormalization conditions are com-
plemented by that for the coupling g, which is also
logarithmically divergent in d ¼ 6. As we have introduced
this example only for illustration of spectral BPHZ-
renormalization, we refrain from discussing this any
further. Mode details on the spectral renormalization
conditions can be found in Sec. III B.

Continuing with the discussion of spectral renormaliza-
tion for the two-point function, the subtraction of F in (19)
by its own Taylor expansion at p2 ¼ μ2 leads to finite
spectral integrals. We emphasize that this is not achieved by
simply subtracting the 1=ϵ-terms before performing the
spectral integration: since F scales with λ2 for large λ with
λ ¼ λ1, λ2, the spectral integrals in (17) are quadratically
divergent. After spectral BPHZ-renormalization, however,
the subtracted scalar integrand in (19) scales as 1=λ2. The
subtraction scheme cancels the leading and subleading
contributions in λ to F and leads to finite spectral integrals.

F. Nonperturbative spectral renormalization

The discussions of the last three sections, Secs. II C–II E,
entail that spectral renormalization leads to two different

− (p2 − 2) p2

p2= 2 p2= 2

spectral
−

spectral BPHZ

renormalization

FIG. 5. Schematic spectral BPHZ-renormalization procedure at the example of the one-loop scalar propagator DSE for the ϕ3-theory.
The diagram is quadratically divergent in d ¼ 6. First, the loop-momentum divergences are discarded by the usual momentum
renormalization part of dimensional regularization (i.e., implicitly assumed on the lhs). By introducing mass and wave function
counterterms, the diagram is subtracted by the first two terms of its own Taylor expansion around the RG scale μ. This cancels the
leading order quadratic and subleading logarithmic divergences of the spectral integrals.
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parts in the counterterms: the first part is related to the
momentum divergences and has all the properties of the
counterterms in dimensional regularization. The second
part comes from the spectral divergences. The counterterms
in spectral dimensional renormalization respect all sym-
metries including gauge symmetries and is tantamount to
dimensional regularization and renormalization. The coun-
terterms in spectral BPHZ-renormalization lack the full
symmetries. In particular, in gauge theories, the BPHZ-
counterterms are necessarily not gauge invariant, precisely
for restoring gauge consistency of the full renormalized
result.
Importantly, in both spectral renormalization schemes,

the spectral counterterms follow the same recursive rela-
tions known from standard perturbation theory. This makes
it a consistent renormalization scheme to all orders of
perturbation theory.
In nonperturbative applications of the present spectral

approach, the nonperturbative information is solely present
in the spectral functions of propagators and vertices.
Moreover, within the DSE, we only deal with one- and
two-loop diagrams with n vertices derived from the master
DSE in (4); see also Fig. 2. We have one classical (bare)
vertex and n − 1 full vertices as well as full propagators. If
recursively written in terms of loops, both, the finite full
vertices and propagators, carry subtractions of the diver-
gences in these diagrams that render the diagrams finite.
The leftover subtractions from these redistribution renorm-
alize the one or two explicit loops in the DSE diagrams.
In summary, nonperturbative spectral renormalization

only concerns the counterterms for the explicit loops in
the DSE, while the rest of the renormalization is carried by
the finite full vertices and propagators that have to obey the
renormalization conditions. This is a consistent numerical
nonperturbative renormalization scheme.

III. ϕ4-THEORY IN 2+ 1 DIMENSIONS

The ϕ4-theory in 2þ 1 dimensions is super-renormaliz-
able, and the initial two renormalization conditions for the
two-point function in Fig. 3 reduce to the first one for
the mass. Moreover, we do not need to renormalize the
coupling. This entails that in the DSE for the scalar two-
point function spectral BPHZ-renormalization as discussed
in Sec. II D simply amounts to subtracting the zeroth order
term in the Taylor expansion about p2 ¼ μ2. After the
momentum integrals are computed analytically within
dimensional regularization, we are left with the finite
spectral integrals.
After completing renormalization, the iterative solution

procedure in the DSE is briefly described as follows: with a
given input spectral function, the renormalized DSE is
evaluated in Minkowski space-time. The input spectral
function is either the initial guess or the result of the last
iteration step. Then, an updated retarded two-point function
is computed from the result. This allows us to extract an

updated spectral function, which is fed back as input into
the next iteration step. In this section, we discuss the
calculation sketched above in a detailed way, step by step.

A.Momentum integration and spectral renormalization

The DSE can be expressed as the sum of the bare two-
point function and the loop diagrams Dj,

Γð2ÞðpÞ ¼ p2 þm2
ϕ;0 þ

X
fjg

DjðpÞ; ð21Þ

with j ¼ tad; pol; sun; squint. In (21), we have used that the
ϕ4-theory in d ¼ 3 is super-renormalizable and the only
divergent term is the mass term. From now on, we drop the
μ dependence of the spectral integrands for notational
simplicity. With the Källén-Lehmann spectral representa-
tion for the full propagator (7), as well as momentum-
independent vertices, an arbitrary loop diagram Dj in the
DSE takes the form

DjðpÞ ¼ gj
YNj

i

�Z
λi

λiρðλiÞ
�
Ijðp; λ1;…; λNj

Þ: ð22Þ

The prefactors gj are the products of the combinatorial
prefactors in the DSE and the vertices of the corresponding
diagram. In Table I, we provide the prefactors for the
Minkowski version of (22); see (25).
Dj has Nj internal lines, each of them coming with

one spectral integral and a corresponding spectral function.
The Ij are nothing but a product of (momentum) loop
integrals over Nj classical propagators with different
spectral masses λi,

Ijðp; λ1;…; λNj
Þ ¼

YNloops
j

k

Z
d3qk
ð2πÞ3

YNj

i

1

λ2i þ l2i
: ð23Þ

TABLE I. Prefactors of the propagator DSE diagrams in the
different approximation schemes. The prefactors are obtained by
the standard DSE prefactors and the loop-momentum and spectral
parameter-independent parts of the vertices. The tadpole factor in
the approximation with classical vertices is set to zero, as the
tadpole is absorbed completely in the mass renormalization. The
sunset prefactor in the skeleton expansion compensates the two-
loop contributions of the tadpole with full four-vertex. In the self-
consistent approximation of Sec. IV E, the skeleton prefactors
apply with exception of the polarization diagram, which is given
by (48).

Classical vertices Skeleton

gpol − 3
2
Γð2Þðω ¼ 0Þλϕ − 3

2
Γð2Þðω ¼ 0ÞΓð4Þðω ¼ 0Þ

gsunset − 1
6
λ2ϕ

1
12
Γð4Þðω ¼ 0Þ2

gsquint 3
2
λ2ϕΓð2Þðω ¼ 0Þ 0

gtad 0 1
2
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In (23) the momenta li are linear combinations of the loop-
momenta qk and the external momentum p. The number of
loops is denoted by Nloops

j in (23). The analytic solutions of
these integrals in d ¼ 3 are known from perturbation
theory, e.g., [37], and can be used here.
With the analytic expressions for Ij, we apply spectral

BPHZ-renormalization, cf. Sec. II D. Please note that only
the logarithmically divergent sunset diagramDsun explicitly
requires renormalization, since the bare tadpole simply can
be absorbed in the definition of the bare mass squared. To
cancel the logarithmic divergence of this diagram, within
the BPHZ-approach, we subtract the zeroth order term in
the Taylor expansion of Dsun about p2 ¼ μ2. The renor-
malized diagram reads

Dren
sunðωÞ ¼ gsun

Z
λ1;λ2

λ1λ2ρðλ1Þρðλ2Þ

× ½Isunðω; λ1; λ2Þ − Isunðμ; λ1; λ2Þ�: ð24Þ

B. Analytic continuation

The IjðpÞ are evaluated in Minkowski space-time for the
retarded two-point function. This is done by parametrizing
the complex (Euclidean) frequency as p0 ¼ −iðωþ iεÞ and
taking the limit ε → 0. In a slight abuse of notation, we
denote the continued expression as IjðωÞ. They are given
explicitly in the Appendix C. The DSE in Minkowski
space-time reads

Γð2ÞðωÞ ¼ −ω2 þm2
ϕ;0

þ
X
fjg

gj
YNj

i

�Z
λi

λiρðλiÞ
�
Ijðω; μ; λ1;…; λNj

Þ:

ð25Þ

The prefactors of the diagrams of the DSE (25) with the
classical vertex approximation and the skeleton expansion
can be found in Table I. It can be deduced from the analytic
structure of the spectral integrands IjðωÞ, that the support in
ω of the imaginary part of the polarization diagram starts at
ω ¼ λ1 þ λ2, as expected. Similarly, we find that the
support of the sunset diagram starts at ω ¼ λ1 þ λ2 þ λ3.
Hence, the support of the expressions in the two-point
function is given by multiples of the pole mass. This shows
how the Cutkosky cutting rules can be easily extracted from
the present spectral approach.
It is clear from (25) that the spectral renormalization

approach allows for the implementation of physical on-
shell renormalization conditions. This is in contrast to
Euclidean computations, where on-shell renormalization
can only be implemented for massless modes. On-shell
renormalization has the advantage that it minimizes the
quantum corrections in a study of the resonance spectrum

of a given theory. The renormalization conditions (20) for a
ϕ4-theory in d ¼ 3 dimensions reduce to

Γð2Þ½p2 ¼ −m2
pole� ¼ 0; ð26Þ

since both the coupling and the kinetic term do not require
renormalization. The triviality of the wave function renorm-
alization or rather the vanishing anomalous dimension
entail, that the leading large momentum behavior of the
propagator is given by 1=p2. Accordingly, the canonical
commutation relations of the scalar field are unchanged, as
is the normalization of dynamical states. The sum rule (10)
is hence formally always satisfied in 2þ 1 dimensions, and
thus provides a nontrivially benchmark test of our results.

C. Spectral integration and iteration

The remaining multidimensional integrals over the
spectral parameters λi in (25) are solved numerically.
Details on the numerical part of the calculation can be
found in Appendix B. Subsequently, the spectral function is
extracted from the updated two-point function via (8) and
fed back into the DSE. In this way, the DSE is solved
iteratively by successively integrating the right-hand side of
the DSE with the updated spectral function from the last
step until the solution converges, comp. Figure 6. Note that
all the dynamical information is stored in the spectral
functions, and the integrands Ij do not change within the
iterations. Hence, each iteration only involves the numeri-
cal solution of the respective multidimensional spectral
integral of each diagram.
More details on the convergence test can be found in

Appendix B. There, the rapid convergence is illustrated as
an exemplary case; see in particular Fig. 15.
As a starting point for the iterative procedure, an initial

guess for the spectral function has to be made that is close
enough to the solution (in the attraction basin of the
solution in terms of the iteration). In the present case with
the on-shell renormalization (26), the spectral function of
the classical theory carries already the correct pole position
by definition. In general, this will improve the convergence
properties of the iteration. This is yet another property that

1. Make initial guess 0

2. Calculate  via DSEΓ(2)

3. Compute  from propagator

Iterate  
until  
convergence

FIG. 6. Iteration procedure for computing the spectral function.
With the initial guess ρ0 for the spectral function, the two-point
function Γð2Þ is computed via DSE. The resulting spectral
function is fed back into the DSE for the two-point function.
This procedure is iterated until the convergence for the spectral
function is reached.
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singles out on-shell renormalization. The classical spectral
function is given by

ρ0ðωÞ ¼ δðω2 −m2
poleÞ

¼ π

mpole
½δðω −mpoleÞ − δðωþmpoleÞ�: ð27Þ

The delta-function peaks are located at the physical pole
mass squared, and the delta-functions at �mpole, are related
by antisymmetry. With the initial guess in (27), the spectral
integrals in the propagator DSE (25) reduce to the pertur-
bative expressions. Further iterations then lead to resum-
mation of the respective diagram classes.
The branch cuts of the loop corrections generate a

continuous tail in the spectral function when inserting
the initial spectral function ρ0 on the right-hand side of the
DSE. This entails via the sum rule in (10), that the residue
of the mass pole decreases to Z < 1 due to the positive
weight of the tail. The mass pole residue of the updated
spectral function is obtained via the relation

Z ¼ −
2mpole

∂ωΓð2ÞðωÞ

����
ω¼mpole

: ð28Þ

The counterterm for the mass is conveniently extracted
from ReΓð2Þðω ¼ mpoleÞ ¼ 0.
The three-point function Γð3Þ½ϕc� in the gap equation is

evaluated at the constant field value ϕc ¼ ϕ0, which solves
the equation of motion, ∂ϕVeff ½ϕ0� ¼ 0, at each step of the
iteration. For fields in the vicinity of ϕ0, we can expand the
effective potential in powers of ϕ2 − ϕ2

0 in the broken
phase, leading to

Veff ½ϕ� ¼
X∞
n¼2

vn
2n!

ðϕ2 − ϕ2
0Þn: ð29Þ

Accordingly, the two-, three-, and four-point functions at
vanishing momentum are given by

Γð2Þ½ϕ0� ¼
1

3
v2ϕ2

0;

Γð3Þ½ϕ0� ¼ v2ϕ0

�
1þ 1

15

v3
v2

ϕ2
0

�
;

Γð4Þ½ϕ0� ¼ v2

�
1þ 1

5

v3
v2

ϕ2
0 þ

1

105

v4
v2

ϕ4
0

�
: ð30Þ

Dropping the higher-order termsOððϕ2 − ϕ2
0Þ3Þ in (29), the

terms in parentheses of (30) all reduce to unity. We
introduce the curvature mass m2

curðmpole; λϕÞ as the value
of the two-point function at vanishing momentum, i.e.,

m2
curðmpole; λϕÞ≡ Γð2Þ½ϕ0�ðp ¼ 0Þ: ð31Þ

Note that mcur is determined by the two free parameters of
the theory, mpole and λϕ. It is no new parameter. Using (31)
in (30) and dropping the higher-order contributions, the
three- and four-point functions at vanishing momentum are
given by

Γð3Þ½ϕ0� ¼
ffiffiffiffiffiffiffi
3v2

p
mcur;

Γð4Þ½ϕ0� ¼ v2: ð32Þ

v2 is nothing but the full four-vertex at vanishing momen-
tum, v2 ¼ Γð4Þ½ϕ0�ðp ¼ 0Þ. For a general, momentum-
dependent four-point function in the s-channel, we find
for the momentum-dependent three-point function,

Γð3ÞðpÞ ¼ Γð4ÞðpÞ
ffiffiffiffiffi
3

v2

s
mcur; ð33Þ

dropping the ϕ0 dependence of the correlators from now
on. Note that by choosing Γð3Þ consistently with Γð4Þ as
done above, the three-point function becomes dynamical
and is hence updated through each iteration by its depend-
ence on the two- and four-point functions.

IV. RESULTS

In this section, we compute and discuss the solution to
the DSE for the propagator with two different approxima-
tions for the vertices. At first, we solve the DSE with
the classical four-point vertex and the related three-point
vertex as derived in Sec. III C. Subsequently, the DSE is
considered in a skeleton expansion. Both, the full three- and
four-point functions Γð3Þ, Γð4Þ, are based on the bubble
resummed s-channel approximation to the four-point vertex
derived from its Bethe-Salpeter equation. We also use the
DSE for Γð4Þ to compute results within a self-consistent
version of this setup.

A. DSE with classical four-point vertex

In the present section, we approximate the full vertices in
the gap equation in Fig. 3 with their classical counterparts
while keeping the two-loop terms. This is depicted in
Fig. 7. The two-loop terms constitute vertex corrections to
the classical four-point function in the tadpole diagram
(sunset) and for the classical three-point function in the
polarization diagram (squint). In the latter case, this is but
half of the vertex correction; the other half has been
dropped in the current approximation when approximating
the full three-point function in the polarization diagram by
its classical counterpart. This approximation resums the
propagator but is expected to fail in a regime where vertex
corrections grow large.
For the four-point function, the classical vertex approxi-

mation amounts to
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Γð4Þ ¼ Sð4Þ ¼ λϕ: ð34Þ

With (34) and (32), the three-point function is given by

Γð3Þ ¼ Sð3Þ½ϕ0� ¼
ffiffiffiffiffiffiffi
3λϕ

q
mcur; ð35Þ

see (32). The resulting prefactors gj of the diagrams are
listed in Table I. The tadpole diagram only contributes a
momentum-independent term that shifts the mass and is
absorbed into the mass renormalization.
All units will be given in the value of the pole mass. Put

differently, we introduce dimensionless units

λϕ →
λϕ

mpole
; ω →

ω

mpole
; p →

p
mpole

: ð36Þ

This also entails mpole ¼ 1, and the massless limit is taken
with λϕ → ∞. The dimensionless units also emphasize the
well-known fact that the physics of the ϕ4-theory in d ¼
2þ 1 is specified by one dimensionless parameter, the ratio
of coupling and (pole) mass.
We solve the DSE for three different values of the

classical coupling constant λϕ ¼ 5, 10, 20. The renormal-
ized mass is fixed by the on-shell RG conditions (26) with
mpole ¼ 1, and the quantum corrections to the mass vanish
on-shell. For the smallest classical coupling used here,

λϕ ¼ 5, we take the classical spectral function as initial
choice. For the further couplings, we use as the initial
choice the full quantum spectral function of the closest
coupling value available. This stabilizes the iterative
procedure when successively moving further to larger
couplings inducing larger quantum corrections.
The resulting spectral functions, as well as the corre-

sponding propagators, are shown in Fig. 8 for different
values of the classical four-point coupling, λϕ ¼ 5, 10, 20.
The mass pole as well as the onset of the two-particle
threshold, ϕ → ϕϕ, at twice the pole mass is clearly visible.
The three-particle threshold, ϕ → ϕϕϕ, at 3mpole becomes
visible for large enough coupling. We emphasize that also
all higher n-particle thresholds are present in the result and
can be resolved numerically. Since they are suppressed by
the inverse of the respective threshold energy squared, they
are not visible in the plots. When further zooming in on the
higher onsets which were marked by the dashed lines, the
respective onsets would become visible.
The main effect of a stronger coupling (or small pole

mass) can be understood intuitively very well. The residue
of the mass pole becomes smaller, while the scattering cut
gets larger contributions, i.e., scatterings get enhanced due
to the large coupling or the small pole mass. As mentioned
before, the only parameter present is λϕ=mpole, and in the
present units with mpole ¼ 1, this simply is λϕ; see (36).

FIG. 7. DSE of the two-point function with the classical vertex approximation as used in Sec. IVA. The tadpole is not present because
its contribution is absorbed into the mass renormalization in the bare inverse propagator; for more, details can be found in the main text.
The two-loop terms constitute vertex corrections of the classical vertices in the one-loop diagrams. The DSE is not two-loop complete as
further vertex corrections have been dropped due to the classical vertex approximation. The notation is given in Fig. 1.

FIG. 8. Spectral function (left) and propagator (right) in the scalar theory for the coupling choices λϕ ¼ 5, 10, 20 from the full DSE
with classical vertices using on-shell renormalization (26). All dimensionful quantities were rescaled in units of the respective mass pole
result. The different height of the delta peaks encodes the magnitude of the residue relative to the other spectral functions. The gray
dashed lines mark the n-particle onsets. For large enough coupling, the three-particle onset becomes visible. The propagators were
computed by the Källén-Lehmann spectral representation.
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At the largest coupling value considered here, λϕ ¼ 20, also
the higher scattering processes start contributing signifi-
cantly: the threshold at 3mpole is clearly visible in the
spectral function for this coupling, shown in the left panel
of Fig. 8. For large couplings also, the higher thresholds
kick in. This scattering physics also leaves its traces in the
Euclidean propagator, shown in the right panel of Fig. 8:
while first the propagator drops for small momenta with the
increasing coupling (measured in the respective pole
masses), it increases again for even larger ones due to
the more pronounced scattering physics present in the
spectral function.
The resolution of the higher particle thresholds is nearly

impossible within reconstruction methods due to their
exponential suppression in the Euclidean data. This empha-
sizes once again the strength of our semianalytic approach
of calculating spectral functions directly from real-time
correlators, where all these thresholds are incorporated
explicitly.

B. Fully nonperturbative DSE

The practical applicability of the spectral renormaliza-
tion scheme has been shown in the last section within the
DSE for the two-point function with classical vertices; see
Fig. 7. This approximation implements a full resummation
of the propagator. The approximation also includes some
corrections in the higher-order diagrams in the DSE as
already discussed in the last section. While these diagrams
contribute to the higher-order scattering thresholds, this
may not be sufficient in the limit of asymptotically large
couplings λϕ=mpole → ∞, also tantamount to small pole
masses. In this regime, the vertex corrections should be
taken into account consistently.
In the present section, we discuss nonperturbative

expansion schemes of the DSE as well as resummations
of the vertices. This allows us to study the strongly
correlated regime of the theory. A full quantitative study
is beyond the scope of the present contribution and is
deferred to future work.
A nonperturbative expansion scheme for the DSE is

given by the skeleton expansion. In this expansion, all
vertices are full-dressed, and higher loop order diagrams
with dressed propagators and vertices have to be introduced
successively. Instead of an expansion in classical vertices,

it is an expansion in fully dressed ones. This expansion is
closely related to nPI-resummation schemes; in the ϕ4-
theory, it is related to a 4-PI scheme.
Here we consider the two-loop order of the skeleton

expansion in the broken phase. A first observation is that
the prefactor of the squint diagram vanishes: it is fully
contained in the polarization diagram with two dressed
three-point functions Γð3Þ. At perturbative two-loop level,
the expansion involves a kite diagram as well as a double-
bubble diagram. Both topologies are only generated from
the polarization diagram in the DSE, more precisely from
vertex corrections of the dressed three-point function.
These contributions have to be subtracted in terms of
explicit kite and double-bubble diagram in the skeleton
expansion. For small field expectation values ϕ0 ≪ 1, it is
reasonable to neglect the kite diagram, since it scales like
ϕ4
0 due to its four three-point functions. We will also drop

the double-bubble diagram which is of order ϕ2
0. These

approximations are discussed again later. The remaining
diagrams are the polarization, sunset, and tadpole. The
present approximation of the two-loop skeleton expansion
of the gap equation is depicted in Fig. 9.

1. Bubble-resummed s-channel four-point function

It is left to specify the approximations for the three-
point and four-point vertices. To begin with, we still use
the relation (33) for the three-point function with the
assumption of small field values ϕ2

0. This leaves us with
the four-point function, for which we resort to a bubble-
resummed s-channel expansion, e.g., [42,44], shown
graphically in Fig. 10. Algebraically, the momentum
dependence of the s-channel in the four-point function
can be expressed as

Γð4ÞðpÞ ¼ λϕ
1þ λϕΠfishðpÞ

: ð37Þ

Here, Πfish is the one-loop part of the s-channel self-energy
(apart from λ2ϕ),

ΠfishðpÞ ¼
1

2

Z
λ1;λ2

λ1λ2ρðλ1Þρðλ2ÞIpolðp; λ1; λ2Þ: ð38Þ

FIG. 9. Truncated DSE of the two-point function as used in Sec. IV D. Notation is given in Fig. 1. The full s-channel four-vertex in the
tadpole diagram enters via its spectral representation (39). The full vertices in polarization and sunset are approximated at zero
frequency; see Sec. IV B 3. The different prefactor in front of the sunset diagram as compared to Fig. 7 is due to the tadpoles contribution
to the sunset topology, cf. Sec. IV B 2. Squint, kite, and double-bubble topology are dropped, as motivated in Sec. IV B.
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This is exactly the polarization diagram also appearing in
the DSE with prefactor gpol ¼ 1, cf. Fig. 5 and Eq. (17). The
analytically continued expression for Γð4ÞðωÞ is obtained by
simply replacing IpolðpÞ in (38) with IpolðωÞ.
The resulting Γð4ÞðωÞ depends on the full propagator

through the spectral functions in (38), and the equations for
Γð2Þ and Γð4Þ are coupled. We also note that the s-channel
resummation used here is obtained in the NLO-expansion
of the 1=N-expansion of an OðNÞ-theory with N real scalar
fields. In the present N ¼ 1 case, s-channel dominance is
merely an assumption. For a full quantitative study, this
assumption would have to be validated numerically.
Otherwise, other scattering channels would have to be
taken into account as well.
The iteration procedure does not change for such a

coupled system, even though coupled systems generically
show worse convergence properties. For a given input pair
Γð2Þ and Γð4Þ, we compute the next iteration from the right-
hand side of the DSE for Γð2Þ, Fig. 9, and the resummed
representation of Γð4Þ, (37). This is repeated until con-
vergence is reached.

2. Tadpole contribution to the sunset topology

Before turning to the explicit approximation used in the
skeleton scheme, we emphasize again that the fully dressed
tadpole diagram and the fully dressed sunset diagram are
related. They both carry the s-channel of the four-point
vertex. While the tadpole simply is proportional to the
s-channel four-point vertex, the sunset includes the fish
diagram as a subdiagram. Indeed, the perturbative two-loop
sunset graph is a combination of the respective contribu-
tions, and the prefactor gsun of the sunset diagram in the
skeleton expansion is such that the perturbative prefactor,
cf. Table I.
The tadpole diagram is proportional to the s-channel

four-point vertex and we use the full momentum-dependent
four-point vertex obtained from the bubble resummation
(37). Inserting the diagrammatic vertex expansion explic-
itly into the diagram, one sees that the dressed tadpole
contributes to the sunset topology on the perturbative two-
loop level. However, this contribution does not account for
the full prefactor of the latter. To arrive at the correct
perturbative prefactor of the sunset diagram, the prefactor
of the fully dressed sunset diagram in the skeleton
expansion needs to be adjusted accordingly; see Fig. 9
and Table I.

3. Vertex approximation in the skeleton expansion

In the sunset diagram, the 2 four-point vertices are
averaged due to the two-loop momenta that run through
both vertices. This averaging holds true for both the
Euclidean branch and the Minkowski one. For this reason,
we approximate the full momentum-dependent four-point
vertices by that at vanishing momentum, Γð4Þ½ϕ0�.
In our approximation with Γð3Þ

polðpÞ ¼ ϕ0Γð4ÞðpÞ with
external momentum p, the vertices in the polarization
diagram are, as in the tadpole, proportional to the s-channel
four-point vertex. For the sake of simplicity, we also use

Γð3Þ
pol ¼ ϕ0Γð4Þðω ¼ 0Þ. In any case, the spectral integrands

Ipol and Isun of polarization and sunset diagram remain the
same as in Sec. IVA. However, their prefactors gpol and gsun
are modified by the skeleton expansion, cf. Table I.
As outlined, our solution method requires an analytic

solution of the momentum integrals for all diagrams. In the
current approximation, this holds true for the polarization
and sunset diagram. It is not the case for the tadpole
diagram because the loop momentum is probing the non-
trivial momentum structure of the resummed four-point
function (37). This problem can be resolved if we can use a
spectral representation for the resummed four-point func-
tion, which is discussed in the following section.

C. Spectral representation for the four-point function

While the existence and practical form of spectral
representations for full four-point functions pose an intri-
cate problem, spectral representations for (approximations
of) single exchange channels of the four-point function can
be derived. From a practical perspective, we may treat such
a channel similarly to a propagator. This is well-motivated
by considering that the resonant channels of a four-point
function correspond to particle exchange interactions.
Technically, this can be made explicit by means of an
Hubbard-Stratonovich transformation. In analogy to a
propagator, we can make the same ansatz for a spectral
representation for a single channel of the resummed vertex

Γð4ÞðpÞ ¼ λϕ þ
Z
λ

λρ4ðλÞ
p2 þ λ2

; ð39Þ

with

ρ4ðωÞ ¼ 2 ImΓð4Þð−iðωþ i0þÞÞ: ð40Þ

FIG. 10. s-channel expansion of the momentum-dependent four-point function Γð4Þ. With a bubble resummation, one arrives at (37).
The notation is defined in Fig. 1.
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In (39), the constant classical part λϕ has to be separated. It
has no spectral representation and does not need one for the
present purpose. Indeed, classical vertices have been
already considered in Sec. IVA.
Our results confirm that the analytic structure of the

resummed vertex is compatible with (39) and works well.
This can be seen in Fig. 11, and the computational details
can be found in the next section, Sec. IV D. The spectral
function ρ4 displayed in the right panel exhibits a continu-
ous tail corresponding to the ϕϕ → ϕϕ scattering con-
tinuum for ω ≥ 2mpole. The spectral representation (39) of
the four-point function is used in the tadpole diagram in
complete analogy to that of propagators.
Importantly, the spectral representation of the vertex

effectively just leads to another classical propagator with
spectral mass λ to the loop-momentum integral. The
momentum flowing through the four-vertex is the sum
of the loop and external momentum. Thus, the momentum
integral of the tadpole is identical to that of the polarization
diagram, since the internal line of the four-vertex carries
pþ q and the initial internal line just the loop momentum
q. The tadpole diagram can therefore be expressed as

DtadðωÞ ¼ gtad

Z
λ1;λ2

λ1λ2ρðλ1Þρ4ðλ2ÞIpolðω; λ1; λ2Þ: ð41Þ

The spectral integral is logarithmically divergent, since the
vertex spectral function ρ4 drops off in the UV as λ−1 (as
opposed to ρ ∼ λ−2 in the UV). Again, we employ spectral
BPHZ-renormalization to subtract the zeroth order term of
the Taylor expansion of Ipol. Finally, the renormalized
diagram reads

Dren
tadðωÞ ¼ gtad

Z
λ1;λ2

λ1λ2ρðλ1Þρ4ðλ2Þ

× ½Ipolðω; λ1; λ2Þ − Ipolðμ; λ1; λ2Þ�: ð42Þ

D. Results for the coupled system of propagator
and vertices

The DSE in the skeleton expansion is solved for the
couplings also used in Sec. IVA, λϕ ¼ 5, 10, 20, measured
in the pole mass mpole ¼ 1.
For the first iteration, initial choices ρ0, ρ4;0 for the

spectral function of the propagator and that the four-point
vertex are required. For ρ0, we use the classical spectral
function (27), as already done in Sec. IVA. For the spectral
function of the four-point function ρ4;0, compute it from the
resummed representation of the four-point function, (37)
with the initial choice of the spectral function of the
propagator, ρ0. This results in

ρ4;0ðωÞ ¼ 2 Im
λϕ

1þ λϕΠfish;0ðωÞ
; ð43Þ

with

Πfish;0 ¼
1

2

Z
λ1;λ2

λ1λ2ρ0ðλ1Þρ0ðλ2ÞIpolðω; λ1; λ2Þ

¼ 1

2
Ipolðω;mpole; mpoleÞ; ð44Þ

with mpole ¼ 1. While one could also simply take the
classical vertex, the convergence speed and potentially also
the convergence radius (coupling range) are increased by
the improved choice (43). For further couplings λϕ, we take
as initial choices ρ0 and ρ4;0, the full solutions ρ and ρ4 of
the closest coupling value already computed. This pro-
cedure has already been used in Sec. IVA and speeds up the
convergence.
The spectral function and propagator obtained from the

coupled system of resummed four-point function and DSE
are displayed in the top panels of Fig. 12. As for the case of
bare vertices, shown in Sec. IVA, we find a distinct one-
particle mass pole as well as a scattering tail. The ϕ → ϕϕϕ

FIG. 11. Left: comparison of the momentum-dependent (Euclidean) four-vertex Γð4ÞðpÞ in its initial form (37) with its spectral
representation (39) for the coupling choices λϕ ¼ f10; 15; 20g using a classical propagator, i.e., a delta pole spectral function peaked at
mpole ¼ 1. All dimensionful quantities were rescaled in units of the respective mass pole result. Right: corresponding spectral functions
of the four-point functions. The different height of the delta peaks encodes the magnitude of the residue relative to the other spectral
functions. Also here, all dimensionful quantities were rescaled in units of the respective mass pole result.
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onset is not visible in the spectral function for any of the
coupling configurations. It can be seen that for increasing
coupling λϕ, the tail of the spectral function becomes more
enhanced, since the higher-scattering states are more
accessible. In turn, the mass pole residue decreases. The
corresponding propagators in the right panel show similar
behavior as for the DSE with bare vertices. The larger the
coupling gets, the further the propagators deviate from the
classical behavior GðpÞ → 1 for p → 0.
In the bottom panels of Fig. 12, we display the spectral

function of the s-channel four-point function and the
Euclidean four-point function itself. The consistency of
the spectral representation has been discussed already in the
previous section and is confirmed numerically; see Fig. 11.
Technically, the negativity of the spectral function dis-
played in Fig. 12 can be understood from the dominant
quantum correction to the classical vertex, which is
negative. On the conceptual side, within the Hubbard-
Stratonovich transformation related to minus the spectral
function of the exchange particle.

We find a continuous 2 → 2 scattering tail, starting at
2mpole for all coupling choices. The spectral function is
strongly enhanced with increasing coupling. Additionally,
for larger coupling, the spectral functions also clearly show
the 1 → 3 scattering onsets starting at 3mpole, which was
not visible in the propagator spectral functions (cf. top left
panel of Fig. 12). By simple dimensional analysis, it
becomes clear that the higher n-particle thresholds in the
propagator spectral function are suppressed by their
respective energy threshold squared. This is not the case
for the vertex spectral function: it decays with λ−1, making
the higher onsets less suppressed. In turn, the invisibility of
four, five, and higher particle onsets is due to their
decreasing amplitude, as every next higher onset comes
with one additional loop. Further, we note that the visible
size of the 1 → 3 scattering onset has its sole origin in the
tadpole diagram. This diagram contributes to the 1 → 3
scattering process due to the s-channel resummed four-
point function, cf. Sec. IV B 2. The contribution of the
sunset itself is very suppressed in comparison. This points

FIG. 12. Results from the skeleton expanded DSE (comp. Fig. 9) with a bubble resummed s-channel expansion of the four-point
function for coupling choices λϕ ¼ 5, 10, 20 using on-shell renormalization (26). The curves were rescaled by the respective mass poles.
All vertices except for the tadpole one were approximated at ω ¼ 0. TOP: spectral function (left) and propagator (right). The weight of
the continuous tail increases with coupling, and the mass pole residue decreases. Higher n-particle onsets are not visible in the spectral
function. The different height of the delta peaks encodes the magnitude of the residue relative to the other spectral functions. The
propagators were computed by the Källén-Lehmann spectral representation. Increasing coupling makes the propagators deviate more
from the classical propagator, which approaches 1 at momentum p → 0. Bottom: four-vertex spectral function (left) and four-vertex
(right). Weight of the vertex spectral functions continuous tail increases with coupling. For the largest coupling choice, the three-particle
onset is visible in the spectral function. The four-vertices were computed by their spectral-like representation [comp. (39)]. The quantum
corrections in the IR increase with coupling. All vertices approach their classical value in the UV.
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toward a general feature of our approximation: In the large
coupling (massless) limit, the tadpole becomes the domi-
nating diagram in the spectral function (for ω > 3mpole).
We elaborate more on the massless limit in Appendix A.
While presenting the spectral and correlation functions

in units of the fixed mass pole mpole ¼ 1 allows for a
comparison of the relative strength of the different con-
tributions, the approach to the massless limit is better
studied if the results are presented in units of a uniform
interaction strength. This is achieved by measuring all
results in units of the coupling λϕ; see Appendix A. For the
parameters λϕ=mpole ¼ 5, 10, 20 studied here, this entails
that we consider theories with the coupling λϕ ¼ 1 with
pole masses mpole ¼ 1=5; 1=10; 1=20. Evidently, within
these units, the spectral functions pole position moves
toward zero and the onset of the scattering states gets more
pronounced; see Fig. 14.

E. Self-consistent skeleton expansion

Within the current approximation, we have explicitly
dropped the kite and double-bubble diagrams. Implicitly,
we have also dropped the squint diagram that corresponds
to vertex corrections to the three-point function in the
vacuum polarization: we have used two dressed three-point
vertices that are derived from the bubble resummation of
the four-point function. Such an approximation of the
three-point function does not contain the squint topology.
An alternative approximation of the Dyson-Schwinger

equation is derived as follows: we start from the initial, full
propagator DSE (Fig. 3) and consider it in a diagrammatic
expansion in orders of the constant field ϕ0. In our
approximation, these higher orders come via the three-
vertices Γð3ÞðpÞ ¼ ϕ0Γð4ÞðpÞ þOðϕ3

0Þ. Acting on the DSE
with two derivatives with respect to the constant field ϕ0

and multiplying by ϕ2
0=2 afterward, one finds the schematic

relation

OΓð2Þ;diag½ϕ2
0�ðpÞ ¼

1

2
ϕ2
0½Γð4Þðp;−p; 0; 0Þ − λϕ�; ð45Þ

where OΓð2Þ;diag½ϕ2
0� represents all diagrams in the propa-

gator DSE with two external constant field legs, including
their initial prefactors. This includes the squint diagram and
the vacuum polarization.
On the right-hand side of (45), we have the full four-

point function subtracted by its classical value. We also
made explicit the specific momentum dependence of the
four-point function. By differentiating twice with respect to
the momentum-independent field ϕ0, Γð4Þ only depends on
one external momentum p.
This entails that we can reexpress all diagrams of

OΓð2Þ;diag½ϕ2
0� through an s-channel four-point function.

What is missing is the classical part of the vertex DSE.
It is included by adding and subtracting the classical vertex

contribution multiplied by an appropriate prefactor involv-
ing the constant field, 1

2
ϕ2
0λϕ to the propagator DSE. This

leads us to (45). Evidently, the additional constant part
− 1

2
ϕ2
0λϕ in (45) is absorbed in the mass renormalization.

The expectation value ϕ2
0 can be expressed in terms of

Γð2Þð0Þ ¼ m2
cur and Γð4Þ½0�. This leads us to
1

2
ϕ2
0Γð4ÞðpÞ ¼ 3

2
m2

cur
Γð4ÞðpÞ
Γð4Þð0Þ ; ð46Þ

which has the scaling of a two-point function and reduces
to 3=2m2

cur at vanishing momentum. Making use of (45)
and (46), we are led to the DSE for the propagator with
Minkowski frequencies ω,

Γð2ÞðωÞ ¼ −ω2 þm2
pole þDren

tadðωÞ þDren
sunðωÞ

þ 3

2
m2

cur

�
Γð4ÞðωÞ − Γð4ÞðmpoleÞ

Γð4Þð0Þ

�
; ð47Þ

and i ¼ tad; sun. Note that the polarization and squint
diagram have been absorbed into the last term of (47)
proportional to m2

cur as a result of (45). Due to the on-
shell renormalization condition (26), all renormalized
diagrams vanish at ω ¼ mpole, i.e., Dren

i ðmpoleÞ ¼ 0. In
summary, (47) is exact up to higher orders of ϕ2

0, leaving
us with a self-consistent systematic expansion scheme.
The self-consistency refers to the fact that in the present
order in ϕ2

0, the polarization diagram is given exactly in
terms of the four-point vertex. Therefore, approximations
to the latter are transported to the former.

1. Vertex-approximation in the self-consistent
skeleton expansion

As discussed above, within the self-consistent DSE in
(47), it suffices to specify the approximation for the four-
point function. Here we again resort to the bubble-
resummed four-point function of (37), already used in
the previous section. This approximation of the four-point
function neglects in particular contributions in the DSE of
the four-point function that originate in the squint diagram.
The self-consistency of (47) is reflected in the fact that the
contribution of the polarization diagram is given by its
bubble-resummed 1=2ϕ2

0Γð4Þ,

1

2
ϕ2
0Γð4ÞðpÞ ¼ 1

2
ϕ2
0½λϕ − λϕΠfishΓð4ÞðpÞ�: ð48Þ

The four-point function, (48), lacks the contributions from
the squint diagram. Note also that these contributions are
related to the u, t-channel. Hence, with (48), we consis-
tently neglect the squint topology in the DSE if assuming
dominance of the s-channel vertex corrections for the
four-point vertex. We emphasize that the assumption of
s-channel dominance is well supported in the large-N limit,
but less so in the present N ¼ 1 case.
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Diagrammatically, the DSE is still represented by
Fig. 9, with the polarization diagram given by the last
term in (47). The prefactors of tadpole and sunset diagram
are identical to that in the standard skeleton scheme used in
Sec. IV D. They are listed in Table I. In the tadpole
diagram, the four-point function again enters via its spectral
representation (39).

2. Results

Numerical results for the self-consistent skeleton scheme
are displayed in Fig. 13. The propagator spectral function is
similar in shape to that obtained in the standard skeleton
approximation; see Fig. 12. However, the magnitude of the
scattering tail close to the threshold is roughly a third for all
coupling choices. Comparing the two skeleton schemes,
one realizes that the correct momentum scaling behavior
of the standard skeleton expansion came at the price of
two dressed vertices. In turn, the self-consistent skeleton

expansion has the correct momentum scaling as well as the
correct vertex strength. Arguably, this property is particu-
larly important in the vicinity of s-channel resonances or
for asymptotically large couplings.
Higher n-particle onsets are not visible in the propagator

spectral function similarly to the results in the standard
skeleton expansion. We emphasize again that they are
present nevertheless, as well as easily accessible in the
present spectral approach. The three-particle onset can
again be seen in the vertex spectral function (bottom left
panel of Fig. 13), although it is less pronounced as in
Fig. 12. The magnitude of the vertex spectral functions
matches very well in the two different schemes however.
The corresponding Euclidean correlation functions are

shown in the top and bottom right panels. Both receive
slightly less quantum corrections as for the plain skeleton
expansion. For the propagator, this is quite clear from the
much smaller spectral functions in the self-consistent
approximation. For the four-point vertex, the differences

FIG. 13. Results from the self-consistent skeleton expanded DSE (comp. Fig. 9) with a bubble resummed s-channel expansion of the
four-point function for coupling choices λϕ ¼ 5, 10, 20 using on-shell renormalization (26). The polarization diagram is here expressed
through the s-channel four-vertex, cf. (47). The curves were rescaled by the respective mass poles. All vertices except for the tadpole one
were approximated at ω ¼ 0. Top: spectral function (left) and propagator (right). The weight of the continuous tail increases with
coupling, and the mass pole residue decreases. Higher n-particle onsets are not visible. The different height of the delta peaks encodes
the magnitude of the residue relative to the other spectral functions. The propagators were computed by the Källén-Lehmann spectral
representation. Increasing coupling makes the propagators deviate more from the classical propagator, which approaches 1 at
momentum p → 0. Bottom: four-vertex spectral function (left) and four-vertex (right). Weight of the vertex spectral functions
continuous tail increases with coupling. For the largest coupling choice, the three-particle onset is visible in the spectral function. The
four-vertices were computed by their spectral-like representation [comp. (39)]. The quantum corrections in the IR increase with
coupling. All vertices approach their classical value in the UV.
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are less pronounced and we refrain from discussing them.
For a more detailed discussion of the general features, see
Sec. IV D.

3. Low-lying bound state close to phase transition

Lattice calculations [45–47] show an additional low-
lying excitation in the spectrum of the scalar ϕ4-theory in
d ¼ 2þ 1 close to the phase transition with a mass of
m ≈ 1.8mpole. This state has been interpreted as a bound
state of the fundamental excitation in [47]. It is also been
observed within the recent functional RG study [48]. The
approximation scheme underlying the Euclidean compu-
tation has been done in [48]. It is close in spirit to the s-
channel approximation scheme used in the present work in
Minkowski space-time. In [48], the spectral function of the
propagator, numerically reconstructed from Euclidean data,
shows a bound state close to the phase transition at a mass
ratio consistent with that found in the lattice studies.
However, further away from the phase transition, the clear
signal of the bound state is lost in [48].
The present direct computation of spectral functions is not

performed close to the phase transition, i.e., for mpole → 0.
This regime will be studied elsewhere within the self-
consistent skeleton expansion developed in the present
section. Our results for mpole ≠ 0 indicate that the bound
state may indeed only exist close to the phase transition.
However, the present s-channel approximation does not
allow for a fully conclusive statement, as the latter requires a
multichannel analysis. Yet, the s-channel resummation
typically captures the dominant resonances and is trust-
worthy as next-to-leading order in a 1=N-expansion in the
large-N limit. The spectral properties of OðNÞ models as
well as the phase transition regimewill be studied elsewhere.

V. CONCLUSION

In this work, we developed a spectral functional approach
for the direct nonperturbative computation of real-time
(timelike) correlation functions. This approach is based
on a novel renormalization scheme called spectral renorm-
alization: this renormalization scheme is based on the use of
spectral representations and dimensional regularization. The
spectral representation allows to perform the momentum
integrals within dimensional regularization. This leaves us
with the spectral integrals, whose spectral divergences can
be renormalized within dimensional regularization as well;
see Sec. II C. This scheme is called spectral dimensional
renormalization and respects all symmetries of the theory at
hand that are maintained within dimensional regularization.
The latter set also includes gauge symmetries, and hence
spectral dimensional renormalization as developed here is a
manifestly gauge-invariant renormalization scheme.
The renormalization step can also be donewith a standard

subtraction procedure within a Taylor expansion in
momenta as done in BPHZ-renormalization. This scheme
is called spectral BPHZ-renormalization. It maintains less

symmetries than spectral dimensional renormalization and
in particular requires counterterms in gauge theories that
break gauge symmetry (or rather BRST symmetry). The
appeal of spectral BPHZ-renormalization lies in its relative
numerical simplicity.
In summary, spectral renormalization allows for direct

access to the real momentum axis by analytic continuation
as a result of the fully analytic solution of all momentum
integrals, while maintaining all symmetries of the theory
at hand.
We performed explicit, nonperturbative computations

within the spectral Dyson-Schwinger approach to the scalar
ϕ4-theory in 2þ 1 space-time dimensions. Our results
include the spectral function of the scalar propagator and
that of the four-point function (s-channel), and are obtained
by solving the spectral DSE recursively. We have first
considered the approximation with classical vertices and full
propagators, but including the two-loop diagrams in theDSE.
The resulting spectral functions show a distinct one-particle
pole and a clear scattering tail with onset at twice the pole
mass. The spectral function contains all higher-scattering
thresholds, which are easily accessible due to the analytic
nature of the momentum integrations. For increasing cou-
plings, the1 → 3 scatteringonset becomesmorepronounced.
We also considered an approximation with nonpertur-

bative vertices, based on a skeleton expansion scheme. The
respective four-point function was given by an s-channel
bubble resummation. The propagator spectral function
again shows a distinct one-particle pole and a continuous
scattering tail. The spectral function of the resummed four-
vertex features a scattering tail as well and additionally
shows a distinct onset for the 1 → 3 scattering process. For
larger couplings, the fully nonperturbative nature of the
approximation leads to large, though only quantitative
differences compared to the classical vertex computation.
In the last part of this work, Sec. IV E, we have

developed a self-consistent skeleton expansion scheme.
The self-consistency was obtained by relating a class of
diagrams with three-point functions to the s-channel four-
point function. This entails that the approximation used in
the computation of the four-point function is also used
within the three-point function diagrams. The results are
qualitatively similar to that of the standard skeleton
scheme. The magnitude of the scattering tail of the
propagator spectral function turns out much smaller in
the upgraded scheme and indicates an overestimation of the
polarization diagram before. We expect that the use of such
a self-consistent scheme is important close to the phase
transition of the theory or, more generally, in the presence
of resonant s-channel interactions.
In conclusion, we have developed and put to work a fully

nonperturbative spectral functional approach to the com-
putation of real-time correlation functions. The approach
was successfully tested within the scalar ϕ4-theory in 2þ 1
dimensions. It is specifically attractive in gauge theories, as
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spectral dimensional renormalization preserves gauge
invariance. We hope to report on respective results soon.
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APPENDIX A: MASSLESS LIMIT

The scalar ϕ4-theory in 2þ 1 dimensions depends on
one dimensionless parameter, λϕ=mpole. In the present
work, we have shown all results in terms of the respective
pole mass. Hence, the above parameter simply relates to
different couplings λϕ, measured in units of the pole mass
mpole ¼ 1. If interested in the massless limit of the theory, it

is more convenient to keep the coupling fixed λϕ ¼ 1 and to
depict all results for different pole masses. For example, in
the work we have used λϕ ¼ 5, 10, 20 with mpole ¼ 1,
which can be read as λϕ ¼ 1 and mpole ¼ 1=5; 1=10; 1=20.
This leads us to the spectral functions for propagator and
four-vertex as well as the respective Euclidean correlators
itself of the scalar field, depicted or rather redrawn in
Fig. 14. Rescaling the results in this way, it gets clear the
massless limit is readily investigated through the limit
λϕ → ∞. For a consistent treatment of the DSE, the vertices
need to be well defined and have the appropriate scaling
properties in this limit. This is given for the resummed
s-channel four-point function that was introduced in
Sec. IV B and used in calculation of Secs. IV D and IV E.
Note that in the skeleton expansion as approximated in this

work, the only other appearingvertex,which is the three-point
function, is obtained directly from Γð4Þ and hence has the
same property. The resummation is hence suitable for study-
ing the massless case in our skeleton expansion. In all
diagrams except for the tadpole, all vertices are approximated
at frequency zero. In consequence, they do not carry loop

FIG. 14. Results from the skeleton expanded DSE (comp. Fig. 9) with a bubble resummed s-channel expansion of the four-point
function for coupling choices λϕ ¼ 5, 10, 20 using on-shell renormalization (26). All vertices except for the tadpole one were

approximated at ω ¼ 0. The curves were rescaled by their respective coupling parameters, i.e., mpole;i ¼ 1
λϕ;i

and consequently λϕ ¼
λϕ;i
λϕ;i

¼ 1 for all curves. Top: spectral function (left) and propagator (right). The weight of the continuous tail decreases with larger mass

pole, and the mass pole residues increase. The different height of the delta peaks encodes the magnitude of the residue relative to the
other spectral functions. The propagators were computed by the Källén-Lehmann spectral representation. The pole contributions are
dominant, since for smaller mass pole the propagator is strongly enhanced.
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momentum and merely enter as multiplicative factor, which
makes themwell under control in the large coupling limit. For
the tadpole however, this is not the case. Here, the four-point
function enters via its spectral representation (39). The
additive classical contribution drops out by renormalization,
as it contributes momentum independently. What is left is the
vertex spectral function contributing to the tadpole loop
integral, cf. (42). With increasing coupling, this spectral
function gets larger; see Fig. 12 or 13. Since the multidi-
mensional spectral integrals need to be evaluated numerically,
a UV cutoff for the integrals needs to be chosen that
minimizes the error caused by doing so. This results in
increasingly long-range integrals for the large coupling limit.
The appropriate treatment of these integrals hence results in a
technical obstacle, which will be the subject of a follow-up
project. Apart from the technical aspect, this suggests that the
tadpole diagram is the dominant contribution to the DSE and
thus to the spectral function for ω > 3mpole in the s-channel
approximation. As a result, one is left solely with polarization
and tadpole diagram, further simplifying the setup.

APPENDIX B: NUMERICS

In order to compute the spectral integrals in (25), the
integrands Ij are discretized on suitable, evenly spaced
momentum grids of usually around 100 points. The grids
are chosen differently for each diagram such that peaked or

discontinuous structures like the onset jumps in the
imaginary parts are ideally resolved. The spectral integra-
tions are performed numerically in Mathematica with
standard global adaptive integration strategies using a
relative precision goal of 10−3. All diagrams are interpo-
lated separately in real and imaginary parts in order to treat
the sharp onset of the imaginary parts properly. All
interpolations are performed using B-splines up to order
2 as all interpolants are real due to the split of real and
imaginary parts. The spectral function is then computed
from the interpolated diagrams.
For a given set of parameters, convergence was usually

reached within less than ten iterations. Figure 15 demon-
strates convergent behavior. We estimate the relative
precision of our routine to be ≥10−4. Based on that, all
mass poles shown in the right panel of Fig. 15 left of the
convergence boundary are indistinguishable. Normalizing
the scattering onsets of all spectral functions in the left
panel to be identical, the continuous tail also converges
pointwise beyond the convergence boundary, based on
above precision estimate.

APPENDIX C: ANALYTIC EXPRESSIONS OF
THE DIAGRAMS

Analytic expressions for the integrands in (25) before
and after analytic continuation.

Polarization:

Ipolðp; λ1; λ2Þ ¼
1

4πp
arctan

�
p

λ1 þ λ2

�
;

Ipolðω; λ1; λ2Þ ¼
1

4πω

�
artanh

�
ω

λ1 þ λ2

�
þ i arg

�
1 −

ω

λ1 þ λ2

��
: ðC1Þ

FIG. 15. Example of a convergent iteration of the scalar DSE with classical vertices. The curves were not rescaled by the respective
mass poles to demonstrate convergence of the iteration also for the pole mass. Instead, renormalization was done at μ ¼ 0. Units thus
given by the input parameters. The spectral functions are alternating, approaching the final orange curve (left). Twenty iterations have
been performed. The curves from iterations 10 to 19 were left out as they were graphically indistinguishable from the final curve. An
iterative behavior as displayed is taken taken to be convergent, i.e., signaling a solution to the DSE where left- and right-hand sides of the
equation coincide. The corresponding pole positions also converge very quickly (right). Left of the convergence boundary, assuming a
(relative) precision of 10−4, all points are identical.
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Sunset:

Isunðp; λ1; λ2; λ3Þ ¼
1
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Squint:

Isquintðp; λ1; λ2; λ3; λ4Þ ¼
1
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