
 

1=N expansion for stochastic fields in de Sitter spacetime
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We propose a 1=N expansion of Starobinsky and Yokoyama’s effective stochastic approach for
light quantum fields on superhorizon scales in de Sitter spacetime. We explicitly compute the
spectrum and the eigenfunctions of the Fokker-Planck operator for a OðNÞ-symmetric theory with
quartic self-interaction at leading and next-to-leading orders in this expansion. We obtain
simple analytical expressions valid in various nonperturbative regimes in terms of the interaction
coupling constant.

DOI: 10.1103/PhysRevD.102.125015

I. INTRODUCTION

The stochastic formalism is a powerful way to access
the infrared physics of light quantum fields in slow-roll
inflationary backgrounds [1]. It provides an effective
description of the dynamics on superhorizon scales in
terms of (coupled) Langevin equations. Correlators
can be extracted from this formulation [1–4] and have
been shown to correctly capture the infrared behavior
of the full quantum field theory at leading-infrared-
logarithm accuracy [5,6]. The stochastic formalism
coexists with several alternative nonperturbative meth-
ods [7–24].
Focusing on the case of spectator fields with a standard

kinetic term1 in pure de Sitter spacetime, the relevant
stochastic dynamics possesses a late time equilibrium
state described by a stationary probability distribution
whose form is known for an arbitrary potential. This
allows one to compute a variety of one-point correlators,
often with analytic control. Higher-order correlators
exhibit nontrivial spacetime dependence, which can be
conveniently expressed in terms of a spectral decom-
position involving the eigenvalues and eigenfunctions of
the associated Fokker-Planck operator. If those can be
computed numerically [1,2,26,27], it is often of interest
to also have some analytic control, for instance, as checks
of numerical results or for comparison with direct QFT
calculations [4,6,17,19,24].

To date, only few explicit analytical results are known
concerning the spectrum of the Fokker-Planck operator,
even in the case of a simple quartic potential. Of course,
when the relevant coupling constant (see below) is small, a
systematic perturbative treatment of the eigenvalue prob-
lem is feasible. This has been implemented at the first
nontrivial orders, both in the case of a positive [2] and of a
negative [26] square mass for a single scalar field theory.
Such perturbative results, however, are not valid in the
(phenomenologically relevant) cases of essentially mass-
less fields. Nonperturbative expressions of the three lowest
eigenvalues have been obtained from the calculation of
various correlators in a 1=N expansion for a OðNÞ-
symmetric theory [3].
In the present work, we set up a proper 1=N expansion

directly at the level of the Fokker-Planck eigenvalue
equation for systems with OðNÞ symmetry. In the case
of a quartic potential, we obtain simple analytical expres-
sions of all eigenvalues and eigenfunctions, both at leading
and next-to-leading orders, which reproduce and encom-
pass the results mentioned above. These provide bench-
mark results, valid for arbitrary values of the coupling
(within the validity of the stochastic approach, i.e., for light
fields), for various quantities of physical interest, such as
correlation lengths and times, relaxation and decoherence
timescales, or various spectral indices, relevant for phe-
nomenological applications [2,27–29].
In Sec. II, we briefly review the stochastic approach for

the OðNÞ theory and its formulation in terms of an
eigenvalue problem for the associated Fokker-Planck oper-
ator. We set up the 1=N expansion of the problem and
present the solution to the eigenvalue problem at leading and
next-to-leading orders in Sec. III. We discuss our findings
together with their physical interpretation and the compari-
son with previously existing results in Sec. IV. Section V
summarizes our conclusions. The details of the next-to-
leading-order calculation are given in the Appendix A, and
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1For discussion of nonstandard kinetic terms in nonlinear σ
models, see Ref. [25].

PHYSICAL REVIEW D 102, 125015 (2020)

2470-0010=2020=102(12)=125015(9) 125015-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.125015&domain=pdf&date_stamp=2020-12-07
https://doi.org/10.1103/PhysRevD.102.125015
https://doi.org/10.1103/PhysRevD.102.125015
https://doi.org/10.1103/PhysRevD.102.125015
https://doi.org/10.1103/PhysRevD.102.125015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


we present some comparison with numerical results in
Appendix B.

II. STOCHASTIC FORMALISM AND FOKKER
PLANCK EQUATION

We consider an N-component scalar field φ̂a embedded
in the expanding Poincaré patch of de Sitter spacetime in
D ¼ dþ 1 dimensions, with metric ds2 ¼ gμνdxμdxν ¼
−dt2 þ e2Htdx⃗2, in terms of the cosmological time t and
the comoving spatial coordinates x⃗. We set the Hubble scale
H ¼ 1 in the following. With standard notation, the micro-
scopic action reads,

S ¼ −
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

2
∂μφ̂a∂μφ̂a þ V̂ðφ̂aÞ

�
: ð1Þ

For light fields in units of H,2 the quantum fluctuations on
superhorizon scales can be described as those of an
effective stochastic variable driven by the subhorizon
degrees of freedom. On such scales, spatial gradients are
negligible, and one can treat the problem as a collection of
independent Hubble patches described by an appropriate
Langevin equation [1]. Absorbing unimportant numerical
factors through the redefinitions φa ¼ φ̂a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dΩDþ1=2

p
and

V ¼ V̂ΩDþ1=2, with Ωn ¼ 2πn=2=Γðn=2Þ, the latter reads,

∂tφa þ ∂aV ¼ ξa; ð2Þ

where ∂a ¼ ∂=∂φa. Here, the field φa denotes a spatially
averaged field over a Hubble patch, and the noise ξa reflects
the effect of the subhorizon (quantum) fluctuations, which
constantly feed this coarse-grained degree of freedom as a
result of the gravitational redshift. We refer the reader to
[1,5] for details on the derivation of Eq. (2). Treating the
subhorizon sector in the linear approximation and assuming
the Bunch-Davies vacuum yields a white Gaussian noise,
entirely characterized by the two-point correlator,

hξaðtÞξbðt0Þi ¼ δabδðt − t0Þ: ð3Þ

Following standard procedures [30], this stochastic dynam-
ics is equivalently formulated in terms of the following
Fokker-Planck equation for the field probability distribu-
tion function (PDF) P≡ Pðφa; tÞ,

∂tP ¼ ∂a

�
ð∂aVÞPþ 1

2
∂aP

�
; ð4Þ

which can, itself, be reduced to an eigenvalue problem, aswe
now recall for the case of a potential with OðNÞ symmetry.

First, introduce the reduced PDF pðφa; tÞ, defined as
Pðφa; tÞ ¼ e−VðφaÞpðφa; tÞ, in terms of which Eq. (4) takes
the form of the Schrödinger-like equation,

∂tp ¼ 1

2
Δφp −Wp; ð5Þ

where Δφ ¼ ∂a∂a, and

W ¼ 1

2
½ð∂aVÞ2 − ΔφV�: ð6Þ

For a OðNÞ-symmetric potential, it is convenient to use
spherical coordinates in field space and to decompose the
angular dependence onto generalized spherical harmonics
YliðθiÞ, where θi¼1;…;N−1 denote the N − 1 angular vari-
ables in field space, and the li are integers such that
jl1j ≤ l2 ≤ … ≤ lN−1. These harmonics diagonalize the
angular part of the operator Δφ ¼ ∂2

ρ þ ðN − 1Þ∂ρ=ρþ
ΔSN−1=ρ2 as

ΔSN−1YliðθiÞ ¼ −lðlþ N − 2ÞYliðθiÞ; ð7Þ

where we have noted l ¼ lN−1 and ρ ¼
ffiffiffiffiffi
φ2

p
. For the

purpose of the 1=N expansion below, it is convenient
to introduce the scaled radial variable and potentials
x ¼ ρ=

ffiffiffiffi
N

p
, v ¼ V=N, and w ¼ W=N. We have

w ¼ 1

2N

�
Nðv0Þ2 − v00 − ðN − 1Þ v

0

x

�
; ð8Þ

where the prime denotes a derivative with respect
to x. Seeking solutions to Eq. (5) of the form pðφa; tÞ ¼
RðxÞYliðθiÞe−Λt yields the eigenvalue problem

−
R00

2N
−
N − 1

2Nx
R0 þ

�
lðlþ N − 2Þ

2Nx2
þ Nw

�
R ¼ ΛR: ð9Þ

III. THE 1=N EXPANSION

A. Gaussian guidance

To set up an appropriate 1=N expansion, we first need to
properly control the limit N → ∞ of the theory. This
requires one to understand how the various quantities in
Eq. (9) scale with N at large N. To this aim, it is instructive
to consider the exactly solvable case of a purely quadratic
potential vðxÞ ¼ m2x2=2, or, equivalently,

wðxÞ ¼ −
m2

2
þm4

2
x2: ð10Þ

In that case, Eq. (9) is nothing but the radial Schrödinger
equation for a symmetric N-dimensional harmonic oscil-
lator with unit mass and pulsation ω ¼ m2 and whose

2More precisely, this holds in the regime where the curvature
of the potential in field space is small in units of the spacetime
curvature.
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energy levels are shifted by −m2=2. The spectrum is
degenerate in the “quantum number” l and labeled by a
nonnegative integer n,

Λn;l ¼ nm2; ð11Þ

and the eigenfunctions are easily obtained in Cartesian
coordinates (in field space) as products of Hermite poly-
nomials. In radial coordinates, they can be written as finite
polynomials,

Rn;lðxÞ ¼ e−Nm2x2=2rn;lðxÞ; ð12Þ

where n − l ¼ 2k is bound to be a nonnegative even
integer, and

rn;lðxÞ ¼ xl
Xn−l2
q¼0

aqx2q ð13Þ

is a finite polynomial in x whose coefficients aq are
determined by the recursion relation,

ðN þ 2lþ 2qÞðqþ 1Þaqþ1 ¼ −2Nm2ðk − qÞaq: ð14Þ

The latter and, hence, the polynomial in Eq. (13) has a
well-defined limit when N → ∞ at fixed n and l. In this
limit, Eq. (14) becomes

ðqþ 1Þaqþ1 ¼ −2m2ðk − qÞaq; ð15Þ

which is solved as aq¼a0C
q
kð−2m2Þq, with Cq

k the bino-
mial coefficient, yielding the leading-order radial eigen-
functions, up to a normalization constant,

rn;lðxÞ ¼ a0xlð1 − 2m2x2Þn−l2 : ð16Þ

A few comments are in order here. First, the eigenvalues
[Eq. (11)] do not scale with N. Second, the appropriate
radial variable to work with in order to obtain a nontrivial
large-N limit is the scaled variable x. Finally, taking the
limitN → ∞ directly at the level of the eigenvalue equation
[Eq. (9)] yields the resultR ¼ 0which, although consistent
with the naive large-N limit of Eq. (12) at fixed x, is clearly
too harsh. To avoid this caveat, it thus appears important to
factor out the exponential factor in (12). We now apply
these lessons to the case of a more general potential.

B. Interacting case

Following the previous discussion, we introduce the
reduced radial function R ¼ e−Nvr, with v the relevant
potential. The eigenvalue equation [Eq. (9)] becomes

−
r00

2N
−
�
N − 1

2Nx
− v0

�
r0 þ lðlþ N − 2Þ

2Nx2
r ¼ Λr; ð17Þ

which possesses a well-defined large-N limit. Setting
N → ∞, we get the following first-order equation,

ðln rÞ0 ¼ l − 2x2Λ
xð1 − 2xv0Þ : ð18Þ

This can be easily integrated for polynomial potentials in
terms of the roots of ð1 − 2xv0Þ. We will focus on the case
of a quartic potential

vðxÞ ¼ m2

2
x2 þ λ

4
x4; ð19Þ

which provides simple analytical formulas. Using the
identity,

1 − 2xv0 ¼ ð1 − 2m2þx2Þð1þ 2m2
−x2Þ; ð20Þ

where

m2
� ¼ �m2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

4
þ λ

2

r
; ð21Þ

the right-hand side of Eq. (18) can be decomposed in
simple fractions as

ðln rÞ0 ¼ l
x
−

4αþm2þx
1 − 2m2þx2

þ 4α−m2
−x

1þ 2m2
−x2

; ð22Þ

with

α� ¼ �Λ − lm2
�

2ðm2þ þm2
−Þ

: ð23Þ

Integrating Eq. (22) is now elementary and yields the
leading-order radial function

rðxÞ ¼ a0xlð1 − 2m2þx2Þαþð1þ 2m2
−x2Þα− : ð24Þ

The obtained eigenfunctions lead to normalizable PDFs
thanks to the exponential factors we have extracted,
P ∝ e−VR ∝ e−2Vr. Requiring the solutions to be regular
for all x selects a discrete subset, as expected from the
analogous quantum mechanical problem. Using the fact
thatm2

� ≥ 0, we see that regularity imposes αþ ¼ k ∈ N. In
turn, this implies that the eigenvalues are indexed by the
non-negative integers n and l, such that n − l ¼ 2k (so
that l ≤ n) and are given by

Λn;l ¼ nm2þ þ ðn − lÞm2
−: ð25Þ

The corresponding eigenfunctions thus read,

rn;lðxÞ ¼ a0xlð1 − 2m2þx2Þn−l2 ð1þ 2m2
−x2Þ−n

2: ð26Þ
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Notice that, as expected, the lowest eigenstate of the system
has a vanishing eigenvalue, Λ0;0 ¼ 0. This is, in fact,
guaranteed by the symmetries of the Fokker-Planck oper-
ator and simply corresponds to existence of a late-time,
equilibrium state of the system, with PDF P ∝ e−2V.
Equations (25) and (26) completely solve the eigenvalue

problem in the large-N limit and provide the leading order
of a systematic 1=N expansion. As an illustration, we
explicitly compute the next-to-leading order corrections in
Appendix A. We report here the results for the eigenvalues,

Λn;l¼nm2þþðn−lÞm2
−

þ λ

2Nðm4þ2λÞðan;lm
2þ−bn;lm2

−ÞþO
�

1

N2

�
; ð27Þ

where an;l ¼ nð3n − 2Þ − lðl − 2Þ, and bn;l ¼ al−n;l.

IV. DISCUSSION

As already mentioned, all physical information in the
stochastic approach can be expressed in terms of the
eigenvalues and eigenfunctions. The results of the previous
section provide analytical expressions, nonperturbative in
the coupling constant, which allow one to discuss various
physically relevant regimes. Before doing so, let us quickly
mention that the general results of the previous section
reproduce the findings of Refs. [3,19], where the eigen-
values Λ1;1, Λ2;0, and Λ3;1 had been obtained by other
means at leading and next-to-leading—for Λ1;1—orders.
Also worth mentioning is the fact that Eqs. (25) and (26)
trivially reduce to the Gaussian results [Eqs. (11) and (16)]
when λ ¼ 0, which corresponds to m2

− ¼ 0 and m2þ ¼ m2.
We show, in Fig. 1, the evolution of the spectrum of the

theory as a function of the parameters of the potential. The
Gaussian limit is controlled by the dimensionless coupling
λ=m4. The lifting of the Gaussian degeneracy, where the

eigenvalues Λn;l are independent of l, is given by, in the
large-N limit,

Λn;l ¼ nm2 þ ð2n − lÞ λ

2m2
þOðλ2=m6Þ: ð28Þ

Form2 → 0, the perturbative treatment is invalid. However,
the nonperturbative expressions of the previous section
remain valid and give

Λn;l ≈ ð2n − lÞ
ffiffiffi
λ

2

r
: ð29Þ

The square mass m2
dyn ¼

ffiffiffiffiffiffiffi
λ=2

p
is dynamically generated

by the self-interactions and is of gravitational origin.
It is the so-called dynamical mass, [1,8–11], which quan-
tifies the local field fluctuation hφ2i ¼ 1=ð2m2

dynÞ. We see
that the spectrum [Eq. (29)] consists in multiples of this
square mass and is thus analog to that of a Gaussian
potential with pulsation m2

dyn (although the degeneracies of
the eigenvalues are different from the Gaussian case).
Finally, another interesting regime is that of a double-

well potential with m2 < 0, which is also strongly non-
perturbative due to the flat (Goldstone) directions in the
potential. We find that the deep-well limit λ=m4 ≪ 1

mirrors the near-Gaussian case in that m2þ → 0 and
m2

− → jm2j. In this regime,

Λn;l ¼ ðn − lÞjm2j þOðλ=m2Þ: ð30Þ

The eigenvalues now only depend on the even integer n − l
and are thus multiples of 2jm2j. This is a simple conse-
quence of the fact that in the deep-well regime, the lowest
excitations are those of the approximately Gaussian well of
pulsation 2jm2j near the nontrivial minimum. The increased
(infinite) degeneracy of each level as compared to the free-
field case reflects the presence of flat directions in the
potential. In particular, there are infinitely many states with
almost zero eigenvalue Λn;n ≈ nλ=ð2jm2jÞ ≪ jm2j ≪ 1,
which results in large correlation times and lengths for
operators in arbitrary nontrivial (vector, tensor; i.e., l ≠ 0)
representation of the symmetry group. The scalar (l ¼ 0)
sector is particular in that the only contribution it receives
from this light multiplet is the ground state level Λ0;0 ¼ 0,
which corresponds to the equilibrium PDF and describes
the disconnected piece of correlators. The nontrivial time
dependence of correlators of scalar operators is thus
entirely dictated by the higher levels Λ2n;0 ≈ 2njm2j, with
n > 0, corresponding to the heavy radial directions in the
potential, with square mass 2jm2j, and thus by small
correlation times and lengths relative to the l ≠ 0 sectors.
We also show, in Fig. 2, the eigenfunctions Rn;l corres-

ponding to some of the lowest eigenstates in the case
m2 ¼ 0. We compare the leading- and next-to-leading-order

FIG. 1. The leading-order eigenvalues Λn;l as functions of m2

at fixed coupling λ ¼ 1. We show three groups corresponding to
(from bottom to top on the axis m2 ¼ 0) n ¼ l, n ¼ lþ 2, and
n ¼ lþ 4, with l ¼ 0, 1, 2, 3 for each group.
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results (see Appendix B) with N ¼ 2 in order to maximize
the difference. The explicit expression of the eigenfunctions
at next-to-leading order is given in Appendix A.
We end this section with some comments concerning the

applicability of the present results to arbitrary values of N.
It is often the case that the large-N expansion provides a
good—qualitative if not quantitative—guide down to small
values of N, in particular, in the case m2 ≥ 0. The case
N ¼ 1 has been studied in great detail in the literature
[1,2,26], but only very few results exist for N ≥ 2 [27],
to which we compare our findings in the Appendix. In
Fig. 3, we show the result of numerically computing the
lowest eigenvalue Λ1;1 for various N in the case m2 ¼ 0,
and we compare with the results of the 1=N expansion.

The leading-order result gives a good qualitative descrip-
tion down to rather low values of N, and the first 1=N
correction improves the agreement to a quantitative level.
We refer the reader to Appendix B for more details and
more comparisons.
Double-well potentials, with m2 < 0, need to be dis-

cussed separately. First, the case N ¼ 1 is qualitatively
different because the symmetry at work is discrete. In
particular, there are no flat directions in the potential, and
the relevant physics is governed by tunneling effects, not
Goldstone modes. Another aspect that plays an important
role for small values of N is the fact that the relevant radial
potential for the present eigenvalue problem is not directly
V, but ratherW; see Eq. (5). Indeed, to reformulate the radial
eigenvalue Eq. (9) in terms of a standard one-dimensional
problem with an effective potentialWeff , one eliminates the
single derivative term ∝ R0 by means of the redefinition
ψðxÞ ¼ x

N−1
2 RðxÞ. This yields, for arbitrary N,

−
1

2N
ψ 00 þWeffψ ¼ Λψ ; ð31Þ

where

WeffðxÞ ¼
ðN þ 2l − 1ÞðN þ 2l − 3Þ

8Nx2
þWðxÞ: ð32Þ

Equation (31) is the standard form of the one-dimensional
Schrödinger equation with potential Weff , except for the
factor N in the first term, which can be absorbed in a
rescaling of x. As Markkanen and Rajantie [26] pointed out
in the case N ¼ 1 (where l ¼ 0, 1 and thus Weff ¼ W), in
the deep double-well limit, W, in fact, exhibits a three-well
structure as a function ofφwith, in addition to the symmetric
wells at φ ≠ 0, a third well around the origin φ ¼ 0.
The resulting spectrum is thus, up to exponentially small
splittings due to tunneling effects, a superposition of the
Gaussian spectra from the wells at x ¼ 0 and x ≠ 0, with
pulsations jm2j and 2jm2j, respectively, with the bottom of
the central well being upshifted by 3jm2j=2 relative to that of
the external wells.
The central well remains for arbitrary N > 1, and the

potential [Eq. (32)] receives additional centrifugal and
geometrical contributions ∝ 1=x2. Because of these, the
minimum of the central well is slightly shifted away from
x ¼ 0 (for N ≥ 3). For increasing N, the potential rapidly
approaches the asymptotic form

WeffðxÞ
N

¼ 1

8x2
þ 1

2

�
ðv0Þ2 − v0

x

�
þO

�
1

N

�
: ð33Þ

For the quartic potential [Eq. (19)], the position of the
central and external wells in the radial direction are given
by, respectively, in the deep-well limit λ=m4 ≪ 1, x2− ¼
1=ð2jm2jÞ and x2þ ¼ jm2j=λ, and the corresponding values
of the potential areWeffðx−Þ¼3Njm2j=4 andWeffðxþÞ¼ 0.

FIG. 2. The leading-order (lines) and next-to-leading-order
(dashed) eigenfunctions Rn;lðxÞ for some of the lowest levels
in the case m2 ¼ 0 and λ ¼ 1. We take N ¼ 2 in this figure to
amplify the difference between the two curves in each case. Here,
the normalization are chosen such that either the function or its
first nonzero derivative at x ¼ 0 is fixed to 1. In practice, this
means that a0 ¼ 1, and the function CðxÞ in Appendix A is
chosen such that Cð0Þ ¼ 0.

FIG. 3. The lowest nonzero eigenvalue Λ1;1 for the massless
case m2 ¼ 0 as a function of N. The dots are the exact values
obtained numerically, and the curves are the leading-order (LO)
and next-to-leading-order (NLO) approximations in the 1=N
expansion.
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We conclude that the excitations of the central well are
rapidly lifted relative to that of the external well for
increasing N and hence, decouple in the large-N limit.
We show, in Fig. 4, the effective potential [Eq. (32)] together
with some of the large-N wave functions Rn;l ¼ e−Nvrn;l,
with rn;l given by Eq. (26).

V. CONCLUSIONS

We have proposed a systematic 1=N-expansion of the
stochastic approach for quantum fields in de Sitter space-
time, which we have applied to OðNÞ-symmetric models.
In its Fokker-Planck formulation, the stochastic approach
amounts to solving an equivalent quantum mechanical
eigenvalue problem for a single degree of freedom in N
dimensions. Various large-N limits of the Schrödinger
equation have been considered before in the literature
[31–33] but, to our knowledge, not the one we have
proposed here. An important difference in the present case
is that the potential [Eq. (6)] appears in place of the original
potential V in the analog quantum mechanical problem.
Although this can, in principle, be dealt with using the
approach of Ref. [33], which applies to arbitrary poten-
tials,3 the fact that W contains terms with different powers
of N, see Eq. (8), leads to nontrivial mixings between the
orders of the 1=N expansion proposed in that reference. In

that respect, the present approach is more efficient and
better suited to the Langevin/Fokker-Planck problem.
We have performed explicit calculations in the case of a

quartic potential, for which we have obtained simple
analytical expressions of the eigenvalues and eigenfunctions
of the Fokker-Planck operator at leading and next-to-leading
orders. These reproduce and generalize our previous partial
results in Ref. [3], where a small subset of eigenvalues could
be extracted from the calculation of various correlators in the
large-N expansion. The eigenvalues and eigenfunctions
obtained here can be used to compute a variety of correlators
as well as various time and length scales relevant for both
phenomenological and fundamental questions, such as
spectral indices, relaxation, and decoherence times, etc.
[28,29,34,35]. The expressions obtained here are nonper-
turbative in the relevant coupling constant and are thus
useful to analyze the various regimes where a perturbative
expansion is unavailable, namely, the cases of light inter-
acting fields, m4=H4 ≪ λ, and of potentials with m2 < 0.
Of course, the relevant eigenvalue problem can be

exactly solved for a wide variety of potentials by numerical
means. First results for multifield systems with continuous
symmetries have been presented in Ref. [27] and in the
present work for massless fields with a purely quartic
potential. A detailed investigation of more general poten-
tials for various values of N—in the spirit of Refs. [2,26]
for the case N ¼ 1—would be of great interest.
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APPENDIX A: COMPUTATION OF THE
EIGENVALUES AND EIGENSTATES
AT NEXT-TO-LEADING ORDER

We start by inserting the 1=N expansion of the eigen-
functions and eigenvalues,

r ¼ r0 þ
r1
N

þO
�

1

N2

�
; ðA1Þ

Λ ¼ Λ0 þ
Λ1

N
þO

�
1

N2

�
; ðA2Þ

in Eq. (9). The leading-order equation is given by
Eq. (18) and was solved in Sec. III. The leading-order
eigenfunctions and eigenvalues depend on two quantum
numbers n and l and are given in Eqs. (25) and (26). To
keep the formulas simple, we will not write explicitly
the dependence in the quantum numbers in the following.
We define

FIG. 4. Rescaled effective potential WeffðxÞ=N, with m2 ¼ −1,
λ ¼ 0.01, and N ¼ 10, together with the leading-order eigen-
functions Rn;lðxÞ for the first few values of n and l ¼ 0.
Although another local minimum appear at low x, it is lifted
by a factor N and thus gives subleading eigenvalues. The
normalization is arbitrary, and the eigenfunctions have been
upshifted by their respective eigenvalues.

3We have checked explicitly that the leading- and next-to-
leading-order eigenvalues presented here are indeed reproduced
using that approach in the case m2 ¼ 0. As for the other works
referred to here, Ref. [31] considers the Schrödinger equation
[Eq. (31)] with a quartic potential where, in the present case, the
relevant potential W is at least sextic. If Ref. [32] investigates
particular exact solutions for sextic potentials, the associated
solvability condition, which corresponds here to the case where
the reduced radial function [Eq. (25)] is polynomial, is only met
for the ground state n ¼ l ¼ 0.
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g ¼ l − 2x2Λ0

xð1 − 2xv0Þ : ðA3Þ

The next-to-leading-order equation reads,

−
�
1

2x
− v0

�
r10 þ

�
l
2x2

− Λn;l
0

�
r1

¼ r000

2
−
r00

2x
−
�
lðl − 2Þ

2x2
− Λ1

�
r0: ðA4Þ

The right-hand side can be written in terms of g using the
following relations,

r00 ¼ gr0; ðA5Þ

r000 ¼ ðg0 þ g2Þr0; ðA6Þ

together with the factorization (20), and we end up with

r01 − gr1 ¼ hr0; ðA7Þ

where

h ¼ xgð1 − xgÞ − x2g0 þ lðl − 2Þ − 2x2Λ1

xð1 − 2xv0Þ : ðA8Þ

Using the method of variation of constants, we take the
following ansatz, r1ðxÞ ¼ CðxÞr0ðxÞ, into Eq. (A7), which
yields the equation,

C0 ¼ h: ðA9Þ

For the quartic potential (19), the function h is a
polynomial fraction, which can, again, be decomposed
into partial fractions. Introducing the notations

p� ¼ 1 ∓ 2m2
�x

2; ðA10Þ

with the definition [Eq. (21)], the functions r0 and g can be
expressed as

r0 ¼ a0xlp
αþþ pαþ− ; ðA11Þ

and

g ¼ l
x
þ αþ

p0þ
pþ

þ α−
p0
−

p−
; ðA12Þ

with αþ ¼ n−l
2

and α− ¼ − n
2
. Note also that

1 − 2xv0 ¼ pþp−: ðA13Þ

We obtain, after some calculations,

h ¼
X3
k¼1

�
αk

p0þ
pkþ

þ βk
p0
−

pk
−

�
; ðA14Þ

with the coefficients

α1 ¼
Λ1

2M2
−
m2þm2

−ðan;lm2þ − bn;lm2
−Þ

2M6
; ðA15Þ

α2 ¼ ðn − lÞm2þ
2ðn − lÞm2

− − ðnþ l − 2Þm2þ
2M4

; ðA16Þ

α3 ¼ ðn − lÞðn − l − 2Þ m2þ
2M2

; ðA17Þ

and

β1 ¼ −α1; ðA18Þ

β2 ¼ nm2
−
2nm2þ − ðn − 2lþ 2Þm2

−

2M4
; ðA19Þ

β3 ¼ nðnþ 2Þ m2
−

2M2
; ðA20Þ

where we defined M2 ¼ m2þ þm2
−, and

an;l ¼ nð3n − 2Þ − lðl − 2Þ; ðA21Þ

bn;l ¼ ðn − lÞð3n − 3lþ 2Þ − lðl − 2Þ: ðA22Þ

Note that bn;l ¼ al−n;l. We verify explicitly the þ ↔ −
symmetry, obvious from Eqs. (A12) and (A13). In par-
ticular, we check that the coefficients αk ↔ βk under the
exchange m2þ ↔ −m2

− and n − l ↔ −n.
With the decomposition (A14), Eq. (A9) is readily

integrated as

C ¼ α1 log
pþ
p−

−
α2
pþ

−
α3
2p2þ

−
β2
p−

−
β3
2p2

−
þ a1; ðA23Þ

with a1 a free integration constant to be fixed, e.g., by a
normalization condition at next-to-leading order. As before,
at leading order, possible singularities are related to the zero
of the polynomial pþ. Remembering that the solution we
seek is r1 ¼ Cr0, we see that the last two terms in the first
line of Eq. (A23) contribute as α2p

αþ−1þ and α3p
αþ−2þ and

are thus potentially singular for n − l ¼ 0 and n − l ¼ 0,
2, respectively. This singularities are, in fact, absent thanks
to the fact that the coefficients α2 and α3 vanish for these
values of n − l. The only possible singular behavior comes
from the term lnpþ, and regularity thus imposes α1 ¼ 0.
This fixes Λ1 as

Λ1 ¼
m2þm2

−

M4
ðan;lm2þ − bn;lm2

−Þ: ðA24Þ
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The expression [Eq. (27)] is obtained using the identities
M2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4þ2λ

p
and m2þm2

− ¼ λ=2. Finally, the correspond-
ing eigenfunctions read,

rn;lðxÞ ¼
�
1þ Cn;lðxÞ

N
þO

�
1

N2

��
rn;l0 ðxÞ: ðA25Þ

The above expressions are valid for all values of the
parameters m2 and λ. To end this section, we present the
explicit formulas for the case m2 ¼ 0, where m2þ ¼ m2

− ¼ffiffiffiffiffiffiffi
λ=2

p
. We have

Λn;lffiffiffi
λ

p ¼ 2n − lffiffiffi
2

p
�
1þ 3l − 2

4N
þO

�
1

N2

��
; ðA26Þ

and the various coefficients in the function CðxÞ read,

α2 ¼
ðn − lÞðn − 3lþ 2Þ

8
; ðA27Þ

α3 ¼
ðn − lÞðn − l − 2Þ

4
; ðA28Þ

β2 ¼
nðnþ 2l − 2Þ

8
; ðA29Þ

β3 ¼
nðnþ 2Þ

4
: ðA30Þ

As an illustration, the corresponding eigenfunctions are
plotted against the leading-order ones in Fig. 2 for N ¼ 2.
In practice, we observe that the next-to-leading-order
eigenfunctions provide a pretty good approximation of
the numerical results down to N ¼ 2 for the eigenstates we
have computed numerically here, namely, R1;1 and R2;0.

APPENDIX B: COMPARISON WITH
NUMERICAL RESULTS

In order to test the validity and convergence of the 1=N
expansion in a simple—but nontrivial—case, we solve
numerically the eigenvalue equation (17) for a purely quartic
potential (19), with m2 ¼ 0. We first compute the lowest
nonzero eigenvalue Λ1;1 as a function of N and compare
with the leading and next-to-leading-order predictions
[Eq. (A26)]. This is presented in Fig. 3. The first observation
is that the leading-order result gives a reasonable estimate of
the exact result down to rather low values ofN. Furthermore,
the next-to-leading-order approximation neatly improves
the matter and gives a fairly accurate description of the exact
results down to N ¼ 1, where the relative error is 8%. From
Eq. (A26), we also observe that the vector (l ¼ 1) sector is
the one with the smallest 1=N correction.
To test further the present expansion scheme, we do the

same analysis for the lowest nonzero eigenvalue in the
scalar (l ¼ 0) sector, namely Λ2;0. This is presented in

Fig. 5. The leading-order result gives, again, a good
estimate of the exact result down to low values of N. As
before, the next-to-leading-order approximation quantita-
tively improves the description; however, for not too small
values of N, it becomes worse. The relative error reaches
8% for N ¼ 4 and increases up to 25% for N ¼ 1. We have
computed the 1=N2 correction in that case, which reads,

Λ2k;0ffiffiffi
λ

p ¼ 4kffiffiffi
2

p
�
1 −

1

2N
þ 1þ 10k2

8N2
þO

�
1

N3

��
; ðB1Þ

and is also shown in Fig. 5. We see that it greatly improves
the description at small N, with a relative error of 10%
for N ¼ 1.
We end this section by comparing, when possible, our

numerical results to existing ones in the literature. The case
N ¼ 1 has been studied in great detail in Refs. [1,2,26] and,
recently, Adshead et al. have presented first results for
continuous symmetries, with N ¼ 2, 3 in the case of a
purely quartic potential [27]. The quartic coupling λ̃ in that
reference is related to ours as λ̃ ¼ d2ΩDþ1λ=ð2NÞ, and the
authors use the quantum numbers k ¼ ðn − lÞ=2 and l to
label the eigenstates. Their definition of the eigenvalues
Λ̃k;l is related to ours as

Λ̃k;l ¼ Λ2kþl;lffiffiffi
λ

p
ffiffiffiffiffiffiffiffiffiffi
N

12π2

r
; ðB2Þ

with d ¼ 3 and Ω5 ¼ 8π2=3. This holds for N ≥ 2. In the
case N ¼ 1, there is no angular momentum in field space,
and only l ¼ 0, 1 are permitted. One has

Λ̃2k ¼
Λ2k;0ffiffiffi

λ
p

ffiffiffiffiffiffiffiffiffiffi
1

12π2

r
; ðB3Þ

Λ̃2kþ1 ¼
Λ2kþ1;1ffiffiffi

λ
p

ffiffiffiffiffiffiffiffiffiffi
1

12π2

r
: ðB4Þ

FIG. 5. Same as Fig. 3 for the lowest nonzero eigenvalue in the
scalar sector, Λ2;0. Here, we also show the next-to-next-to-
leading-order result.
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For N ¼ 1, we find Λ1;1=
ffiffiffi
λ

p ¼ 0.9693 and Λ2;0=
ffiffiffi
λ

p ¼
3.1532. This translates into Λ̃1 ¼ 0.0891 and Λ̃2 ¼
0.2897, which agrees with the known results [1,2,26,
27]. For cases with continuous symmetries, we find

Λ2;0=
ffiffiffi
λ

p ¼ 2.8133 for N ¼ 2 and Λ2;0=
ffiffiffi
λ

p ¼ 2.7296
for N ¼ 3, which give Λ̃N¼2

1;0 ¼ 0.3656 and Λ̃N¼3
1;0 ¼

0.4344, respectively, in agreement with the results
of Ref. [27].
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