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In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell
states in four-dimensional unitary, local, and Poincaré covariant quantum field theories. We demonstrate
that these matrix elements can be parametrized in terms of covariant multipoles of the Lorentz generators,
and that this gives rise to a form factor decomposition in which the helicity dependence of the states is
factorized. Using this decomposition we go on to explore some of the consequences for conformal field
theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to
illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the
constraints imposed by the existence of massless particles, showing in particular that massless free theories
are necessarily conformal.
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I. INTRODUCTION

As with any quantum field theories (QFTs), the corre-
lation functions in conformal field theories (CFTs) com-
pletely encode the dynamics of these theories. A
characteristic property of CFTs is that the conformal
symmetry significantly constrains the form of the correla-
tion functions, reducing the classification of these objects to
the determination of a series of constant parameters.
Although the analysis of CFTs has historically focused
on the Euclidean version of these theories, in part because
of their relative analytic simplicity, in recent years there has
been a surge in interest in Minkowskian CFTs, particularly
in the context of the analytic bootstrap program [1]. Due to
the larger number of space-time symmetries, the energy-
momentum tensor (EMT) plays a central role in many of
the analytic constraints imposed on CFTs. An important
example are the three-point functions involving the EMT,
which have been shown in Euclidean space [2–5], and more
recently for certain cases in Minkowski space [6], to be
fully constrained by the conserved conformal currents, and
their corresponding Ward identities.
The focus of this work will be the Minkowski matrix

elements of the EMT for massless on-shell states.

In particular, we will study these matrix elements in
QFTs that are unitary, local, and Poincaré covariant.
By local we mean that all of the fields ΦðxÞ in the theory,
including the EMT, either commute or anticommute
with each other for spacelike separations. Poincaré covari-
ance implies that the components of these fields ΦkðxÞ
transform as:

Uða; αÞΦkðxÞU−1ða; αÞ ¼
X
l

DðΦÞ
kl ðα−1ÞΦlðΛðαÞxþ aÞ;

ð1Þ

under (proper orthochronous) Poincaré transformations
ða; αÞ, where DðΦÞ is the corresponding Wigner matrix
that defines the representation of the field, and ΛðαÞ is the
four-vector representation of α [7]. Although the overall
structural properties of EMT matrix elements have been
understood for many years, at least in the case of massive
states [8,9], the explicit spin dependence of these objects
has only been studied relatively recently. By using the
conservation of the EMT, together with its various sym-
metry properties, one can decompose these matrix elements
into a series of form factors with independent covariant
coefficients.1 We refer to these throughout as the gravita-
tional form factors (GFFs). As the spin of the states
increases, these objects become increasingly more compli-
cated due to the larger number of potential covariant
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1By covariant we mean that the components of the coefficients
transform in the same manner as the fields [Eq. (1)] under Lorentz
transformations.
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structures. This explains in part why many studies2 have
focused on calculations for states with lower values of spin,
generally 0, 1

2
, or 1. Once the potential covariant coefficients

are known, constraining the corresponding GFFs is there-
fore essential for understanding the analytic structure of the
matrix elements. Since the states appearing in the on-shell
matrix elements are definite momentum eigenstates, and
hence not normalizable, this has led to incorrect physical
conclusions in the literature, as detailed in [18]. This non-
normalizability stems from the fact that the matrix elements
are distributions, not functions. It was first shown for the
massive spin-1

2
case that by taking this property into account

in the derivation of the GFF constraints, these apparent
ambiguities no longer arise [19]. This approach was later
generalized to massive states with arbitrary values of
spin [20], as well general spin-state definitions, including
massless states [21].
Most studies of the CFT three-point functions involving

the EMT have focused on cases where the other fields have
lower values of absolute helicity jhj, since increasing jhj
quickly leads to complicated expressions. Because these
three-point functions are directly related to the massless on-
shell EMT matrix elements, via a projection of the Lorentz
components of the fields, it turns out that this increase in
complexity is simply a different realization of the fact that
the number of independent covariant structures in the form
factor expansion increases with jhj. Now while it is clear
that the total number of these independent structures must
be finite for different values of jhj, establishing what these
numbers are is non-trivial. In a recent work [22], this
problem was solved for the EMT matrix elements of
massive states with arbitrary spin s. The essential step in
this analysis was the realization that all covariant structures
that can appear in the matrix elements can be generated by
contracting the covariant multipoles3 fMng of the Lorentz
generators Sμν with the external momenta p0 and p, and the
metric. The advantage of using this multipole basis is that
these objects explicitly truncate for each value of s. In
particular, given states of spin s, one has the constraint:

MN ¼ 0; for N > 2s; ð2Þ

where fMNg are constructed from Lorentz generators that
transform under the same representation as the fields
creating the states. Not only does this constraint prove
that only a finite number of independent covariant struc-
tures enter into the EMT matrix elements, it also provides a
basis from which these structures can be systematically

characterized [22]. Since the covariant multipoles are
fundamental objects that exist independently of the specific
properties of the states, this representation can also equally
be applied to the matrix elements of massless states [21]. As
will be outlined in Sec. II, this has the important implication
that the helicity dependence of these matrix elements
factorizes, or equivalently, that the dependence on the
Lorentz representation of EMT three-point functions can
be written in a manifest way.
Before concluding this section we will first discuss a

result which plays a central role throughout this work, the
Weinberg-Witten Theorem [23]. This theorem puts con-
straints on the potential structure of matrix elements
involving massless on-shell states, in particular implying
that:

hp0; h0jTμνð0Þjp; hi ¼ 0; for jh0 þ hj ≠ 0; 1; 2

and ðp0 − pÞ2 < 0: ð3Þ

In [23] it is further stated that this constraint can be
extended by continuity to the point p0 ¼ p. It turns out
though that potential discontinuities can in fact occur when
p0 ¼ p due to the distributional nature of the matrix
elements [24]. However, by making the additional
assumption that the corresponding QFT is a local theory,
this argument can be made consistent [25]. Since the EMT
operator does not modify the value of jh0j or jhj, the
constraints from Eq. (3) subsequently lead to the important
conclusion:

Massless particles of helicity h, where jhj > 1, cannot
possess charges induced by a local and Poincaré
covariant energy-momentum tensor.

As emphasized in [25], this does not mean that consistent
Poincaré or conformal generators do not exist for massless
states with higher helicity, only that these generators cannot
be written in terms of integrals of a local and Poincaré
covariant EMT. In other words, by allowing massless
particles with jhj > 1 this necessarily requires that the
corresponding EMT is either nonlocal, non-covariant, or
both. This imposes significant constraints on the structure
of massless EMT matrix elements, as will be discussed
in Sec. II.
The remainder of this paper is structured as follows. In

Sec. II we combine the covariant multipole approach with
constraints from the Weinberg-Witten Theorem to derive a
general form factor decomposition for the EMT matrix
elements of massless on-shell states, and in Sec. III we go
on to outline some important properties of conformal fields
and currents which we will need for the calculations in
subsequent sections. Using the results from Sec. II and III,
in Sec. IV we derive the GFF constraints imposed by
conformal symmetry and the trace properties of the
EMT, and apply these findings to specific CFT examples.

2See [10,11] and [12–17] for some recent examples of
gravitational and hadronic studies.

3For example, M0 ¼ 1, Mμν
1 ¼ Sμν, and Mμν;ρσ

2 ¼
1
2
fSμν; Sρσg − 1

12
ðgμρgνσ − gμσgνρÞS · Sþ 1

4!
ϵμνρσϵαβγδSαβSγδ de-

fine the monopole, dipole, and quadrapole, respectively. See
[22] for an in-depth discussion of these objects.
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In Sec. V we combine the results derived throughout the
paper to establish a general connection for free theories
between the existence of massless particles and the pres-
ence of conformal symmetry, and finally in Sec. VI we
summarize our key findings.

II. GRAVITATIONAL FORM FACTORS FOR
MASSLESS STATES

For the purposes of this paper we are interested in the
EMT matrix elements for on-shell momentum eigenstates.
One can covariantly impose this on-shell restriction by
defining states with mass M:

jp; σ;Mi ¼ δðþÞ
M ðpÞjp; σi ¼ 2πθðp0Þδðp2 −M2Þjp; σi;

ð4Þ

where jp; σi is the standard non-covariant momentum
eigenstate4 with internal quantum numbers σ. The advan-
tage of using the states in Eq. (4) is that they transform
covariantly under Poincaré transformations, which signifi-
cantly simplifies on-shell matrix element calculations. In
what follows, we will restrict ourselves to massless on-shell
states. For simplicity we drop the label M ¼ 0 and denote
these states by jp; hi, where h is the helicity. Since we focus
only on unitary QFTs throughout this work, it follows from
Eq. (4) and the standard inner product for general eigen-
states5 that:

hp0; h0jp; hi ¼ ð2πÞ4δ4ðp0 − pÞδðþÞ
0 ðpÞδh0h: ð5Þ

In a previous analysis, which explored the GFF constraints
imposed by Poincaré symmetry [21], it was established
under the assumptions that the EMT is symmetric,
Hermitian, and both parity P and time-reversal T invariant,
that the EMT matrix elements for on-shell massless states
in a unitary, local, Poincaré covariant QFT have the
following general decomposition:

hp0; h0jTμνð0Þjp; hi ¼ η̄h0 ðp0Þ½p̄fμp̄νgAðq2Þ
þ ip̄fμSνgρqρGðq2Þ þ � � ��
× ηhðpÞδðþÞ

0 ðp0ÞδðþÞ
0 ðpÞ; ð6Þ

where � � � represent contributions with an explicitly
higher-order dependence on the four-momentum transfer

q ¼ p0 − p, index symmetrization is defined: afμbνg ¼
aμbν þ aνbμ, and p̄ ¼ 1

2
ðp0 þ pÞ. We refer to ηhðpÞ as

the generalized polarization tensors (GPTs), which corre-
spond to the Lorentz representation index-carrying coef-
ficients appearing in the decomposition of primary free
fields with helicity h, with normalization chosen such that:
η̄h0 ðpÞηhðpÞ ¼ δh0h. For example, since we assume P and T
invariance, the GPT in the jhj ¼ 1

2
case is proportional to the

Dirac spinor uhðpÞ. As discussed in Sec. I, one can see in
Eq. (6) that this expression is constructed by contracting
covariant multipoles, in this case the monopole and dipole,
with all possible combinations of momenta and the metric.
Due to the low number of covariant indices, it turns out that
up to linear order in q there exists only one such
combination for each multipole which is consistent with
the various symmetries of the EMT.6 As detailed in [21],
the constraints arising from Poincaré symmetry7 only affect
the GFFs with coefficients that depend at most linearly on
q, which explains why only these leading terms are
considered in Eq. (6). However, in general there are other
possible GFFs, with coefficients that potentially involve
contractions with higher multipoles. For massive states,
these GFFs were fully classified in [22] for arbitrary spin.
In the remainder of this section we will discuss the
massless case.
In general, given a massless field with Lorentz repre-

sentation ðm; nÞ, this field creates states with helicity
h ¼ n −m. For example, a left-handed Weyl spinor with
representation ð1

2
; 0Þ gives rise to h ¼ − 1

2
states. Massless

representations of the Lorentz group have significant
additional constraints imposed upon them, including the
fact that all irreducible representations can be built from
representations ðm; nÞ where either m ¼ 0, n ¼ 0, or both
[26]. In particular, it follows that massless fields which
transform covariantly under the vector representation ð1

2
; 1
2
Þ

cannot be irreducible. This can be explicitly seen by the fact
that any such field8 Vμ can always be written as the gradient
of a scalar field: Vμ ¼ ∂μϕ, since Vμ only defines states
with h ¼ 0. More generally, any massless field with
Lorentz representation ðm; nÞ, where both m and n are
non-vanishing, can be written in terms of derivatives of
irreducible fields [26]. Since massless QFTs are con-
structed from irreducible fields, or their direct sums, the
corresponding GPTs of these fields, including those in
Eq. (6), must also transform under these representations. As

4The difference between these states is that the on-shell factor
is included in the definition of jp; σ;Mi, as opposed to the
momentum integration measure. In constructing physical states
one therefore integrates jp; σ;Mi over d4p

ð2πÞ4, whereas for jp; σi the
measure itself is on shell: d4p

ð2πÞ4 δ
ðþÞ
M ðpÞ ¼ d3p

ð2πÞ32Ep
dp0δðp0 − EpÞ,

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
.

5In particular: hp0; σ0jp; σi ¼ 2p0ð2πÞ3δ3ðp0 − pÞδσ0σ .

6This characteristic is also true for massive states [20].
7Due to Poincaré symmetry one finds that: Aðq2Þδ4ðqÞ¼δ4ðqÞ,

and: Gðq2Þδ4ðqÞ ¼ δ4ðqÞ [21].
8This constraint gives rise to the well-known result that the

components of the massless photon field Aμ cannot transform
covariantly as a vector without violating the positivity of the
Hilbert space (unitarity) [27]. We will discuss this characteristic
further in Sec. IV D 3.
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we will see, this puts significant constraints on the type of
GFFs that can appear in the EMT matrix elements.
In Sec. I we introduced the Weinberg-Witten Theorem

and outlined its implications, namely that if massless
particles with jhj > 1 exist, it follows that the correspond-
ing EMT must either be non-local, non-covariant, or both.
For the EMTmatrix elements with jhj > 1, this implies that
these objects must necessarily contain a form factor with
either a nonlocal or noncovariant coefficient. However,
since we restrict ourselves in this work to unitary CFTs
which are local and Poincaré covariant, these matrix
elements must in fact vanish [25]. In other words,
Eq. (6) is only nontrivial when the states have helicity
jhj ≤ 1. Another constraint on the type of GFFs appearing
in Eq. (6) comes from the covariant multipole bound in
Eq. (2). If the GPTs are in the Lorentz representation
ðm; nÞ, it equally follows in the massless case that the
multipoles fMNgmust vanish for N > 2ðmþ nÞ. Since by
definition MN contains N products of the Lorentz gen-
erators Sμν, which transform under the same (irreducible)
representation as the GPTs: ðm; 0Þ, ð0; nÞ, or their direct
sums, the number of powers of these generators is therefore
bounded above by the helicity of the states. In particular:

The number of powers of Sμν appearing in the EMT
matrix elements for massless states of helicity h is at
most 2jhj.
Combining this with the Weinberg-Witten theorem

constraint jhj ≤ 1, one is immediately led to the conclusion
that only GFFs which have coefficients with two or fewer
powers of Sμν are permitted. Now we are in a position to
write down the full generalization of Eq. (6). If we continue
to demand that the GFFs are dimensionless, as in Eq. (6),
and also similarly assume that the EMT is symmetric,
hermitian, and both P and T invariant, the nontrivial
(jhj ≤ 1) matrix elements of the EMT for massless on-
shell states have the general form9:

hp0; h0jTμνð0Þjp; hi
¼ η̄h0 ðp0Þ½p̄fμp̄νgAðq2Þ þ ip̄fμSνgρqρGðq2Þ
þ 2ðqμqν − q2gμνÞCðq2Þ
þ SfμαSνgβqαqβTðq2Þ�ηhðpÞδðþÞ

0 ðp0ÞδðþÞ
0 ðpÞ: ð7Þ

From Eq. (7) one can see that by adopting a para-
metrization that uses the covariant multipoles as its basis,
this leads to a form factor decomposition of the EMT
matrix elements in which the helicity dependence is
factorized: only knowledge of the generator Sμν in the

Lorentz representation of the GPTs is required to
calculate the matrix elements for states of different
helicities. It is also interesting to note that by virtue
of the fact that q2 is the only massive Lorentz invariant
that can appear in massless theories, there cannot exist
form factor coefficients other than those in Eq. (7) which
are compatible with locality, while also ensuring the form
factors are dimensionless. In the remainder of this paper
we will derive some of consequences of Eq. (7).

III. CONFORMAL FIELDS AND CURRENTS

Besides Poincaré symmetry, CFTs are also invariant
under infinitesimal dilations and special conformal trans-
formations (SCTs). In the case of dilations, the dilation
operator D acts on conformal fields in the following
manner:

i½D;ΦðxÞ� ¼ ðxμ∂μ þ ΔÞΦðxÞ; ð8Þ

where Δ is the conformal dimension of the field. For SCTs,
the charge Kμ instead has the action:

i½Kμ;ΦðxÞ� ¼ ð2xμxν∂ν − x2∂μ þ 2xμΔ − 2ixνSμνÞΦðxÞ;
ð9Þ

where the Lorentz representation indices of both the
field and the Lorentz generator Sμν have been suppressed
for simplicity. It turns out that these transformations
impose significant constraints on the properties of the
fields. In particular, combining Eq. (9) with the mass-
lessness of the field implies the following important
relation [26]:

ðΔ − 1Þ∂μΦðxÞ ¼ iSμν∂νΦðxÞ: ð10Þ

For scalar fields ðSμνÞð0;0Þ ¼ 0, and hence Δ ¼ 1; for
spinor fields in the ð1

2
; 0Þ and ð0; 1

2
Þ representations one

recovers the Weyl equations when Δ ¼ 3
2
; and for the

antisymmetric tensor field the substitution of
ðSμνÞð1;0Þ⊕ð0;1Þ results in the Maxwell equations for
Δ ¼ 2. In Eq. (7) the EMT matrix element is expressed
in terms of the action of Lorentz generators on massless
GPTs. By inserting the plane-wave expansion for a
massless field into Eq. (10), one obtains a constraint
on this action:

ðΔ − 1ÞpμηhðpÞ ¼ ipνSμνηhðpÞ; ð11Þ

where the Lorentz representation indices have again been
suppressed for simplicity.
Before discussing the specific structure of the currents

associated with dilations and SCTs, it is important to first
outline the additional constraints imposed on the EMT
itself. In any QFT it is well-known that the EMT is not

9In particular, for jhj ¼ 1
2
the coefficient of Tðq2Þ is no longer

independent, and so only Aðq2Þ, Gðq2Þ and Cðq2Þ can potentially
exist, and for h ¼ 0, since ðSμνÞð0;0Þ ¼ 0, only Aðq2Þ and Cðq2Þ
remain.
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unique since one can always add a superpotential term, a
term that is separately conserved, but when integrated
reduces to a spatial divergence, and hence does not
contribute to charges. A prominent example is the pure-
spin term that symmetrizes the canonical EMT. Super-
potential terms also play a particularly important role in
CFTs,10 since the condition for a theory to be conformal is
related to whether or not there exists such a term, which
when added to the EMT, renders it traceless. In particular,
given a four-dimensional QFT with a conserved and
symmetric EMT, Tμν

ðSÞ, a necessary and sufficient condition

for this theory to be conformal is that there exists a local
operator LμνðxÞ such that [29]:

Tμ
ðSÞμðxÞ ¼ ∂α∂βLαβðxÞ: ð12Þ

If this condition holds, it follows that there exists
conserved dilation JμðSÞD and SCT currents JμðSÞKν with
the form11:

JμðSÞD ¼ xνT
μν
ðSÞ − ∂νLνμ; ð13Þ

JμðSÞKν ¼ ð2xνxα − gναx2ÞTμα
ðSÞ − 2xν∂αLαμ þ 2Lμν: ð14Þ

Under the further assumption that the CFT is unitary, one
has that: LμνðxÞ ¼ gμνLðxÞ, and hence the EMT trace
condition becomes12

Tμ
ðSÞμðxÞ ¼ ∂2LðxÞ: ð15Þ

In the general case that Eq. (12) is satisfied, this implies that
there exists superpotential terms, which when added to
Eqs. (13) and (14) transform these expressions into the
form:

JμðSTÞD ¼ xνT
μν
ðSTÞ; ð16Þ

JμðSTÞKν ¼ ð2xνxα − gναx2ÞTμα
ðSTÞ; ð17Þ

where Tμν
ðSTÞ is both symmetric and traceless. For the

remainder of this work we will refer to Tμν
ðSTÞ as the

modified EMT.13

IV. CONFORMAL EMT MATRIX ELEMENT
CONSTRAINTS

In [21,22] Poincaré covariance was used to derive
constraints on the GFFs for both massive and massless
states. In this section we derive the corresponding GFF
constraints imposed by conformal covariance, as well as
from the trace properties of the EMT itself.

A. Dilational covariance

By definition, momentum space fields have the following
action on thevacuum state: h0jΦ̃ðp0Þ ¼Ph00 ηh00 ðp0Þhp0; h00j,
which when combined with Eq. (8) implies

−i
�X

h00
ηh00 ðp0Þhp0; h00jD

�
¼ −

∂
∂p0μ

�X
h00

p0μηh00 ðp0Þhp0; h00j
�
þ Δ

X
h00

ηh00 ðp0Þhp0; h00j; ð18Þ

where we assume that dilational symmetry is unbroken, and hence: Dj0i ¼ 0. After acting with Eq. (18) on the state jp; hi
and projecting on η̄h0 ðp0Þ, one can use the orthogonality condition: η̄h0 ðp0Þηh00 ðp0Þ ¼ δh0h00 , together with the on-shell state
normalization in Eq. (5), to obtain the following expression for the matrix element of the dilation operator:

hp0; h0jDjp; hi ¼ ið2πÞ4δðþÞ
0 ðpÞ

�
−p0μη̄h0 ðp0Þ ∂ηh∂p0μ ðp0Þ − δh0hp0μ ∂

∂p0μ þ δh0hðΔ − 4Þ
�
δ4ðp0 − pÞ: ð19Þ

For deriving GFF constraints it is simpler to work with the coordinates ðp̄; qÞ. To do so, one can make use of the
distributional identity in Eq. (A1) of Appendix, from which it follows:

hp0; h0jDjp; hi ¼ −ið2πÞ4δðþÞ
0 ðp̄Þ

�
p̄μη̄h0 ðp̄Þ

∂ηh
∂p̄μ ðp̄Þ þ δh0hp̄μ ∂

∂qμ − δh0hðΔ − 1Þ
�
δ4ðqÞ: ð20Þ

10See [28] for a further discussion on the relevance of these terms in the context of CFTs.
11Further background from the early literature on this subject can be found for example in [30–32].
12See [33] and references within.
13Particularly in the CFT literature, the symmetric-traceless EMT is often referred to as the improved EMT [31].
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As in the case of the Poincaré charges [21,22], GFF constraints can be established by comparing Eq. (20) with the matrix
element ofD obtained using the form factor decomposition in Eq. (7), together with the definition of the dilational current in
Eq. (16). A rigorous expression for this matrix element is defined by:

hp0; h0jDjp; hi ¼ lim
d→0
R→∞

Z
d4xfd;RðxÞxνeiq·xhp0; h0jT0νð0Þjp; hi

¼ −ilim
d→0
R→∞

∂f̃d;RðqÞ
∂qj hp0; h0jT0jð0Þjp; hi ¼ −ið2πÞ3∂jδ

3ðqÞhp0; h0jT0jð0Þjp; hi; ð21Þ

where in order to ensure the convergence of the operatorD one integrates with a test function14 fd;RðxÞ ¼ αdðx0ÞFRðxÞ that
satisfies the conditions:

R
dx0αdðx0Þ ¼ 1, limd→0 αdðx0Þ ¼ δðx0Þ, and FRð0Þ ¼ 1, limR→∞ FRðxÞ ¼ 1, where f̃d;RðqÞ is the

Fourier transform, and ∂j indicates a derivative with respect to qj. To evaluate this expression one therefore needs to
understand how to simplify the final expression, which involves the product of a delta-derivative and a specific component
of the EMT matrix element. These products were already encountered in [20] when deriving the form factor constraints due
to Poincaré symmetry. Applying the distributional equality in Eq. (A9) of Appendix to the coefficients of the GFFs
appearing in the ðμ ¼ 0; ν ¼ jÞ component of Eq. (7), together with the masslessness condition: p̄jp̄j ¼ −p̄2

0 (for q ¼ 0),
one obtains

hp0; h0jDjp; hi ¼ −ið2πÞ4δðþÞ
0 ðp̄Þ

�
−p̄μ∂μ½η̄h0 ðp0ÞηhðpÞ�q¼0δ

4ðqÞAðq2Þ þ δh0hp̄μ∂μδ
4ðqÞAðq2Þ

− i
p̄j

p̄0
η̄h0 ðp̄ÞS0jηhðp̄Þδ4ðqÞGðq2Þ

�
: ð22Þ

After using the conformal GPT constraint in Eq. (11), together with Eq. (A6) in Appendix, the matrix elements can finally
be written

hp0; h0jDjp; hi ¼ −ið2πÞ4δðþÞ
0 ðp̄Þ

�
p̄μη̄h0 ðp̄Þ

∂ηh
∂p̄μ ðp̄Þδ4ðqÞAðq2Þ þ δh0hp̄μ∂μδ

4ðqÞAðq2Þ

− δhh0 ðΔ − 1Þδ4ðqÞGðq2Þ
�
: ð23Þ

Since Eqs. (20) and (23) are different representations
of the same matrix element, equating these expressions
immediately leads to constraints on the GFFs, in particular:

Aðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð24Þ

Aðq2Þ∂μδ
4ðqÞ ¼ ∂μδ

4ðqÞ; ð25Þ

Gðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð26Þ

which is nothing more15 than the condition:

Að0Þ ¼ Gð0Þ ¼ 1: ð27Þ

That constraints are only imposed on Aðq2Þ and Gðq2Þ
follows from the fact that the x-polynomiality order of the
conserved currents has a direct bearing on whether the
corresponding charges constrain certain GFFs. Since
explicit factors of x in the currents become q-derivatives
on the level of the charges, as in Eq. (21), it is these
derivatives that can remove powers of q in Eq. (7) and
constrain the GFFs at q ¼ 0. Due to the structure of the
dilational current [Eq. (16)], the matrix elements of D can
therefore only potentially constrain the GFFs which have
coefficients with at most one power of q. It is interesting to
note that these are precisely the constraints obtained from
imposing Poincaré symmetry alone [21,22].

B. Special conformal covariance

Now we perform an analogous procedure for SCTs.
Using Eq. (9) together with the fact that the special
conformal symmetry is unbroken, and hence: Kμj0i ¼ 0,
one ends up with the following representation for the Kμ

matrix elements:

14See [19] for an overview of these test function definitions
and their motivation.

15Although the GFFs are in general distributions of q, one can
interpret the values at q ¼ 0 using a limiting procedure [19].
Equation (25) follows trivially when Aðq2Þ is continuous at q ¼ 0
due to the q2 dependence.
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hp0; h0jKμjp; hi ¼ð2πÞ4δðþÞ
0 ðpÞ

�
2ðΔ − 4Þη̄h0 ðp0Þ ∂ηh∂p0

μ
ðp0Þδ4ðp0 − pÞ þ 2ðΔ − 4Þδh0h

∂
∂p0

μ
δ4ðp0 − pÞ

þ δh0h

�
p0μ ∂

∂p0α
∂

∂p0
α
− 2p0ν ∂

∂p0ν
∂

∂p0
μ

�
δ4ðp0 − pÞ

þ
�
2p0μη̄h0 ðp0Þ ∂ηh∂p0α ðp0Þ ∂

∂p0
α
− 2p0νη̄h0 ðp0Þ ∂ηh∂p0ν ðp0Þ ∂

∂p0
μ
− 2p0νη̄h0 ðp0Þ ∂ηh∂p0

μ
ðp0Þ ∂

∂p0ν

�
δ4ðp0 − pÞ

þ
�
p0μη̄h0 ðp0Þ ∂2ηh

∂p0α∂p0
α
ðp0Þ − 2p0νη̄h0 ðp0Þ ∂2ηh

∂p0ν∂p0
μ
ðp0Þ

�
δ4ðp0 − pÞ

− 2iη̄h0 ðp0ÞSμν ∂ηh∂p0ν ðp0Þδ4ðp0 − pÞ − 2iη̄h0 ðp0ÞSμνηhðp0Þ ∂
∂p0ν δ

4ðp0 − pÞ
�
: ð28Þ

In contrast to the D matrix elements, switching coordinates to ðp̄; qÞ in this expression is quite complicated due to the
appearance of terms that involve more than one p0 derivative. Nevertheless, one can analyze the effect of this coordinate
change on each of the nontrivial terms individually, which is summarized in Appendix. After applying Eqs. (A2)–(A5),
together with the GPT relations in Eqs. (A6)–(A8), one finally obtains:

hp0; h0jKμjp; hi ¼ ð2πÞ4δðþÞ
0 ðp̄Þδh0h

�
p̄μ ∂

∂qν
∂
∂qν − 2p̄ν ∂

∂qν
∂
∂qμ
�
δ4ðqÞ þ ð2πÞ4 p̄μ

2p̄0
δh0h

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ

þ ð2πÞ4δðþÞ
0 ðp̄Þ½−2ðΔ − 1Þ∂μ½η̄h0 ðp0ÞηhðpÞ�q¼0 þ p̄μ∂α∂α½η̄h0 ðp0ÞηhðpÞ�q¼0

− 2p̄ν∂μ∂ν½η̄h0 ðp0ÞηhðpÞ�q¼0 þ 2i∂ν½η̄h0 ðp0ÞSμνηhðpÞ�q¼0�δ4ðqÞ

þ ð2πÞ4δðþÞ
0 ðp̄Þ

�
−2p̄μ∂ν½η̄h0 ðp0ÞηhðpÞ�q¼0

∂
∂qν þ 2p̄ν∂ν½η̄h0 ðp0ÞηhðpÞ�q¼0

∂
∂qμ

þ 2p̄ν∂μ½η̄h0 ðp0ÞηhðpÞ�q¼0

∂
∂qν − 2iη̄h0 ðp̄ÞSμνηhðp̄Þ

∂
∂qν þ 2ðΔ − 1Þδh0h

∂
∂qμ
�
δ4ðqÞ: ð29Þ

Analogously to the case of dilations, one can now compare this expression to the matrix element derived from the
form factor decomposition in Eq. (7). Using the modified form for the SCT current in Eq. (17), the matrix element of Kμ

takes the form

hp0; h0jKμjp; hi ¼ lim
d→0
R→∞

Z
d4xfd;RðxÞð2xμxα − gμαx2Þeiq·xhp0; h0jT0αð0Þjp; hi

¼ ð2πÞ3½∂j∂jδ3ðqÞhp0; h0jT0μð0Þjp; hi − 2gμk∂j∂kδ3ðqÞhp0; h0jT0jð0Þjp; hi�; ð30Þ
where the inclusion of the test function fd;RðxÞ is again required in order ensure the convergence of the matrix element.
The x0-dependent terms are absent from this expression due to the definition of fd;RðxÞ. In this case, one needs to
understand the action of double delta-derivative terms on the GFF components in order to evaluate Eq. (30). This
complicated action is given by Eq. (A10) of Appendix. Applying this relation, together with Eq. (11), one finally obtains the
GFF representation

hp0; h0jKμjp; hi ¼ ð2πÞ4δðþÞ
0 ðp̄Þδh0h

�
p̄μ ∂

∂qν
∂
∂qν − 2p̄ν ∂

∂qν
∂
∂qμ
�
δ4ðqÞAðq2Þ þ ð2πÞ4 p̄μ

2p̄0
δh0h

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞAðq2Þ

þ ð2πÞ4δðþÞ
0 ðp̄Þ½−2ðΔ − 1Þ∂μ½η̄h0 ðp0ÞηhðpÞ�q¼0Gðq2Þ þ p̄μ∂α∂α½η̄h0 ðp0ÞηhðpÞ�q¼0Aðq2Þ

− 2p̄ν∂μ∂ν½η̄h0 ðp0ÞηhðpÞ�q¼0Aðq2Þ þ 2i∂ν½η̄h0 ðp0ÞSμνηhðpÞ�q¼0Gðq2Þ�δ4ðqÞ

þ ð2πÞ4δðþÞ
0 ðp̄Þ

�
−2p̄μ∂ν½η̄h0 ðp0ÞηhðpÞ�q¼0Aðq2Þ

∂
∂qν þ 2p̄ν∂ν½η̄h0 ðp0ÞηhðpÞ�q¼0Aðq2Þ

∂
∂qμ

þ 2p̄ν∂μ½η̄h0 ðp0ÞηhðpÞ�q¼0Aðq2Þ
∂
∂qν − 2iη̄h0 ðp̄ÞSμνηhðp̄ÞGðq2Þ

∂
∂qν þ 2ðΔ − 1Þδh0hGðq2Þ

∂
∂qμ
�
δ4ðqÞ
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− ð2πÞ4δðþÞ
0 ðp̄Þδh0h

gμ0
2p̄0

½Aðq2Þ − 2ðΔ − 1ÞGðq2Þ þ 12Cðq2Þ − 4ΔðΔ − 1ÞTðq2Þ�δ4ðqÞ

þ ð2πÞ4δðþÞ
0 ðp̄Þδh0h

gμkp̄
k

2ðp̄0Þ2 ½Aðq
2Þ − 2ðΔ − 1ÞGðq2Þ þ 12Cðq2Þ − 4ΔðΔ − 1ÞTðq2Þ�δ4ðqÞ: ð31Þ

Equating the Kμ matrix element representations in
Eqs. (29) and (31) one is then led to the following
conditions:

Aðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð32Þ

Aðq2Þ∂μδ
4ðqÞ ¼ ∂μδ

4ðqÞ; ð33Þ

Aðq2Þ∂μ∂νδ
4ðqÞ ¼ ∂μ∂νδ

4ðqÞ; ð34Þ

Gðq2Þδ4ðqÞ ¼ δ4ðqÞ; ð35Þ

Gðq2Þ∂μδ
4ðqÞ ¼ ∂μδ

4ðqÞ; ð36Þ

½Aðq2Þ − 2ðΔ − 1ÞGðq2Þ þ 12Cðq2Þ − 4ΔðΔ − 1ÞTðq2Þ�
× δ4ðqÞ ¼ 0; ð37Þ

which ultimately imply the GFF constraints:

Að0Þ ¼ Gð0Þ ¼ 1; ð38Þ

ð∂μ∂νAÞð0Þ ¼ 0; ð39Þ

Að0Þ− 2ðΔ− 1ÞGð0Þ þ 12Cð0Þ− 4ΔðΔ− 1ÞTð0Þ ¼ 0:

ð40Þ
So together with the constraints derived in Sec. IVA from
dilational covariance, SCT covariance also introduces an
additional constraint on the second derivative of Aðq2Þ, and
implies that all of the GFFs are in fact related at q ¼ 0 by a
specific linear combination depending on the conformal
dimension Δ. In Sec. IV C 2 it will be demonstrated that
Eq. (37), and hence Eq. (40), are in fact further strength-
ened by the assumption made in this section that the SCT
current has the form in Eq. (17).

C. Conformal EMT trace constraints

1. General symmetric constraints

The trace of the EMT plays an important role in the
classification of CFTs. Since on-shell states are necessarily
massless in any CFT, one can use the parametrization in
Eq. (7) to determine the general action of Tμ

μ on these
states. In order to keep these calculations as general as
possible we will first assume that the EMT is symmetric,
but not necessarily traceless. After explicitly taking the
trace in Eq. (7) one obtains

hp0; h0jTμ
μð0Þjp; hi ¼ η̄h0 ðp0Þ

�
−
1

2
q2Aðq2Þ þ 2ip̄μSμρqρGðq2Þ − 6q2Cðq2Þ

þ 2SμαSμβqαqβTðq2Þ
�
ηhðpÞδðþÞ

0 ðp0ÞδðþÞ
0 ðpÞ: ð41Þ

To simplify this expression further one can make use of the conformal GPT relation in Eq. (11). The coefficient of Gðq2Þ
becomes:

2iη̄h0 ðp0ÞSμρηhðpÞp̄μqρ ¼ −2iη̄h0 ðp0ÞSμρηhðpÞp0
μpρ

¼ −2ðp0 · pÞðΔ − 1Þη̄h0 ðp0ÞηhðpÞ ¼ q2ðΔ − 1Þη̄h0 ðp0ÞηhðpÞ; ð42Þ

where the first equality follows from the antisymmetry of Sμρ. For the Tðq2Þ coefficient one instead obtains

2η̄h0 ðp0ÞSμαSμβηhðpÞqαqβ ¼ 2η̄h0 ðp0ÞSμαSμβηhðpÞðpαpβ þ p0
αp0

β − p0
αpβ − pαp0

βÞ: ð43Þ

Applying Eq. (11) one can see that the first term in Eq. (43) vanishes since:

η̄h0 ðp0ÞSμαSμβηhðpÞpαpβ ¼ −iðΔ − 1Þη̄h0 ðp0ÞSμαηhðpÞpαpμ ¼ 0: ð44Þ

Taking the dual of the second term it follows that this term similarly vanishes. For the third term, one instead finds that:
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−2η̄h0 ðp0ÞSμαSμβηhðpÞp0
αpβ ¼ 2iðΔ − 1Þη̄h0 ðp0ÞSμαηhðpÞp0

αpμ

¼ −2ðp0 · pÞðΔ − 1Þ2η̄h0 ðp0ÞηhðpÞ ¼ q2ðΔ − 1Þ2η̄h0 ðp0ÞηhðpÞ: ð45Þ

Using the fact that the Lorentz generators in any field representation satisfy

½Sμα; Sνβ� ¼ iðgμβSαν þ gανSμβ − gμνSαβ − gαβSμνÞ; ð46Þ

and hence: SμαSμβ ¼ SμβSμα − 2iSαβ, the last term can then be written

−2η̄h0 ðp0ÞSμαSμβηhðpÞpαp0
β ¼ −2η̄h0 ðp0Þ½SμβSμα − 2iSαβ�ηhðpÞpαp0

β

¼ −2η̄h0 ðp0Þ½−iSμβpμp0
βðΔ − 1Þ þ 2ðΔ − 1Þðp0 · pÞ�ηhðpÞ

¼ q2½ðΔ − 1Þ2 þ 2ðΔ − 1Þ�η̄h0 ðp0ÞηhðpÞ: ð47Þ

After combining all of these results, the Tðq2Þ coefficient takes the form

2η̄h0 ðp0ÞSμαSμβηhðpÞqαqβ ¼ fq2½ðΔ − 1Þ2 þ 2ðΔ − 1Þ� þ q2ðΔ − 1Þ2gη̄h0 ðp0ÞηhðpÞ
¼ 2ΔðΔ − 1Þq2η̄h0 ðp0ÞηhðpÞ: ð48Þ

Inserting Eqs. (42) and (48) into Eq. (41), one finally obtains the following expression for the trace matrix element:

hp0; h0jTμ
μð0Þjp; hi ¼ −

1

2
q2½Aðq2Þ − 2ðΔ − 1ÞGðq2Þ þ 12Cðq2Þ

− 4ΔðΔ − 1ÞTðq2Þ�η̄h0 ðp0ÞηhðpÞδðþÞ
0 ðp0ÞδðþÞ

0 ðpÞ: ð49Þ

Equation (49) demonstrates an important structural feature
of CFTs: although the GFFs in Eq. (7) have coefficients
with different q dependencies, taking the trace results in an
expression with an overall q2 coefficient. The relevance of
this feature will be discussed in more detail in Sec. V.

2. Enhancement of the SCT constraints

As established in Sec. IV B, the requirement of SCT
covariance implies that the corresponding GFFs are linearly
related to one another at q ¼ 0. In deriving this constraint
we implicitly assumed that the SCT current has the form in
Eq. (17), and hence the EMT is both symmetric and
traceless. We will now demonstrate that the tracelessness
of the EMT leads to a strengthening of the constraint in
Eq. (40). By demanding that Tμ

μðxÞ ¼ 0, it follows from
Eq. (49) that

q2½Aðq2Þ − 2ðΔ − 1ÞGðq2Þ þ 12Cðq2Þ − 4ΔðΔ − 1ÞTðq2Þ�
× δðþÞ

0 ðp0ÞδðþÞ
0 ðpÞ ¼ 0: ð50Þ

Switching to the variables ðp̄; qÞ, this implies the distri-
butional equality� ðp̄2 − 1

4
q2Þ

jp̄þ 1
2
qjjp̄ − 1

2
qj − 1

�
½Aðq2Þ − 2ðΔ − 1ÞGðq2Þ

þ 12Cðq2Þ − 4ΔðΔ − 1ÞTðq2Þ� ¼ 0: ð51Þ

Since the coefficient of this expression vanishes only at
q ¼ 0, the linear combination of form factors has the
general solution

Aðq2Þ − 2ðΔ − 1ÞGðq2Þ þ 12Cðq2Þ − 4ΔðΔ − 1ÞTðq2Þ
¼ Cδ3ðqÞ; ð52Þ

where C is some arbitrary distribution in q0. However, in
order for this expression to be compatible with Eq. (37) it
must be the case that C≡ 0, otherwise one would end up
with the ill-defined product: δ3ðqÞδ3ðqÞ. So by explicitly
taking into account the tracelessness of the EMT, this
implies that Eq. (40) is in fact a realization of the more
general condition:

Aðq2Þ− 2ðΔ− 1ÞGðq2Þ þ 12Cðq2Þ− 4ΔðΔ− 1ÞTðq2Þ ¼ 0:

ð53Þ

Equation (53) together with Eqs. (38) and (39) collectively
summarize the constraints imposed on the EMT matrix
elements by Poincaré and conformal symmetry. In the next
section we will demonstrate, using explicit CFT examples,
that these constraints are sufficient to completely specify
the form of these matrix elements. This is not necessarily
surprising since it is well known that the structural form of
correlation functions in CFTs are fixed by the overall
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symmetry, and in particular, the closely related EMT three-
point functions are determined by the conformal Ward
identities, as discussed in Sec. I.
Before outlining specific examples in the next section,

we first draw attention to the observation made in Sec. IVA
that the x-polynomiality order of the conserved currents
determines whether certain GFFs can be constrained by the
corresponding symmetry. This explains why the dilational
charge matrix elements only result in constraints on Aðq2Þ
and Gðq2Þ, whereas the SCT charge can also constrain
Cðq2Þ and Tðq2Þ, both of which have coefficients involving
two powers of q. Since conformal symmetry is expected to
completely constrain the structure of any matrix element,
and the conformal currents involve at most two powers of x,
this implies that local and covariant EMT matrix elements
in CFTs can only ever contain form factors that have
coefficients with at most two powers of q, otherwise the
conformal symmetry would not be sufficient to fully
constrain the matrix elements. As pointed out at the end
of Sec. II, in local QFTs it turns out that the masslessness of
the states alone is actually sufficient to guarantee that this is
indeed the case. This further emphasizes the close con-
nection between the presence of massless particles and the
existence of conformal symmetry. We will explore this
connection in more detail in Sec. V.

D. Explicit CFT examples

1. Free massless scalar theory

The simplest example of a unitary CFT is that of a free
massless scalar field ϕ. The states have h ¼ 0, and the
Lorentz generators appearing in Eq. (7) are trivial, hence
the only form factors that can exist are Aϕðq2Þ and Cϕðq2Þ.
Equation (53) therefore takes the form:

Aϕðq2Þ þ 12Cϕðq2Þ ¼ 0: ð54Þ

Due to the absence of interactions, and the fact that q2 is the
only dimensionful parameter in the theory, it follows that
Aϕðq2Þ must be constant. Combining this with the con-
straint in Eq. (38), Eq. (54) immediately implies16

Cϕðq2Þ ¼ −
1

12
: ð55Þ

So the conformal symmetry, together with the masslessness
of the states, completely fixes the matrix elements of the
symmetric-traceless EMT of the scalar field.

2. Free massless fermion theory

Another simple example of a unitary CFT is the free
massless fermion ψ . Since the parametrization in Eq. (7)

assumes the EMT is both P and T invariant, for consistency
ψ must therefore be in the Dirac representation.17 In this
case the states can have h ¼ � 1

2
, and the only independent

form factors are: Aψ ðq2Þ, Gψðq2Þ, and Cψðq2Þ, hence
Eq. (53) takes the form:

Aψðq2Þ − 2ðΔ − 1ÞGψðq2Þ þ 12Cψðq2Þ ¼ 0: ð56Þ

As in the scalar case: Aψ ðq2Þ ¼ 1, but also the absence of
interactions and Eq. (38) implies: Gψðq2Þ ¼ 1. Combining
these conditions with Eq. (56), it follows that:

Cψðq2Þ ¼ −
1

12
ð3 − 2ΔÞ ¼ 0; ð57Þ

where the last equality is due to the fact that the corre-
sponding GPTs in Eq. (7) have Δ ¼ 3

2
. So although the

EMT matrix elements for h ¼ � 1
2
states can potentially

have more covariant structures than those with h ¼ 0, the
conformal symmetry and masslessness of the states is still
sufficient to completely fix the form of the EMT matrix
elements.

3. Massless theories with jhj ≥ 1 states

As already discussed in Sec. II, by virtue of the
Weinberg-Witten theorem, Eq. (7) can no longer hold
for arbitrary states with jhj > 1. This does not mean that
no parametrization exists, only that for a unitary theory this
parametrization cannot be both local and covariant [25]. It
is interesting to note that this theorem does not explicitly
rule out the possibility that Eq. (7) is satisfied for theories
containing massless states with h ¼ �1. A simple example
is the theory of free photons. This CFT is constructed from
the antisymmetric tensor field Fμν, which by virtue of
Eq. (10) satisfies the free Maxwell equations. Due to the
Poincaré lemma it follows that Fμν cannot be fundamental,
but instead must involve the derivative of another field:
Fμν ¼ ∂μAν − ∂νAμ. By treating the massless field Aμ to be
fundamental, the resulting theory is invariant under gauge
symmetry. However, an important consequence of this
gauge symmetry is that it prevents Aμ from being both
local and Poincaré covariant [34]. The corresponding EMT
matrix elements of the free photon states must therefore
necessarily either violate locality or covariance, and hence
the parametrization in Eq. (7) cannot hold in general.
As is well known, in order to make sense of gauge

theories one must either permit nonlocal and noncovariant
fields, such as in Coulomb gauge, or perform a gauge-
fixing that preserves locality and covariance, but allows for

16This result coincides with that found in [28], where the
authors instead use the form factor Dðq2Þ ¼ 4Cðq2Þ.

17We assumed for simplicity in Eq. (7) that the EMT is
invariant under discrete symmetries. This requirement could of
course be loosened, which would result in more potential form
factor structures, and enable one to analyse CFTs with fields in
non P or T-symmetric representations, such as Weyl fermions.
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the possibility of states with nonpositive norm, like Gupta-
Bleuler quantization [34]. In the latter case, it turns out that
one can in fact recover a manifestly local and covariant
EMT decomposition which coincides with Eq. (7) for the
physical photon states. The difference to the lower helicity
examples is that although AAðq2Þ, GAðq2Þ, CAðq2Þ, and
TAðq2Þ are actually nonvanishing, the tracelessness of the
EMT does not result in the constraint in Eq. (53), since Aμ

is not a conformal field. In general, for massless fields that
create states with higher helicity (jhj > 1) the Poincaré
Lemma equally applies, and hence similarly forces the
introduction of non-covariant gauge-dependent fields [25].
In this sense, the existence of massless particles with
jhj ≥ 1 is intimately connected with the presence of gauge
symmetry. Before concluding, we note that one could also
equally perform a local and covariant gauge-fixing pro-
cedure in theories with massless jhj > 1 states, such as the
graviton. Due to dimensional arguments one would equally
expect the EMT matrix elements of the physical modes to
have the structure of Eq. (7), but we leave an investigation
of these issues to a future work.

V. FREE MASSLESS PARTICLE CONSTRAINTS

Although the analysis in Sec. IV implicitly assumes that
the GFFs, and the constraints imposed upon them, corre-
spond to those of the modified current Tμν

ðSTÞ, the decom-

position in Eq. (7) equally holds for any choice of
symmetric EMT, Tμν

ðSÞ. In what follows, we will use this

expression to further explore the conditions under which
unitary conformality holds, focussing in particular on the
case of free theories with massless particle states.
In general, given a QFT that is unitary, local, and

Poincaré covariant, it follows from Eq. (41) that the
massless one-particle trace matrix elements of any sym-
metric EMT Tμν

ðSÞ have the general form:

hp0; h0jTμ
ðSÞμð0Þjp; hi

¼ −q2Fðq2Þη̄h0 ðp0ÞηhðpÞδðþÞ
0 ðp0ÞδðþÞ

0 ðpÞ; ð58Þ
where Fðq2Þ is a local form factor.18 For states with h ¼ 0

only the form factors Aðq2Þ and Cðq2Þ can appear, and so
Eq. (58) holds with

Fh¼0ðq2Þ ¼
1

2
½Aðq2Þ þ 12Cðq2Þ�: ð59Þ

For h ≠ 0 things are more complicated since the other form
factors Gðq2Þ and Tðq2Þ can also potentially exist, and so

one necessarily needs to understand how the Lorentz
generators Sμν act on the massless GPTs ηhðpÞ in order
to evaluate the trace of the EMT matrix elements. It turns
out though that for free irreducible19 massless fields ΦðxÞ,
the fields satisfy the general relation:

CΦ∂μΦðxÞ ¼ iSμν∂νΦðxÞ; ð60Þ

and hence the corresponding GPTs obey the condition:

CΦpμηhðpÞ ¼ ipνSμνηhðpÞ; ð61Þ

where CΦ is some constant depending on the representation
of the field. Since Eq. (61) has the same form as Eq. (11),
and Eq. (7) only involves the GPTs of irreducible fields, as
discussed in Sec. II, one can perform an identical calcu-
lation to that in Sec. IV C, similarly arriving at an
expression for the one-particle matrix elements of Tμ

ðSÞμ
with the structure of Eq. (58).
Now that we have established that Eq. (58) is a generic

feature of any unitary, local, Poincaré covariant QFT with
massless on-shell states,20 one can explore the implications
of this relation for free theories. First, it follows from
Eq. (58) that:

hp0; h0jTμ
ðSÞμðxÞjp; hi

¼ ∂2½eiq·xFðq2Þη̄h0 ðp0ÞηhðpÞδðþÞ
0 ðp0ÞδðþÞ

0 ðpÞ�; ð62Þ

which upon inversion gives:

hp0; h0jð∂2Þ−1Tμ
ðSÞμðxÞjp; hi

¼ eiq·xFðq2Þη̄h0 ðp0ÞηhðpÞδðþÞ
0 ðp0ÞδðþÞ

0 ðpÞ: ð63Þ

The appearance of additional terms from the inversion
involving first and zero-order polynomials in x is ruled
out by the translational covariance of the EMT. Since
by definition Fðq2Þ contains no nonlocal contributions,
Eq. (63) therefore implies that ð∂2Þ−1Tμ

ðSÞμðxÞ acts like a

(translationally covariant) local operator on the one-particle
states. For free theories with multiple particle species this
argument extends to the full space of one-particle statesH1

because the EMT is diagonal in the different fields, due to
the absence of interactions, and hence the action of
ð∂2Þ−1Tμ

ðSÞμðxÞ on H1 corresponds to the sum of the local

operators that exist for each state. For multiparticle states

18By local we mean that the form factor arises from the matrix
elements of a local EMT current. In particular, this implies that
certain types of components are excluded from appearing in the
form factors, such as inverse powers of momentum. See [25] for
an in-depth discussion of this issue.

19The irreducible massless fields are precisely those with
Lorentz representations ðm; 0Þ, ð0; nÞ, or their direct sums.

20For massive states, one can immediately see that Eq. (58) is
violated, since the leading order component in the form factor
expansion p̄fμp̄νgAðq2Þ introduces an additional term 2M2Aðq2Þ
to the trace matrix element, which cannot be written in form
q2Fðq2Þ since this would require explicit inverse powers of
momentum, violating locality [25].
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this argument can also be naturally extended, since the
action of translations UðaÞ ¼ eiP·a on these states takes the
form:

UðaÞjp1; h1;p2; h2; � � �pn; hni
¼ UðaÞjp1; h1iUðaÞjp2; h2i � � �UðaÞjpn; hni; ð64Þ

where the inner product of jp1; h1;p2; h2; � � �pn; hni is
constructed by taking the weighted sum of all possible
products of one-particle inner products, with weight þ1 or
−1 depending on the helicity of the states [7]. Therefore, by
acting with d

da ja¼0
on Eq. (64) it is clear that the multi-

particle matrix elements of Pμ, and hence the EMT, are
fixed by the corresponding one-particle matrix elements.
Since for any free theory the full space of states H is
spanned entirely by multi-particle (Fock) states, the pre-
vious arguments imply that the EMT trace has the form:
Tμ
ðSÞμðxÞ ¼ ∂2LðxÞ on H, with LðxÞ some local scalar

operator. This is precisely the condition for a unitary
QFT to be conformal, as outlined in Sec. III, and hence
one is led to the following conclusion:

Any unitary, local, and Poincaré covariant QFT, com-
prised solely of massless free fields, is conformal.

This demonstrates that the presence of massless particles
is not only relevant for the general structural properties of
local QFTs, but also plays a significant role in determining
the allowed symmetries. From a similar perspective, in the
work of Buchholz and Fredenhagen [35] it was proven for
massless scalar fields that dilational covariance is sufficient
to imply that the fields must be free. This was later
extended by Weinberg to (irreducible) massless fields with
higher values of absolute helicity jhj [36]. Since any field in
a conformal theory is dilationally covariant, one can
therefore combine the results of Buchholz, Fredenhagen
and Weinberg with the conclusion derived above, which
immediately implies the stronger result:

If ΦðxÞ is an irreducible massless field in a unitary,
local, Poincaré covariant QFT: ΦðxÞ is free ⇔ ΦðxÞ is
dilationally covariant.

This means that dilational covariance is not only a
sufficient condition for a massless field to be free, but is
also necessary. In other words, the space of dilationally
symmetric theories with massless particles is identical to
the space of massless free theories. This runs in stark
contrast to the case of massive particles, where spacetime

symmetries alone are not sufficient to constrain whether or
not the theories possess interactions.

VI. CONCLUSIONS

It is well known that conformal symmetry imposes
significant constraints on the structure of conformal field
theories (CFTs), in particular the correlation functions. In
this work we investigate four-dimensional unitary, local,
and Poincaré covariant CFTs, focusing on the analytic
properties of the energy-momentum tensor (EMT) and the
corresponding on-shell matrix elements. By adopting a
parametrization in terms of covariant multipoles of the
Lorentz generators, we establish a local and covariant form
factor decomposition of these matrix elements for states of
general helicity. Using this decomposition, we derive the
explicit constraints imposed on the form factors due to
conformal symmetry and the trace properties of the EMT,
and illustrate with specific CFT examples that they
uniquely fix the form of the matrix elements. We also
use this decomposition to gain new insights into the
constraints imposed by the existence of massless particles,
demonstrating in particular that massless free theories are
conformal. Besides the applications outlined in this work,
this matrix element decomposition could also be used to
shed light on other aspects of massless QFTs, such as
model-independent constraints like the averaged null
energy condition [37–39], and conformal collider bounds
[40]. Although we have focused here on the on-shell matrix
elements of the EMT, which are projections of the subset of
three-point functions involving the EMT, the same covar-
iant multipole approach is equally applicable to more
general CFT correlation functions, and could enable
helicity-universal representations of these objects to be
similarly derived.
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APPENDIX: DISTRIBUTIONAL RELATIONS

To derive the various constraints in Sec. IV it is necessary
to change coordinates from ðp0; pÞ to ðp̄; qÞ. In order to do
so, one makes use of the following relations:

δðþÞ
0 ðpÞp0μ ∂

∂p0μ δ
4ðp0 − pÞ ¼ −3δðþÞ

0 ðp̄Þδ4ðqÞ þ δðþÞ
0 ðp̄Þp̄μ ∂

∂qμ δ
4ðqÞ; ðA1Þ

δðþÞ
0 ðpÞ ∂

∂p0
μ
δ4ðp0 − pÞ ¼ p̄μ

2p̄0

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ þ δðþÞ

0 ðp̄Þ ∂
∂qμ δ

4ðqÞ; ðA2Þ
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δðþÞ
0 ðpÞp0

αη̄h0 ðp0Þ ∂ηh∂p0ν ðp0Þ ∂
∂p0

μ
δ4ðp0 − pÞ

¼ η̄h0 ðp̄Þ
∂ηh
∂p̄ν ðp̄Þ

�
p̄μp̄α

2p̄0

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ þ p̄αδ

ðþÞ
0 ðp̄Þ ∂

∂qμ δ
4ðqÞ − 1

2
gμαδ

ðþÞ
0 ðp̄Þδ4ðqÞ

�

−
1

2
p̄α

�∂η̄h0
∂p̄μ

ðp̄Þ ∂ηh∂p̄ν ðp̄Þ þ η̄h0 ðp̄Þ
∂2ηh

∂p̄ν∂p̄μ
ðp̄Þ
�
δðþÞ
0 ðp̄Þδ4ðqÞ; ðA3Þ

δðþÞ
0 ðpÞη̄h0 ðp0ÞSμνηhðp0Þ ∂

∂p0ν δ
4ðp0 − pÞ ¼ η̄h0 ðp̄ÞSμνηhðp̄Þ

�
p̄ν

2p̄0

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ þ δðþÞ

0 ðp̄Þ ∂
∂qν δ

4ðqÞ
�

−
1

2

�∂η̄h0
∂p̄ν ðp̄ÞSμνηhðp̄Þ þ η̄h0 ðp̄ÞSμν

∂ηh
∂p̄ν ðp̄Þ

�
δðþÞ
0 ðp̄Þδ4ðqÞ; ðA4Þ

δðþÞ
0 ðpÞ

�
p0μ ∂

∂p0ν
∂
∂p0

ν
− 2p0ν ∂

∂p0ν
∂

∂p0
μ

�
δ4ðp0 − pÞ

¼ δðþÞ
0 ðp̄Þ

�
p̄μ ∂

∂qν
∂
∂qν − 2p̄ν ∂

∂qν
∂
∂qμ
�
δ4ðqÞ þ 7p̄μ

2p̄0

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ þ 6δðþÞ

0 ðp̄Þ ∂
∂qμ δ

4ðqÞ; ðA5Þ

η̄h0 ðp̄Þ
∂ηh
∂p̄μ

ðp̄Þ ¼ −
∂
∂qμ ½η̄h0 ðp

0ÞηhðpÞ�q¼0; ðA6Þ

∂η̄h0
∂p̄μ

ðp̄Þ ∂ηh∂p̄ν ðp̄Þ þ
∂η̄h0
∂p̄ν ðp̄Þ

∂ηh
∂p̄μ

ðp̄Þ ¼ −2
∂
∂qμ

∂
∂qν ½η̄h0 ðp

0ÞηhðpÞ�q¼0; ðA7Þ

∂η̄h0
∂p̄ν ðp̄ÞSμνηhðp̄Þ − η̄h0 ðp̄ÞSμν

∂ηh
∂p̄ν ðp̄Þ ¼ 2

∂
∂qν ½η̄h0 ðp

0ÞSμνηhðpÞ�q¼0: ðA8Þ

As opposed Eqs. (A6)–(A8), which follow immediately from the definition of the variables ðp̄; qÞ, Eqs. (A1)–(A5) are
equalities between distributions, and so to derive themone needs to explicitly determine their action on test functions. Since the
derivation of these various relations is rather similar, we will not repeat them all here but instead focus on proving Eq. (A2).
Integrating this expression with the test function fðp0; pÞ ¼ f̄ðp̄; qÞ, and performing a change of variable, one obtains

Z
d4p0d4pδðþÞ

0 ðpÞ ∂
∂p0

μ
δ4ðp0 − pÞfðp0; pÞ ¼ 2π

Z
d4p̄d4q

δ
�
p̄0 − 1

2
q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2

q �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2

q ∂
∂qμ δ

4ðqÞf̄ðp̄; qÞ

¼ −2π
Z

d3p̄d4q
∂
∂qμ

2
64 f̄ðp̄0⋆; p̄; qÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2

q
3
75δ4ðqÞ;

where p̄0⋆ ¼ 1
2
q0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̄ − 1

2
qÞ2

q
. Since the test function nowhas both an explicit and implicit dependence onq, onemust apply

the chain rule in order to evaluate the derivative

Z
d4p0d4pδðþÞ

0 ðpÞ ∂
∂p0

μ
δ4ðp0 − pÞfðp0; pÞ ¼ −2π

Z
d3p̄

"
∂
∂qμ

 
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
p̄ −

1

2
q

�
2

s !−1

f̄ðp̄0⋆; p̄; qÞ

þ 1

2jp̄j
dp̄0⋆
dqμ

∂f̄ðp̄0; p̄; qÞ
∂p̄0

þ 1

2jp̄j
∂f̄ðp̄0⋆; p̄; qÞ

∂qμ

#
q¼0

¼ 2π

Z
d3p̄

�
gμkp̄k

4jp̄j3 f̄ðp̄; 0Þ − p̄μ

ð2jp̄jÞ2
∂f̄ðp̄; 0Þ
∂p̄0

−
1

2jp̄j
∂f̄ðp̄; 0Þ
∂qμ

�
p̄0¼jp̄j

¼
Z

d4p̄d4q

�
p̄μ

2p̄0

∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ þ δðþÞ

0 ðp̄Þ ∂
∂qμ δ

4ðqÞ
�
f̄ðp̄; qÞ;
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which proves the equality in Eq. (A2).
In both of the GFF constraint calculations one is required to evaluate the product of delta-derivatives with specific

components of the EMT matrix element. This amounts to understanding how these delta-derivatives act on the coefficients
Fðp̄; qÞ of the various GFFs. Since these coefficients are continuous functions, one has the following identities:

δðþÞ
0 ðp0ÞδðþÞ

0 ðpÞFðp̄; qÞ∂jδ
3ðqÞ ¼ ð2πÞδðþÞ

0 ðp̄Þ
�
Fðp̄; 0Þ
2p̄0

�
∂j −

p̄j

p̄0
∂0

�
δ4ðqÞ − 1

2p̄0

�∂F
∂qj −

p̄j

p̄0

∂F
∂q0
�

q¼0

δ4ðqÞ
�
; ðA9Þ

δðþÞ
0 ðp0ÞδðþÞ

0 ðpÞFðp̄; qÞ∂j∂kδ3ðqÞ

¼ ð2πÞδðþÞ
0 ðp̄ÞFðp̄; 0Þ

�
−

1

2ðp̄0Þ2
�
p̄k ∂

∂qj þ p̄j
∂
∂qk
� ∂
∂q0 þ

p̄kp̄j

2ðp̄0Þ3
∂
∂q0

∂
∂q0 þ

1

2p̄0

∂
∂qk

∂
∂qj
�
q¼0

δ4ðqÞ

þ ð2πÞFðp̄; 0Þ
8ðp̄0Þ2

�
gkj þ

p̄kp̄j

ðp̄0Þ2
� ∂
∂p̄0

δðþÞ
0 ðp̄Þδ4ðqÞ

þ ð2πÞδðþÞ
0 ðp̄Þ

�
−

p̄k

2ðp̄0Þ2
∂2F

∂q0∂qj −
p̄j

2ðp̄0Þ2
∂2F

∂q0∂qk þ
p̄kp̄j

2ðp̄0Þ3
∂2F

∂q0∂q0 þ
1

2p̄0

∂2F
∂qk∂qj

�
q¼0

δ4ðqÞ

þ ð2πÞδðþÞ
0 ðp̄Þ

�
p̄k

2ðp̄0Þ2
∂F
∂q0 −

1

2p̄0

∂F
∂qk
�
q¼0

∂jδ
4ðqÞ þ ð2πÞδðþÞ

0 ðp̄Þ
�

p̄j

2ðp̄0Þ2
∂F
∂q0 −

1

2p̄0

∂F
∂qj
�
q¼0

∂kδ4ðqÞ

þ ð2πÞδðþÞ
0 ðp̄Þ

�
p̄k

2ðp̄0Þ2
∂F
∂qj þ

p̄j

2ðp̄0Þ2
∂F
∂qk −

p̄kp̄j

ðp̄0Þ3
∂F
∂q0
�
q¼0

∂0δ4ðqÞ: ðA10Þ

Both of these relations are proven in a similar manner to Eq. (A2), except in Eq. (A10) one has the added complication of
having two nested derivatives, which introduces a significant number of additional contributions.

[1] D. Poland, S. Rychkov, and A. Vichi, The conformal
bootstrap: Theory, numerical techniques, and applications,
Rev. Mod. Phys. 91, 015002 (2019).

[2] H. Osborn and A. C. Petkou, Implications of conformal
invariance in field theories for general dimensions, Ann.
Phys. (N.Y.) 231, 311 (1994).

[3] J. Erdmenger and H. Osborn, Conserved currents and the
energy momentum tensor in conformally invariant theories
for general dimensions, Nucl. Phys. B483, 431 (1997).

[4] A. Bzowski, P. McFadden, and K. Skenderis, Implications
of conformal invariance in momentum space, J. High
Energy Phys. 03 (2014) 111.

[5] A. Bzowski, P. McFadden, and K. Skenderis, Renormalized
CFT 3-point functions of scalars, currents and stress tensors,
J. High Energy Phys. 11 (2018) 159.

[6] T. Bautista and H. Godazgar, Lorentzian CFT 3-point func-
tions in momentum space, J. High Energy Phys. 01 (2020)
142.

[7] R. Haag, Local Quantum Physics: Fields, Particles, Alge-
bras (Springer, New York, 1992).

[8] H. Pagels, Energy-momentum structure form factors of
particles, Phys. Rev. 144, 1250 (1966).

[9] D. G. Boulware and S. Deser, Classical general relativity
derived from quantum gravity, Ann. Phys. (N.Y.) 89, 193
(1975).

[10] J. F. Donoghue, B. R. Holstein, B. Garbrecht, and T.
Konstandin, Quantum corrections to the Reissner-Nordstrom
and Kerr-Newman metrics, Phys. Lett. B 529, 132 (2002).

[11] B. Maybee, D. O’Connell, and J. Vines, Observables and
amplitudes for spinning particles and black holes, J. High
Energy Phys. 12 (2019) 156.

[12] X.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin,
Phys. Rev. Lett. 78, 610 (1997).

[13] M. V. Polyakov, Generalized parton distributions and strong
forces inside nucleons and nuclei, Phys. Lett. B 555, 57
(2003).
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