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We investigate the dynamical Casimir effect for a one-dimensional resonant cavity, with one oscillating
mirror. Specifically, we study the discrete spectrum of created particles in a region of frequencies above the
oscillation frequency ω0 of the mirror. We focus our investigation on an oscillation time equal to 2L0=c,
where L0 is the initial and final length of the cavity, and c is the speed of light. For this oscillation duration,
a field mode, after being perturbed by the moving mirror, never meets this mirror in motion again, which
allows us to exclude this effect of reinteraction on the particle creation process. Then, we describe the
creation of particles with energies above ℏω0, due only to the relativistic aspect of the mirror’s velocity
(and these particles form what we call relativistic bands). Thus, we analyze the formation of these
relativistic bands in a discrete spectrum of created particles.
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I. INTRODUCTION

Moore, in his pioneering paper on the dynamical Casimir
effect (DCE) [1], pointed out that photons could be created
by the excitation of the quantum vacuum by a moving
mirror (the DCE was also investigated in other pioneering
articles [2–5] and excellent reviews can be found in the
literature [6–9]). On the other hand, he remarked that the
photon creation predicted by him was too negligible to be
detected experimentally [1]. One of the problems of particle
creation via DCE is that, under laboratory conditions, the
maximum velocity that an oscillating mirror can achieve is
very small in comparison to the speed of light [10]. To
circumvent this problem, Dodonov and Klimov investi-
gated the possibility of the observation of the DCE
considering a gradual accumulation of photons in a
resonant cavity, so that a significant and measurable effect
could be obtained [10]. Several other proposals have been
made, focusing on the observation of particle creation from
vacuum by experiments based on the mechanical oscil-
lation of mirrors [11–16], but the observation remains a
challenge [9].
From a more general point of view, particle creation from

vacuum occurs when a quantized field is submitted to a
time-dependent boundary condition. Therefore, a moving

mirror exciting the vacuum is just a particular case.
Yablonovitch [17] and Lozovik et al. [18] proposed
alternative ways to excite the quantum vacuum, by means
of time-dependent boundary conditions imposed on a
material medium. Moreover, a motionless mirror whose
internal properties rapidly vary in time can simulate a
moving mirror. Several experimental proposals emerged in
this context [19–26]. One of them led Wilson et al. to
observe experimentally particle creation from vacuum [24],
getting a maximum effective velocity v ≈ 0.1c. Other
experiments have also been done [25,27,28], with one of
them getting a maximum effective velocity v ≈ 0.31c [28].
In the present paper, we investigate aspects of the

problem by combining a resonant oscillating cavity with
a relativistic maximum velocity of its moving mirror.
Specifically, we study the discrete spectrum of created
particles in the context of a real massless scalar field in
ð1þ 1ÞD, inside a resonant cavity with one relativistic
moving mirror, oscillating with a frequency ω0. Moreover,
we impose the Dirichlet boundary condition to the field on
the positions of the mirrors. We focus our investigation on
the discrete spectrum of created particles in a region of
frequencies above ω0 (particles with energies above ℏω0),
but considering an oscillation time T ¼ 2L0=c, where L0 is
the initial and final length of the cavity. Since for this
oscillation duration a field mode, after being perturbed by
the moving mirror, never meets this mirror in motion again,
we exclude, in the creation of particles with frequencies
above ω0, the effect of the reinteraction of a perturbed field
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mode with the mirror in a state of motion. Then, we isolate
the effect of the maximum speed of the mirror in creating
particles with frequencies above ω0. The particles created
with energies above ℏω0, due only to the relativistic aspect
of the mirror’s velocity, discarding the reinteraction effects,
form what we call relativistic bands [29] (in contrast, a
nonrelativistic band occurs, for instance, when a single
nonrelativistic mirror, oscillating with a frequency ω0,
produces a spectrum of particles with energies lower than
ℏω0 [30]). In this way, we describe, in a discrete spectrum
of created particles, particle creation with frequencies
above ω0 caused only by the relativistic aspect of the
mirror’s motion (or the formation of relativistic bands). In
the literature, works have investigated the formation of
these relativistic bands, but in the context of continuous
spectra for single mirrors (see Refs. [22,29,31]).
The paper is organized as follows. In Sec. II, we present

the model to be investigated and write exact general
formulas for the spectrum and total number of created
particles in a dynamical cavity. In Sec. III, we make a brief
check of the consistency of the exact formulas written in the
previous section, comparing some of our results with
analytical approximations found in the literature [10]. In
Sec. IV, we calculate the spectrum of created particles for
an oscillation time T ¼ 2L0=c, and discuss the appearance
of relativistic bands. In Sec. V, we investigate the con-
nection and consistency between the relativistic band in the
discrete spectrum (found in the previous section) and the
relativistic band in a continuous spectrum for a relativistic
oscillating single mirror found in the literature [31]. In
Sec. VI, we present a summary of our results and final
comments.

II. EXACT FORMULAS FOR PARTICLE
CREATION IN A CAVITY

Let us start by considering the massless scalar field in a
two-dimensional spacetime satisfying the wave equation
(we assume throughout this paper ℏ ¼ c ¼ 1)

ð∂2
t − ∂2

xÞϕðt; xÞ ¼ 0; ð1Þ

with the time-dependent boundary conditions

ϕðt; 0Þ ¼ ϕ½t; LðtÞ� ¼ 0; ð2Þ

where LðtÞ is an arbitrary prescribed law for the moving
boundary with Lðt < 0Þ ¼ Lðt > TÞ ¼ L0, where L0 is the
length of the cavity in the static situation, and T is the time
at which the boundary returns to its initial position L0

(see Fig. 1).
Considering the procedure adopted by Moore [1], and

Fulling and Davies [3], the field in the cavity can be
obtained by exploiting the conformal invariance of the
wave equation (1). The field solution, in the Heisenberg
representation ϕðt; xÞ, is given by

ϕðt; xÞ ¼
X∞
n¼1

½b̂nϕnðt; xÞ þ H:c:�; ð3Þ

where the field modes ϕnðt; xÞ are given by

ϕnðt; xÞ ¼
iffiffiffiffiffiffiffiffi
4nπ

p ½e−inπRðvÞ − e−inπRðuÞ�; ð4Þ

with u ¼ t − x, v ¼ tþ x, and R satisfying Moore’s func-
tional equation:

R½tþ LðtÞ� − R½t − LðtÞ� ¼ 2: ð5Þ
For t < 0 (cavity in the static situation), RðzÞ ¼ z=L0 and
the field ϕðt; xÞ can be written in terms of the complete set

of function ϕð0Þ
n ðt; xÞ as [32]

ϕðt; xÞ ¼
X∞
n¼1

½b̂nϕð0Þ
n ðt; xÞ þ H:c:�; ð6Þ

where the field modes ϕð0Þ
n ðt; xÞ are given by the relation

ϕð0Þ
n ðt; xÞ ¼ iffiffiffiffiffiffiffiffi

4nπ
p ½e−inπv=L0 − e−inπu=L0 �; ð7Þ

with ½bm; b†n� ¼ δmn. Similarly to Eq. (6), for t > T, when
both boundaries are at rest again, the field solution ϕðt; xÞ
can be expanded as

ϕðt; xÞ ¼
X∞
n¼1

½ânϕð0Þ
n ðt; xÞ þ H:c:�: ð8Þ

The new set of physical operators ðâ; â†Þ is related to the
old set ðb̂; b̂†Þ via the Bogoliubov transformation as

FIG. 1. Trajectories of the mirrors (solid lines). The static
mirror is represented by the vertical solid (blue line) at x ¼ 0. The
moving mirror, oscillating around x ¼ L0, with Lðt < 0Þ ¼
Lðt > TÞ ¼ L0, is represented by the orange solid line. The
dashed (green) lines are null lines separating region I from II, and
region II from III.
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âm ¼
X∞
n¼1

fb̂nαmn þ b̂†nβ�mng; ð9Þ

with the Bogoliubov coefficients given by [33,34]

αmnðtÞ ¼
1

2

ffiffiffiffi
m
n

r Z
t=L0þ1

t=L0−1
dxe−iπ½nRðL0xÞ−mx�;

βmnðtÞ ¼ −
1

2

ffiffiffiffi
m
n

r Z
t=L0þ1

t=L0−1
dxe−iπ½nRðL0xÞþmx�; ð10Þ

where RðzÞ is the solution of the Moore equation (5). The
unitarity condition for the Bogoliubov transformation is
written as

P∞
n¼1 ½jαmnðtÞj2 − jβmnðtÞj2� ¼ 1. The number

N nðtÞ of created particles in the cavity, in a certain mode n
is given by

N nðtÞ ¼
X∞
m¼1

jβnmðtÞj2; ð11Þ

with βnmðtÞ given by Eq. (10). The total number N ðtÞ of
created particles in the cavity is given by

N ðtÞ ¼
X∞
n¼1

N nðtÞ: ð12Þ

Now, let us examine the cavity in the nonstatic situation
(t > 0). According to Cole and Schieve [35], the field
modes in Eq. (4) are formed by left- and right-propagating
parts. As causality requires, the field in region I (v ≤ L0)
(see Fig. 1) is not affected by the boundary motion, so that,
in this sense, this region is considered as a “static zone.” In
region II (v > L0 and u ≤ L0), the right-propagating parts
of the field modes remain unaffected by the boundary

motion, so that region II is also a static zone for these
modes. On the other hand, the left-propagating parts in
region II are, in general, affected by the boundary move-
ment. In region III (u > L0), both the left- and right-
propagating parts are affected. In summary, the functions
corresponding to the left- and right-propagating parts of the
field modes are considered in the static zone if their
argument z (z symbolizing v or u) is such that z ≤ L0.
For a certain spacetime point (t̃,x̃), the field operator ϕðt̃; x̃Þ
is known if its left- and right-propagating parts, taken over,
respectively, the null lines v ¼ z1 and u ¼ z2 (where z1 ¼
t̃þ x̃ and z2 ¼ t̃ − x̃), are known; or, in other words, ϕðt̃; x̃Þ
is known if RðvÞjv¼z1 and RðuÞju¼z2 are known. Cole and
Schieve [35] proposed an elegant recursive method to
obtain exactly the function R for a general law of motion
of the boundary. The method consists in tracing back a
sequence of null lines intersecting the worldline of the
moving mirror at instants ti, until, after a certain number
i ¼ n of reflections, a null line traced back gets into the
static zone, where the function R is known. Following their
procedure, one can write the solution of the Moore equation
as [35–37]

RðzÞ ¼ 2nðzÞ þ
�
z − 2

XnðzÞ
i¼1

LðtiÞ
�
=L0; ð13Þ

where n is the number of reflections off the moving
boundary, necessary to connect the null line tþ x ¼ z
(or t − x ¼ z) to a null line in the static zone. Using Eq. (13)
in Eqs. (11) and (12), we write the exact value for the

number of created particles in the rth mode (N ðrÞ
exa) and the

total number of created particles N exa, respectively, by

N ðrÞ
exaðtÞ ¼

X∞
s¼1

���� 12
ffiffiffi
r
s

r Z
t=L0þ1

t=L0−1
dxe−iπ½sf2nðL0xÞþ½L0x−2

PnðL0xÞ
i¼1

LðtiÞ�=L0gþrx�
����
2

; ð14Þ

N exaðtÞ ¼
X∞
r¼1

N ðrÞ
exaðtÞ: ð15Þ

The formulas (14) and (15) are valid for an arbitrary
prescribed law LðtÞ for the moving boundary, provided
that Lðt < 0Þ ¼ Lðt > TÞ ¼ L0.
When one considers Lðt < 0Þ ¼ Lðt > TÞ ¼ L0, LðtÞ

can present a discontinuity in the velocity of the mirror at
t ¼ 0 (and also at t ¼ T), which can be responsible for a
creation of an infinite number of particles [1,38]. In
general, since the formulas (14) and (15) do not take into
account such discontinuities, we can consider that they
approximately describe particle creation for a law of motion
L̃ðtÞ for which there is no discontinuity in its velocity, but
that can be approximately described by the function LðtÞ.

On the other hand, for T ¼ 2L0, the particles created by the
discontinuity at t ¼ 0 can be absorbed by the discontinuity
at t ¼ T ¼ 2L0 [39] (the main situation discussed in the
present paper), so that particle creation in the cavity can be
described exactly by the formulas (14) and (15).
In the next sections we will apply the formulas (14) and

(15) to the following class of laws of motion for the moving
mirror:

LðtÞ ¼

8>><
>>:

L0; t < 0;

L0 þ a sin ð2πt=l0Þ; 0 ≤ t ≤ T;

L0; t > T

ð16Þ

where a > 0 is the amplitude of oscillation, and l0 needs to
be chosen appropriately so that LðtÞ ¼ L0 for t > T.
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Throughout the text, we consider ω0 ¼ 2π=l0 as the
frequency of oscillation of the moving mirror.

III. COMPARISON WITH APPROXIMATE
ANALYTICAL RESULTS

As a first application of our computations based on the
exact formulas (14) and (15), we compare some of our
results for the total number of created particles with those
obtained by analytical approximations found in the liter-
ature [10]. Let us consider a particular resonant law of
motion typically considered in the investigation of the DCE
[10,32], given by Eq. (16) with a ¼ εL0, l0 ¼ L0, where
ε > 0, and εL0 is the amplitude of oscillation. Note that in
this particular case the frequency ω0 ¼ 2π=L0 is twice the
frequency of the first quantummode, π=L0, inside the static
cavity of length L0. This law of motion leads to resonant
particle creation in the cavity. Dodonov and Klimov [10],
considering this law of motion in the context of non-
relativistic velocities and low amplitudes, obtained pertur-
batively the approximate average total number of particles
created, N app, as given by

N appðTÞ ¼
1

π2

��
1 −

κ2

2

�
K2ðκÞ − EðκÞKðκÞ

�
; ð17Þ

where KðκÞ and EðκÞ are the complete elliptic integrals
of the first and second kind, respectively, and κ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−4επT=L0

p
. The authors also obtained the following

formula for the numberN ð1Þ
app of created particles in the first

(fundamental) mode of the cavity:

N ð1Þ
appðTÞ ¼ 2

π2
KðκÞEðκÞ − 1

2
: ð18Þ

The results in Eqs. (17) and (18) were considered valid in
the limit ε ≪ 1 [10].
Let us compare the results for the total number of

particles, using the formulas N exa [Eq. (15)] and N app

[Eq. (17)]. We start this comparison by examining the case
with ε ¼ 10−2, which implies a maximum velocity v of the
mirror such that v ≈ 0.06. In Fig. 2, corresponding to the
case with L0 ¼ 1 (ω0 ¼ 2π), one can see an agreement
between N app (circles) and N exa (crosses). In addition,
both results are in agreement with numerical ones found by
Ruser [40] (other numerical approaches to solve DCE
problems have also been developed [41–45]). We also
verified agreement between N exa [Eq. (15)] and N app

[Eq. (17)] for s < −2 in ε ¼ 10s.
Now, let us investigate the case with ε ¼ 10−1, which

means a maximum velocity v ≈ 0.6. In Fig. 3, one can see a
certain disagreement between N exa [Eq. (15)] and N app

[Eq. (17)], with N exa > N app and N exa −N app growing
in time. It is worth mentioning that a similar disagreement
(for ϵ ¼ 10−1) was also observed in the literature [40],

when values calculated via numerical methods were com-
pared to values from N app [Eq. (17)]. This indicates
that the disagreement found in Fig. 3 reveals not a failure
in predictions based on N exa [Eq. (15)], but a limit of
validity for N app [Eq. (17)] (namely, N app is more valid
for s ≤ −2 in ε ¼ 10s).

IV. SPECTRUM OF CREATED PARTICLES

In a cavity with length L0, with one of the mirrors in
motion (for instance, the right one), the field modes, after
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FIG. 2. Comparison between the number of particles (vertical
axis) versus T (horizontal axis), via the approximate formula
N app (circles) and exact formula N exa (crosses), for the law of
motion given in Eq. (16), with ε ¼ 10−2 and L0 ¼ 1 (ω0 ¼ 2π).
The dashed line serves as a reference for the zero value of the
number of particles.
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FIG. 3. Comparison between the number of particles (vertical
axis) versus T (horizontal axis), via the approximate formula
N app (circles) and exact formula N exa (crosses), for the law of
motion given in Eq. (16), with ε ¼ 10−1 and L0 ¼ 1 (ω0 ¼ 2π).
The dashed line serves as a reference for the zero value of the
number of particles.
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being perturbed by the right oscillating mirror, are reflected
by the left (static) mirror and go back to the right mirror
again. If the field modes return to the right mirror and find
that it is still in motion, the perturbed field modes undergo a
new perturbation (reinteraction). On the other hand, if the
perturbed field modes find the right mirror at rest, they are
simply reflected, going in the opposite direction but with no
new perturbation added to them. When reinteractions are
allowed in an oscillating cavity (which happens when
T > 2L0), even with nonrelativistic velocities, particles
can be produced with frequencies higher than the oscil-
lation frequency [10,31,46]. For instance, for the law of
motion in Eq. (16), with l0 ¼ L0, a ¼ 10−8L0 (which
means v ¼ 2π × 10−8) and T > 2L0, particles can be
created with frequencies ð2nþ 1Þπ=L0 (n ¼ 0; 1; 2.:.)
and, for n > 0, with frequencies higher than ω0 ¼
2π=L0 [10,46]. Then, the results in the literature [10,46]
show that particle creation via DCE in the resonant cavity
described by Eq. (16), with T > 2L0, can be characterized
by a discrete spectrum, the possibility of several reinter-
actions of the field modes with the moving mirror, and
particles produced with frequencies higher than the oscil-
lation frequency even with a nonrelativistic moving mirror.
In the present section we will focus on oscillatory

motions obeying Eq. (16), with l0 ¼ L0 and T ¼ 2L0

(see Fig. 4). This enables us to exclude the effect of the
reinteraction of a perturbed field mode with the mirror in a
state of motion, so that we can isolate only the role of the
maximum speed of the mirror in creating particles with
frequency above ω0 (relativistic band). In this way, the
relativistic band can be assigned exclusively to the

relativistic aspect of the velocity of the mirror (as occurs
for a relativistic single mirror [31]). This motion law is
interesting because all field modes perturbed by the moving
(right) mirror, after being reflected on the static (left) mirror
at x ¼ 0, go back to the right, but find the right mirror at
rest. This is illustrated by the dashed lines in Fig. 4, which
represent null lines related to the field modes perturbed by
the right mirror in motion. In this manner, for the law of

motion in Eq. (16) with T ¼ 2L0, the values of N
ðrÞ
exa and

N exa exclude the effect of a new interaction of the
perturbed field modes with the right mirror in the state
of motion.
Considering the law of motion in Eq. (16), with

T ¼ 2L0, a ¼ εL0, l0 ¼ L0, ε ¼ 10−2 (v ≈ 0.06), and
using the exact formula (11), we obtain that there is
no effective creation of particles with frequency above
the oscillation frequency of the cavity (2π=L0), with the
particle creation restricted to the fundamental mode
n ¼ 1 (π=L0) (see Fig. 5), which has half of the oscillating
frequency ω0. This is in agreement with the approximate
results found in the literature [10]. The expected number of

particlesN ð1Þ
exa obtained by us [via Eq. (14)] is in agreement

with that obtained via the approximate formula N ð1Þ
app

[Eq. (18)]: N ð1Þ
exa ≈N ð1Þ

app ≈ 0.001.
Now, considering ε ¼ 10−1 (v ≈ 0.6) in Eq. (16) (with

T ¼ 2L0 and l0 ¼ L0), the exact method used here
[Eq. (14)] also predicts, beyond creation in the fundamental
mode n ¼ 1 (π=L0), particle creation in an additional band
(frequencies larger than ω0 ¼ 2π=L0). For instance, in

FIG. 4. Trajectories of the mirrors (solid lines). The static
mirror is represented by the vertical solid (blue line) at x ¼ 0. The
trajectory of the moving mirror, according to Eq. (16) (with l0 ¼
L0 and T ¼ 2L0), is given by the orange line. The dashed lines
represent some null lines related to the field modes perturbed by
the moving mirror. Note that, after being reflected by the left
static mirror, all field modes, which were perturbed by the right
mirror in motion, find the right mirror again already at rest.

0 1 2 3 4

0

0.0002

0.0004

0.0006

0.0008

0.001

FIG. 5. The number of created particles N ðnÞ
exa (vertical axis)

versus n ¼ ωL0=π (horizontal axis), for the law of motion given
in Eq. (16), with T ¼ 2L0, a ¼ εL0, L0 ¼ l0 ¼ 1 and ε ¼ 10−2

(maximum velocity v ≈ 0.06). The dashed line serves as a

reference for the value N ðnÞ
exa ¼ 0. Note that n ¼ 1 represents

half of the oscillation frequency, and n ¼ 2 indicates the
oscillation frequency ω0. One can see no creation of particles
with frequencies larger than ω0 ¼ 2π (n ¼ 2).
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Fig. 6 one can see the creation of particles with frequencies
3π=L0 (mode n ¼ 3) and 5π=L0 (n ¼ 5). Since this particle
creation with frequencies above ω0 is not related to the
reinteractions of perturbed field modes with the right mirror
in a state of motion, but caused only by the relativistic
aspect (in this case, v ≈ 0.6) of the mirror’s motion, this
region of frequencies with (ω > ω0) is called a relativistic
band [29].
To estimate the relevance of the relativistic band as the

maximum velocity of oscillation increases, we consider

Eq. (16) with L0 ¼ l0 ¼ 1, and a (v ¼ 2πa) varying from
0 (v ¼ 0) to 0.1 (v ≈ 0.6). In Fig. 7, we show [using

Eq. (14)] the behavior of the ratio R ¼ N ð3Þ
exa=N

ð1Þ
exa as a

function of v. We highlight the following results: v ≈ 2π ×
10−3 ⇒ R ≈ 7.4 × 10−6; v≈ 2π × 10−2 ⇒R≈ 7.4× 10−4

(these values correspond to the case shown in Fig. 5, and
the low value of R explains the null visualization of a
relativistic band); v≈10−1⇒R≈1.9×10−3 (this velocity
is the maximum effective velocity considered by Wilson
et al. in the first observation of the DCE [24]); v≈3.0×
10−1⇒R≈1.6×10−2 (this velocity is the maximum effec-
tive velocity considered in the experiment by Schneider
et al. [28]); v ≈ 2π × 10−1 ⇒ R ≈ 6.3 × 10−2 (these values
correspond to the relativistic band visualized in Fig. 6).
The increase of R with v, shown in Fig. 7, describes the

formation of relativistic bands or, in other words, signifi-
cant particle creation with frequencies above ω0 caused
only by the relativistic aspect of the mirror’s motion.

V. CONNECTING DISCRETE AND
CONTINUOUS RELATIVISTIC BANDS

In the present section, we investigate the connection
between the relativistic band in the discrete spectrum
shown in Fig. 6 and the relativistic band in a continuous
spectrum for a relativistic oscillating single mirror [31].
Let us start the investigation by examining the spectrum

shown in Fig. 5, where one can see that the creation of
particles occurs only for the frequency ω0=2 and, con-
sequently, there is no creation of particles with frequency
beyond ω0. Although Fig. 5 does not look like a parabola,
the result shown in this figure is deeply connected to the
parabolic continuous spectrum of a single moving mirror
with nonrelativistic velocities [30], for which the spectral
distribution has a maximum at ω0=2 and there is no particle
creation with frequencies higher than ω0. To clarify this
connection, let us compare the cases of cavities with the
moving mirror oscillating according to Eq. (16), with a
fixed frequency ω0 ¼ 2π (in other words a fixed value
l0 ¼ 1), fixed amplitude of oscillation a, but with different
values of L0, with T ¼ 2L0. We reinforce that, since we are
considering the condition T ¼ 2L0, all field modes, after
being perturbed by the oscillating right mirror and reflected
by the left static mirror, do not find the right mirror in a state
of motion again. We also remark that this is an important
condition in order to make the transition from a discrete
spectrum to a continuous one (produced by a single moving
mirror and discussed in the literature [30]), since the field
modes, after being perturbed by an oscillating single
mirror, go to infinity and never interact with the moving
mirror again.
For the law of motion in Eq. (16), with a ¼ 10−2, l0 ¼ 1

(ω0 ¼ 2π and v ≈ 0.06) and T ¼ 2L0, we have for L0 ¼ 1
and L0 ¼ 4 the results shown in Fig. 5 and Fig. 8,
respectively. One can see that, increasing L0 [for instance

FIG. 7. The ratio R ¼ N ð3Þ
exa=N

ð1Þ
exa (vertical axis) versus

v ¼ 2πa (horizontal axis), where a is the amplitude of oscillation
given in the law of motion in Eq. (16), with T ¼ 2L0,
L0 ¼ l0 ¼ 1.
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FIG. 6. The number of created particles N ðnÞ
exa (vertical axis)

versus n ¼ ωL0=π (horizontal axis), for the law of motion given
in Eq. (16), with T ¼ 2L0, a ¼ εL0, L0 ¼ l0 ¼ 1 and ε ¼ 10−1

(maximum velocity v ≈ 0.6). The dashed line serves as a

reference for the value N ðnÞ
exa ¼ 0. Note that n ¼ 1 represents

half of the oscillation frequency, and n ¼ 2 indicates the
oscillation frequency ω0. For n ¼ 3 and n ¼ 5, one can see
the creation of particles with frequencies larger than
ω0 ¼ 2π (n ¼ 2).
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from L0 ¼ 1 (Fig. 5) to L0 ¼ 4 (Fig. 8)] and maintaining
the same oscillation frequency 2π, particles are created with
the frequency ω0=2 ¼ π and also with other frequencies
smaller than ω0. The discrete values obtained outline a
parabolic spectrum (Fig. 8), with the maximum number of
created particles with frequency π and no particles created
with frequency higher than ω0 ¼ 2π. This is in accordance
with the predictions found in the literature for a continuous
spectrum for a single oscillating mirror [30]. In other words,
the spectrum shown in Fig. 5 is a germinal version of a
spectrum with a parabolic shape, in the sense that, as L0 is
increased (but keeping the same frequency value), more and
more the discrete spectrum outlines a continuous parabolic
one. This reveals a consistency between the results obtained
here [for the discrete spectra in a cavity provided by the exact
formula (14)] and those found in the literature [30], for a
continuous spectra for a nonrelativistic oscillating single
mirror.
Now, we continue our investigation examining the

spectrum shown in Fig. 6 (maximum velocity v ≈ 0.6),
which shows the creation of particles with frequency ω0=2,
and also with frequencies above the oscillating frequency
ω0 (for instance 3ω0=2 and 5ω0=2). It also shows that the
particle creation vanishes for all frequencies ω equal to an
integer multiple of ω0. Although one can say that Fig. 6
does not look like a succession of arches, the result shown
in that figure is connected to the continuous spectrum for a
relativistic oscillating single mirror, formed by a succession
of arches, each one limited by two successive multiples of
ω0, and vanishing for all frequencies ω equal to an integer
multiple of ω0 [31]. To clarify this connection, let us

consider the law motion in Eq. (16), with a ¼ 10−1, l0 ¼ 1
(ω0 ¼ 2π and v ≈ 0.6), and T ¼ 2L0. We show in Fig. 6
and Fig. 9 the results for L0 ¼ 1 and L0 ¼ 4, respectively.
Increasing L0, for instance from L0 ¼ 1 (Fig. 6) to L0 ¼ 4
(Fig. 9), we see a population of particles created in several
other frequency modes in addition to π, outlining a
continuous spectrum formed by a succession of arches
(Fig. 9), each one limited by two successive multiples of
ω0, and vanishing for all frequencies ω equal to an integer
multiple of ω0, in connection with the predictions found in
the literature for a continuous spectrum for a single
relativistic oscillating mirror [31]. The spectrum shown
in Fig. 6 is then an initial version of a spectrum with a
succession of arches, in the sense that, as L0 is increased,
more and more the discrete spectrum outlines a continuous
succession of arches, exhibiting additional (relativistic)
bands with frequencies higher then ω0 [31]. Again, this
reveals a consistency between the results for discrete
spectra (cavity) provided by the exact formula (14) and
those for continuous spectra for a relativistic oscillating
single mirror found in the literature [31].

VI. FINAL REMARKS

In the present paper,we investigated the formation, via the
dynamical Casimir effect, of relativistic bands in the discrete
spectrum of created particles in an oscillating one-dimen-
sional resonant cavity. We considered a real scalar field
obeying Eq. (1), under the boundary conditions given in
Eq. (2). We wrote, based on previous works in the literature
[33–35], exact formulas for the spectrum [Eq. (14)] and total
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FIG. 8. The number of created particles N ðnÞ
exa (vertical axis)

versus n ¼ ωL0=π (horizontal axis), for the law of motion given
in Eq. (16), with T ¼ 2L0, L0 ¼ 4, l0 ¼ 1 and a ¼ 10−2

(maximum velocity v ¼ 2πa ≈ 0.06). The dashed line serves

as a reference for the value N ðnÞ
exa ¼ 0. Note that n ¼ 4 represents

half of the oscillation frequency, and n ¼ 8 indicates the
oscillation frequency 2π. One can see that there is no creation
of particles with frequency larger than 2π (n ¼ 8).
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FIG. 9. The number of created particles N ðnÞ
exa (vertical axis)

versus n ¼ ωL0=π (horizontal axis), for the law of motion given
in Eq. (16), with T ¼ 2L0, L0 ¼ 4, l0 ¼ 1 and a ¼ 10−1

(maximum velocity v ¼ 2πa ≈ 0.6). The dashed line serves as

a reference for the value N ðnÞ
exa ¼ 0. Note that n ¼ 4 represents

half of the oscillation frequency, and n ¼ 8 represents the
oscillation frequency 2π. One can see the creation of particles
with frequencies larger than ω0 ¼ 2π (n ¼ 8).
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number of created particles [Eq. (15)]. Although these
formulas are valid for an arbitrary prescribed law of motion
for the oscillating mirror, we focused on the class of laws of
motion given by Eq. (16), and, more specifically, considered
a ¼ εL0, l0 ¼ L0 and T ¼ 2L0=c.
With the first two choices (a ¼ εL0 and l0 ¼ L0),

Eq. (16) describes a resonant law of motion typically
investigated in the context of the DCE [10,32], where the
oscillation frequency is ω0 ¼ 2π=L0 (twice the frequency
of the first mode π=L0). In addition, the choice of the time
of oscillation T ¼ 2L0=c is such that a field mode, after
being perturbed by the moving mirror, never meets this
mirror in motion again (see Fig. 4). This allowed us to
exclude the effect of the reinteraction of a perturbed field
mode with the mirror in a state of motion, so that we could
isolate only the role of the maximum speed of the mirror in
creating particles with frequency above ω0.
Using Eq. (14), we computed the spectrum of created

particles when v ≈ 0.06c (Fig. 5) and v ≈ 0.6c (Fig. 6). In
Fig. 5, we got no visible creation of particles with
frequency above ω0 ¼ 2π=L0 (or no visualization of a
relativistic band), with the creation of particles restricted to
the first mode n ¼ 1. More precisely, the relativistic band
exists, but the number of particles is, for the mode n ¼ 3,
only approximately 7.4 × 10−4 of the number of created
particles in the first mode. In Fig. 6, we can visualize an
effective creation of particles with frequency above

ω0 ¼ 2π=L0. In this case, the relativistic band is such that
the number of particles for the mode n ¼ 3 is approx-
imately 6.3 × 10−2 of the number of created particles in the
first mode. In Fig. 7, corresponding to Eq. (16) with
L0 ¼ l0 ¼ 1, we describe the enhancement of the relativ-
istic band in a discrete spectrum of created particles as the
maximum velocity of oscillation increases.
Finally, we showed the connection between the relativ-

istic band in the discrete spectrum shown in Fig. 6 and a
relativistic band in a continuous spectrum (outlined in
Fig. 9) for a relativistic oscillating single mirror [31]. Since
relativistic bands for a continuous spectrum can, in prin-
ciple, be observed [29], their detection will indicate the
existence of relativistic bands in a discrete spectrum of
created particles, as predicted here.
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