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I argue that a certain perturbative proximity exists between some supersymmetric and nonsupersym-
metric theories (namely, pure Yang-Mills and adjoint QCD with two flavors, adjQCDNf¼2). I start with
N ¼ 2 super–Yang-Mills theory built of two N ¼ 1 superfields: vector and chiral. In N ¼ 1 language,
the latter presents matter in the adjoint representation of SUðNÞ. Then, I convert the matter superfield
into a phantom one (in analogy with ghosts), breaking N ¼ 2 down to N ¼ 1. The global SU(2) acting
between two gluinos in the original theory becomes graded. Exact results in thus deformed theory allow
one to obtain insights in certain aspects of nonsupersymmetric gluodynamics. In particular, it becomes
clear how the splitting of the β function coefficients in pure gluodynamics, β1 ¼ ð4 − 1

3
ÞN and

β2 ¼ ð6 − 1
3
ÞN2, occurs. Here, the first terms in the braces (4 and 6, always integers) are geometry

related, while the second terms (− 1
3
in both cases) are bona fide quantum effects. In the same sense,

adjQCDNf¼2 is close toN ¼ 2 SYM. Thus, I establish a certain proximity between pure gluodynamics and

adjQCDNf¼2 with supersymmetric theories. (Of course, in both cases, we loose all features related to flat

directions and Higgs/Coulomb branches in N ¼ 2.) As a warmup exercise, I use this idea in the
two-dimensional CP(1) sigma model with N ¼ ð2; 2Þ supersymmetry, through the minimal heterotic
N ¼ ð0; 2Þ → bosonic CP(1).

DOI: 10.1103/PhysRevD.102.125011

I. INTRODUCTION

It has long been known that the behavior of Yang-Mills
theories is unique in the sense that, unlike others, they
possess asymptotic freedom. It is also known that the first
coefficient of the β function has a peculiar form,

β1 ¼
11

3
N ≡ N

�
4 −

1

3

�
; ð1Þ

where the coefficients β1;2 are defined as

βðαÞ¼ ∂Lα¼−β1
α2

2π
−β2

α3

4π2
þ�� � ∂L≡ ∂

∂ logμ : ð2Þ

The first term in the parentheses in (1) presents the
famous antiscreening, while the second is the conventional
screening, as in QED. This was first noted by Khriplovich,
who calculated [1] the Yang-Mills coupling constant

renormalization [for SU(2)] in the Coulomb gauge1 in
1969. In his calculation, the distinction in the origin of 4 vs
− 1

3
is transparent: the graph determining the first term in the

braces does not have imaginary part and hence can—and in
fact does—produce antiscreening; see Fig. 1.
The same 4 vs − 1

3
split as in (1) is also seen in instanton

calculus and in calculation based on the background field
method [3]. In the first case, the term 4 emerges from the
zero modes and has a geometrical meaning of the number
of symmetries nontrivially realized on the instanton (see
below). Hence, it is necessarily integer. This part of β1 is in
essence classical. Bona fide quantum corrections due to
nonzero modes yield − 1

3
.

In the background field method, 4 vs − 1
3
split in (1)

emerges as an interplay between the magnetic (spin) vs
electric (charge) parts of the gluon vertex.
Below, we will discuss whether a similar interpretation

exists for the second coefficient in the β function in
gluodynamics (nonsupersymmetric Yang-Mills). To this
end, I will start from the simplestN ¼ 2 super–Yang-Mills
theory, which is built of twoN ¼ 1 superfields: vector and
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1See also 1977 papers in Ref. [2] devoted to the same
issue. Their authors apparently were unaware of Khriplovich’s
publication [1].
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chiral. In the N ¼ 1 language, the latter presents matter in
the adjoint representation of SUðNÞ. The central point is
that I convert the matter superfield into a “phantom” one
(in analogy with ghosts), i.e., replace the corresponding
superdeterminant by 1/superdeterminant. Then, N ¼ 2 is
broken down to N ¼ 1. The global SU(2) acting between
two gluinos in the original N ¼ 2 theory becomes graded.
Exact results in thus deformed theory will allow me to
obtain insights in nonsupersymmetric gluodynamics.

II. SETTING THE STAGE

Supersymmetric Yang-Mills (SYM) was the first four-
dimensional theory in which exact results had been
obtained. In what follows, I will use one of them, namely,
the so-called Novikov-Shifman-Vainshtein-Zakharov
(NSVZ) beta function [3] in SYM theory (reviewed in
Ref. [4]). Without matter fields, we have the following
result general for N ¼ 1, N ¼ 2, and N ¼ 4 theories,

βðαÞ ¼ −
�
nb −

nf
2

�
α2

2π

�
1 −

ðnb − nfÞα
4π

�−1
; ð3Þ

where nb and nf count the gluon and gluino zero modes,
respectively. For N ¼ 1, these numbers are

nb ¼ 2nf ¼ 4TG ¼ 4N ð4Þ

[I limit myself to the SUðNÞ gauge group theory in this
paper]. For N ¼ 2, one obtains

nb ¼ nf ¼ 4TG ¼ 4N: ð5Þ

Finally, for For N ¼ 4,

nb ¼
nf
2

¼ 4TG ¼ 4N: ð6Þ

As it follows from (5), the N ¼ 2 β function reduces to
one-loop (nb ¼ nf).
The main lesson obtained in Ref. [3] was as follows.

Equation (3) makes explicit that all coefficients of the β
functions inpure super–Yang-Mills theories have a geometric
origin since they are in one-to-one correspondence with the
number of symmetries nontrivially realized on instantons.
I will also need the extension of (3) including N ¼ 1

matter fields. We will consider one extra N ¼ 1 chiral
matter superfield in the adjoint representation of SUðNÞ;
then,

βðαÞ ¼ −
α2

2π

3TG − TGð1 − γÞ
1 − TGα

2π

; ð7Þ

where γ is the anomalous dimension of the corresponding
matter field.2 This so-called NSVZ formula appeared first
in Ref. [3] and shortly after in a somewhat more general
form in Ref. [5].3

Needless to say, in nonsupersymmetric Yang-Mills
theory (gluodynamics), exact β function determination is
impossible. Moreover, only the first two coefficients in the
β function are scheme independent. In supersymmetric
theories, the all-order results mentioned above are valid in a
special scheme (usually called NSVZ) recently developed
also in perturbation theory in Refs. [6,7]. So far, no analog
of this special scheme exists in nonsupersymmetric theo-
ries. Therefore, in discussing below geometry-related terms
in the β function coefficients in pure Yang-Mills theory,
I will limit myself to β1 and β2, which are scheme
independent. One can think of extending these results to
higher loops in the future.

III. SIMPLE MODEL TO BEGIN WITH

A pedagogical example of the model where the β
function similar to (7) appears is the N ¼ ð0; 2Þ heterotic
CP(1) model in two dimensions [8].4 Since Ref. [8] remains

(a) (b)

FIG. 1. Feynman graphs for the interaction of two (infinitely)
heavy probe quarks denoted by bold strait lines were calculated
by Khriplovich in the Coulomb gauge. The dotted lines stand for
the (instantaneous) Coulomb interaction. Thin solid lines depict
transverse gluons. In part a, a pair of transverse gluons is
produced. This graph has an imaginary part seen by cutting
the loop. As in QED, this pair produces screening. In part b, a
similar cut in the loop is absent since it would go through a
transverse gluon and the Coulomb dotted line. This graph is
responsible for antiscreening.

2For the adjoint matter superfield, γ ¼ − Nα
π .3Quite recently, derivation of the NSVZ β function in perturba-

tion theory was completed in Ref. [6]. This work also completes
construction of the NSVZ scheme. It contains an extensive list of
references, including those published after Ref. [7].

4Of course, in CP(N − 1) models, even nonsupersymmetric, all
coefficients have a geometric meaning; see e.g., Ref. [9]. This is
because such models themselves are defined through target space
geometry. We will useN ¼ ð0; 2Þ heterotic CP(1) model as a toy
model, a warmup before addressing Yang-Mills. Note also that
minimal heterotic models of the type (8), (11) do not exist for CP
(N − 1) with N > 2 because of the anomaly [10].

MIKHAIL SHIFMAN PHYS. REV. D 102, 125011 (2020)

125011-2



relatively unknown, I will first briefly describe it in terms
on N ¼ ð0; 2Þ superfields.
The Lagrangian of the N ¼ ð0; 2Þ model in two dimen-

sions analogous to that of N ¼ 1 4D SYM is

LA ¼ 1

g2

Z
d2θR

A†i∂RR

↔
A

1þ A†A
; ð8Þ

where A is an N ¼ ð0; 2Þ bosonic chiral superfield,

Aðx; θ†R; θRÞ ¼ ϕðxÞ þ
ffiffiffi
2

p
θRψLðxÞ þ iθ†RθR∂LLϕ: ð9Þ

Here, ϕ is a complex scalar, and ψL is a left-moving Weyl
fermion in two dimensions. Furthermore, the matter term is
introduced through another N ¼ ð0; 2Þ superfield B,

Biðx; θR; θ†RÞ ¼ ψR;iðxÞ þ
ffiffiffi
2

p
θRFiðxÞ þ iθ†RθR∂LLψR;iðxÞ;

ð10Þ

where i is the flavor index, i ¼ 1; 2;…; nf, and

Lmatter ¼
Z

d2θR
X
i

1

2

B†
i Bi

ð1þ A†AÞ2 ;

L ¼ LA þ Lmatter: ð11Þ

Note that the superfield B contains only one physical
(dynamic) field ψR, with no bosonic counterpart. This is
only possible in two dimensions.
In the minimal model (8) without matter, the exact beta

function [8] takes the form

βðg2Þ ¼ −
g4

2π

1

1 − g2

4π

; ð12Þ

while including matter, we arrive at

βðg2Þ ¼ −
g4

2π

1þ nfγ
2

1 − g2

4π

; ð13Þ

to be compared with (7). Equation (12) must be compared
with (7) with the second term in the parentheses omitted.
The parallel is apparent. There are two minor but techni-
cally important distinctions, however. First, in the two-
dimensional CP(1) model, unlike four-dimensional SYM,
the fermion contribution appears only in the second loop.
Second, as was mentioned, the matter superfield B contains
only one physical degree of freedom, namely, ψR. In super–
Yang-Mills theory, the matter superfield contains both
components, bosonic and fermionic.
Now, if nf ¼ 1 in the model under consideration,

supersymmetry is extended to N ¼ ð2; 2Þ. In other words,
in this case, we deal with nonchiralN ¼ 2 CP(1) which, as

is well known, has only one-loop beta function. From this
fact, we conclude that

γ ¼ −
g2

2π
: ð14Þ

Let us ask the following question: Is this information
sufficient to find the first and second coefficients in the
nonsupersymmetric (purely bosonic) CP(1) model without
actual calculation of relevant Feynman graphs?
Surprising though it is, the answer is positive. Indeed, let

us make the B superfield “phantom,” i.e., quantize ψR as a
bosonic field. In other words, we will treat ψR as a fermion
ghost field. In other words, the extra minus sign is needed
in the ψR loop. Then, the contributions of ψL ∈ A and
ψR ∈ B exactly cancel each other in the two-loop β
function (see Fig. 2; neither ψL nor ψR appears at one
loop). At this stage, N ¼ ð0; 2Þ supersymmetry is pre-
served. The cancellation of ψR;L contributions to β function
occurs despite the fact that one of the fermions is a left
mover and the other is a right mover.
Then, with the phantom B superfield, we can take

Eq. (13) and formally put

nf ¼ −1:

As a result, we end up the with the following two-loop
answer in the bosonic CP(1) model:

βCPð1Þ bosonic ¼ −
g4

2π

�
1þ g2

2π

�
: ð15Þ

With satisfaction, we observe that the above formula
coincides with the standard answer [9].

IV. SUðNÞ YANG-MILLS THEORIES

Now, I return to gauge theories with the goal of
analyzing the second coefficient of the β function in pure
gluodynamics,

FIG. 2. The phantom field ψR cancels the contribution of ψL in
the two-loop beta function. This is the only diagram to be
considered at small ϕ.
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βpureYM ¼ −
11

3
N
α2

2π
−
17

3
N2

α3

4π2
þ � � � ð16Þ

We will see that the second coefficient can be represented
as follows,

β2 ¼ N2
17

3
¼ N2

�
6 −

1

3

�
; ð17Þ

to be compared with the first coefficient in Eq. (1).5 The
term 6 in the parentheses of (17) is again related to the
number of instanton zero modes in N ¼ 1 SYM. Thus, it
has a geometrical meaning. The second term − 1

3
has a bona

fide quantum origin.
The line of reasoning will be the same as in Sec. III.
Let us start from N ¼ 1 SYM without matter.

The corresponding expression is given by (7) withP
i TGð1 − γÞ ¼ 0 or, which is the same, in Eqs. (3) and

(4). Then, we add one chiral superfield in the adjoint
representation of SUðNÞ. By the same token as in Sec. III,
supersymmetry of the model with theN ¼ 1 adjoint matter
included is automatically extended from N ¼ 1 to N ¼ 2.
In the latter, the β function is given by Eqs. (3) and (5);
i.e., it reduces to one loop.
The next step is to declare the chiral adjoint matter

superfield to be phantom in N ¼ 2 super–Yang-Mills
theory. At this point, we brake the global SU(2) acting
on the doublet

�
λ

λ̃

�
: ð18Þ

More exactly, we transform it into a graded suð2Þ algebra
with the generators T� becoming odd elements, while T0

remains even. In Eq. (18), λ is the first gluino, i.e., the one
from the vector superfield, while λ̃ is the second gluino
belonging to the matter superfield.
Declaring the chiral superfield to be phantom amounts to

replacing the instanton superdeterminant for N ¼ 1 matter
by its reverse, or, diagrammatically, we must change the
sign of the matter contribution in Eq. (7), namely,

−TGð1 − γÞ → þTGð1 − γÞ ð19Þ
From the one-loop condition for N ¼ 2 SYM β function
using Eq. (7), we derive

γ ¼ −TG
α

π
: ð20Þ

Equation (20) in combination with (19) is to be
substituted into (7). After this is done, the β function in
the “phantomized” theory takes the form [after expanding
the denominator in (7)]

βph ¼ −
α2

2π
4N

�
1þ Nα

4π

��
1þ Nα

2π

�

¼ −
α2

2π
4N

�
1þ 3Nα

4π

�
þ � � �

↔ −
α2

2π
nb

�
1þ

�
nb −

nf
2

�
α

4π

�

¼ −
α2

2π

�
4N þ 6N2

α

2π

�
: ð21Þ

Here, β carries a subscript ph (standing for phantom)—it
does not refer to any physical theory. Exactly the same
formula emerges from the instanton calculation in which
the instanton measure is adjusted to reflect “phantomiza-
tion” of the matter field. Since N ¼ 1 is unbroken, all
nonzero modes still cancel. At this level, the first and the
second coefficients in βph are related to geometry and are
integers (see the second line above). Moreover, nb and nf in
(21) refer to N ¼ 1 theory; see (4).
This is not the end of the story, however. Unlike the

situation in Sec. III, in the Yang-Mills case, phantomizing
the theory is not enough to pass to nonsupersymmetric
gluodynamics.
Let us ask ourself what diagrams present in SYM but

absent in nonsupersymmetric gluodynamics are canceled
by phantom matter. The answer is obvious and is depicted
in Fig. 3. Any number of gluons (with possible λ, λ̃
insertions) can be drawn inside the λ, λ̃ loops in Fig. 3;
cancellation still persists.
What does not cancel? It is obvious that all diagrams

with the adjoint scalar field ϕa from the matter N ¼ 1
superfield still reside in Eq. (21) and must be subtracted in
passing to nonsupersymmetruc gluodynamics. The sim-
plest example of such a graph is presented in Fig. 4. In fact,
this graph is the only one to be dealt with at one loop. One
should not forget that in (21) the above diagram refers to the
phantom ϕa field. Hence, its subtraction is equivalent to
addition of the regular (unphantomized) ϕa loop. As for
two-loop diagrams—for brevity, I will present them omit-
ting background field legs—they are shown in Fig. 5. The
situation with Fig. 5(a) is exactly the same as with that in
Fig. 4. Both Figs. 5(a) and 5(b), taken together, present the
phantom ϕa field contribution, which must be subtracted

FIG. 3. Two classes of graphs canceling each other. Here, λ
marks the gluino lines, while λ̃ is the adjoint matter fermion from
the phantom matter field. The gray shading indicates all possible
gluon insertion. The wavy line is the gluon background field.5For the definition, see Eq. (2).
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from βph if we want to pass to pure gluodynamics. In fact,
because of their phantom sign, to pass to pure gluody-
namics, we must add these graphs as a normal (non-
phantom) contribution to βph.
In the Appendix, I check that the impact of the quantum

corrections associated with Figs. 4 and 5 on the phantom β
function in (21) is as follows,

βpureYM ¼ βph þ δscβ; ð22Þ

where

δscβ ¼ 1

3

�
N
α2

2π
þ N2

α3

4π2

�
; ð23Þ

which perfectly coincides with Eqs. (1), (2), (16), and (17).
Needless to say, the sign of these corrections corresponds to
screening.

V. N = 2 SYM AND ADJOINT QCD
WITH TWO FLAVORS

Recently, a renewed interest in adjoint QCD led to some
unexpected results (see e.g., Ref. [11] and an old but useful
for my present purposes review [12]). In this section,
I compareN ¼ 2 SYM with adjoint QCD with two quarks
(two adjoint Weyl or Majorana fields).

As is well known, in N ¼ 2 SYM, the β function is
exhausted by one loop; see Eq. (3) and (5). The first
coefficient in this β function is

ðβN¼2Þ1 ¼ nb −
1

2
nf ¼ 2N: ð24Þ

The geometric origin of this coefficient is obvious.
What should be changed in N ¼ 2 SYM to convert

this theory into adjoint QCD with Nf ¼ 2? The answer is
clear—one should subtract the same graphs in Figs. 4 and
5, which were added in Eq. (22),

βadj QCD ¼ βN¼2 − δscβ

¼ −
�
2þ 1

3

�
N
α2

2π
−
N2

3

α3

4π2
: ð25Þ

Equation (25) coincides with the known β function in
adjoint QCD [12].

VI. RENORMALONS AND
ADIABATIC CONTINUITY

Renormalons introduced by ’t Hooft [13] emerge from a
specific narrows class of multiloop diagrams,6 the so-called
bubble chains; see Fig. 6. Formally,7 this chain produces a
factorially divergent perturbative series

∼
X
n

�
β1αs
8π

�
n
n!: ð26Þ

In the Borel plane, the above factorial divergence manifests
itself as a singularity at

8π

β1
¼ 2π

N
12

11

in pure gluodynamics. At the same time, in adjoint
QCDNf¼2 discussed in Sec. V, the renormalon-induced
singularity in the Borel plane is at

8π

β1
¼ 4π

N
6

7
:

The both cases are depicted by crosses in Fig. 7.
Simultaneously, this figure shows (by closed circles) the

would-be positions of the renormalon singularities if small
quantum terms 1

3
in Eqs. (1) and (25) were neglected. If

measured in the units of 2π=N, the latter are integers.
Why this is important? The answer to this question is

associated with the program due to Ünsal launched some

FIG. 4. The one-loop ϕa contribution to be subtracted in
passing from Eq. (21) to nonsupersymmetric Yang-Mills.

(a) (b)

FIG. 5. Two-loop graphs to be subtracted in passing from
Eq. (21) to non-SUSYYang-Mills. Here, λmarks the gluino lines,
while λ̃ is the adjoint matter fermion from the phantom superfield.
The diagram a combined with that in Fig. 4 gives the ϕa

contribution to two-loop β function in QCD with scalar “quark”
(i.e., ϕa is to be considered as scalar quark in the adjoint
representation.)

6For a recent brief review, see Ref. [14].
7“Formally” means that in order to stay within the limits of

applicability of perturbation theory we have to cut off the sum in
Eq. (26) at a certain value of n ¼ n�.
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time ago [15] aimed at developing a quasiclassical picture
on R3 × S1 at sufficiently small radius rðS1Þ. This program
later was supplemented by the idea of adiabatic continuity
stating that tending rðS1Þ → ∞ (i.e., returning to R4) one
does not encounter phase transitions on the way. Another
crucial observation is that the renormalon singularity must
conspire with operator product expansion (OPE). In both
theories outlined in Fig. 7, the leading term in OPE is due to
the operator GμνGμν (the gluon condensate).
Now, within the program [15] a large number of new

saddle-point configurations were discovered, the so-called
monopole instantons, also known as bions, both magnetic
and neutral. Their action is 2π=N, i.e., N times smaller than
that of instantons. In other words, in this picture, a single
instanton can be viewed as a composite state of N bions.
Then, it becomes clear why a single bion saturates the

gluon condensate in gluodynamics. Moreover, in adjoint
QCDNf¼2, similar saturation is due to an bion-antibion pair
which is tied up because of the existence of the fermion
zero modes. The zero modes produced by bion and those
from antibion must be contracted to give rise to the gluon
condensate. In the Borel plane (Fig. 7), the single-bion
contribution is shown by a closed circle in the upper graph,
while the bion pair’s contribution is depicted in the lower

graph. We see that the adiabatic matching would be perfect
if we could ignore the small quantum terms 1

3
in Eqs. (1) and

(25). The adiabatic matching is perfect in the phantom
theory of Sec. IV.

VII. CONCLUSION

Starting from N ¼ 2 super–Yang-Mills and phantomiz-
ing the N ¼ 1 matter superfield, I arrived at a fully
geometric βph function. This proves the statement I made
in Sec. I that the integer part of the first and second
coefficients in βpureYM count the number of certain sym-
metry generators, both bosonic and fermionic, in N ¼ 1
SYM. The latter theory becomes relevant because my
phantomization procedure breaks N ¼ 2 → N ¼ 1.
Relatively small noninteger additions represent bona fide
quantum corrections, which do not appear in N ¼ 1 SYM
because of the Bose-Fermi cancellations. At the moment,
one might think that this idea could shed light on some
other intricate aspects of gauge theories, for instance on
nuances of renormalons.
In particular, the geometric integers 4 and 6 appearing in

(1) and (17) are the dimensions of the lowest-dimension
gluon operators, quadratic and cubic in the gluon field
strength tensor, respectively. The standard renormalon
wisdom says that the renormalon singularities in the
Borel plane conspire with these operators in the operator
product expansion.
At the same time, the current understanding of renor-

malons in SYM theory continues to be incomplete (see
Refs. [14,16]). The gluon condensate vanishes in super-
symmetric gluodynamics. The leading renormalons have
nothing to conspire with. Are there undiscovered cancella-
tions? This suggestion does not seem likely, but we cannot
avoid providing a definite answer any longer.
Summarizing, I established a certain proximity between

pure gluodynamics and an N ¼ 1 theory. Moreover, in the
same sense, adjoint QCDNf¼2 is close to N ¼ 2 SYM.
Conceptually, this is similar to the proximity of pure
gluodynamics to fundamental QCD in the limit N → ∞.
In the latter case, the parameter governing the proximity is
adjustable, 1=N. In the cases considered in this paper, it is
rather a numerical parameter whose origin is still unclear
but is quite apparent in Eqs. (1) and (17). It seems to be
related with the dominance of magnetic interactions of
gluons over their charge interactions. If we could tend this
parameter to zero, we would be able to say more about the
adiabatic continuity.
I would like to add a few remarks on questions relevant

for the future studies.

Remark 1.—Since pure gluodynamics is close to N ¼ 1
phantom theory, the gluon condensate in the former must
be suppressed to a certain extent since it is forbidden in
N ¼ 1 supersymmetry.

FIG. 7. Leading renormalon-related singularities in the Borel
plane (marked by crosses) for pure gluodynamics and adjoint
QCDNf¼2, respectively. The closed circles mark the would-be

positions of the renormalon singularities if small quantum terms 1
3

in Eqs. (1) and (25) were ignored.

FIG. 6. ’T Hooft’s bubble-chain diagrams representing renor-
malons.
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Remark 2.—My present consideration entangles renor-
malons, their conspiracy with OPE, the quasiclassical
treatment on R3 × S1, and adiabatic continuity all in one
junction both in pure gluodynamics and adjoint QCDNf¼2.
Can this line of studies be continued?
Remark 3.—N ¼ 1 phantom SYM theory I have dis-

cussed in this paper calls for further investigations. For
instance, I believe that, despite the presence of nonunitary
contributions, if we consider amplitudes with only gluonic
extermal legs, their inclusive imaginary parts will be
positive. In this narrow sense, they will preserve unitarity.
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APPENDIX: COMPLEX SCALAR
ADJOINT QUARKS

First, let us analyze diagrams in Figs. 4 and 5(a). As was
mentioned, they present the “scalar quark” contributions in
QCD. We can extract them from the known result for the
QCD β function, by changing the appropriate Casimir
coefficients from the fundamental representation to the
adjoint.8

The QCD β function with one adjoint scalar quark
extracted from Refs. [17,18] in my notation reduces to

βYMþSQ ¼ −
�
11

3
N−

1

3
N|ffl{zffl}

Fig:4

�
α2

2π
−
�
17

3
N2−2N2 −

1

3
N2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Fig:5a

�
α3

4π2

þ � � � ðA1Þ

The scalar quark contribution is underlined by underbraces.
This is not the end of the story, however. In addition,
I have to take into account the graph depicted in
Fig. 5(b).
The fastest and most efficient method of such calcu-

lations is the background field method; see Ref. [19].
Background field emission can occur either from the λ, λ̃
lines or from the ϕ line. In the first case, the relevant
propagator is

Sðx; 0Þ ¼ 1

2π2
x̂
x4

−
1

8π2
xα
x2

G̃αφð0Þγφγ5 þ � � � ; ðA2Þ
where the ellipses denote irrelevant terms in the expansion
and, moreover,

G̃αφ ¼ 1

2
εαφβρGβρ:

In the second case, the relevant propagator is that of ϕ (see
Ref. [20]),

Gðx; 0Þ ¼ i
4π2

1

x2
þ i
512π2

x2G2ð0Þ þ � � � ðA3Þ
The result of calculation of the diagram in Fig. 5(b) is also
known in the literature. We can borrow it from Sec. 5 of
Ref. [20],

ΔβjFig: 5b ¼ −2N2
α3

4π2
: ðA4Þ

Combining (A4) and (A1), we arrive at δscβ given
in Eq. (23).
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