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We compute the semiclassical decay rate for Kerr black hole by deriving a one-way connection formula,
relating the near horizon solution to the outgoing solution at infinity. In particular, we discuss the relevance
of the Stokes phenomenon and show how it leads to a Boltzmann-like thermal weight factor by making
use of the Stokes diagrams. We also give the exact result for the semiclassical greybody factor e−2S, where S
is the leading order WKB action. We contrast our results with the work of Maldacena and Strominger
[Phys. Rev. D 56, 4975 (1997), where the emission spectrum for a rotating black hole was computed locally
via asymptotic matching. We find that the relative error of semiclassical decay rate with respect to
asymptotic matching formula diminishes in the limit of large angular momentum, l, as expected. In this
limit, the action assumes a compact form: 2S ∼ ð2lþ 1ÞðLogð16z0Þ − 1Þ, where z0 is the cross ratio formed by

the critical points (zeros) of the scattering potential.

DOI: 10.1103/PhysRevD.102.125006

I. INTRODUCTION

Since Hawking’s original treatment of collapse geom-
etry, the low energy decay rates for black holes have been a
subject of extensive study [1]. The thermal character of the
emitted radiation discovered by Hawking was later derived
within an alternative framework by Damour and Ruffini,
who have considered analytic continuation of the outgoing
modes in a fixed Kerr-Newman geometry [2]. Here, in the
spirit of [2], we consider an alternative approach for
deriving the Boltzmann-like thermal factor in Kerr back-
ground by incorporating the Stokes phenomenon. As we
will discuss in Sec. III in detail, we will derive a one-way
connection formula relating the amplitude of ingoing wave
in the vicinity of the event horizon to the outgoing wave
at infinity. The connection formula we obtain is derived
from the standard analytic continuation rules of the semi-
classical approximation. In this framework, obtaining the
greybody factor is quite straightforward, the derivation of
the Boltzmann-like factor on the other hand requires a
careful analysis of the Stokes diagram in the vicinity of the
event horizon. Our approach yields equivalent results with
[2] without invoking negative norm states.
In recent years, the remarkable correspondence

between the microscopic decay rate and the connection
formula coming from the method of matched asymptotic

expansions has received tremendous attention as one of the
key aspects of Kerr/CFT correspondence [3–7]. In the
asymptotic matching procedure, the subdominant terms in
the scattering potential are either neglected or taken to be
constant in near horizon and far regions. This enables the
exact treatment of the radial problem in each respective
region and because of this the accuracy of the emission
rates is expected to be very robust at low energies. Despite its
accuracy, such an analysis is local in nature as the scattering
potential is treated separately in near and far regions. As a
result, the greybody factors obtained in this fashion do not
show explicit dependence on what may be called the global
features of the full scattering potential such as the cross
ratios. On the other hand, the exact treatment of the
connection problem largely remains elusive. This is because
in Schwarzschild/Kerr backgrounds the solutions of the
radial problem are given by the Heun-type functions, whose
asymptotic expansions in terms of the known functions are
less well known [8,9].
In view of these observations we analyze here the

exact form of the leading order semiclassical action S in
Kerr geometry, to flesh out the analytical structure of the
greybody factor which is otherwise uncaptured by the
asymptotic matching procedure. In contrast to the asymp-
totic matching procedure, WKB solutions for the radial
problem are approximate but no approximation on the
scattering potential is made. Due to the approximate nature
of solutions, the accuracy of the WKB connection formula
is limited, giving accurate results for higher partial waves,
but the semiclassical action S reveals an interesting
structure. Being invariant under translations, S is given
in terms of elliptic integrals whose arguments depend on
three independent cross ratios, z0; z� formed by the critical
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points (zeros) and the poles (event horizons) of the
scattering potential.
The plan of the paper is as follows. In Sec. II, we briefly

recall the asymptotic matching procedure in Kerr back-
ground. In Sec. III, we give the analytic continuation rules
and derive the connection formula in accordance with the
Stokes diagram of WKB solutions. We discuss the analytic
properties of S in Sec. IV. We particularly look into the limit
where z0 ≪ 1 and we also give quantitative results on the
relative error of the connection formula with respect to the
asymptotic matching formula given by Maldacena and
Strominger [3]. The final section contains our conclusions.

II. ASYMPTOTIC MATCHING

In this section we briefly recall the asymptotic matching
procedure, closely following the prescription given in [3].
The background we will work with is given by the Kerr
metric:

ds2 ¼ −
�
Δ − a2 sin θ2

Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�ðr2 þ a2Þ2 − Δa2sin2θ

Σ

�
sin2θdϕ2

−
�
2asin2θðr2 þ a2 − ΔÞ

Σ

�
dtdϕ; ð1Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ð2Þ

We will use normalized units throughout (G ¼ c ¼ 1).
The event horizons are given by the roots of Δ:

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð3Þ

The remaining relevant quantities, the temperature TH,
angular velocityΩ, and areaA of the horizon are defined as

TH ¼ rþ − r−
8πMrþ

; Ω ¼ a
2Mrþ

; A ¼ 8πMrþ: ð4Þ

We will consider the matching problem for the radial
component of a massless scalar field satisfying the wave
equation:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0 ð5Þ

which admits separable solution of the form

Φ ¼ eimϕ−iωtSλðθ; aωÞRðrÞ: ð6Þ

By plugging (6) into (5), one gets for the radial part

Δ
d
dr

�
Δ
dR
dr

�
þ ðK2 − ΛΔÞR ¼ 0; ð7Þ

where

K ¼ ðr2 þ a2Þω − am; Λ ¼ λþ a2ω2 − 2amω: ð8Þ

For aω ≪ 1, the eigenvalues satisfy λ ≈ lðlþ 1Þþ
Oða2ω2Þ. In what follows the exact solutions of (7) in
near and far horizon regions will be given. These solutions
will be matched in the overlapping region, giving us the
matching coefficient that determines the emission ampli-
tude. The precise definitions of near and far regions were
given in [3] as

Near region∶ ωðr − rþÞ ≪ 1

Far region∶ M ≪ r − rþ: ð9Þ

Note that the conditions given above make no reference
to angular momentum, l. For large l, there is a parameter
window for which the above matching conditions can be
loosened. This was elucidated by Cvetic and Larsen in [4]
where a consistent set of matching conditions involving the
eigenvalues were given. The low energy condition is given
byMω ≪ 1, which means that Compton wavelength of the
scalar particle is much bigger than the gravitational size of
the black hole. From the WKB perspective, the low energy
limit or more precisely the correspondence limit translates
into the fact that there is a large separation between the
critical points (zeros) of the scattering potential for the
given value of momenta. This geometric notion is encoded
by the condition z0 ≪ 1, where z0 is the cross ratio formed
by the zeros of the scattering potential. We will come back
to this point later in Sec. III.

A. Near region

Using (9), the scattering potential in the near region is
approximated as

K2 − ΛΔ ≈ r4þðω −mΩÞ2 − lðlþ 1ÞΔ; ð10Þ

where a2ω and smaller terms are neglected. With these
approximations the radial equation takes the form

Δ
d
dr

�
Δ
dR
dr

�
þðr4þðω−mΩÞ2−lðlþ 1ÞΔÞR¼ 0 ð11Þ

which upon making the following substitutions,

z ¼ r − rþ
r − r−

; R ¼ Azi
ω−mΩ
4πTH ð1 − zÞlþ1F; ð12Þ

turns into the hypergeometric differential equation:
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zð1 − zÞ∂2
zF þ ðγ − ð1þ αþ βÞÞ∂zF − αβF ð13Þ

with

F ≔ Fðα; β; γ; zÞ

α ¼ 1þ lþ i
ω −mΩ
2πTH

;

β ¼ 1þ l

γ ¼ 1þ i
ω −mΩ
2πTH

: ð14Þ

Note that (13) has two independent solutions. The solution
in (14) was picked on the grounds that there should be only
ingoing wave at the horizon, z ¼ 0 (we will elaborate on
the boundary conditions in more detail when we discuss the
Stokes phenomenon). This solution is to be matched with
the far region solution and for this we need the asymptotic
expansion of (14) for large r (z → 1). The asymptotic
expansion follows from the Kummer transformation of the
hypergeometric function yielding

Fðα; β; γ; zÞ

¼ ð1 − zÞγ−α−β ΓðγÞΓðαþ β − γÞ
ΓðαÞΓðβÞ

× Fðγ − α; γ − β; γ − α − β þ 1; 1 − zÞ

þ ΓðγÞΓðγ − α − βÞ
Γðγ − αÞΓðγ − βÞFðα; β; αþ β − γ þ 1; 1 − zÞ:

ð15Þ

Letting z to unity and using (12) ultimately yields

R¼ A

�
r

rþ − r−

�
−l−1

Γ
�
1þ i

ω−mΩ
2πTH

�

×

�
Γð−2l− 1Þ

Γð−lÞΓð−lþ iω−mΩ
2πTH

Þ

þ Γð2lþ 1Þ
Γðlþ 1ÞΓð1þ lþ iω−mΩ

2πTH
Þ
�

r
rþ − r−

�
2lþ1

�
: ð16Þ

B. Far region

In this region gravitational effects die out, the radial
equation reduces to the ordinary differential equation in flat
space:

1

r2
∂rðr2∂rRÞ þ

ω2r2 − lðlþ 1Þ
r2

R ¼ 0 ð17Þ

which admits solutions given by Bessel functions:

R ¼ 1ffiffiffi
r

p ½a1Jlþ1
2
ðωrÞ þ a2J−l−1

2
ðωrÞ�; ð18Þ

where a1 and a2 are unspecified coefficients. For large r
the above solution behaves as

R⟶
r→∞ 1

r

ffiffiffiffiffiffi
2

πω

r �
−a1 sin

�
ωr −

lπ
2

�
þ a2 cos

�
ωrþ lπ

2

��
:

ð19Þ

We will use this solution to compute the outgoing flux at
infinity. The form of the solution to be matched with (16)
is given by the small r expansion of (18), which is
approximately given by

R ≃
1ffiffiffi
r

p
�

a1
Γðlþ 3

2
Þ
�
ωr
2

�
lþ1

2 þ a2
Γð−lþ 1

2
Þ
�
ωr
2

�
−l−1

2

�
:

ð20Þ

C. Matching and decay rate

The remaining task is to equate the dominant part of the
solutions (with positive powers) given by (16) and (20).
This specifies the coefficient A to be

A ¼
ðrþ − r−Þlωlþ1

2Γðlþ 1ÞΓð1þ lþ i ω−mΩ
2πTH

Þ
2lþ1

2Γðlþ 3
2
ÞΓð2lþ 1ÞΓð1þ i ω−mΩ

2πTH
Þ a1: ð21Þ

To find the decay rate, we need the ingoing flux at the
horizon and the outgoing flux at infinity. These can be
readily computed by using the conserved flux for the radial
equation (7):

f ¼ 2π

i
R�Δ∂rR − RΔ∂rR� ð22Þ

and the solutions (12) and (19), yielding (see [3] for details)

fin ¼
ω −mΩ

TH
ðrþ − r−ÞjAj2; fout ¼ 2ja1j2: ð23Þ

The absorption amplitude is given by the ratio of fluxes:

σ ¼ ω −mΩ
2TH

ðrþ − r−Þ2lþ1ω2lþ1

22lþ1

×

���� Γðlþ 1ÞΓð1þ lþ i ω−mΩ
2πTH

Þ
Γðlþ 3

2
ÞΓð2lþ 1ÞΓð1þ i ω−mΩ

2πTH
Þ

����
2

ð24Þ

and the total decay rate is

Γ ¼ σ

e
ω−mΩ
TH − 1

: ð25Þ

STOKES PHENOMENON AND HAWKING RADIATION PHYS. REV. D 102, 125006 (2020)

125006-3



The full expression for the decay rate can further be
simplified by making use of the identities for the gamma
function, but for the sake of comparison with the WKB
connection formula we will use the factorized form
given above.

III. SEMICLASSICAL APPROXIMATION

In order to perform the semiclassical analysis we return
back to the radial equation in (7), and make the substitution
R ¼ Δ−1

2R̃. This eliminates the first order derivative and
turns (7) into the Schrödinger-like equation:

∂2
rR̃þ

�
K2 − ΛΔþM2 − a2

Δ2

�
R̃ ¼ 0 ð26Þ

with the effective scattering potential,

VðrÞ ¼ −
�
K2 − ΛΔþM2 − a2

Δ2

�
; ð27Þ

and admits the standard WKB solutions:

R̃ ¼ a1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2prðrÞ

p eφðp;rÞ þ a2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2prðrÞ

p eφðr;pÞ: ð28Þ

Here, a1 and a2 are undetermined complex coefficients.
The phase integral is defined as

φðp; rÞ ¼ i
Z

r

p
prðr0Þdr0 ð29Þ

where the limits of integration are interchanged for φðr; pÞ.
Note that the specific value of φðp; rÞ is defined with
respect to the phase reference point p, which is generically
taken to be the critical points of potential. The radial
momentum pr is given by the positive root:

pr ¼
½K2 − ΛΔþM2 − a2�12

Δ
ð30Þ

such that limr→∞ pr ¼ ω. The appropriate boundary con-
ditions for the problem can directly be read off the
scattering potential as shown in Fig. 1. In the horizon
region we have over-the-barrier scattering. This means in
region I, to the left of the event horizon, we have only
an ingoing solution as required by causality, whereas in
region II, in the vicinity of the critical point, there are
ingoing and outgoing solutions. Regions II and III are
connected by under-the-barrier transmission between two
critical points; therefore we require there is only an out-
going wave in region III.

A. Analytic continuation and the
Stokes phenomenon

In the following, we will briefly introduce the analytic
continuation rules and use these rules to derive a
connection formula between ingoing modes in the
vicinity of the horizon and the outgoing modes at
infinity. For an in-depth analysis of the theory and the
Stokes phenomenon, we refer the interested reader to an
excellent review given by Berry [10] and the classic
manuscript by Heading [11].
The boundary conditions discussed in the previous

section show that the form of the solution given by (28)
is local in nature. In between critical points the solution is
evanescent, in other words, there is only the exponentially
decaying solution. If we pass into region II, not only the
solution becomes oscillatory but it also becomes a linear
combination of both solutions. In semiclassics, the appear-
ance of the second solution upon changing the complex
domain is known as the Stokes phenomenon. A canonical
example of this is given by the Airy function AiðrÞ, whose
behavior in the complex domain is analogous to that of
WKB solutions here. For complex r, AiðrÞ has the
following representations:

AiðrÞ ∼ 1

2
π−

1
2r−

1
4e−

2
3
r3=2 ; ArgðrÞ ¼ 0

AiðrÞ ∼ 1

2
π−

1
2r−

1
4

�
e−

2
3
r3=2 þ ie

2
3
r3=2

�
;

2π

3
≤ ArgðrÞ ≤ 4π

3
:

ð31Þ

V(r)

r+ r
3

r
4

I II III

FIG. 1. Schematic representation of effective scattering poten-
tial VðrÞ (solid blue line). The points r3 and r4 denote the zeros of
VðrÞ. Regions I and II are respectively located to the left and to
the right of the event horizon rþ, marked by the dashed vertical
line. The arrows indicate the local form of the solution in each
respective region: In region I, there is only an ingoing solution,
whereas region II contains both ingoing and outgoing solutions.
Region III is located beyond the critical point r4, where there is
only an outgoing solution.
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Note that the function behaves exponentially small (sub-
dominant) for real and positive r, i.e., to the right of
the critical point at r ¼ 0. However, this property reverses
on the line emanating from the critical point, with
ArgðrÞ ¼ π=3. This line is called the anti-Stokes line on
which the real part of the exponent vanishes and changes its
sign. This simple observation immediately leads us to the
first rule: upon crossing an anti-Stokes line, a subdominant
(exponentially small) solution turns into a dominant (expo-
nentially large) solution and vice versa. For WKB sol-
utions, we can denote this change by making use of the
compact notation introduced by Heading [11]:

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pðrÞp eφðp;rÞ≔ ðp;rÞ; 1ffiffiffiffiffiffiffiffiffiffiffiffi

2pðrÞp eφðr;pÞ≔ ðr;pÞ: ð32Þ

Given the subdominant solution, ðp; rÞs, upon crossing the
anti-Stokes line one has

ðp; rÞs → ðp; rÞd; ðr; pÞd → ðr; pÞs: ð33Þ

The same rule equally applies if we pick ðp; rÞ as dominant.
Beyond the anti-Stokes line the Airy function grows
exponentially and on the line where ArgðrÞ ¼ 2π=3, it
attains its largest value. This line is called the Stokes line,
on which the exponent becomes purely real. Beyond this
line the form of the solution now includes a subdominant
term as given in (31). The factor of i in front of the
subdominant solution is called the Stokes constant. To see
why such a change in the form occurs, it is illustrative to
analyze the function by its integral representation:

AiðrÞ ¼ 1

2πi

Z
C
e−

1
3
t3þrtdt: ð34Þ

Here, the integration contourC asymptotes to infinity along
the directions:

jtj → ∞;
π

2
≤ ArgðtÞ ≤ 5π

6

jtj → ∞;
7π

6
≤ ArgðtÞ ≤ 3π

2
ð35Þ

ensuring the finiteness of the integral given in (34). One
can deform C to coincide with the steepest descent lines of
the integrand, through single or both saddle points of the
exponent given by t1;2 ¼ �jrj1=2ei

2
ArgðrÞ. The important

point to note here is that the shape of the contour is
sensitive ArgðrÞ because the location of the saddle points
depends on ArgðrÞ. For instance for ArgðrÞ ¼ 0, the
steepest descent contour starts from the third quadrant as
shown in the Fig. 2, and receives the contribution from the
saddle point of the exponent at t1 ¼ −r1=2, thus yielding
the subdominant solution given by the first line of (31).
As ArgðrÞ increases, saddle points shift and beyond the
Stokes line where ArgðrÞ ≥ 2π=3, the steepest descent
contour through the lower saddle point receives the con-
tribution from the upper saddle point as well, ultimately
resulting in the representation of AiðrÞ given by the second
line of (31). A detailed contour analysis of Airy functions
can be found in the treatise by Budden [12].
In functional analysis, such discontinuous changes in

integral representations of special functions are ubiquitous.

t
1

t
2

Im t

Re t

t
1

t
2

Im t

Re t

FIG. 2. Integration contours, the lines of steepest descent and ascent for the Airy function given by (34). For ArgðrÞ ¼ 0 (left) the
saddle points are respectively located at t1 ¼ −r1=2 and t2 ¼ r1=2. The solid horizontal (blue) line represents the line of steepest ascent
through t1 and the line of steepest descent through t2. The left solid curve is the line of steepest descent through t1, and it begins and ends
where ArgðtÞ ∼� 2

3
π, which is within the sectors given by (35). Hence, the integration contour shown by arrowheads can be deformed to

coincide with the line of steepest descent through t1. For ArgðrÞ ¼ 2
3
π (right), the saddle points shift to the complex plane. The

integration contour in this case is aligned with the line of steepest descent through t1 all the way up to t2. To continue the descent and end
in the right sector, the contour makes a right angle in the vicinity of t2 and continues on the left branch.
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Recalling the asymptotic matching procedure, the Stokes
phenomenon was in effect while performing the asymptotic
expansion of hypergeometric function, in passing from a
purely ingoing solution at the horizon to a linear combi-
nation of ingoing and outgoing solutions in the matching
region. It must be emphasized here that the resulting change
in the WKB solutions upon crossing the Stokes line must
be encoded in the coefficient of the subdominant solution,
in the vicinity of the critical point, where the magnitude of
the error in the dominant solution becomes large enough to
consistently allow for such discontinuous jump. In view of
these observations, we may now give the second rule: upon
crossing the Stokes line Si, the subdominant solution
changes according to

c1ðp; rÞd þ c2ðr; pÞs → c1ðp; rÞd þ ðsic1 þ c2Þðr; pÞs;
ð36Þ

where si is the Stokes constant associated with the Stokes
line Si.
To briefly sum it up, the Stokes phenomenon is behind

the appearance of the subdominant solution in the domain
of interest. The local form of solution can be specified in
each domain bounded by Stokes and anti-Stokes lines by
following these two simple rules. For this, the identification
of the dominant and subdominant solutions is essential.
In quantum mechanical scattering problems, the Stokes
phenomenon gives rise to the reflection phenomena [13]
and also plays a key role, in somewhat different context, in
the application of resurgence theory to the perturbative
expansions of quantum field theories [14,15]. As we will
discuss shortly, the Hawking quanta responsible for the
emission is encoded by the subdominant solution in the
horizon region and the appearance of such a solution is in
fact brought by the requirement of causality.

B. Hawking radiation

We begin the discussion by analyzing the radial momen-
tum given in (30). To make the root structure obvious, we
rewrite pr by factoring out ω2 from the radicand, giving

pr ¼
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − r4Þðr − r3Þðr − r2Þðr − r1Þ
p

ðr − rþÞðr − r−Þ
ð37Þ

which shows that there are four critical points and two
poles, given by the location of event horizons. In the
semiclassical limit (Mω ≪ 1;l ≫ 1) all the critical points
are real and satisfy

r4>r3>rþ>r−>r2>r1ri∈R; i¼1;2;3;4 ð38Þ

and the cross ratio formed by them:

z0 ¼
ðr3 − r2Þðr4 − r1Þ
ðr3 − r1Þðr4 − r2Þ

ð39Þ

satisfies z0 ≪ 1. The Stokes diagrams belonging to the
phase integrals φðr4; rÞ and φðr3; rÞ are shown in Fig. 3.
The Stokes wedge 1 contains the asymptotic region r → ∞,
where we impose the boundary condition that there is
only the outgoing wave. This is given by the solution
e−iωtðr4; rÞ. To see this is indeed the case, let us resolve
φðr4; rÞ into real and imaginary parts:

φðr4; xþ iyÞ ¼ uðx; yÞ þ ivðx; yÞ:

At a later time tþ δt, the outgoing wave on the real axis
travels to the right by xþ δx such that the value of the
phase becomes

i

�
vðx; 0Þ þ δx

∂vðx; 0Þ
∂x

�
− iωðtþ δtÞ:

Away from the critical point, this is equal to the original
phase provided:

dx
dt

¼ ω

pr
: ð40Þ

Recalling we have chosen pr as the positive root from the
beginning, it follows that the rhs of (40) is positive as well,
showing ðr4; rÞ indeed represents outgoing wave, for which

1

234

5

67

Im r

Re r
r+ r3

r4

r-

FIG. 3. The Stokes diagram belonging to the phase integrals
φðr3; rÞ and φðr4; rÞ. The Stokes lines (dashed, blue and where
Im½φ� ¼ 0), anti-Stokes lines (solid, red and where Re½φ� ¼ 0)
and branch cuts (wavy, black) divide the complex plane into
domains called Stokes wedges. The orientation of the cuts is in
principle arbitrary, provided in any wedge the local form of the
solution is maintained in accordance with the boundary con-
ditions of the problem.
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dx=dt > 0 by definition. Note that above argument can also
be given in terms of group velocity if one instead works
with wave packets. The basic conclusion remains the same.
We will now perform the analytic continuation of the

solution from Stokes wedge 1 to Stokes wedge 7 by making
use of the rules given in the previous section. We will first
assume that modes are superradiant: ω −mΩ < 0, which is
generically satisfied whenMω ≪ 1; m > 1. Above the real
axis, uðx; yÞ becomes negative therefore in Stokes wedge 1
we have the subdominant solution:

1∶ c1ðr4; rÞs ð41Þ

which becomes dominant,

3∶ c1ðr4; rÞd; ð42Þ

in wedge 3. In order to obtain the local form of the solution
near r3, the phase reference point must be changed from r4
to r3. As a result, the solution in region 4 is represented as

4∶ c1ðr3; rÞseS; ð43Þ

where the semiclassical action S is given by the phase
integral:

S ¼ i
Z

r3

r4

prdr; S > 0: ð44Þ

It must be noted here that an exponentially large term was
factored out from the solution by changing the phase
reference point and because of this ðr3; rÞ now represents
the subdominant solution. This argument would of course
be reversed if an exponentially small term was factored out
from the subdominant solution, making it the dominant
solution in the next domain. This observation, in fact, is
an addendum to the analytic continuation rules of the
previous section: upon changing the phase reference point,
exponentially large and exponentially small terms appear-
ing in the coefficients change the dominancy of the
solutions [11,16]. Now proceeding to region 5 we cross
the anti-Stokes line giving

5∶ c1ðr3; rÞdeS: ð45Þ

In passing to domain 6, one has in conjunction with the
Stokes phenomenon

6∶ c1ðr3; rÞdeS þ c1sðr; r3ÞseS: ð46Þ

Thus we have two linearly independent solutions outside
the horizon. This result is in agreement with the boundary
condition employed by DeWitt [17]. Here, s is the Stokes
constant which is shortly to be determined. The identi-
fication of ingoing and outgoing solutions in wedge 6 can

be done by following the argument given in [18]. In the
frame of the physical observer rotating with black hole, the
angular velocity near the horizon is approximately given
by dϕ=dt ∼Ω, thus the time dependent part of the solution
becomes ∼e−iðω−mΩÞt. The phase velocity belonging to
ðr3; rÞd is then

dx
dt

¼ ðω −mΩÞ
pr

: ð47Þ

By causality, we require the solution ðr3; rÞ in wedge 7
must represent the wave with negative phase velocity and
because of this we must have pr > 0 for r < rþ. This is
indeed satisfied by our earlier choice of the positive root
for pr which led to a positive phase velocity in wedge 1.
From this discussion, and minding the fact that pr reverses
its sign at the horizon, it immediately follows that in
wedge 6 the subdominant solution represents the ingoing
solution, whereas the dominant solution is identified as the
outgoing wave.
The remaining task is to trace the dominant solution in

wedge 5 into wedge 7. Note that the domains 6 and 7 are
bounded by the same Stokes and anti-Stokes lines yet
separated by the pole at the event horizon, where the phase
integral φðr3; rÞ has a branch cut discontinuity. The cut
structure is complicated owing to the appearance of an
incomplete elliptic integral of the third kind in the analytic
formula for the phase integral. One may however approx-
imately represent the discontinuity by inserting a logarith-
mic branch cut as this is evident from the form of the near
region solution given in (12). The analytic continuation
path is chosen to be aligned with the logarithmic branch
cut, fully enclosing the pole in a clockwise fashion, in order
to avoid the factor of 2 ambiguity [19]. This factors out a
full residue from the phase integral on the other side of
the cut. Close to the pole, the prefactor behaves like
1=

ffiffiffiffiffi
pr

p ∼ ðr − rþÞ12; therefore we must introduce an overall
minus factor to keep the solution single valued. In view of
these observations we may give the solution in wedge 7 as

7∶ − c1ðr3; rÞdeSe−P; ð48Þ

where the residue P is

P ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
ω −mΩ
2πTH

�
2

s
: ð49Þ

Note that the solutions in wedge 6 and 7 have approx-
imately the same magnitude. This is to say that the
magnitude of ðr3; rÞd in wedge 7 grows by a factor of
∼eP when compared to the solution in wedge 6. This
behavior can be seen by analyzing the near region solution
which behaves in the upper complex plane as [20]
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ðr−rþþ iϵÞiω−mΩ
2πTH ¼

8<
: jðr−rþji

ω−mΩ
2πTH e−

ω−mΩ
2TH r<rþ;

ðr−rþÞi
ω−mΩ
2πTH r>rþ:

ð50Þ

Here, the exponent is positive for superradiant modes. To
determine the Stokes constant, we first note that R̃ satisfies

Im½∂rR̃R̃�� ¼ constant; ð51Þ

which is the conserved flux along the real line. Flux
conservation on both sides of the cut leads to

jc1j2e−2P ¼ jc1j2 − jc1j2jsj2 ð52Þ

which fixes the Stokes constant up to a phase:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2P

p
eiw: ð53Þ

The connection formula relating domains 1 and 6 can be
written as

1∶c1ðr4; rÞd → 6∶c1ðr3; rÞdeSþ c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e−2P

p
eiwðr; r3ÞseS:

ð54Þ

Using the above connection formula, the semiclassical
decay rate is given as the modulus square of the trans-
mission coefficient belonging to the ingoing solution at
the horizon:

Γsemicl ¼
e−2S

1 − e−2P
: ð55Þ

This is our main result. The total decay rate is given in
terms of semiclassical greybody factor e−2S weighted by a
Boltzmann-like factor and it remains regular in the limit
ω → mΩ. Comparing the above formula with the original
Boltzmann weight given in (25), we see that both factors
approach unity in the low energy limit and for m > 1. Note
that the Boltzmann weight given in (25) becomes negative
in the superradiant regime but the total amplitude remains
positive owing to the factor of ω −mΩ coming from the
greybody factor.
For ω −mΩ > 0, analytic continuation of the modes is a

little more involved. Here, we give the final formula and
defer the details of the calculation to the Appendix. In this
regime the semiclassical decay rate reads

Γsemicl ¼
e−2S

e2P − 1
ð56Þ

which differs from (55) by an overall sign because the
exponent now becomes positive. This is consistent with
(25), where Boltzmann weight is generically close to unity
(with the term ω −mΩ factored in) for low energy modes

with slow rotation (a ≪ M or the Schwarzschild case)
or it can lead to an exponential suppression for the modes
with m < 0.
In Hawking’s original treatment using the collapse geom-

etry and also in the analytic continuation method given by
Damour and Ruffini, the decay rate is simply given by (25).
Here, the appearance of two different formulas in two
distinct regimes is the by-product of using (26) along with
the WKB solutions. Recalling (49), the sign of the residue at
rþ remains uniform regardless of the sign of ω −mΩ. But
the overall sign of the exponent in the Boltzmann-like factor
depends on the direction of the analytic continuation path,
which is chosen in accordance with the requirement of
causality, and this indeed depends on the sign ofω −mΩ. To
reiterate, the fact that residue does not vanish when ω ¼ mΩ
ensures that the semiclassical decay rate remains finite. In
the asymptotic matching procedure on the other hand, the
Boltzmann factor indeed diverges at the onset of super-
radiance but the total decay rate remains finite since there is a
compensating factor of ω −mΩ, coming from the conserved
flux belonging to the near region solution. For WKB
solutions the form of the conserved flux remains uniform,
there is no compensating factor, but the Boltzmann-like
factor remains finite.
At this point it is illustrative to contrast the method

presented here with Damour and Ruffini’s approach. The
authors of [2] perform the analytic continuation of the
outgoing solution in the Kerr-Newman metric from r > rþ
to r < rþ. We will however consider the Schwarzschild
case in the following for simplicity. The outgoing solution
in Schwarzschild metric reads

Φω ¼ ð2πjωjr2Þ−1=2Eout
ω ðr�; tÞYm

l ðθ;ϕÞ
Eout
ω ¼ ðr − 2MÞ4Mωie−iωðtþr�Þ

r� ∼ 2M logðr − 2MÞ: ð57Þ

Using horizon regular coordinates, the above solution is
mapped to an antiparticle solution for r < 2M. The full
solution covering the beneath and beyond the horizon
regions can be given by using the identity (50) in the lower
plane, yielding

P̃ ¼ Ñω½Θðr − 2MÞΦout
ω ðr − 2MÞ þ e4πMωΘð2M − rÞ

×Φout
ω ð2M − rÞ�; ð58Þ

where Θ is the Heaviside function. Here, P̃ represents the
antiparticle state with negative norm:

hP̃ω1
; P̃ω2

i ¼ −δðω1 − ω2Þδl1;l2
δm1;m2

: ð59Þ

Equation (58) describes the splitting of the total state to
its particle and antiparticle components. Because P̃ is
normalized to negative unity, the magnitude jÑj2 of the
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outgoing part of the solution for r > 2M can be readily
given as

jÑj2 ¼ 1

e8πMω − 1
: ð60Þ

This factor is interpreted as the particle production rate. In
contrast to Damour and Ruffini’s method, we have followed
here the analytic continuation rules based on the exponential
dominancy and subdominancy of the WKB solutions. This
picture perhaps lacks the simplicity of the method used in
[2], treats the problem as a standard quantum mechanical
scattering problem without resorting to the negative norm
states: the purely ingoing solution in Stokes wedge 7
undergoes over-the-barrier scattering across the horizon,
and by Stokes phenomenon we have both ingoing and
outgoing solutions in wedge 6. In view of this, the particle
production rate can be given as the modulus square of

relative transmission coefficient in wedge 6, which is
nothing but the Boltzmann-like factor. This is completely
analogous to the Schwinger pair production in time-depen-
dent laser pulses, where one has over-the-barrier scattering in
a time dependent potential [21–25].

C. Analytic structure of the semiclassical
penetration factor

In this section we treat the semiclassical action, S, by
considering the improper integral:

Sr ¼ i
Z

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − r4Þðr0 − r3Þðr0 − r2Þðr0 − r1Þ

p
ðr0 − rþÞðr0 − r−Þ

dr0 ð61Þ

whose evaluation was performed in Mathematica©. After
collecting and simplifying the terms with the common
denominators, we have the following expression for Sr [26]:

Sr
iω

¼ ðr − r1Þðr − r3Þðr − r4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − r1Þðr − r2Þðr − r3Þðr − r4Þ
p − r21

ffiffiffiffiffiffi
r42
r31

r
F

�
arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2

; z0

�

þ ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
E

�
arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2

; z0

�
−

r21ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p fΠ
�
r41
r42

; arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2

; z0

�

þ 2
r21r3−r4−
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Π
�
z−; arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2

; z0

�
− 2

r21r3þr4þ
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Π
�
zþ; arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2

; z0

�
: ð62Þ

Here, we have used the shorthand notation: rij ≔ ri − rj.
The functions F, E and Π denote the incomplete elliptic
integrals of first, second and third kind respectively. The
factor f in the fourth term above is the divisor belonging to
the function pr and it is defined as

f ¼
X

kzzeros − kppoles

¼ r1 þ r2 þ r3 þ r4 − 2ðrþ þ r−Þ; ð63Þ

where kz and kp denote the multiplicity of the zeros and
poles. The cross ratios are given as

z0 ¼
r32r41
r31r42

; z− ¼ r−2r41
r−1r42

; zþ ¼ rþ2r41
rþ1r42

: ð64Þ

In the limit r → r4, the angular argument becomes

lim
r→r4

arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2 ¼ π

2
: ð65Þ

As a result, all the incomplete integrals turn into complete
integrals by definition:

S4
iω

¼ −r21
ffiffiffiffiffiffi
r42
r31

r
Kðz0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
Eðz0Þ

−
r21ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p fΠ
�
r41
r42

jz0
�
þ 2

r21r3−r4−
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Πðz−jz0Þ

− 2
r21r3þr4þ
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Πðzþjz0Þ; ð66Þ

where K denotes the complete elliptic integral of the first
kind. In the limit r → r3 one has

lim
r→r3

arcsin

�ðr − r1Þr42
ðr − r2Þr41

�1
2 ¼ arcsin

�
1

z0

�1
2 ¼ arccscð ffiffiffiffiffi

z0
p Þ:

ð67Þ

In this limit, the angular value hits the branch points of F,E
and Π. For further simplification, we use the following
relations [27,28]:
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Fðarccscð ffiffiffiffiffi
z0

p Þ;z0Þ¼
1ffiffiffiffiffi
z0

p K

�
1

z0

�

Eðarccscð ffiffiffiffiffi
z0

p Þ;z0Þ¼ ffiffiffiffiffi
z0

p �
E

�
1

z0

�
þ
�
1

z0
−1

�
K

�
1

z0

��

Πðz;arccscð ffiffiffiffiffi
z0

p Þ;z0Þ¼
1ffiffiffiffiffi
z0

p Π
�
z
z0
;
1

z0

�
ð68Þ

which hold up to machine accuracy in the upper plane
above the cut. Using the relations above and performing
algebraic simplifications leads to

S3
iω

¼ −r21
ffiffiffiffiffiffi
r32
r41

r
K
�
1

z0

�
þ ffiffiffiffiffiffiffiffiffiffiffiffi

r32r41
p

E
�
1

z0

�

−
r21ffiffiffiffiffiffiffiffiffiffiffiffi
r41r32

p fΠ
�
r31
r32

j 1
z0

�
þ 2

r21r3−r4−
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r32r41

p Π
�
z−
z0

���� 1z0
�

− 2
r21r3þr4þ
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r32r41

p Π
�
zþ
z0

���� 1z0
�
: ð69Þ

Note that interchanging r3 and r4 yields the following
relations on the cross ratios:

z0ðr3 ↔ r4Þ →
1

z0
; z−ðr3 ↔ r4Þ →

z−
z0

;

zþðr3 ↔ r4Þ →
zþ
z0

: ð70Þ

This observation readily shows that S3 can be obtained
from S4 upon interchanging r3 and r4. With this in mind,
the final form of the semiclassical action can be written as

S ¼ −iω
�
−r21

ffiffiffiffiffiffi
r42
r31

r
Kðz0Þ þ ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p

Eðz0Þ

−
r21ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p fΠ
�
r41
r42

����z0
�
þ 2

r21r3−r4−
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Πðz−jz0Þ

− 2
r21r3þr4þ
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Πðzþjz0Þ − ðr3 ↔ r4Þ
�
: ð71Þ

Here, the imaginary parts of S3 and S4 cancel, therefore S is
real and positive. One might ask at this point whether it is
possible to express (71) in terms of known functions. There
indeed exists the following relations between the complete
elliptic integrals and the hypergeometric function [26,28]:

KðzÞ ¼ π

2 2F1

�
1

2
;
1

2
; 1; z

�

EðzÞ ¼ π

2 2F1

�
1

2
;−

1

2
; 1; z

�

Πðz0; zÞ ¼ π

2
F1

�
1

2
;
1

2
; 1; 1; z;−z0

�
: ð72Þ

In the last line F1 represents the Appell function, a two
parameter generalization of the hypergeometric function.
Unfortunately the convergence of the Appell function when
z approaches unity is extremely slow. For this reason we will
use (71) in the remainder of the analysis. A much simpler
expression can be obtained from (71) by making a power
series expansion for z0 ≪ 1. In the small cross ratio limit, we
can readily observe that S4’s contribution to the real part is
vanishingly small because the cross ratio dependence is of
the form ∼zn0 where n is a positive integer. Thus the
dominant contribution comes from S3 whose cross ratio
dependence is of the form ∼1=zn0 . Expanding and simplify-
ing the real part of (69) in the leading order yields the
following:

Re½S3� ≈ ω

�
1

2

r21r41ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Log
16

z0
−

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p

þ 2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z−

z0 − z−

r �
r21r4−
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3−r−2
r21r42

r

− 2 arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ

z0 − zþ

r �
r21r4þ
rþ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3þrþ2

r21r42

r �
: ð73Þ

One may further simplify this expression by noting (l ≫ 1):

−r1 ≈ r4 ≈
ffiffiffi
λ

p

ω
≫ ðr3; r2Þ ð74Þ

which leads to

Re½S3� ≈
�
λ1=2Log

16

z0
− λ1=2

þ 2λ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r3−r−2

p
rþ−

arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z−

z0 − z−

r �

− 2λ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3þrþ2

p
rþ−

arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ

z0 − zþ

r ��
: ð75Þ

Here, z� appear as angular variables whose interpretation
remains somewhat elusive. We should however note that a
closer inspection using (74) shows that last two terms above
multiplying the angular terms resemble residues of the action
at r�. For instance at rþ, the residue of Sr can be written as

Res½Sr� ¼ iω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ4rþ3rþ2rþ1

p
rþ−

≈ iλ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3þrþ2

p
rþ−

: ð76Þ

Thus for large l the associated Cauchy integral (in the
positive sense) is

Srþ ≈ −2λ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3þrþ2

p
rþ−

π ð77Þ
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which is identical to the last term in (75) with arctan function
replaced by a factor of π. It is instructive to see at this point
how the power law dependence of the greybody factor
σ ∼ ðrþ − r−Þ2lþ1ω2lþ1 follows from (75). For very large l,
the critical points r3 and r2 slowly approach to rþ and r−
respectively. In this limit, the first two terms in (75) dominate
so we may write

S ≈ λ1=2
�
Log

16

z0
− 1

�
ð78Þ

and the cross ratio becomes approximately

z0 ≈
2ωðrþ − r−Þ

λ1=2
: ð79Þ

Using (78) and (79) yields the barrier penetration factor in
the leading order:

e−2S ≈
ω2lþ1ðrþ − r−Þ2lþ1

22lþ1

e2lþ1

ð4lþ 2Þ2lþ1
; ð80Þ

where we have used λ1=2 ≈ lþ 1
2
. This shows that semi-

classical decay rate given by (55) precisely shows the same
power law behavior as expected. For a more precise
comparison between Γsemicl and Γ we will in the following
numerically compare e−2S and σ, using the full expressions
given by (71) and (24). But since these expressions get
damped very quickly as l gets large, for convenience we
define log-scale difference:

Δe ¼ jLogσ þ 2Sj; Logσ < 0: ð81Þ

We evaluate the above expression for low energy super-
radiant modes, for which Boltzmann factors can be taken as
unity. Figure 4 shows the numerical data for Δe for various
values of l andm. For fixed l, the relative error is the largest
for m ¼ 0 and diminishes for increasing values of m. As l
gets larger, the relative error accordingly drops down further.
As mentioned in the Introduction, the accuracy of the leading
order semiclassical formula is limited, giving reasonably

accurate results with the asymptotic matching formula when
the condition Mω ≪ 1;l ≫ 1 is satisfied. For high energy
modes where Mω > 1, the use of numerical techniques or
higher order WKB action becomes essential for more
accurate results [29–31]. It is worth noting here that at high
energies the critical points move to the complex plane in the
form of complex conjugate pairs. All the cross ratios become
complex, specifically z0 being real grows up to ∼1 first, then
assumes the form z0 ¼ eiρ where ρ is a real number.

IV. CONCLUSION

In our analysis we have incorporated Stokes phenome-
non to the tunneling problem of massless scalar field from
fixed Kerr background. In doing so, we have employed
standard analytic continuation rules based on exponential
dominancy of the WKB solutions. With the one-way
connection formula that relates the asymptotic solution
to the near horizon solutions, we were able obtain compact
expressions for the semiclassical decay rate. We have given
the semiclassical penetration factor in terms of complete
elliptic integrals, whose arguments depend on three inde-
pendent cross ratios ðz0; z�Þ. We have observed that the
logarithmic dependence of the action on z0 leads to the
power law structure, a property which is already manifest in
the asymptotic matching formulas. Interestingly enough,
the remaining cross ratios z� appear as angular variables in
the action, resembling the multiplicative angular factors of
Cauchy integrals evaluated at r�.

APPENDIX: THE CONTINUATION OF THE
MODES FOR ω−mΩ > 0

Here, we give the details of analytic continuation of the
modes for ω −mΩ > 0. Recalling (47), the first thing to
note here is that by the causality requirement the ingoing
wave in wedge 6 must now be of the form ðr; r3Þ. Because
of this, we place the branch cut of the critical point in the
upper plane and the logarithmic cut in the lower plane as
shown in Fig. 5. The steps of analytic continuation until the
wedge 6 are identical to the ones given in Sec. III. Recalling
that in domain 5 we have the solution
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FIG. 4. The numerical comparison between asymptotic matching formula given in (24) and the leading order semiclassical
penetration factor given by (71). The relative error diminishes as l gets large, for the fixed value of l the relative error assumes its
minimum when m ¼ l.
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5∶ c1ðr3; rÞdeS; ðA1Þ

we need to specify the form of the solution on the other side
of the branch cut. To do so, observe that near a zero r0, a
generic potential VðrÞ behaves linearly therefore the value
of φðr0; rÞ differs by a factor of e−3πi on the other side of
the branch cut, where r → jrjeiðArgðrÞ−2πÞ. The square root
in the prefactor on the other hand acquires a factor of e−i

π
2

[the sign of the exponents here must be reversed if the cut is
traversed in the negative (clockwise) sense]. To keep the
solutions single valued across the cut, these phase changes
must be accounted for. This leads us to the following rule:
upon crossing a branch cut in the positive sense, the
solutions must be modified as [11]

ðr0; rÞ → −iðr; r0Þ; ðr; r0Þ → −iðr0; rÞ: ðA2Þ

This process leaves the value of the solution of across
the cut intact and as a result the exponential dominancy
and subdominancy of the solutions remain the same.
Following (A2), in domain 6 we have

6∶ − ic1ðr; r3ÞdeS: ðA3Þ

Wewill now perform the continuation of the above solution
to the lower complex plane. Crossing the anti-Stokes line
on the real axis, in domain 7 the solution becomes

7∶ − ic1ðr; r3ÞseS ¼ −ic1ðr; rsÞdeSe−P=2: ðA4Þ

Here, we have carried the phase reference point to the other
side of the cut from r3 to rs, the point where the Stokes line
cuts the real axis. This factors out a half residue from the
phase integral, changing the solution from a subdominant
to a dominant one in the process.
The remaining task is to trace the solution in wedge 7

into wedges 8 and 9. By causality we require to have only
the dominant solution in wedge 8:

8∶ − ic1ðr; rsÞdeSe−P=2 ðA5Þ

which is also consistent with the fact that the Stokes jump is
expected to occur in the vicinity of the critical point. To get
the form of solution in wedge 9, we trace the dominant
solution along a path aligned with the logarithmic cut, fully
enclosing the pole in a clockwise fashion. Taking into
account the extra minus factor coming from the prefactor
on the other side of the cut, and the Stokes jump one
ultimately has

9∶ ic1ðr; rsÞdeSeP=2 − ic1sðrs; rÞseSe−P=2: ðA6Þ

As done before, the stokes constant can be determined up
to a phase by equating the fluxes belonging to domains 8
and 9, yielding

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2P − 1

p
eiw̃: ðA7Þ

To write the connection formula in its proper form, as a
final step, we carry the phase reference point back to r3
along the semicircle around the pole in the lower plane.
Doing so, the connection formula reads

1∶ c1ðr4; rÞd
→ 9∶ ic1ðr; r3ÞdeS − ic1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2P − 1

p
eiw̃ðr3; rÞseS ðA8Þ

yielding the semiclassical decay rate:

Γsemicl ¼
e−2S

e2P − 1
: ðA9Þ

1

234

56

7

Im r

Re r

8 9

r4r3r+r- rs

FIG. 5. The Stokes diagram belonging to the phase integrals
φðr3; rÞ and φðr4; rÞ for ω −mΩ > 0. As before, the Stokes lines
(dashed, blue and where Im½φ� ¼ 0), anti-Stokes lines (solid, red
and where Re½φ� ¼ 0) and branch cuts (wavy, black) divide the
complex plane into the depicted domains but now the orientation
of the cuts emanating from r3 and rþ is reversed so as to satisfy
the causality requirement.
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