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We study a series of the Wess-Zumino actions obtained by repeatedly integrating conformal anomalies
with respect to the conformal-factor field that appear at higher loops. We show that they arise as physical
quantities required to make nonlocal loop correction terms diffeomorphism invariant. Specifically, in a
conformally flat spacetime ds2 ¼ e2ϕð−dη2 þ dx2Þ, we find that effective actions are described in terms of
momentum squared expressed as a physical Q2 ¼ q2=e2ϕ for q2 measured by the flat metric, which recalls
the relationship between physical momentum and comoving momentum in cosmology. It is confirmed by
calculating the effective action of QED in such a curved spacetime at the 3-loop level using dimensional
regularization. The same applies to the case of QCD, in which we show that the effective action can be
summarized in the form of the reciprocal of a running coupling constant squared described by the physical
momentum. We also see that the same holds for renormalizable quantum conformal gravity and that
conformal anomalies are indispensable for formulating the theory.
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I. INTRODUCTION

In general, when a symmetry that holds classically is
broken by quantum effects, it is called an anomaly.
Conformal anomalies imply that even if a classical action
has conformal symmetry, it breaks down at the quantum
level [1–10]. Hence, letting Γ be an effective action of the
theory, a conformal variation of Γ is a conformal anomaly.
That is, the trace of the energy-momentum tensor which
vanishes classically becomes nonzero by quantum effects.
For this reason, conformal anomalies are also called trace
anomalies.
This paper will focus on the role of conformal anomalies.

As the name implies, conformal anomalies break conformal
invariance, but it does not mean that they are anomalous.
Rather, we will see that they are physical quantities
required to preserve diffeomorphism invariance, and are
associated with nonlocality caused by quantization.
The relation between conformal anomaly and diffeo-

morphism invariance can be seen as follows. Let f be a
field that has conformal invariance classically and I be its
action in curved spacetime. The line element is defined by
ds2 ¼ gμνdxμdxν and the metric field is decomposed into a
conformal factor and other modes as

gμν ¼ e2ϕḡμν; ð1:1Þ

then the relation Iðf; gÞ ¼ Iðf; ḡÞ holds.1 On the other
hand, a path integral measure ½df�g that is diffeomorphism
invariant generally depends on the conformal-factor field ϕ.
Therefore, by extracting the ϕ-dependence of the measure
as ½df�g ¼ eiSðϕ;ḡÞ½df�ḡ, we rewrite the effective action in
the form

eiΓðgÞ ¼
Z

½df�geiIðf;gÞ

¼ eiSðϕ;ḡÞ
Z

½df�ḡeiIðf;ḡÞ ¼ eiSðϕ;ḡÞeiΓðḡÞ;

that is, ΓðgÞ ¼ Sðϕ; ḡÞ þ ΓðḡÞ.2 Hence, a variation of S
by ϕ gives a conformal anomaly.
Now, let us consider a simultaneous transformation

ϕ → ϕ − ω; ḡμν → e2ωḡμν

that does not change the full metric gμν, that is, preserves
diffeomorphism invariance. Applying it to the above
expression of the effective action, the left-hand side is
trivially invariant, while the right-hand side is
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1Depending on the type of the field, it is necessary to rescale
the field appropriately to exclude the ϕ-dependence.

2When calculating the effective action, normally a background
field of f is introduced.
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eiSðϕ−ω;e2ωḡÞeiΓðe2ωḡÞ ¼ eiSðϕ−ω;e2ω ḡÞeiSðω;ḡÞeiΓðḡÞ:

In order for this expression to return to the original eiΓðgÞ, S
must satisfy

Sðϕ − ω; e2ωḡÞ þ Sðω; ḡÞ ¼ Sðϕ; ḡÞ: ð1:2Þ

This relation is called the Wess-Zumino consistency con-
dition [11,12], and thus S is called theWess-Zumino action.
This is another expression of the integrability condition
often represented by ½δϕ; δϕ0 �Γ ¼ 0, where δϕ is a conformal
variation.
In the following sections, we will investigate the Wess-

Zumino actions that arise at higher loops, mainly focusing
on conformal anomalies related to gauge fields in curved
spacetime, and see that they are quantities necessary to
construct a diffeomorphism invariant effective action. In
particular, we will concretely calculate the effective action
of QED at the 3-loop level employing dimensional regu-
larization, and show that the ϕ-dependence is actually
involved in a physical momentum measured by the full
metric gμν. The same is true for QCD, or Yang-Mills theory.
That also applies to quantum conformal gravity, and other
series of the Wess-Zumino actions that consists only of the
gravitational field will be discussed.

II. WESS-ZUMINO ACTIONS
AT HIGHER LOOPS

It is known that there are various types of conformal
anomalies [1–10]. We here consider three types: the field
strength squared of gauge fields, the Weyl tensor squared,
and the (modified) Euler density. These are collectively
written as Lð0ÞðgÞ, and its spacetime volume integral is
denoted by Γð0ÞðgÞ ¼ R

d4xLð0ÞðgÞ, that gives a tree part of
the effective action. The action is integrable with respect to
the conformal-factor field ϕ, that is, ½δϕ; δϕ0 �Γð0ÞðgÞ ¼ 0.
The first Wess-Zumino action that appears at the 1-loop

level is obtained by integrating Lð0ÞðgÞ with respect to the
conformal-factor field from 0 to ϕ, written as

Sð1Þðϕ; ḡÞ ¼
Z

d4x
Z

ϕ

0

dϕLð0ÞðgÞ: ð2:1Þ

It is obvious that this satisfies the Wess-Zumino consis-
tency condition (1.2), which can be shown by decomposing
the range of the integration ½0;ϕ� into ½0;ω� and ½ω;ϕ�,
whereZ

d4x
Z

ϕ

ω
dϕLð0ÞðgÞ ¼

Z
d4x

Z
ϕ−ω

0

dϕ0Lð0Þðe2ϕ0þ2ωḡÞ

¼ Sð1Þðϕ − ω; e2ωḡÞ:

Note here that it is essential that the integrand Lð0ÞðgÞ is
covariant, that is, composed of the full metric gμν.

Next, we consider what kind of the Wess-Zumino action
appears at higher loops. First, let us simply repeat the
definite integral for ϕ performed in (2.1) n times. Writing

the resulting action as SðnÞtopðϕ; ḡÞ, it satisfiesZ
d4x

δ

δϕðxÞ S
ðnÞ
topðϕ; ḡÞ ¼ Sðn−1Þtop ðϕ; ḡÞ: ð2:2Þ

Here, Sð1Þtop is the Wess-Zumino action Sð1Þ that satisfies the
consistency condition (1.2). However, others do not satisfy
it, that is, they are not the Wess-Zumino actions, because

the integrand Sðn−1Þtop to derive SðnÞtop is no longer a covariant
function of the full metric gμν for n > 1.
In order to find the Wess-Zumino action that arises at

higher loops, we need to find a diffeomorphism invariant
effective action Γð1ÞðgÞ ¼ R

d4xLð1ÞðgÞ, which can be
expressed as

Γð1ÞðgÞ ¼ Sð1Þðϕ; ḡÞ þ Γð1ÞðḡÞ;

where Γð1ÞðḡÞ is a loop correction of the theory defined on
the metric ḡμν, generally has a nonlocal form. By using the
covariant Lð1ÞðgÞ as the integrand of the ϕ-integral, we can
obtain the second Wess-Zumino action Sð2Þðϕ; ḡÞ.
Furthermore, adding a nonlocal Γð2ÞðḡÞ to Sð2Þðϕ; ḡÞ appro-
priately to make a diffeomorphism invariant Γð2ÞðgÞ ¼R
d4xLð2ÞðgÞ and integrating Lð2ÞðgÞ, we obtain Sð3Þðϕ; ḡÞ.

Repeating this procedure, we find

Sðnþ1Þðϕ; ḡÞ ¼
Z

d4x
Z

ϕ

0

dϕLðnÞðgÞ

for ΓðnÞ ¼ R
d4xLðnÞðgÞ. Here, SðnÞ contains SðnÞtop as the term

with the highest power of ϕ.
The diffeomorphism invariant effective action will then

be given by using ΓðnÞðgÞ as

ΓðgÞ ¼
X∞
n¼0

anΓðnÞðgÞ;

where the coefficient an is a function of the coupling
constant.
In the following, taking the case of gauge fields as

an example, a specific expression of the Wess-Zumino
action and the effective action will be given. If the
Minkowski metric ημν ¼ ð−1; 1; 1; 1Þ is employed as ḡμν,
then Γðḡ ¼ ηÞ is the ordinary effective action. For sim-
plicity, let ϕ be a constant and consider in momentum
space. Still, in this example, the covariant structure we
want to see is well retained. As for conformal anomalies
composed of the gravitational field, we will discuss in the
penultimate section.
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The tree action of gauge fields is conformally invariant
in 4 dimensions and

ffiffiffiffiffiffi−gp
Fa
μνFa

λσg
μλgνσ ¼ Fa

μνFa
λση

μληνσ

holds, where Fa
μν is a field strength and a is the

index of gauge group. From this, Lð0ÞðqÞ is given by
Fa
μνFa

λσðqÞημληνσ , where q represents momentum measured
in Minkowski spacetime. Therefore, we can easily perform
the integral of ϕ, and obtain Sð1Þðϕ; ηÞ as

Sð1Þðϕ; ηÞ ¼
Z

d4q
ð2πÞ4 ϕF

a
μνFa

λσðqÞημληνσ: ð2:3Þ

Further performing the ϕ-integration n times gives

SðnÞtopðϕ; ηÞ ¼
1

n!

Z
d4q
ð2πÞ4 ϕ

nFa
μνFa

λσðqÞημληνσ:

A diffeomorphism invariant form of the effective action
is obtained by adding a loop correction Γð1ÞðηÞ, known to
be given by a logarithmic function of momentum, to the
first Wess-Zumino action (2.3). It will be given by

Γð1ÞðgÞ ¼
Z

d4q
ð2πÞ4

�
ϕ −

1

2
log

�
q2

μ2

��
Fa
μνFa

λσðqÞημληνσ

¼ −
1

2

Z
d4q
ð2πÞ4 log

�
Q2

μ2

�
Fa
μνFa

λσðqÞημληνσ;

where q2 ¼ ημνqμqν and it has been known that the
logarithmic correction term arises exactly with this coef-
ficient according to that of ϕ.Q is momentum measured by
the full metric gμν, that is,

Q2 ¼ gμνqμqν ¼
q2

e2ϕ
: ð2:4Þ

In cosmology, Q is often called physical momentum, while
q is called comoving momentum.
In gauge theories, the effective actions up to 2 loops can

be written using Γð1ÞðgÞ. At 3 loops or more, the second
Wess-Zumino action will appear, which is given by

Sð2Þðϕ;ηÞ¼
Z

d4q
ð2πÞ4

Z
ϕ

0

dϕLð1ÞðgÞ

¼
Z

d4q
ð2πÞ4

�
1

2
ϕ2−

1

2
ϕ log

�
q2

μ2

��
Fa
μνFa

λσðqÞημληνσ:

Here, we can see that this action satisfies the Wess-Zumino
consistency condition (1.2) using the fact that when
changing the Minkowski metric as ημν → e2ωημν, the
momentum squared is changed to q2 → e−2ωq2.
Adding a nonlocal loop correction Γð2ÞðηÞ to the above

gives

Γð2ÞðgÞ ¼
Z

d4q
ð2πÞ4

�
1

2
ϕ2 −

1

2
ϕ log

�
q2

μ2

�
þ 1

8
log2

�
q2

μ2

��
× Fa

μνFa
λσðqÞημληνσ

¼ 1

8

Z
d4q
ð2πÞ4 log

2

�
Q2

μ2

�
Fa
μνFa

λσðqÞημληνσ;

where the last logarithm squared term in the first line is
Γð2ÞðηÞ, and its coefficient is chosen so that the momentum
is in the form of Q. Further repeating this procedure gives

ΓðnÞðgÞ ¼ ð−1Þn
2nn!

Z
d4q
ð2πÞ4 log

n

�
Q2

μ2

�
Fa
μνFa

λσðqÞημληνσ:

ð2:5Þ

In the following, we will see that the effective action is
yielded actually in this form.

III. QED EFFECTIVE ACTION AND
DIFFEOMORPHISM INVARIANCE

Here, we will calculate the effective action of massless
QED in curved spacetime to confirm the form (2.5) at the
3-loop level. As a method to perform the renormaliza-
tion calculations, dimensional regularization is employed
[1–10,13–17]. This is the only known regularization
method that can do high-loop calculations while preserving
diffeomorphism invariance as well as gauge invariance.
The advantage of this method is that the result does not

depend on how to choose the path integral measure. This
property comes from the fact that in a 4-dimensional
method such as the DeWitt-Schwinger method, conformal
anomalies as contributions from the measure are derived
by regularizing a divergent quantity δð4Þð0Þ ¼ hxjx0ijx0→x,
whereas in dimensional regularization such a quantity
identically vanishes due to δDð0Þ ¼ R

dDq ¼ 0, where D
is spacetime dimension. In dimensional regularization, con-
formal anomalies are hidden between D and 4 dimensions,
which arise as finite quantities yielded by canceling poles
of ultraviolet (UV) divergences with zeros representing
deviations of D-dimensional actions from 4 dimensions as

1

D − 4
× oðD − 4Þ → finite:

First, we summarize some facts concerning with renorm-
alization group (RG) equations. Let e0 be a bare coupling
constant of QED, e be its dimensionless renormalized
coupling constant, and Ze be a renormalization factor
connecting them. Let Z1=2

3 be a renormalization factor of

the gauge field, then the Ward-Takahashi identity ZeZ
1=2
3 ¼

1 holds, so that e0 ¼ μ2−D=2Z−1=2
3 e, where μ is an arbitrary

mass scale introduced to make up for the missing dimen-
sion. Since bare quantities do not depend on the scale μ, we
obtain
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μ
de0
dμ

¼ μ2−D=2Z−1=2
3

�
−
1

2
ðD − 4Þe

−
1

2
eμ

d
dμ

logZ3 þ μ
de
dμ

�
¼ 0:

Thus, writing as β̄eðeÞ ¼ ðe=2ÞμdðlogZ3Þ=dμ, the beta
function can be expressed as

βeðe;DÞ ¼ μ
de
dμ

¼ 1

2
ðD − 4Þeþ β̄eðeÞ:

If the renormalization factor is Laurent-expanded like
logZ3 ¼

P∞
n¼1 fnðeÞ=ðD − 4Þn, then the beta function is

expanded as

β̄eðeÞ ¼
e
2

�
e
2

∂f1ðeÞ
∂e þ

X∞
n¼1

1

ðD − 4Þn

×

�
e
2

∂fnþ1ðeÞ
∂e þ β̄eðeÞ

∂fnðeÞ
∂e

��
;

where μd=dμ ¼ ðμde=dμÞ∂=∂e ¼ βeðe;DÞ∂=∂e is used.
Since this quantity is finite and the pole terms must
disappear, we find that the beta function can be expressed
using the simple-pole residue as

β̄eðeÞ ¼
e2

4

∂f1ðeÞ
∂e ð3:1Þ

and the residues satisfy a RG equation

∂fnþ1ðeÞ
∂e þ 2β̄eðeÞ

e
∂fnðeÞ
∂e ¼ 0 ð3:2Þ

for n ≥ 1.
Here, the expansion of the beta function is expressed as

β̄eðeÞ ¼ b1e3 þ b2e5 þ b3e7 þ � � � :
Specific values of the coefficients are given by b1 ¼ 4=
3ð4πÞ2, b2 ¼ 4=ð4πÞ4, and b3 ¼ −62=9ð4πÞ6 [18], but the
following discussion proceeds without using these values.
For this expression, solving (3.1) and (3.2), we find that the
single- and double-pole residues can be expressed as

f1ðeÞ ¼ 2b1e2 þ b2e4 þ
2

3
b3e6 þ � � � ;

f2ðeÞ ¼ −2b21e4 −
8

3
b2b1e6 þ � � � ;

f3ðeÞ ¼
8

3
b31e

6 þ � � � :

The metric field is set to gμν ¼ e2ϕημν, as in the latter half
of the previous section. Expanding the renormalization
factor as Z3 − 1 ¼ P∞

n¼1 xnðeÞ=ðD − 4Þn as usual, the

QED bare action with field-strength F0μν ¼ Z1=2
3 Fμν is

expanded as follows:

IA ¼ −
1

4

Z
dDx

ffiffiffiffiffiffi
−g

p
F0μνF0λσgμλgνσ

¼ −
1

4
Z3

Z
dDxeðD−4ÞϕFμνFλση

μληνσ

¼ −
1

4

Z
dDx

��
1þ x1ðeÞ

D − 4
þ x2ðeÞ
ðD − 4Þ2 þ � � �

�

× FμνFλση
μληνσ þ

�
D − 4þ x1ðeÞ þ

x2ðeÞ
D − 4

þ � � �
�

× ϕFμνFλση
μληνσ þ 1

2
½ðD − 4Þ2 þ ðD − 4Þx1ðeÞ

þ x2ðeÞ þ � � �� × ϕ2FμνFλση
μληνσ þ � � �

�
: ð3:3Þ

The residue xn is given by x1 ¼ f1, x2 ¼ f2 þ f21=2, x3 ¼
f3 þ f2f1 þ f31=6 and so on using the previously defined
fn, thus

x1ðeÞ ¼ 2b1e2 þ b2e4 þ
2

3
b3e6 þ � � � ;

x2ðeÞ ¼ −
2

3
b2b1e6 þ � � � ; ð3:4Þ

and x3 ¼ oðe8Þ. Note here that oðe4Þ of the residue x2 and
oðe6Þ of the residue x3 disappear. This is a consequence of
the gauge invariance, that is, ZeZ

1=2
3 ¼ 1, which represents

that the 2- and 3-loop self-energy diagrams of the gauge
field do not produce double and triple poles, respectively.
The first line on the right-hand side of (3.3) gives a

normal kinetic term and counterterms of the gauge field.
The second and following lines give new terms which do
not appear in normal quantum field theory in the flat
spacetime. Terms with negative power of D − 4 are set as
counterterms for eliminating UV divergences, and terms
with zero or positive power are treated as new vertex
functions.
A massless fermion field is conformally invariant in any

dimension, and we can rescale the field appropriately to
eliminate the ϕ-dependence. Since the result is independent
of how to choose the measure as mentioned before, when
calculating the effective action, use of the fermion action
with the ϕ-dependence removed simplifies the calculations.
Below, we calculate the effective action of QED in the

case of ϕ ≠ 0 up to 3 loops, and confirm that momentum
actually appears in the form of Q (2.4). First, we write
down the normal effective action in Minkowski spacetime,
which has been calculated as [19]

ΓQEDjϕ¼0 ¼ −
1

4

�
1 − ðb1e2 þ b2e4 þ b3e6Þ log

q2

μ2

−
1

2
b2b1e6log2

q2

μ2

�
FμνFλσðqÞημληνσ:

Here, only nonlocal terms are considered as quantum
corrections.
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There are various contributions to the part depending on
ϕ, namely, the Wess-Zumino action. One is the finite terms
derived from the Laurent expansion of the bare action (3.3),
given by

SðϕÞ ¼ −
1

4

�
x1ðeÞϕþ 1

2
x2ðeÞϕ2

�
FμνFλσðqÞημληνσ

¼ −
1

4

��
2b1e2 þ b2e4 þ

2

3
b3e6

�
ϕ −

1

3
b2b1e6ϕ2

�
× FμνFλσðqÞημληνσ:

Others are contributions from finite loop corrections in
Figs. 1 and 2. Figure 1 has a single ϕ as an external field,
and Fig. 2 has ϕ2, in which the solid, wavy, and dotted lines
represent the ϕ-field, gauge field, and fermion field,
respectively, and diagrams that include counterterms as
subdiagrams are not depicted here. These figures are
obtained by inserting the vertex functions containing ϕ
into the 2- and 3-loop self-energy diagrams of the gauge
field. Calculations are performed with momentum of ϕ as
zero. They are easily achieved, and adding all these
contributions results in

VðϕÞ ¼ −
1

4

��
b2e4 þ

4

3
b3e6 þ 2b2b1e6 log

q2

μ2

�
ϕ

−
5

3
b2b1e6ϕ2

�
FμνFλσðqÞημληνσ: ð3:5Þ

Details of each term will be described below.
First, we write out the results from the 2-loop self-energy

(2LSE) and 3-loop self-energy (3LSE) diagrams of the
gauge field required in the following calculations of V
(3.5), which are given by

2LSE ¼ xð4Þ1

2

�
1

ϵ
− 2 log

q2

μ2

��
−
1

4
F2

�
ð3:6Þ

and

3LSE ¼
�
−
xð6Þ2

4

1

ϵ2
þ xð6Þ1

2

1

ϵ

��
−
1

4
F2

�
; ð3:7Þ

where F2 is an abbreviation for FμνFλσðqÞημληνσ and
the calculation is performed by setting the dimension
as D ¼ 4 − 2ϵ. The oðemÞ component of the nth-pole

residue xn is denoted as xðmÞ
n , and each coefficient is read

from (3.4) as xð2Þ1 ¼ 2b1e2, x
ð4Þ
1 ¼ b2e4, x

ð6Þ
1 ¼ 2b3e6=3,

xð6Þ2 ¼ −2b2b1e6=3. The counterterms in the first line of
(3.3) are designed to eliminate these UV divergences. As
mentioned before, 2LSE has no double poles and also
3LSE has no triple poles. For 3LSE, there are diagrams
containing one fermion loop and two fermion loops, and
the double pole arises only from diagrams with two fermion
loops. Moreover, all divergences are local due to renorma-
lizablility, that is, nonlocal ones such as ð1=ϵÞ × logðq2=μ2Þ
do not appear.
Fig. 1(a) shows the insertion of the vertex function

−2ϵϕð−F2=4Þ into an internal line of the gauge field in the
2LSE diagram, so that the simple pole of (3.6) and ϵ in the
vertex function cancel out to be finite. It gives the first
oðe4Þ term of (3.5). Figure 1(b) is a 2LSE diagram with the

vertex function xð2Þ1 ϕð−F2=4Þ inserted. From this diagram,
the third nonlocal term with a single ϕ is obtained as a
finite term. At the same time, a simple-pole divergence

FIG. 1. Finite vertex contributions with a single ϕ and two
external background gauge fields.

FIG. 2. Finite vertex contributions with two ϕ and two external
background gauge fields.
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ð−xð2Þ1 xð4Þ1 =2Þð1=ϵÞϕð−F2=4Þ occurs. Figure 1(c) shows a
3LSE diagram with the vertex function −2ϵϕð−F2=4Þ
inserted. The ϵ at the vertex acts to the double pole of

3LSE, generating a simple-pole divergence −xð6Þ2 ð1=ϵÞ×
ϕð−F2=4Þ, and also cancels out the simple pole, resulting

in a finite term 2xð6Þ1 ϕð−F2=4Þ, which is the local oðe6Þ
term with a single ϕ in (3.5). Here, the sum of the
divergences from Figs. 1(b) and 1(c) cancels out the
counterterm ð−x2=2Þð1=ϵÞϕð−F2=4Þ in the bare action
(3.3), which can be seen from the result that the sum of

the coefficients, −xð2Þ1 xð4Þ1 =2 − xð6Þ2 ¼ −b2b1e6=3 ¼ xð6Þ2 =2,
has the opposite sign of it.
The last term in (3.5) with ϕ2 is derived by summing

all finite contributions in Fig. 2. Figure 2(a) represents a

2LSE diagram with the vertex function −ϵxð2Þ1 ϕ2ð−F2=4Þ
inserted, resulting in a finite contribution ðxð2Þ1 xð4Þ1 =2Þ×
ϕ2ð−F2=4Þ. Figure 2(b) is a 2LSE diagram with one

−2ϵϕð−F2=4Þ and one xð2Þ1 ϕð−F2=4Þ inserted, which gives
a finite −2xð2Þ1 xð4Þ1 ϕ2ð−F2=4Þ. Figure 2(c) is obtained by
inserting 2ϵ2ϕ2ð−F2=4Þ into one of the two internal gauge
field lines in the 3LSE diagram with double poles, which

generates a finite xð6Þ2 ϕ2ð−F2=4Þ. Figure 2(d) is obtained
by inserting two −2ϵϕð−F2=4Þ into two internal gauge
field lines in 3LSE with double poles, where the dots
denote other variations of how to insert the vertex. This

gives a finite contribution −3xð6Þ2 ϕ2ð−F2=4Þ. Adding these

yields the last term of (3.5) with coefficient xð2Þ1 xð4Þ1 =2−
2xð2Þ1 xð4Þ1 þ xð6Þ2 − 3xð6Þ2 ¼ ð−5=3Þb2b1e6.
Adding all the contributions, we find that the effective

action can be written in terms of the physical momentum
(2.4) as follows:

ΓQEDðgÞ ¼ ΓQEDjϕ¼0 þ SðϕÞ þ VðϕÞ

¼ −
1

4

�
1 − ðb1e2 þ b2e4 þ b3e6Þ log

Q2

μ2

−
1

2
b2b1e6log2

Q2

μ2

�
FμνFλσðqÞημληνσ:

In this way, it is confirmed by the direct calculations that
the effective action in a conformally flat spacetime is
indeed constructed in terms of (2.5). The effective action
in any curved spacetime can be inferred from diffeo-
morphism invariance and gauge invariance.

IV. EFFECTIVE ACTIONS OF QCD AND
QUANTUM GRAVITY

Since the basic structure of the Wess-Zumino action for
conformal anomaly does not depend on the gauge group,
the same holds for QCD, or Yang-Mills theory, as for QED.
Using dimensional regularization, the bare action of the

Yang-Mills gauge field is also expanded like (3.3), thus the
effective action can be calculated in the same way. Since
diffeomorphism invariance is guaranteed, it will be
expressed in terms of the physical momentum Q (2.4).
Therefore, let g be a coupling constant of QCD and its

beta function be

βg ¼ μ
dg
dμ

¼ −β0g3 − β1g5 − β2g7 − � � � ;

then the effective action will be given by3

ΓQCD ¼ −
1

4

Z
d4q
ð2πÞ4

�
1

g2
þ ðβ0 þ β1g2 þ β2g4Þ log

�
Q2

μ2

�

−
1

2
β1β0g4log2

�
Q2

μ2

�
þ � � �

�
Fa
μνFa

λσðqÞημληνσ:

ð4:1Þ

The difference from the previous section is that the beta
function is negative and that the gauge field is normalized
to factor out 1=g2 for the following discussion.
In the case of QCD, we can introduce a running coupling

constant that becomes small at high energy. It can be
expressed as

ḡ2ðQÞ ¼ 1

β0 log
Q2

Λ2
QCD

8<
:1 −

β1 log
	
log Q2

Λ2
QCD



β20 log

Q2

Λ2
QCD

þ β21
β40log

2 Q2

Λ2
QCD

"
log2

�
log

Q2

Λ2
QCD

�

− log

�
log

Q2

Λ2
QCD

�
þ β2β0

β21
− 1

#
þ � � �

9=
;

for Q ≫ ΛQCD, where ΛQCD is a physical energy scale of
QCD. Rewriting the effective action (4.1) using the running
coupling constant results in the simple form

ΓQCD ¼ −
1

4

Z
d4q
ð2πÞ4

1

ḡ2ðQÞF
a
μνFa

λσðqÞημληνσ: ð4:2Þ

This reflects the fact that the effective action is a RG
invariant. For details, see Appendix. This expression infers

3The background field method [20] is convenient for calculat-
ing a gauge-invariant effective action. When normalizing the
gauge field as usual so that the kinetic term does not depend on
the coupling constant, a renormalization factor of the coupling
constant, Zg, and that of the background gauge field, Z

1=2
A , satisfy

the same identity ZgZ
1=2
A ¼ 1 as in QED. This also represents that

the background gauge field normalized as in (4.1) does not
receive renormalization.
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that when the physical momentum Q becomes less than
ΛQCD and ḡðQÞ diverges, the kinetic term of the gauge field
vanishes, that is, the dynamics disappear and confinement
will occur.
The conformal anomaly composed of the gravitational

field is also determined from diffeomorphism invariance,
thus the form of relevant quantities is basically unchanged
apart from the coefficient whether the gravitational field is
quantized or not. The essential difference between them
will be described last from a viewpoint of symmetry based
on recent research.
From studies of the conformal anomalies applying

Hathrell’s RG method to QED [7] and QCD [8] in curved
spacetime, it has been shown that at least in these theories,
gravitational part of the conformal anomalies are classified
into only two [10,15]: the Weyl tensor squared,

C2
μνλσ ¼ R2

μνλσ − 2R2
μν þ

1

3
R2; ð4:3Þ

and the Euler density predicted by Riegert [21],

E4 ¼ G4 −
2

3
∇2R; ð4:4Þ

whereG4 ¼ R2
μνλσ − 4R2

μν þ R2 is the normal Euler density.
Since the modification is total-divergence, the volume
integral of E4 is the same as that of G4. The corresponding
gravitational action is given by

IG ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

t2
C2
μνλσ − bG4

�
: ð4:5Þ

Here, t is a coupling constant that controls dynamics of
traceless tensor fields in renormalizable quantum con-
formal gravity [13–17,22]. On the other hand, since the
Euler term does not have a kinetic term of the gravitational
field, b is not an independent coupling constant, but it gives
a pure counterterm for eliminating divergences propor-
tional to G4.

4

The Weyl tensor squared (4.3) satisfies
ffiffiffiffiffiffi−gp

C2
μνλσ ¼ffiffiffiffiffiffi

−ḡ
p

C̄2
μνλσ in 4 dimensions when the metric field is

decomposed as in (1.1), where the curvature with the
bar is that composed of the metric ḡμν. Furthermore, ḡμν is
expanded by introducing the traceless tensor field hμν
as ḡμν ¼ ðĝehÞμν ¼ ĝμλðδλν þ hλν þ � � �Þ, where ĝμν is a

background metric. If the background spacetime is taken
to be the flat and the field is normalized as hμν → thμν,
then the Weyl action in IG (4.5) that gives the kinetic
term of the traceless tensor field is expanded asR
d4x½−∂2hμν∂2hνμ=2þ∂μχν∂μχν−∂μχ

μ∂νχ
ν=3�þoðth3Þ,

where χμ ¼ ∂νhμν and the indices are contracted by ημν.
Then, the effective action of the quantum gravity can be
calculated as an ordinary quantum field theory defined in
the flat spacetime.5

The Weyl part has a structure similar to the gauge field.
Now, Lð0ÞðgÞ is

ffiffiffiffiffiffi−gp
C2
μνλσ, thus the first Wess-Zumino

action is given by

Sð1ÞW ðϕ; ḡÞ ¼
Z

d4x
Z

ϕ

0

dϕ
ffiffiffiffiffiffi
−g

p
C2
μνλσ

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ϕC2

μνλσ:

Further integrating it, we obtain SðnÞWtop ¼ ð1=n!Þ ×R
d4x

ffiffiffiffiffiffi−gp
ϕnC2

μνλσ that satisfies the recursion relation

(2.2), and then LðnÞðgÞ, which is a covariant form contain-
ing it, will be given by lognðQ2=μ2Þ ffiffiffiffiffiffi−gp

C2
μνλσ in momen-

tum space, as in (2.5). Since the beta function of the
coupling constant t is known to be negative, we can express
the logarithmic part using a running coupling constant
t̄2ðQÞ as in QCD, which is obtained by replacing g with t
and, accordingly, renaming ΛQCD to ΛQG, then the effective
action will be given by replacing t2 in (4.5) with t̄2ðQÞ
[13,14,17].6 This suggests that when t̄ðQÞ becomes larger
at the new physical scale ΛQG, the 4th-derivative conformal
gravity dynamics disappears.
Next, we consider the Wess-Zumino action for the

modified Euler density (4.4). In this case, if the argument
is made with ϕ as a constant as before, the essence will be
lacking, so it is treated as a function in coordinate space
here. Its first Wess-Zumino action is then given by [21]

Sð1ÞR ðϕ; ḡÞ ¼
Z

d4x
Z

ϕ

0

dϕ
ffiffiffiffiffiffi
−g

p
E4

¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p ð2ϕΔ̄4ϕþ Ē4ϕÞ: ð4:6Þ

4In dimensional regularization, the bare b (omitting the sub-
script 0) is expanded by a pure-pole factor like

P∞
n¼1bn=ðD−4Þn, and G4 is extended to a D-dimensional quantity

GD ¼G4 þ ðD− 4ÞχðDÞH2, where H ¼ R=ðD − 1Þ and χðDÞ ¼P∞
n¼1 χnðD − 4Þn−1 [10,14,15]. The coefficient χn can be deter-

mined in order by solving the Hathrell’s RG equations, and first
three have been calculated as χ1 ¼ 1=2, χ2 ¼ 3=4, and χ3 ¼ 1=3.
The Riegert action and its series, as discussed later, are generated
by Laurent-expanding a bare action bGD.

5As in footnote 3, if the effective action is calculated by
introducing the background traceless tensor field ĥμν as
ĝμν ¼ ðetĥÞμν, then diffeomorphism invariance demands that a
renormalization factor of the field, Z1=2

ĥ
, and that of the coupling

constant, Zt, satisfy the identity ZtZ
1=2
ĥ

¼ 1. Diffeomorphism
invariance also demands that a nonrenomalization theorem holds
for ϕ because this field is treated exactly without introducing a
coupling constant for it [13–17].

6Note that in dimensional regularization, a D-dimensional
Weyl tensor squared has the structure

ffiffiffiffiffiffi−gp
C2
μνλσ ¼ffiffiffiffiffiffi

−ḡ
p

eðD−4ÞϕC̄2
μνλσ similar to the gauge field squared.

DIFFEOMORPHISM INVARIANCE DEMANDS CONFORMAL … PHYS. REV. D 102, 125005 (2020)

125005-7



The integration of ϕ is performed using the relationffiffiffiffiffiffi−gp
E4 ¼

ffiffiffiffiffiffi
−ḡ

p ð4Δ̄4ϕþ Ē4Þ, where ffiffiffiffiffiffi−gp Δ4 is a confor-
mally invariant differential operator defined by

Δ4 ¼ ∇4 þ 2Rμν∇μ∇ν −
2

3
R∇2 þ 1

3
∇μR∇μ;

which satisfies
ffiffiffiffiffiffi−gp Δ4A ¼ ffiffiffiffiffiffi

−ḡ
p

Δ̄4A and a self-adjoint-
ness

R
d4x

ffiffiffiffiffiffi−gp
AΔ4B ¼ R

d4x
ffiffiffiffiffiffi−gp ðΔ4AÞB for any scalar

A and B. The action (4.6), called the Riegert action, works
as a kinetic term of the conformal-factor field [22–25].
The first Wess-Zumino action can be written in a

diffeomorphism invariant form as

Γð1Þ
R ðgÞ ¼ Sð1ÞR ðϕ; ḡÞ þ Γð1Þ

R ðḡÞ

¼ 1

8

Z
d4x

ffiffiffiffiffiffi
−g

p
E4

1

Δ4

E4;

whereΔ−1
4 E4ðxÞ¼

R
d4yGðx;yÞ ffiffiffiffiffiffi−gp

E4ðyÞ andΔ4Gðx;yÞ¼
δ4ðx−yÞ= ffiffiffiffiffiffi−gp

. This actionhas a nonlocal structure, but does
not contain the scale μ. Also, unlike other Wess-Zumino
actions, it appears even in the zeroth order of the coupling
constant.
Further integrating the first Wess-Zumino action yields

SðnÞRtopðϕ; ḡÞ ¼
1

n!

Z
d4x

ffiffiffiffiffiffi
−ḡ

p ð2ϕnΔ̄4ϕþ Ē4ϕ
nÞ:

Using the self-adjointness of Δ̄4 and
R
d4x

ffiffiffiffiffiffi
−ḡ

p
Δ̄4A ¼ 0,

we can show that this action satisfies the recursion
relation (2.2).
Now, we consider a diffeomorphism invariant effective

action containing SðnÞRtop, which will appear in higher-loop

corrections. To begin with, Γð1Þ
R is a quantity that appears

even in the zeroth order of the coupling constant, thus it
does not involved the scale μ, as shown above. However, if
corrections by the coupling constant t are added, the
logarithmic correction will be accompanied. From these
considerations and paying attention to logΔ4 ¼ −4ϕþ
log Δ̄4, we deduce the following diffeomorphism invariant

action that contains SðnÞRtop as a local part:

ΓðnÞ
R ðgÞ ¼ 1

8

ð−1Þn−1
4n−1n!

Z
d4x

ffiffiffiffiffiffi
−g

p
E4logn−1

�
Δ4

μ4

�
1

Δ4

E4:

ð4:7Þ
Here the logarithmic part suggests that the effective action
will be written in terms of the running coupling con-
stant t̄ðQÞ.
In quantum theory of gravity, the total energy-momentum

tensor must vanish as an equation of motion of quantum
gravitational fields. It implies that conformal invariance is
realized as diffeomorphism invariance at the quantum level.
The Riegert action (4.6) then arises rather as necessary to

restore the conformal invariance. This conformal symmetry
is a gauge symmetry that appears only when gravity is
quantized.7 It means that all theories with different back-
grounds connected to each other by conformal transforma-
tions are gauge equivalent, that is, background-metric
independent. Whether it exists or not is the difference
between quantumgravity and quantum field theory in curved
spacetime. It has been shown that under this symmetry, all of
ghost modes become gauge variant, namely, unphysical,
even at the UV limit, thus they are confined in quantum
spacetime [17,26–28].

V. CONCLUSION

In this paper, we examined the Wess-Zumino actions at
higher loops that are obtained by integrating the conformal
anomalies with respect to the conformal-factor field. The
consistency condition (1.2) that the Wess-Zumino actions
should satisfy was derived from the fact that the effective
action is diffeomorphism invariant, and a series of the
Wess-Zumino actions satisfying the condition was con-
structed by repeating the integration. We have seen that
they arise to make the nonlocal loop correction terms
diffeomorphism invariant and that the effective action is
described in terms of the physical momentum (2.4). Thus,
conformal anomalies are indispensable quantities to pre-
serve diffeomorphism invariance, so that we must always
incorporate them when considering quantum field theory in
curved spacetime and quantum gravity.
As a specific example, the QED effective action in a

conformally flat spacetime was calculated at the 3-loop
level. It was done by employing dimensional regularization
that obviously preserves both gauge and diffeomorphism
invariances. In this method, the result does not depend on
the choice of the path integral measure. Instead, the
information of conformal anomalies is included between
D and 4 dimensions, thus it requires careful handling of
finite quantities that appear when the poles and zeros of
D − 4 cancel out. In this way, we confirmed that a series
of the Wess-Zumino actions is actually realized.
The same will hold true for the effective action of QCD

from gauge symmetry and diffeomorphism invariance.
Here we have shown that it can be summarized in the
form of the reciprocal of the running coupling constant
squared described in the physical momentum. We also
examined the effective action of renormalizable quantum
conformal gravity. The Wess-Zumino action obtained by
integrating the Weyl tensor squared has the same structure
as that of the gauge field, thus the Weyl part of the effective
action will be written in terms of the running coupling

7Here note that the traceless tensor field is controlled by
perturbation, whereas the conformal-factor field is handled
exactly as in (1.1). This treatment is significant when constructing
renormalizable quantum gravity with this conformal invariance
asymptotically [13–17,22].
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constant as well. Furthermore, we considered a series of the
Wess-Zumino actions concerning the Euler density, and
deduced that the corresponding effective action will be
given by the Riegert action with logarithmic nonlocality
(4.7) that can be regarded as a realization of the running
coupling constant.
Finally, in QCD and the quantum gravity, we have seen

that the effective action will be summarized in a form in
which the kinetic term disappears when the running
coupling constant diverges, as in (4.2). Under this consid-
eration, we can construct a simplified model of strong
coupling dynamics occurring at low energy by approxi-
mating the running coupling constant as a coordinate-
dependent average. Applying such a mean field approxi-
mation to the quantum gravity, we can describe a spacetime
transition that the conformal gravity dynamics disappear at
the energy scale ΛQG predicted to be about 1017 GeV,
below the Planck scale, and shift to Einstein gravity
[17,29,30]. One of the aim of this paper is to theoretically
reinforce those achievements.

APPENDIX: RUNNING COUPLING CONSTANT
AND EFFECTIVE ACTION

In this Appendix, we show the relationship between the
effective action and the running coupling constant. Here,
more generally, the beta function is expanded up to

βg ¼ μ
dg
dμ

¼ −β0g3 − β1g5 − β2g7 − β3g9 ðA1Þ

and higher-order coefficients are taken to be zero.
Integrating (A1) gives

log μþ C ¼
Z

g

ḡðCÞ

dg0

βgðg0Þ
:

The lower limit of integration, ḡðCÞ, is a constant, that is, a
RG invariant satisfying μdḡðCÞ=dμ ¼ 0. Here, it is decided
so that the integration constant C becomes − logQ. If we
write it as ḡðQÞ and let it be a function that satisfies
ḡðμÞ ¼ g, then

− log
Q
μ
¼

Z
g

ḡðQÞ

dg0

βgðg0Þ
¼ 1

2

Z
ḡ2ðQÞ

g2

dλ
λ2

1

β0 þ β1λþ β2λ
2 þ β3λ

3

is obtained. The function ḡðQÞ is called the running coupling constant.
Performing the integration up to the 6th order yields

1

ḡ2ðQÞ þ
β1
β0

log½β0ḡ2ðQÞ� þ
�
β2
β0

−
β21
β20

�
ḡ2ðQÞ þ 1

2

�
β3
β0

−
2β2β1
β20

þ β31
β30

�
ḡ4ðQÞ

−
1

3

�
2β3β1
β20

þ β22
β20

−
3β2β

2
1

β30
þ β41
β40

�
ḡ6ðQÞ ¼ β0 log

Q2

Λ2
QCD

; ðA2Þ

where the right-hand side is defined by

β0 log
Q2

Λ2
QCD

≡ β0 log
Q2

μ2
þ 1

g2
þ β1
β0

logðβ0g2Þ þ
�
β2
β0

−
β21
β20

�
g2

þ 1

2

�
β3
β0

−
2β2β1
β20

þ β31
β30

�
g4 −

1

3

�
2β3β1
β20

þ β22
β20

−
3β2β

2
1

β30
þ β41
β40

�
g6

and the constant ðβ1=β0Þ log β0 has been added to both sides for convention. Since the left-hand side of (A2) is a RG
invariant, the energy scale ΛQCD defined through this equation is also so, namely, it is a physical scale.

Let (A2) solve for ḡ2ðQÞ iteratively as L ¼ logðQ2=Λ2
QCDÞ ≫ 1, then the running coupling constant can be expressed as

ḡ2ðQÞ ¼ 1

β0L

�
1 −

β1
β20L

logLþ β21
β40L

2

�
log2L − logLþ β2β0

β21
− 1

�

−
β31

β60L
3

�
log3L −

5

2
log2Lþ

�
3β2β0
β21

− 2

�
logL −

β3β
2
0

2β31
þ 1

2

�

þ β41
β80L

4

�
log4L −

13

3
log3Lþ

�
6β2β0
β21

−
3

2

�
log2L −

�
2β3β

2
0

β31
þ 3β2β0

β21
− 4

�
logL −

β3β
2
0

6β31
þ 5β22β

2
0

3β41
−
3β2β0
β21

þ 7

6

��
:
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From this expression, we find that the effective action (4.2) can be written as follows:

ΓQCD ¼ −
1

4

Z
d4q
ð2πÞ4

1

ḡ2ðQÞF
a
μνFa

λσðqÞημληνσ

¼ −
1

4

Z
d4q
ð2πÞ4

�
β0Lþ β1

β0
logLþ β21

β30L

�
logL −

β2β0
β21

þ 1

�
þ β31
β50L

2

�
−
1

2
log2Lþ β2β0

β21
logL −

β3β
2
0

2β31
þ 1

2

�

þ β41
β70L

3

�
1

3
log3L −

�
β2β0
β21

þ 1

2

�
log2Lþ

�
β3β

2
0

β31
þ β2β0

β21
− 1

�
logLþ β3β

2
0

6β31
−
2β22β

2
0

3β41
þ β2β0

β21
−
1

6

��
Fa
μνFa

λσðqÞημληνσ

¼ −
1

4

Z
d4q
ð2πÞ4

�
1

g2
þ ðβ0 þ β1g2 þ β2g4 þ β3g6Þ log

�
Q2

μ2

�
−
1

2

�
β1β0g4 þ ð2β2β0 þ β21Þg6

�
log2

�
Q2

μ2

�

þ 1

3
β1β

2
0g

6log3
�
Q2

μ2

��
Fa
μνFa

λσðqÞημληνσ:

Here, we consider the effective action up to oðg6Þ. Seeing up to oðg4Þ, it agrees with (4.1).
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