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We study Hamiltonian form of unfree gauge symmetry where the gauge parameters have to obey
differential equations. We consider the general case such that the Dirac-Bergmann algorithm does not
necessarily terminate at secondary constraints, and tertiary and higher order constraints may arise. Given the
involution relations for the first-class constraints of all generations, we provide explicit formulas for unfree
gauge transformations in the Hamiltonian form, including the differential equations constraining gauge
parameters. All the field theories with unfree gauge symmetry share the common feature: they admit sort of
“global constants of motion” such that do not depend on the local degrees of freedom. The simplest example
is the cosmological constant in the unimodular gravity. We consider these constants as modular parameters
rather than conserved quantities. We provide a systematic way of identifying all the modular parameters. We
demonstrate that the modular parameters contribute to the Hamiltonian constraints, while they are not
explicitly involved in the action. The Hamiltonian analysis of the unfree gauge symmetry is precessed by a
brief exposition for the Lagrangian analogue, including explicitly covariant formula for degrees of freedom
number count. We also adjust the Batalin-Fradkin-Vilkovisky-Becchi-Rouet-Stora-Tyutin Hamiltonian
quantization method for the case of unfree gauge symmetry. The main distinction is in the content of the
nonminimal sector and gauge fixing procedure. The general formalism is exemplified by traceless tensor

fields of irreducible spin s with the gauge symmetry parameters obeying transversality equations.

DOI: 10.1103/PhysRevD.102.125003

I. INTRODUCTION

Gauge symmetry is usually understood as a set of the
infinitesimal transformations of the fields such that leaves
the action intact, while the transformation parameters are
the functions of space-time. Gauge symmetry is said unfree
if the invariance of the action requires the gauge parameters
to obey the system of partial differential equations. The
general solution of the equations constraining gauge
parameters must involve arbitrary functions of all d
space-time coordinates. If the solution includes arbitrary
functions of d — 1 coordinates or less, then this is not gauge
symmetry. If no equations are imposed on the gauge
parameters, they are all arbitrary functions.

The most known example of an unfree gauge symmetry
is the volume-preserving diffeomorphism of unimodular
gravity (UG). Various analogues of the linearized UG [1,2]
are known among the free higher spin field theories, with
gauge parameters constrained by transversality equations
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[3.4]. The key distinction of UG from general relativity
(GR) with A-term is that A is a specific constant fixed from
the outset in the action of GR, while UG comprises
dynamics with any cosmological constant. For discussion
of the role of cosmological constant in UG and further
references, we cite [5]. Also, modifications of UG can be
found in [6,7], where A is defined dynamically, not as
prefixed parameter in the action. All the field theories with
unfree gauge symmetry share the common feature: they
admit the “global constants of motion” such that do not
depend on the local degrees of freedom, with A of the UG
being the simplest example. This general fact is explained
from various viewpoints in the recent papers [8—10]. As the
specific values of these integration constants are defined by
the field asymptotics, not the Cauchy data, we consider
them as modular parameters rather than conserved quan-
tities. In the higher spin field analogues of UG, e.g., similar
modular parameters exist, and their number grows with
spin, although this fact has not previously been noticed.
While the examples of unfree gauge symmetry have been
known for a long time, the general theory of this class of
gauge systems began to develop relatively recently. In
the paper [8], general structure is established for unfree
gauge symmetry algebra in Lagrangian formalism, and the
modification is proposed for the Faddeev-Popov (FP)
quantization method such that accounts for the constra-
ints imposed on gauge parameters. In the paper [9], the
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BV-BRST! field-antifield formalism is worked out for the
systems with unfree gauge symmetry. In the paper [10], the
structures are identified in the algebra of Hamiltonian
constraints such that describe unfree gauge symmetry.
Before this work, the equations constraining gauge param-
eters in Hamiltonian formalism have been unknown even in
specific models. The brief consideration of the paper [10]
assumes that the Dirac-Bergmann algorithm terminates at
secondary constraints, no tertiary ones are allowed. In this
work, we provide systematic Hamiltonian description of
unfree gauge symmetry in the general case, with the
sequence of constraints of any finite order. Besides the
reason of generality, this is also motivated by specific
models. While in UG, the Dirac-Bergmann algorithm
terminates at the stage of secondary constraints, in the higher
spin field theories with unfree gauge symmetry, the sequence
of constraints turns out linearly growing with spin, so the
tertiary constraints arise for s = 3. The number of modular
parameters also grows with spin, and they all contribute to the
constraints. The new phenomenon here is that the modular
parameters, being connected to the nontrivial asymptotics of
the fields, can make the constraints explicitly depending on
the space-time point x, even though the original Lagrangian
is x independent. This phenomenon has previously unnoticed
analogue in Lagrangian formalism.

The main goal of this paper is to work out Hamiltonian
description of general unfree gauge symmetry. Then, we
also extend the BEV-BRST® formalism to this class of
theories, with main modifications related to the nonmini-
mal sector of ghosts. The general formalism is exemplified
by the massless spin-s theory where the irreducible
representation is realized by traceless tensors [3]. To make
the paper self-contained, we precede the Hamiltonian
description of unfree gauge symmetry with the correspond-
ing Lagrangian formalism mostly providing the facts from
[8,9], with a more emphasis on modular parameters. We
also provide a convenient formula for the degree of freedom
counting in Lagrangian formalism in the case of unfree
gauge symmetry.

II. UNFREE GAUGE SYMMETRY IN
LAGRANGIAN FORMALISM: COMPLETION
FUNCTIONS, AND MODULAR PARAMETERS

Unfree gauge symmetry is a deviation from the usual
assumptions implied by general theory of gauge systems as
it is formulated in the textbooks; see, e.g., [11]. This
deviation has an impact on basic statements of gauge
theory. Notice the second Noether theorem, which connects
gauge symmetry of the action with Noether identities
between Lagrangian equations. We can mention two
assumptions implied by the theorem: (i) the gauge param-
eters are arbitrary functions of x and (ii)) any on-shell

'B atalin-Vilkovisky—Becchi-Rouet-Stora-Tyutin.
“Batalin-Fradkin-Vilkovisky—Becchi-Rouet-Stora-Tyutin.

vanishing local quantity3 reduces to a linear combination of
the lhs of Lagrangian equations and their derivatives. The
first assumption is obviously invalid once the symmetry is
unfree. The second one is also inevitably violated for the
case of unfree gauge symmetry as it is explained in the
papers [8,9]. Let us rephrase the violation of the second
assumption: the local quantities 7z, exist such that vanish
on-shell, while they cannot be expanded in the lhs of
Lagrangian equations with local coefficients,

370(¢>: Ta ~ 0, Ta(d)) #K’a(q’))a,S (1)
Here, we use the condensed notation. The condensed
indices a, i include space-time point x and discrete labels.
Summation over condensed indices includes integration
over space-time, 0;S(¢) is a variational derivative of the
action S(¢) by the field ¢', and the symbol ~ means on-
shell equality. So, violation of (ii) means that ideal / of on-
shell vanishing local quantities is not spanned by the lhs of
Lagrangian equations 9,5 = 0. The local quantities 7 € 1
(1) are called completion functions. The generating set of
ideal [ includes lhs of Lagrangian equations and a number
of completion functions. In slightly different wording, any
on-shell vanishing local quantity T(¢) is spanned off-shell
by field equations and completion functions with the local
expansion coefficients,

T(¢)~0 & T(h) =T ($)0iS(¢) + T*(d)ru(d).  (2)

The identities can exist between the Lagrangian equations
and completion functions,

To()0iS(h) + Ta(h)za(#) = 0. (3)

where all the coefficients ['(¢) are local. These relations
can be understood as modification of the usual Noether
identities for the case when the theory admits completion
functions. Upon not quite restrictive regularity assumptions
(see in [8,9]), the operators ['4(¢), being the coefficients at
completion functions, can admit at maximum a finite
dimensional kernel,

rd(¢p)u, =0= u, € M = KerI'?,
dimM =n e N. (4)

The kernel M is understood as a moduli space of the field
theory. Elements of M are parametrized by finite number of
constant parameters A. Being parametrized by constants,
the elements of M can explicitly depend on the space-time
point x. From the viewpoint of modified Noether identities
(3), the completion functions 7, are defined modulo the
kernel M (4). Specific element of the kernel is defined by

3By local quantity, we mean the function of space-time
coordinates, fields, and their derivatives of finite order.
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the asymptotics of the fields, as z, should vanish on-shell
everywhere, including boundary. From this perspective, the
existence of completion functions (1) can be considered as
a consequence of modified Noether identities (3) rather
than a cause. Once the kernel of I'§ is finite, the identities
(3) mean that the local quantities 7, reduce on-shell to a
specific A-dependent function of x. This function can be
subtracted from 7, so the completion functions vanish on-
shell. On the other hand, I'% is a differential operator, and it
does not have inverse in the class of differential operators,
as the kernel exists. Once I'j is not locally invertible,
completion function 7,(¢), being on-shell vanishing local
quantity, cannot be expressed from the identities (3) as a
linear combination of Lagrangian equations with local
coefficients. In this sense, the identities (3) lead to existence
of completion functions (1).

Be modified Noether identity (3) a consequence of
existence of completion functions (1), or vice versa, any-
way, it means that the action S(¢) enjoys unfree gauge
symmetry. The unfree gauge transformation is defined by
the coefficients I'), of the identities (3),

' = Ti()e”. (5)

while the operators I define the equations constraining
gauge parameters,

Fa(@)e* = 0. (6)

Let us mention the terminology: operators I, being the
coefficients at Lagrangian equations in modified Noether
identities (3), are understood as unfree gauge symmetry
generators, while I'%, being the coefficients at the com-
pletion functions in (3), are considered as operators of
gauge parameter constraints. Given the identities (3), the
transformation (5) leaves the action intact off-shell once the
parameters obey conditions (6),

5:5(¢) = 0,S($)Tie” = —7,Ie” = 0. (7

In this way, we see that unfree gauge symmetry is a
consequence of modified Noether identities (3). Proceeding
from this observation first made in [8], we can find the
Hamiltinian counterpart of the unfree gauge symmetry. It is
sufficient to find the modified Noether identities (3) for the
Hamiltonian equations with constraints, and the equations
for gauge parameters (6) are immediately identified. This is
done in the next section.

Let us briefly explain the modification of the FP ansatz
needed to account for the unfree gauge symmetry. The
modification is proposed in Ref. [8], where one can find a
more detailed exposition of the method. In Sec. IV,
we deduce this modified ansatz from the BFV-BRST
formalism.

The ghosts assigned to the unfree gauge transformations
(5) are assumed to obey equations
Fa(@)C* =0, gh(C) =1,  €(C) =1, (8)
where I'%(¢p) are the operators of gauge parameter con-
straints (6). Let us impose independent gauges y!(¢). The
index [/ is condensed, so it includes the space coordinates
x*. The dimension of digital part of the index should be
equal to the number of unconstrained gauge parameters.”
Once we use independent gauge-fixing conditions, the
number of unfree gauge parameters will exceed the number
of gauges, so FP matrix will be rectangular,

s
Se%

To()0u (). ©)

Given the admissible gauge fixing conditions, the anti-
ghosts
Cr, gh(C)) = —1, e(Cp) =1 (10)

are assigned to y’(¢). The FP ansatz for path integral is
adjusted to the case of unfree gauge symmetry in the
following way:

Z= / [dD] exp{;l SFP((P)}’

® = {¢'.7;.C*.C.C,}. (11)
gh(C,) =-1,  €(C,) =1,
gh(z;) = e(n;) =0, (12)

where the FP action reads

Sep = S(¢) + 7' ()
+ CT ()0 (9)C* + C T (p)C. (13)

The Fourier multipliers C, to the ghost constraints
I'%(¢)C* =0 can be considered as antighosts, on equal
footing with the antighosts C; assigned to the gauge-fixing
conditions y/(¢). In Sec. IV, we shall see that these
antighosts naturally arise from the Hamiltonian BFV-
BRST formalism.

Let us exemplify the above generalities about unfree
gauge symmetry by the case of UG. Consider the unim-
odular metrics g,,(x), detg=—1, in d =4. The usual
explanations of gauge symmetry in UG proceed from the
idea that the symmetry is a diffeomorphism consistent with
unimodularity condition. This imposes the transversality

“In the next section, we explain the number of gauge con-
ditions from the Hamiltonian perspective.
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equation on the parameter. We go another way, following
the procedure above, and we shall see the same result.
Lagrangian equations of UG read

S[g] 1
——=RW ——¢""R~0, S= [ d*xR. (14
50 27 / xR. (14)

Taking divergence of the equations, and making use of
Bianchi identity, we get

v, 3l _ gug 50 (15)
2

Unlike GR, the divergence of the field equations does not
identically vanish. Once 9,R = 0, the scalar curvature is an
on-shell constant, R &~ A = const, where specific value of
A is defined by asymptotics of g,,. So, we have the modular
parameter A and completion function =R —-A=0.
Obviously, 7 cannot be represented as linear combination
of Eq. (14) and their derivatives, so it is a completion
function indeed. Then, we get modified Noether identities
(3) for UG,

5S[g]
O

v, - Vir=0. (16)

This allows us to identify the unfree gauge symmetry
transformations (5) and the gauge parameter constraints (6),

0cGu = V&, + Ve, V,e = 0. (17)
We can also mention one more example of completion
function noticed in literature concerning Maxwell-like
higher spin field theory [4]. In this theory, the double
divergence of the tracefull second-rank tensor vanishes on-
shell, 9,0, ~ 0, while it does not reduce to the lhs of the
field equations and their derivatives. This fact is empha-
sized in the paper [12].

In the end of this section, we provide, without proof, a
receipt for covariant degree of freedom (d.o.f) counting in
the theories with unfree gauge symmetry. In so doing, we
assume that the Lagrangian equations are involutive in the
sense that they do not admit lower order differential
consequences. The receipt can be deduced along the same
lines as explained in the paper [13] for the gauge theories
without constraints on gauge parameters.

The d.o.f. number is calculated as follows:

Nyof =n.0, —ngo, —n;0; + n.o., (18)

where n,, ng, n;, and n. are the numbers, and o,, oy, 0;, 0,
are the orders of Lagrangian equations 0;S = 0, gauge
symmetry transformations 6,¢' = I';&%, gauge identities
I',0;S +T'%r, = 0, and constraints ['%¢* = 0, respectively.
The order o, is defined by the highest order derivative in

equations of motion (EoMs), o, is the order of gauge
symmetry differential operator. The order of gauge identity,
0;, is a sum of o, and o,, and o, is a sum of the order of
constraint operator I'; and o;.

Let us exemplify the d.o.f. number count (18) by the case
of UG in d =4. We have nine equations of the second
order (14), n, =9, o, = 2. There are four gauge symmetry
transformations of the first order, and one first-order
equation imposed on the gauge parameters (17), so
ng=4,0,=1n.=1,0,=1+1=2. There exist four
gauge identities (16), n; =4, of the third order
(0; = 1+ 2 = 3). So, according to (18), UG has 4 degrees
of freedom by phase-space count, which corresponds to
two “Lagrangian” d.o.f.

III. CONSTRAINED HAMILTONIAN
FORMALISM: HIGHER ORDER CONSTRAINTS,
MODULAR PARAMETERS, AND UNFREE
GAUGE SYMMETRY

Any action functional can be brought to equivalent
Hamiltonian form with primary constraints,

S = /dt(p,»cf — Hy(q, p,2)),

)
Hy(q,p.2) = H(q.p)+ AT, (q.p), (19)

where ¢', p; are canonical variables, and A% are Lagrange
multipliers. All these variables can be viewed as the fields
¢ = (g, p,4), and then we can apply the general consid-
eration of the previous section to the action (19). As
explained in the previous section, the unfree gauge sym-
metry (5), (6) is caused by modified Noether identities (3)
which involve, besides the original Lagrangian equations
9;S(¢) = 0 and gauge generators I',, two more ingredients:
completion functions 7,(¢) and operators of gauge param-
eter constraints I'4. The key point in finding the unfree
gauge symmetry of any action functional is to find a
modified Noether identities (3) involving the operator I"%
with a finite kernel (4). Once the identities are found, the
coefficients at the equations define the gauge generators,
while the operators I give the equations imposed on the
gauge parameters. Hamiltonian action (19), due to the
canonical structure, is very convenient for algorithmically
deducing modified Noether identities (3). The idea is quite
simple: we apply the Dirac-Bergmann algorithm of iterat-
ing constraints. We assume that no Lagrange multiplier is
fixed, so all the constraints are first class. In the local field
theory, the algorithm should terminate in a finite number of
iterations. Termination of the algorithm is a (modified)
Noether identity. This key fact is explained below in this
section.

Once the modified Noether identities (3) are established,
one can find the gauge transformation for the fields ¢ =
(¢, p, 1) by identifying the coefficients at the corresponding
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equations, while the gauge parameter constraints are
defined by the coefficient at the completion functions in
the identity. As one can guess, the roles of completion
functions are plaid in Hamiltonian formalism by secondary
constraints of all generations. For the case when the
sequence of constraints terminates at the secondary con-
straints, without tertiary and higher order ones, this pro-
gram has been already implemented in the paper [10]. Here
we consider the general case. When the secondary con-
straints lead to the higher order ones, and the involution
coefficients include differential operators with finite kernel,
this can lead, in general, to explicit dependence of kernel
elements on space-time coordinates x. Through this mecha-
nism, the explicit time dependence can arise in the higher
order constraints even if the original action is translation
invariant. The explicit x dependence of secondary con-
straints is due to the field asymptotics which is defined by
modular parameters.

Let us consider iteration of secondary constraints to
deduce Hamiltonian form of identity (3) and get in this way
the unfree gauge symmetry (5), (6) for Hamiltonian action
(19). EoMs read

oS ) .
= 7' — I7H ) sj- — 0,
sp. = 4 {4'.Hr(q, p.A)}
oS .
oy = P +{pi.Hr(q.p.2)} =0, (20)
oS (1)
=-T,(q,p)=0. 21
5&(1] (l](q p) ( )

Following the Dirac-Bergmann algorithm, we take time
derivative of primary constraints (21) and combine it with
the evolutionary equations (20) to exclude the time deriv-
atives. The result is at most linear in A. As the multipliers
remain indefinite, all the coefficients at A should be
considered as on-shell vanishing, so the derivative of the
primary constraints reduces to the combination of primary
and secondary constraints,

dm (1)
7 L (¢.p) ={T4(q.p).Hr(q.p.A)}

) (1)
= Vi (q.p.2)T s, (q.p)

(), )
+ T a(q, p. )T p,(q.p). (22)

Unfree gauge symmetry corresponds to the case when the

)
structure coefficient I’ gf (g, p,A) is a differential operator
with finite kernel (4). This includes the case of zero kernel,
(1)
while no inverse exists for I' in the class of differential
operators. This has been first noticed in Ref. [10], though
this paper assumed no higher order constraints appear.

2
Relation (22) defines secondary constraints 7 modulo
()
kernel of I'. The kernel is parametrized by finite set of
constant modular parameters A. The elements of the kernel

can be specific A-dependent functions of space-time point
(2)

x. The latter fact means that 7 can be explicitly time

dependent,

2)
Tp(q.p.Nt)=Tp(q.p)+ug (A t.q.p),

(1),

I oug, (A t,q,p) =0. (23)

Further examination of the stability of the secondary
constraints has to account for the possible explicit time

1
dependence which can originate from the kernel of (F) The
kernel depends, in its own turn, on the asymptotics of the
fields.

Consider now the sequence of n stability conditions of
constraints labeled by index k,k=2,...,n. The time
derivatives of secondary constraints should vanish on-shell
that leads to tertiary constraints, etc. Stability of the /-order

! I+1
constraints (72 leads to (T ),

X0 (1)
T, (q.p) = pe To(q.p) +{Ty(q.p).Hr(q.p. )}

dt
L, (m)
=> Vi&(q.p.2)Ty(q.p)
m=1
()/fl | (+1)
+ o (g p.4) T 4..(q,p) (24)

)
n — 1. The coefficients I" at the constraints
(I+1)
of next generation 7 are the differential operators with a

finite kernel. Therefore, constraints of (/ + 1)-st generation
are defined modulo the kernel elements much like the
secondary ones (23). In general, the kernel is different for
different I’s. The algorithm terminates when no further
constraints appear,

wherel = 2, ...,

(n) (n)
a,(@.p) +{T 4 (q.p).Hr(q.p.2)}

(" (m)
(qvp’ﬂ>Tﬂm<(’va) (25)

d
-T ,
o o, (4, P) =

:SDI@

3
I

k
Note that constraints <T)ak, k=2,...,n contain modular
parameters defined by asymptotics of the field and can be
explicitly time dependent. Once I'’s are differential oper-
ators, the secondary constraints of all generations (22), (24)
are not differential consequences of original variational
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equations (20), (21), while they vanish on-shell, so they are
completion functions (1).

Notice that all the structure functions V, I' in relations
(22), (24), (25) are at most linear in A, so it is useful to
introduce separate notation for the coefficients at A’s and
A-independent terms,

(r)

Vi (q.p.2) = Vi (q. p) + Uy (q. p)A,  (26)

where r,s =1, ...,n,

(F)ﬂﬁ»l /}
o (@-p.2) =T0(q.p) + Ubil(q.p)A,  (27)

where r=1,...,n,r+1 < n.

k
Once the secondary constraints (T), k=2,....,n of all
generations play the role of completion functions (1),
the relations of the Dirac-Bergmann algorithm (22),
(24), (25) can be assembled into the modified Noether
identities (3),

5
{Tal,q} +{ a,,p} 5,

(1)
d 5S
St —— A
(1)P (2)

+ T, (q.p.4)Ty =0, (28)
) I () 58
T gV —4+{Ty. pi} —
{ al,q}éqﬂr{ a,p}(spi
) =1 ()

58 (m)

~Va(g.p )55+ D Va(a.p ATy,
m=2

v 0
( éﬁjd Vai(q,p,,l)> Ty,

+ T (g, psA) T 4, =0, (29)

where [ =2,....,.n—1,

(n) 68 (n) oS
{Ta’ql} i+{Taspi}
n 5q n pi

(n)

0
p
—Vii(q.p.2) 51131 + ZV” q.p. )Ty,
(n >
d (n)
< - yTha Vi (q,p,/l)) Ty =0. (30)

The coefficients at the variational equations in the identities
(3) define unfree gauge variations (5) of corresponding

variables, while the coefficients at completion functions

define the constraints imposed on the gauge parameters (6).

Given the modified Noether identities in the Hamiltonian

form (28)-(30), with g, p, 1 being the fields, and the
k

secondary constraints (T) being the completion functions,

we arrive at the Hamiltonian form of the unfree gauge

symmetry,

o
=> {0.T, }e", (31)
r=1
. 4,y /
[ _ a 1
( L T Ve (a.p, ))E
n_ (k)
+ 3V (g p e, (32)
k=2

while equations constraining gauge parameters (6) read

cd Uy, ‘
m=I[+

=,
+ T 3 (g,p,A)efm =0, (33)

where [ =2,...,n—1,

. d (n)
<5;3 dt+ V/)’ (9. P /1)>5ﬁ"

(n=1) p
+ Iy (g, p.2)e =0. (34)

As one can see, the gauge transformations are generated
by the constraints of all generations (31), (32), while
corresponding gauge parameters are bound by the differ-
ential equations (33), (34). One can verify by direct
computation that transformations (31), (32) leave original
Hamiltonian action (19) intact. Given involution relations
of Hamiltonian and constraints (22), (24), (25), the gauge
variation (31), (32) of the action reads

n—1 ()
56SE/dt{Z[<5adi+‘l/Zl>eﬁ’

1=
+ z”: (’\1}) o e 4 (ZF1>;5leﬂf—'] (712(,,
m=I+1
+ K(S;" % + ({1/) Z:)eﬁ" + (nl:])g': - '} (;)an
(3T )0 @
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By virtue of Egs. (33) and (34), imposed on the gauge
parameters, the integrand reduces to the total derivative.

Let us discuss the structure of Egs. (33) and (34)
constraining gauge parameters. To demonstrate key fea-
tures of the equations, consider the toy model such that has
only one constraint of each generation, so no indices o, are
needed. The next simplification is that all the constraints are
assumed commuting. So, the involution relations (22), (24),
(25) get a simple form,

(1) me o (!) (141)
{T.HY=T T {T.H} =T T,

() () (s)
(T.H}=0,{T.T} =0, (36)

wherel =2,...,n—1;r,s = 1, ..., n. Given the involution
relations, gauge transformations (31), (32) read

"o
5.0=> {0.T}e',  si=¢" (37)
r=1

Equations (33) and (34) constraining gauge parameters &”
read

)

ér+1+l—‘€r:O7 r=1,...,.n—1. (38)

(r)
If operators I', r =1,...,n — 1, were all invertible in the

class of differential operators, one could express all the
gauge parameters €" as the derivatives of the last one,

0o d o d =D d

dt( r) '"dt( r) 75 (39)
Relation (39) is a general solution for Eq. (38). Given the
solution, one can substitute all the gauge parameters &’,
r=1,...,n—1, in terms of the unique unconstrained
parameter €", into the gauge transformation (31), (32). In
this way, we arrive at the gauge transformation without
constraints on gauge parameters but with higher derivatives
of the unconstrained parameter. The most general case of
this type, when the higher order gauge transformation
generators can be constructed for the evolutionary equa-
tions with constraints, is considered in the paper [14]. The
unfree gauge symmetry arises in the example above when
at least one of operators I' in involution relations (36) does
not admit inverse in the class of differential operators.
Notice the special case of this type, when operators are
nondegenerate, i.e., kerI" = 0, while no I'"! exists in the
class of differential operators. As the example, we can
mention the unimodular gravity with asymptotically flat
metric. The role of I'} is plaid by partial derivative 0,,
whose kernel is a constant. If the fields vanish at infinity,
the kernel is zero, while no local inverse exists for the
operator. In this case, the higher order unconstrained

symmetry can exist, though it is reducible. For general
linear field theories, the reducible higher order gauge
symmetry, being equivalent to the unfree first-order sym-
metry, is described in Ref. [15] in Lagrangian formalism.
The reducible unconstrained symmetry for this class of
nonlinear theories will be considered elsewhere.

Let us mention that the number of equations (33), (34)
imposed on the gauge parameters equals to the number of
secondary constraints of all generations, while the number
of gauge parameters is the number of constraints of all
generations, including primary ones. All equations (33),
(34) are independent; there are no identities among
them, because every equation is resolved with respect to
the derivative of a unique gauge parameter. Therefore, the
number of independent gauge parameters equals to the
number of primary constraints. If it was possible to locally
express all the parameters in terms of independent ones and
their derivatives, like in the example above, there would be
m; independent gauge transformations, where m; is the
number of primary constraints. On the other hand, corre-
sponding number of time derivatives of m; independent
gauge parameters &" essentially contribute to the gauge
transformations of dependent gauge parameters &',
r=1,...,n— 1. Therefore, overall m independent param-
eters and their time derivatives would be involved in the
gauge transformation (31), where m is the total number of
constraints. Hence, the on-shell gauge invariants should
Poisson-commute on-shell with the constraints of all
generations, even if the gauge symmetry is unfree. This
would be true even if m; independent higher order gauge
transformations cannot be explicitly extracted from m
unfree first-order transformations in the local way. Here,
we do not provide a more rigorous justification of this
observation, limiting ourselves to the explanations given
above.

Once the unfree gauge symmetry corresponds to the
higher order symmetry with m; independent parameters, it
would be sufficient to impose m; independent gauge-fixing
conditions. This number of required gauge conditions
remain the same, even if the independent gauge parameters
cannot be explicitly found from Egs. (33) and (34) in the
local form. If the gauges are imposed only on the phase-
space variables, not Lagrange multipliers, then nondege-
neracy condition of the gauges y*' reads

rank{y®, Tz} = m,, (40)

where T stands for the complete set of all constraints,
including primary, secondary, tertiary, etc., f=(f1,..../3,)-
Once the number is different of the constraints and gauge-
fixing conditions, the nonminimal ghost sector has to be
modified in the BFV-BRST formalism for the case of
unfree gauge symmetry. This issue is considered in the next
section.
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IV. HAMILTONIAN BFV-BRST FORMALISM
FOR UNFREE GAUGE SYMMETRY

Construction of the formalism begins with introducing
the minimal sector of ghosts. Once the on-shell gauge
invariants for the unfree gauge symmetry are defined by the
requirement to Poisson-commute on-shell with the con-
straints of all generations, the minimal sector is introduced
along the same lines as for any first-class constrained
system [11]. Every first-class constraint is assigned with
canonical pair of ghosts with usual Grassmann parity and
ghost number grading,

(r) _
Ta, - {CarvP/f’,} = 5;;:,
gh(C*) = —gh(P,,) = 1.

e(C) =e(P,) =1, r=1,...,n. (41)
The Hamiltonian BFV-BRST generator of minimal sector
begins with the constraints,

Oumin = zn:car(%)ay + o
r=I1

gh(Qmin) = 17 G(Qmin) = 17 (42)
where ... stands for P-depending terms. These terms are
iteratively defined by the equation

{Qmim Qmin} =0. (43)

The ghost extension of the Hamiltonian begins with the
original Hamiltonian H,

H=H+..., e(H)=0. (44)
The specifics of the unfree gauge symmetry are that the
completion functions (1), and hence the secondary con-
straints may depend on the space-time coordinates, even if
the original Lagrangian is x independent. The x dependence
of the constraints is connected with the asymptotics of the
fields. Once the constraints involve time, the BRST
generator Qnin can be explicitly time dependent. The
explicit time dependence of Qp,, results in appropriate
modification [16] of the equation for H,

0
E Qmin + {Qmim H} =0. (45)

This equation defines the P-dependent terms in 7.
Equation (45) means that Hamiltonian H is not BRST
invariant. This is a natural consequence of the relations (24)
which mean that the original Hamiltonian is not invariant
under the unfree gauge symmetry transformations (31),
(33), (34). The Hamiltonian action (19), however, is gauge
invariant, see (35). For a similar reason, the corresponding

path integral is gauge invariant in the BRST-BFV formal-
ism, even though the Hamiltonian H, being a solution of
Eq. (45), is not a BRST invariant. This fact is proven for
general nonstationary constrained system in Ref. [16].
Consider now the nonminimal sector for the unfree
gauge theory. Once the number of gauge fixing conditions
coincides with the number of primary constraints, the same
number of nonminimal sector ghosts is introduced,

{P.Cpt =05,  gh(P") =—gh(C,) =1,
e(P) =e(C,,) = 1. (46)

The Lagrange multiplier canonical pairs are introduced for
(1

primary constraints 7', and gauge fixing conditions y“,
{9, 75} =55, gh(2") = gh(z,,) = 0.
e(A") = e(n,,) = 0. (47)

Complete BRST generator extends the minimal sector one
in the usual way,

0= Qmin + ”aIPal . (48)

Gauge-fixing conditions involve the time derivative of
Lagrange multiplier and the function of original phase-
space variables,

A=y (q. p) = 0. (49)

Given the gauge conditions, the gauge Fermion is intro-
duced,

Y =C,x™ + AP, (50)
and gauge-fixed Hamiltonian is defined by the usual rule,
Hy =H+{0,¥}. (51)

This Hamiltonian provides conservation of the BRST
generator Q much like H. The gauge-fixed BFV-BRST
action reads

SBrsT = /dt<pié1i + g A

+ ParC“urCalP“l—Hq,). (52)
=1

r=

This action accounts for unfree gauge symmetry in two
ways. First, the nonminimal sector is asymmetric with the
minimal one unlike the usual BFV formalism. Second, the
secondary constraints, being a part of the BRST generator
0O, may be explicitly time dependent, even though the
original action does not involve time explicitly. Both of
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these features do not obstruct the usual reasoning that
justifies ¥ independence of the transition amplitude for this
action,

zo= [Dolew{ st} Y

where ® = {¢', p;,A*,x,,,C* P, ,C* P, ....C* P,
P, C(Xl }.

Let us consider a theory (19) with constraints (22), (24),
and (25), with the involution relations

(r) (s) (1)
{Ta(q.p). Ta(q.p)} = Uba(q.P)T,(q.p). (54)

where r, s, ¢t = 1, ..., n. Assume that BRST generator Qin
and Hamiltonian H are at most linear in the ghost momenta,

Qmin:ZCarT> += Z Cﬁ‘carU% P - (55)

r=1 rstl

n n () _
= H(q.p)+»_C™ <Z V 2 (q.p. APy,
r=1

s=1

(r) _
S arar,). (56)

We also assume the following form of gauge-fixed
Hamiltonian:

(m .
Hy =M+ {Q. ¥} = H+ 1T, + myy + P, P

no_ (r)
+ ) Co{r™, Ty }C. (57)
r=1

This is automatically true if the gauge conditions y
Poisson-commute to structure functions U in the involu-
tion relations (54). Given the action, path integral (53)
reads

(1)
Zy = / [DO] eXP{ dt{p :q' —H(q.p) =T,

. no_ (r)
+ g, (ﬂal _)(a]) - Cal {)(a]’ Ta,}car
=1

5 (a.p /1)C”S>

ol a d <k)av 3

n_ (m) (k—1)
+ Y Vgt Ty c/’mﬂ}, (58)

m=k+1

(s)
C"+y V
s=1

+ P(Py + Cyy) +

where ® = {q', p;. 1, 74, C1, Py ,C®2, Py, ....C*,
P, .P",C, }. Integrating in path integral (58) over P™,
P,,, we arrive at the following answer for the transition
amplitude:

2o~ [Ipo

+ T (A% =

(1)
exp{/ [pq— q.p) = A" T,

Z Co {2 7, yce

~C(E YV )

n _ d ( )
+ > P, < <6“k +V “‘> CPr
k=2 dt

/-\ ‘

m 4 p k=1 p
+ Vgt T CP . (59)
m=k+1
where @ ={q', p;, A", 7, ,C",C= P, ,...,C* P,

Cq, }-

Let us discuss the path integral (59). The first line in (59)
is the original action (19) and the gauge-fixing term. The
second line is the FP term for the gauge transformations
(31), (32). The third line has a natural interpretation from
the viewpoint of the modified FP ansatz in Lagrangian
formalism (11), (13). The ghost momenta P, , k =2,....n
can be viewed as Fourier multipliers at the constraints
imposed on ghosts,

d W, nm)
(3 G+ Vitwrn)ore S Vi pnen
m=k-+
k=1, !
+ T g (g p )00 =0, (60)

These ghost constraints mirror the equations imposed on
gauge parameters in Hamiltonian formalism (33), (34).
So, Eq. (60) represents Hamiltonian form of the con-
straints (8) imposed on the ghosts in the case of unfree
gauge symmetry. With this regard, the path integral (59)
represents the modified FP recipe (11), (13) for the
Hamiltonian action (19), gauge symmetry (31), (32), and
the constraints (33), (34) on the gauge parameters. So,
proceeding from the amplitude (53) in the general
Hamiltonian BFV-BRST formalism for unfree gauge
symmetry, in the case without higher order ghost con-
tributions (55), (57), we arrive at the modified FP path
integral (11), (13).
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V. EXAMPLE: TRACELESS MASSLESS
SPIN s GAUGE FIELDS

A. Lagrangian, completion functions,
and unfree gauge symmetry

Let us consider a theory of traceless symmetric tensor
field @, > @ s, = 0, in d-dimensional Minkowski
space. The metric is chosen mostly negative, 7,, =
diag(1,—1,...,—1). The Lagrangian reads [3]

1
L= (_1)X (Eal/(pul...ﬂsay(pﬂlmm

s
) F Puyy.. g, apq”pmw”‘)
s
) 2P G m). (61)

The last term is a total divergence, so it does not contribute
to EoMs. We include it for convenience when constructing
the Hamiltonian formalism.

The above Lagrangian describes irreducible massless
spin-s representation of Poincaré group. One of the
advantages of this form of the irreducible higher spin
theory, comparing to the Frondsdal Lagrangian [17], is that
it does not involve auxiliary fields. This Lagrangian can be
viewed as higher spin extension of linearized UG [1,2]. In
this section, we utilize this model for exemplifying all the
generalities about unfree gauge symmetry considered
above in this paper.

The field equations for the Lagrangian (61) read

oS . )
O ++Hs =-(=1'Dey. u - 594, 0" Pupy..1,)
s(s—=1) i
mﬂ(mmauaf q)upm.‘.m)] =0, (62)

where round brackets (y;...u;) mean symmetrization of all
the included indices. Taking the divergence of the lhs, we
get the differential consequence, cf. (15),

68 L d+25—6
oM 5¢”1..‘;¢: = (_1) 1m (a(lllrﬂz'n%-—l)

2
6’7041/428/17/1---#;2)) ~ 0, (63)

_d—|—2s—

where 7,

4ur..u,_, 18 @ double divergence of the field,

Troto = PP, (64)

Relation (63) means that 7 reduces on-shell to the element
of the kernel of first-order differential operator. For s = 2, ¢
is a scalar, and relation (63) means just 9,7 = 0, so 7 is
just on-shell constant. In this case, the kernel is one-
dimensional. For s > 3, relation (63) means

~
~ Aﬂ]---lls-z’

(65)

Tﬂl s M2

equations,

D A :

i) = gy = g MmO A

vepea) = 0. (66)
The space of conformal Killing tensors is finite dimen-
sional, so 7 is a completion function. Specific A is defined
by the asymptotic behavior of the fields. For example, if ¢
vanishes at infinity, then A = 0. In this most simple case, =
still remains a nontrivial completion function as it depends
on derivatives of the fields off-shell. This linear function of
0”@ vanishes on-shell, while it is not a linear combination
of the Lagrangian equations (62). We detail the case of
nonvanishing A below for s = 3.

Once 7 (64) is a completion function, relation (63)
should be understood as modified Noether identity (3)
because it binds Lagrangian equations with completion
functions,

5S ,d+2s—6
o W + (-1) d12s—4 <a(ﬂ11ﬂ2ml4s—l)

2

Td+2s— 6”(#1#28/172--.#.‘2)) =0. (67)

Given the identities (3), it defines unfree gauge symmetry
of the action: the coefficients at EoMs define the gauge
generators (5), while the ones at completion functions
define the equations (6) constraining the gauge parameters.
In this way, the identities (67) define unfree gauge
symmetry

Octuy..ty = SO Epy.1)- (68)
where ¢, , = are traceless symmetric gauge parameters,
€1, u_, = 0, subject to the transversality conditions

ey = 0. (69)

Transformations (68) and constraints (69) are noticed in the
paper [3] where the Lagrangian (61) is proposed. The
completion functions (64), (65) are noticed here for the
first time.

B. Covariant degree of freedom count

Let us now apply formula (18) to verify d.o.f number of
the spin-s theory (61) in explicitly covariant way. Given the
EoMs (62), symmetry transformations (68), gauge iden-
tities (67), and constraints on gauge parameters (69), we
can compute all the ingredients needed to count the d.o.f
number by the recipe (18). The number of the second-order
(0, = 2) Lagrangian equations (62) corresponds to the
number of independent components of traceless s-rank
tensor,
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_(d+s—1 B d+s—3
e (<d+ss—3)!) ( " )

= W(dz +d(2s—=3)=2(s—1)). (70)

The number of first-order (o, = 1) symmetry transforma-
tions (68) and third-order (0; = 1 4 2 = 3) gauge identities
(67) equals the number of independent components of
traceless (s — 1)-tensor,

<d+s—1) <d+s—4>
ng=n; = -
s—1 s—3

_%W“@S-S)—m—z)).

(71)
There exist second-order (0, = 1 + 1 = 2) constraints on
gauge parameters (69), whose number coincides with the

number of independent components of traceless (s — 2)-
tensor,

d+s-3 d+s—-5
nC=< s—2 >_< s—4 )
:%W”d@s-ﬂ—%s%))- (72)

So, the expression (18) for d.o.f counting in case of a theory
(61) reads

e [(47)- (427

()]
(-5
(G Gt B

For d = 4, this means

Nd'olf|d:4:(S+1)2‘2—S2'1—SZ'3+(S—1)2'2:4.

(74)

Four d.o.f by the phase-space count corresponds to two
Lagrangian modes, which is correct number for massless
spin-s field in d = 4.

C. Completion functions, asymptotics, moduli
space for s=3

Let us elaborate on the contribution of field asymptotics
to the completion functions in the simplest higher spin
case. For s = 3, Lagrangian (61) and field equations (62)
read

1 3
L=- (5 a/l(p/wpall(pm/p - 5 aﬂgoﬂupalgohp)

3
- Eaﬂ ((pﬂypai(pbp>’ (pyllﬂ =0, (75)
oS
Sephr = 00, — 30,0 y)
6
+ mn(yuya Doip) = 0. (76)

Taking the divergence of the field equations, we get the
differential consequence

L 65 2d

5¢/1;w = d+2 (a(ﬂa/)a%”/lpu)

1
- ;111”2”38’18”8”(pw> ~ 0. (77)

Introduce the notation
Tl‘ = 8”8’%0#,,/1. (78)

Relation (77) means that 7, must obey on-shell the equation
for conformal Killing vector field,

2
0,1, + 0,1, — c—inﬂyaﬂrﬂ ~0. (79)

The general solution of the conformal Killing equation
reads

J,A 0,A 2 ON =0 A, = 2 vP
W + 0y u = g N = < Ny = ay + 21, 07x,

+ Ax, + bY(2x,x, = 11,,x,X"),
(80)

where a,, 4, b*, @ = —@" are arbitrary (integration)
constants, so there are W constant parameters.
Relation (79) means that 7, reduces on-shell to Killing

vector (80),
0,0, ~ N'(x;2.a.b. ). (81)

Let us shift the notation (78): 7, = 8" 1 — A, (x4,
a,b, ). Then, 7, vanishes on-shell,

7, = 8"8’1%”,1 - Ay(x;4,a,b,0) % 0. (82)

So, we have a function of the field derivatives such that
vanishes on-shell, while it is not a linear combination of the
lhs of Lagrangian equations (76) and their derivatives. This
means that 7, is a completion function, according to
definition (1). Relation (82) can be considered as spin-3
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analogue of relation 7= R — A = 0 in UG. There are two
distinctions, however. First, in the case of UG, we have one
completion function which involves one constant param-
eter. In the case of spin-3, we have d completion functions
involving w constant parameters. Second, in the
case of UG, the completion function does not depend on
space-time coordinates, while for s = 3 there is explicit x
dependence. We see that the number of modular parameters
does not directly correlate to the number of completion
functions. Also, completion functions can be explicitly x
dependent, even if the Lagrangian is translation invariant.
Specific modular parameters A, a, b, w are defined by
asymptotics of the fields. If the fields tend to zero at
infinity, all the parameters vanish, while the equation
7, =0 will remain a nontrivial relation anyway, not a
differential consequence of Lagrangian equations.

Notice that field equations (76) admit the solutions such
that compatible with any modular parameters 4, a, b, @ in

the completion function (82). Let }{,(4(1),)/) be a general solution

vanishing at infinity. It includes the Cauchy data, corre-
sponding to four local physical d.o.f in 4d case. Double

divergence of x,(,% inevitably vanishes. There is another
solution, x,,,, with different asymptotics which includes
the same number of local Cauchy data and arbitrary

modular parameters,

0 1
Ky = }{;(u)p + A {a(ﬂxvxp) — mnwap)xﬁxi

2
d+2"

1
Wnp)aa)“ﬂxﬂxﬂxﬂ + CA {x(ﬂx,,xp)

(wXp) @ Ax*] + B [n(,,,,a)”ﬁxﬁx,,xp)

a2

3

— m”(ﬂvxp)xlxl} + Db x;x(,x,x,)

+ Eb(ﬂxbx,,)x,lx’l + Frub )xix’lx,,x"

+ G X b x,x,x°, (83)
where
3 6

Aarae-n P araar
co 1 b_ 2(d? 4 7d - 6)

(d+4)(d-1) (d+6)(d+4)(d-1)
Eo 3(d*+3d - 6)

 (d+6)(d+4) (P -1)

- 3(d* +3d - 6)

C(d+6)(d+4)(d+2) (P -1)
oo 24d (84)

(d+6)(d+4)(d+2)(d*-1)"

For the solution x, the double divergence of the field is a
general conformal Killing vector (80),

8”8’1%”” =A,(x;4,a,b, ). (85)

Once we have the completion function z,, (82), relation (77)
can be reformulated as modified Noether identity (3),

oS d

2
6(/)/1”” - m (8,,7,, + 81,1'” - Eﬂﬂba/ﬂj‘> = 0. (86)

2

Given the modified Noether identity, the coefficient at the
equations defines unfree gauge variation of the field, while
the coefficient at completion function defines the equation
constraining the gauge parameters. In this way, we get
unfree gauge symmetry of Lagrangian (75),

5e(p/wl = 8/481//1 + aygll,u + 8/18;;1/1 (87)

&e,, =0, (88)

where the gauge parameters are symmetric traceless tensors
— v
€ = €y €8, =0.

D. Constrained Hamiltonian formalism
for s =3 case

Hamiltonian formalism for the theory (61) is worked out
in the paper [3]. Our analysis extends the consideration of
[3] in two respects. First, the paper [3] assumed that fields
vanish at infinity. We admit nontrivial boundary conditions
for the fields, and reveal contribution of the modular
parameters to the Hamiltonian constraints. Second, we
demonstrate that involution relations of constraints and
Hamiltonian define the unfree gauge symmetry.

We begin constructing the Hamiltonian formalism with
1 + (d — 1) decomposition of the fields such that accounts
for the traceless condition. The indices u,v,...=
0,1,...,d—1 are split into 0 and i,j,... =1,...,d— 1.
Metrics n;; = diag(—1, ..., —1). Introduce abbreviation

o
Poij = Pij T i n@; =0,  (89)
and notice the consequences of symmetry and traceless
properties of ¢,,,,

(ﬂooo = —(/’iio = -, fﬂom = —fﬂj i (90)
where ¢/ ;; = n/* ¢, ;;. Given relations (89), (90), Lagrangian
(75), being expressed in terms of the variables @, i, @;j, @,
modulo total time derivative reads
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| P . e
L= —§§0ijk€0ljk +§(0ijj§0lkk + 7 +3¢, 0P
- e Co
— 60, " —ﬂfﬂiﬂalﬁﬂ +3p0;p" ;

3 (aifﬂjk18’€0'k1 430,009’ | +30,,0''*

d?+d-8, 3/, W ,
+Waiﬁ0a €0> T3 (3 P00 + 0 0,07
. . 4 .
+23‘¢ik8j¢/k+ﬂ8’¢ij8/go>. (91)

The Lagrangian does not include (i),- j- Making the Legendre
transform with respect to ¢; j and ¢, the action is brought to
the Hamiltonian form

SH = / ddX(Hi'ik¢ijk + Hﬂ” - H- @ijTij)’ (92)

where the Hamiltonian reads

- 31 1

H = =3 IO 4 5T T T
3 3
T TV .8.0 — 2T10.0" .
Taa-1) 0T

1 o o d+3 )

+ 3 (ai%kzalf/”kl + 30,0, 00’ + TaiQDalf/’)
3 (. Vi kn il

) 0 (oiklaj(ﬂ' - 53 Pik 5;40 l (93)

and

= 1
Tij =-3 <aknkij - mﬂ,’jaknldl) =0, (94)

nT;;=0, are the primary constraints, with @" being
Lagrange multipliers.
Let us examine stability of primary constraints (94),

T

ij — {TipHo}
1
= _<5I<3~aj> - mnua") T =0, (%)

where
T/i = —3(6,1_[ — 8,-3j(pjkk — ZAIPUJ + 2(918k(pkj,) (96)
The coefficient at 77; in relation (95) is a linear differential

operator with the finite kernel. The equation for the null
vectors of the operator reads

1

The equation above defines the conformal Killing vector
field in (d — 1)-dimensional space. The space of conformal
Killing vectors is finite dimensional. There is a subtlety,
however. It concerns the fact that the parameters defining
the solution to Eq. (97) may be time dependent. This can be
understood from the fact that solution of (97) should
explicitly depend on space coordinates x’, while the theory
is Lorentz invariant. Then, Lorentz boost will inevitably
bring time dependence to any solution of (97). The time
dependence is fixed, as we shall see below, by further
stability conditions. Stability condition (95) means that 7,
(96) reduce to the solution of Eq. (97), i.e., we arrive at
secondary constraints,

T, =T, - Ai(x) = 0. (98)

Given the secondary constraints, they have to conserve.
The conservation condition reads

Ti = 80Tl' -+ {TI,H} = —80/\,-()6)

: 1 . .
Relation (99) means we have tertiary constraint
T=T + Ag(x) =0, (100)

where

1
T = -3 (—aln,-jf + A(/}), (101)

d—1

and Ag(x) is connected with A;(x) of (98) by the relation

0o\ + 0;Ag = 0. (102)
Given tertiary constraint (100), it has to conserve,
T =9,T + {T,.H} = dyA,
1 |
—maln—ﬁfmi =0. (103)

This relation does not result in any new constraint, while it
is consistent if Ay(x) and A;(x) are connected by one more
relation

|
OgNg ———0'\; = 0. 104
0420 d—1 i ( )
Relations (97), (102), and (104) taken together are just 1 +
(d — 1) decomposition of conformal Killing equation (80)
in d dimensions. So, A;(x), Ag(x) are the components of
conformal Killing vector,
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Ai = ai + Z(Q)io.xo + a),jxl) + lxi

+ 2(b0x0 + bjxj)x,- - b,-(xoxo + xjxj), (105)

Ao = ag + 2woix’ + Axg + bo(xox® — x;x') + 2b;x'x.
(106)

As soon as the Dirac-Bergrmann algorithm is completed,
let us summarize its results. Complete set of constraints
reads

~ 1
Tj=-3 <aknkzj - m'lzjaknklz),

T; = =3(0,1 - 0,0/ ;i = 2A¢; +20/0 ) — A,

1 R
T=-=-3 (WQ’H,-JJ + A(p) + Ao,

(107)
where A;, A, are defined by relations (105), (106). All the
constraints Poisson-commute to each other. There are
nontrivial involution relations between the constraints
and Hamiltonian,

- 1
{1,;,H} = _<5](<iaj) - d_lﬂijak> Ty,
. 1 . -
80T,' + {T,,H} =-2 <5518k) - mnﬂ‘&-) Tjk + 8,-T,

0T +{T.H} = —ﬁam. (108)
Once all the constraints are known, and structure coeffi-
cients of involution relations (22), (24), (25) are identified,
they define the unfree gauge variations of the fields and
Lagrange multipliers by the general rules (31), (32). Also,
the structure coefficients define Eqs. (33) and (34) imposed
on the gauge parameters. Given the constraints (107) and
involution relations (108), we apply the general rules and
arrive at unfree gauge symmetry transformations of the
fields ¢, 1, ¢ and Lagrange multipliers ¢,

. 3 -
Seiji = 30iEj) + jr](l‘jak)g’ S.p = 30;¢',  (109)

d
T R
5s(plj =&Y+ 0'¢ + ¢ —ﬁn”aks . (110)

Upon substitution of structure coefficients of involution
relations (108) into general relations (33) and (34), we get
the constraints on gauge parameters for this model,

ol =Ji 1 i
£ +aj8J +ﬁa€:0, (111)

£— 0 = 0. (112)

This unfree gauge symmetry is parametrized by (d — 1)-
tensors &/, ', e. Explicitly covariant unfree gauge sym-
metry (87), (88) of the original action (75) is parametrized
by symmetric traceless tensor ¢,,. The gauge parameters
g, ¢ e of Hamiltonian form of the symmetry can be
viewed as 1+ (d—1) decomposition of the d-tensor
parameter &,,,,

0 .
&y = —¢€;=—¢,

—_ 1
8,']' = gij +ﬂ7’]”€

&oi = €

(113)

As we see in this example, the Hamiltonian algorithm of
Sec. III allows one to systematically identify all the unfree
gauge symmetry transformations and modular parameters
of the model, though the method is not explicitly covariant.

E. BFV-BRST formalism for s =3 case

In this subsection, we illustrate the general BFV-BRST
formalism of Sec. IV by the spin-3 model (92).

We begin with construction of the formalism by intro-
ducing the ghosts of the minimal sector. The ghost pairs are
assigned to every constraint of the complete set (107),

S o= 1 . . 1 y
{CY. Py} = 5(5#% +8)5) — T
{c',P}y=4¢, {C.P}=1,

gh(CY) = —gh(P,;) = gh(CY)

(114)
Hamiltonian BRST generator reads

Qmin = C‘ijTij + CiTi + CT, {Qminv Qmin} =0.

(115)

Given Hamiltonian H (93), and involution relations (108),
the ghost-extended Hamiltonian reads

. L= - 1 o
H=H~CU0P) + COP ~ COP) ~——COP,,

aOQmin + {Qmin’H} =0. (116)

According to the prescriptions of Sec. IV, the nonminimal
sector ghosts are assigned only to the primary constraints
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pij ¢ Visisi | sisi L
{PY,Cu} :§(5k5{+5z5{{)—d_177’77k17
e(Pl) = e(Cyj) = 1.

(117)

gh(Pij) = _gh(Cij) =1

Also, the momenta are introduced being canonically con-
jugate to the Lagrange multipliers,

o TRV |
{@V 1y} = 3 (845) + 816,) — .

gh((ﬁ’j) = _gh(ﬁij) =0,

Complete Hamiltonian BRST generator reads

Q:Qmin'i_ﬁijpij- (119)
Lorentz-like gauge conditions should be imposed, being
explicitly resolved with respect to time derivatives of
Lagrange multipliers. As explained in Sec. IV, the number
of gauges should be the same as the number of primary
constraints. So, we choose the following gauges:

50” _)?l] — 0’ )?l] = _(ak[pku _ i

ﬂijak(/’kll> .

(120)

1

Given the gauges, the gauge Fermion reads

Following the general rule (51), the gauge-fixed Hamiltonian
is constructed,

H‘P = H + éblelJ + ﬁlj)?lj + fz)upl] + 61]{)?11’ Tkl}ékl
+ Cy{71. T} CF + Cy{7. TIC. (122)

As a result, we arrive at the gauge-fixed BRST-invariant
Hamiltonian action

ShRsT = / dx[T i + Mg + ;57 + P ;C”

+ P04+ PCOHC P - Hy). (123)
Corresponding path integral reads
i
Zy = /[Dd)] exp{ESgRST}, (124)
where @ = {Hijk,(pijk,H,(p,lz[ij,@ij,lzjij,Cij,P,',Ci,P, C,

C;;, P}. Integration over momenta P, P;;, I1;;, IT leads

to the following result:

Z= /[Dq)’} exp{%/ddx[ﬁ +11;;0,0"7
+ C,;(068:8) +2018,0,)C* + P,0,C™] } (125)

where @' = {%bp’ﬁij’ E‘,-j, c*, P,}. Ghosts C, C', CU can
beviewedas 1 + (d — 1) decomposition of ghost C*, C¥,, =
0 (8), being d-dimensional symmetric traceless tensor,

CO() = _Ci,' =-C, Coi =C;,

~ 1
Cij = Cij + ﬁ?]UC
Expression 0, C* in the end of exponential of (125) can be
viewed as a constraint imposed on the ghosts which
corresponds to the transversality condition imposed on
gauge parameters. The ghost momenta P,:P;= —P,
assigned to the secondary and tertiary constraints, play the
role of Fourier multipliers at the constraints imposed on
ghosts for the original unfree gauge symmetry. With this
regard, relation (125) is seen to reproduce the modified FP

path integral (11), (13) for the original action (75).

(126)

VI. CONCLUSION

In this paper, we work out constrained Hamiltonian
formalism corresponding to the unfree gauge symmetry
with gauge parameters constrained by differential equa-
tions. In the Hamiltonian form, the phenomenon of the
unfree gauge symmetry has been clarified from viewpoint
of involution relations between Hamiltonian and con-
straints. The key role is plaid by differential operators I,
being the coefficients in the involution relations (22), (24)
such that stand at the constraints of the next generation in
the stability conditions of the previous constraints. These
structure coefficients define the unfree gauge symmetry if
they have a finite kernel. Even if I are nondegenerate
(trivial kernel), but the inverse does not exist in the class of
differential operators, we have unfree gauge symmetry.
Given the structure coefficients of involution relations with
these properties, we arrive at Eqgs. (33) and (34) con-
straining the gauge parameters. In the best-known example
of the unfree gauge symmetry, the unimodular gravity, the
kernel of I'" is one-dimensional, and the corresponding
modular parameter is the cosmological constant A. The
modular parameters are defined by the asymptotics of the
fields. For example, even the free spin-2 field theory [1,2]
with unfree gauge symmetry in Minkowski space (that
corresponds to linearized UG), admits solutions with
nonvanishing A. These solutions correspond to nonvanish-
ing fields at infinity. Analogous solutions with nontrivial
modular parameters are noticed in Sec. V for higher spin
fields with unfree gauge symmetry. The dynamics with
nontrivial modular parameters are relevant upon inclusion
of interactions as we expect. This issue will be addressed
elsewhere. In Sec. IV, we explain how the Hamiltonian
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BFV-BRST formalism is adjusted for the case of unfree
gauge symmetry. For the case when there are no higher-
order ghost vertices, we deduce from the phase-space path
integral the modified FP quantization rules such that
account for the unfree gauge symmetry by imposing
corresponding constraints on the ghosts. In this way, we
see that the covariant quantization rules for the systems
with unfree gauge symmetry are deduced from correspond-
ing modification of Hamiltonian BFV-BRST quantization.
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