
 

Background independent field quantization with sequences
of gravity-coupled approximants

Maximilian Becker and Martin Reuter
Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, D-55099 Mainz, Germany

(Received 24 August 2020; accepted 15 October 2020; published 1 December 2020)

We outline, test, and apply a new scheme for nonperturbative analyses of quantized field systems in
contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends
itself for a generalization to full quantum gravity. We advocate the point of view that quantum field theories
should be regularized by sequences of quasiphysical systems comprising a well-defined number of the
field’s degrees of freedom. In dependence on this number, each system backreacts autonomously and self-
consistently on the gravitational field. In this approach, the limit which removes the regularization
automatically generates the physically correct spacetime geometry, i.e., the metric the quantum states of the
field prefer to “live” in. We apply the scheme to a Gaussian scalar field on maximally symmetric
spacetimes, thereby confronting it with the standard approaches. As an application, the results are used to
elucidate the cosmological constant problem allegedly arising from the vacuum fluctuations of quantum
matter fields. An explicit calculation shows that the problem disappears if the pertinent continuum limit is
performed in the improved way advocated here. A further application concerns the thermodynamics of de
Sitter space where the approach offers a natural interpretation of the microstates that are counted by the
Bekenstein-Hawking entropy.
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I. INTRODUCTION

Away of regarding a quantum field theory is as a special
quantum system whose degrees of freedom are parame-
trized by the points of a smooth manifold. In typical
applications the latter is the theoretical model of choice
for representing space or spacetime. Nevertheless, when it
comes to computing concrete predictions one usually
discovers that such a continuum of densely packed degrees
of freedom comprises, in a sense, too many of them to allow
for a straightforward (or any) interpretation like in elemen-
tary quantum mechanics. The generic symptom of this
overabundance are the ultraviolet divergences which rela-
tivistic quantum field theories are notorious for. As a way
out, a rich arsenal of tools for their regularization and
subsequent renormalization have been devised. In many
cases the first one of the two logically independent steps,
regularization, is considered devoid of an immediate
physical interpretation, being not more than a technical
trick to render certain intermediate steps of the calculation
mathematically meaningful. A classic among the many
regularization schemes that are available today is the
momentum space cutoff. It still possesses a certain physical
flavor unlike, say, dimensional regularization or the zeta
function technique. Its key ingredient is a regularization
parameter which has the dimension of a mass typically, and
which defines a scale therefore: Modes of the field having
momenta below this mass scale are retained by the cutoff,

while the others are discarded. The point to be noticed
here is that the specification of a cutoff scale in proper
momentum units requires a metric on the base manifold.
Clearly this is no cause for concern in the familiar quan-
tum field theories formulated on a “prefabricated” and
unchangeable Minkowski space. It is a concern, however,
in quantum gravity: when the metric itself is among the
fields to be quantized one easily runs into severe difficulties
or unresolvable paradoxes if one tries to work with a
regularization which is metric dependent in itself [1].
(1) As we are going to demonstrate in the present paper,

similar remarks apply already one step before full-fledged
quantum gravity, namely within the framework of quantum
field theory in curved spacetimes, if one includes the
backreaction of quantum matter fields on the classical
metric. More generally, the purpose of this paper is as
follows. We are going to investigate quantized matter fields
on classical spacetime geometries whose metric is deter-
mined self-consistently by a “semiclassical” Einstein equa-
tion that involves a certain effective stress tensor due to the
matter degrees of freedom. To tackle this problem, we
propose an approach which goes beyond earlier investiga-
tions in that it respects three basic principles which we shall
introduce, explain and motivate in detail. To a large extent
those principles grew out of various general lessons that
were learnt within full quantum gravity, but have a bearing
on semiclassical gravity also [2,3]. They arose both in
approaches to quantum gravity that build upon discrete
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structures at the fundamental level such as loop quantum
gravity [3–5] or causal dynamical triangulations [6], as well
as continuum approaches like asymptotic safety [1,7]. The
approach we are advocating, while continuum-based, could
in principle detect discreteness at the physical level, should
it emerge in some theory. Furthermore, in a companion
paper [8] we extend the framework presented here by also
quantizing the gravitational field itself.
(2) The first and foremost among the three requirements

is background independence. The gravitational interaction
has the unique property of also being in charge of furnish-
ing the stage all physics takes place on, namely the
spacetime manifold. Background independence requires
that the corresponding “furniture,” the metric in particular,
is obtained as the solution of some fundamental dynamical
law rather than through an ad hoc selection “by hand”
[9–11]. The second principle is an extension of background
independence into the realm of the regularized theories, i.e.,
of the “approximants” we deal with as long as the regulator
has not yet been removed. Contrary to the examples
mentioned above, we insist that the regularization should
yield the approximants which are, or come close to being,
realizable physical systems in their own right. More
precisely, we require two properties: First, those systems
possess a well-defined number of degrees of freedom, and
second, they are coupled to gravity and thereby respect
background independence in the sense that their respective
approximation of the spacetime metric emerges dynami-
cally from a self-consistency condition. The third principle
finally is of a more technical nature and describes how to
set up the approximant systems pertaining to a given field
theory. The requirement is to employ what we call N-type
cutoffs. By definition, they amount to regularization
schemes which do not involve the metric. Thus detaching
cutoffs from scales allows us to take limits of the approx-
imants that could not be considered within the standard
approaches.
In Sec. II of this paper we describe these requirements

and the new framework in more detail. In the subsequent
sections we shall then present a first application, which is
both instructive in its own right, and can shed new light on a
particularly puzzling aspect of the cosmological constant
problem [12–15], namely the gravitational field generated
by the zero point oscillations of quantum fields. W. Pauli is
credited for the first estimate of the influence quantum
vacuum fluctuations should have on the curvature of
spacetime [14,16]. Considering a free massless field on
Minkowski space, with dispersion relation ωðpÞ ¼ jpj, he
argued that the field is equivalent to a set of harmonic
oscillators, and each of them should contribute its zero
point energy density 1

2
ω to the energy of the vacuum state.

Summing them up leads to an amount

ϱvac ¼
1

2

Z
d3p
ð2πÞ3 jpj ð1:1Þ

which is quartically ultraviolet (UV) divergent and needs
regularization. Installing a momentum cutoff jpj ≤ P, the
result is ϱvac ¼ cP4 with c a positive constant of order
unity.1 The argument then continues by giving a numerical
value to P, typically taken to be the energy scale up to
which the matter field theory under consideration is
believed to be valid. Only at this stage gravity comes into
play. It is argued that like any other form of energy, ϱvac
should contribute to the curvature of spacetime, and that
this effect can be taken care of by adding the contribution
ΔΛ ¼ ð8πGÞϱvac ¼ 8πcGP4 to the cosmological constant
in Einstein’s equation.
Here, then, comes the big disappointment. For every

plausible scale P, the curvature produced by ΔΛ is by far
too large to be consistent with observation. Pauli himself
identifiedPwith typical energies in atomic physics; he had
to conclude that the resulting curvature is so tremendous
that, if correct, the Universe “would not even reach out to
the moon” [14,16]. If we choose the Planck scale instead,
P ¼ mPl, the calculation produces a curvature which is
about 10120 times larger than the value from modern-day
cosmological observations. According to a variant of this
reasoning, Einstein’s equation contains, besides ΔΛ, also a
bare cosmological constant, Λb, whose value is then tuned
in dependence on P in such a way that the sum Λobs ¼
ΛbðPÞ þ ΔΛðPÞ equals precisely the observed value. This
version of the argument avoids making a false prediction
(any prediction, in fact), but at the expense of an enormous
naturalness problem. To achieve the desired value of Λobs,
the bare quantity ΛbðPÞ must be fine-tuned with a
precision of 120 digits, say.
One of the purposes of the present paper is to pinpoint

precisely why the above reasoning must lead to a wrong
answer. As it turns out employing the new and more
powerful scheme no comparable “cosmological constant
problem” arises.
(4) The rest of this paper is organized as follows. In

Sec. II we outline our framework for an improved non-
perturbative analysis of quantum fields in contact with
dynamical gravity; in particular we explain and motivate
the three basic requirements the corresponding calculations
must meet. In the subsequent sections we apply those rules
to a Gaussian scalar field self-consistently interacting with
gravity: In Sec. III we derive a first type of approximant, in
Sec. IV we explore the sequences of self-gravitating
systems it gives rise to, and in Sec. V we analyze them
from a path integral perspective, thereby also discovering a
second type of natural approximants. While the primary
application of our results is to the cosmological constant
issue, Sec. VI is devoted to a brief discussion of the
Bekenstein-Hawking entropy of de Sitter space, and
the natural interpretation of its microstates we are led to.

1Its precise value depends on inessential implementational
details.
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The final Sec. VII contains a short summary and the
conclusions.

II. THE FRAMEWORK: OUTLINE
AND MOTIVATION

In this paper we advocate a scheme for the quantization
of matter fields, and subsectors thereof, which are coupled
to classical gravity.2 This scheme satisfies three essential
requirements; in the present section, we are going to
explain and motivate them, and then in the rest of the
paper we implement them in various sample calculations.
The three requirements are

ðR1ÞBackground independence

ðR2ÞGravity-coupled approximants

ðR3ÞN-type cutoffs

The requirements are not independent logically. In particu-
lar (R2)may be seen as an extension of (R1), while (R3) is a
tool for dealing with (R2). We discuss them in turn now,
focusing on the main aspects, and leaving aside inessential
technical details or difficulties.

A. First requirement: Background independence

The desideratum of background independence is pre-
sumably the most powerful and far reaching concept that
has been taken over from classical general relativity and
integrated into the modern approaches to quantum gravity
[3,17–19]. Depending on how they cope with this chal-
lenge, the various approaches can be grouped into two
classes: those which, literally, do not use background
structures like a metric, and those which do employ such
fields, but at a certain point fix them self-consistently,
namely by invoking the fundamental dynamical laws
[9,11]. In this paper, we develop a continuum-based
approach which follows the second strategy. It enforces
background independence indirectly by invoking the back-
ground field technique in its general form [1,20].

B. Second requirement: Gravity-coupled
approximants

The idea is to replace the notion of regularization by
sequences of certain “quasiphysical” auxiliary systems
describing matter; they are comprised of a well-defined,
finite set of quantum degrees of freedom which couple to
gravity. Referring to such systems as approximants, we
denote them symbolically by App. The total configuration
of an approximant is characterized by a quantum mechani-
cal state Ψf of the matter system, having f < ∞ degrees of
freedom, together with a classical metric. Symbolically,

AppðfÞ ∼Ψf ⊗ metric. Approximants complying with the
requirement (R2) are special in that their metric is fixed
dynamically rather than by fiat. It arises as the gravitational
response to the energy and momentum of the f matter
degrees of freedom. They are allowed to backreact self-
consistently on the geometry of the spacetime which they
inhabit. Thus, by virtue of (R2), background independence
is manifest already at the regularized level. Regularized
quantum field theories are represented by sequences of
approximants, AppðfÞ, f → ∞. The removal of the regu-
lator, corresponding in the standard case to, say, sending a
lattice constant to zero, amounts to following a particular
sequence for increasing f. If the sequence has a limit, in an
appropriate sense, we identify this limit with the quantum
field theory (QFT) to be constructed, with the field in a
particular state. Importantly, by this construction the (state
of a) QFT arises always in combination with a self-
consistently determined metric. Symbolically,

AppðfÞ⟶f→∞ΨQFT ⊗ self-consistent metric: ð2:1Þ

Thus, loosely speaking, possible states of the QFT for the
matter sector are already “born” in that particular spacetime
which they like to live in. More precisely, the self-
consistent metric in (2.1) is a solution to the semiclassical
Einstein equation with an appropriate energy-momentum
tensor Tμν½ΨQFT� on its right-hand side (rhs).
(A) Motivations for insisting on the requirement (R2)

include
(A1) We want the approximants, in the best case, to

constitute physically realizable systems in their own right,
or at least come close to this ideal.3 We expect that this
enhances our chances to find sequences which converge to
physically interesting limits. We believe that this property is
particularly important if one is forced to resort to approxi-
mate calculations of some kind, as it is always the case in
practice.
(A2) As for the assumption of self-consistently gravitat-

ing approximants subject to classical general relativity, this
is a conceptually natural requirement if one regards matter
QFTs in curved spacetime as an approximation to full-
fledged quantum gravity that would additionally involve a
quantized metric. In the present paper, our framework for
matter QFTs is set up in such a way that it will generalize
straightforwardly to full quantum gravity. The only differ-
ence is that for the time being quantum fluctuations of the
metric, relative to the self-consistently adjusting back-
ground, are neglected.4 Hence, for now, the metric is

2In a companion paper [8] we generalize the scheme by
including a quantized gravitational field.

3As for being “physically realizable” or “quasiphysical”we are
very liberal. What is important here is only that the drawbacks
described below in connection with the counterexamples are
avoided.

4See however [8] for the inclusion of such metric fluctuations.
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obtained from the classical Einstein equation, with a
quantum mechanical Tμν½Ψf�, though.5
(A3) There is a further motivation for physical gravity-

coupled approximants which goes beyond using the
sequences of approximants merely as a tool for regularizing
a QFT. Namely, our framework is open towards the
possibility that experiment tells us that nature is actually
better described by the approximant AppðfobsÞ for some
finite, observationally determined fobs, rather than by
AppðfÞ in the limit f → ∞. In this hypothetical case,
observational facts would suggest to abandon the original
plan of removing the regulator fully. The quantization of a
classical field would then result in a quantum system with,
rigorously, only finitely many degrees of freedom. While
this might sound like a quite exotic possibility, there is a
natural and simple scenario which realizes it: Assume that
the quantum gravitational dynamics is such that spacetime
acquires physical, i.e., observable discreteness properties
at some microscopic scale. It is a question of general
significance then whether, and possibly how, this effect can
be discovered by a continuum-based theoretical frame-
work.6 One possibility is the scenario above: If spacetime is
roughly similar to a certain discrete point set with matter
fields on it, it will, loosely speaking, have the appearance of
an “incompletely quantized” classical field. Later on we
shall encounter an explicit example where this is indeed
what happens.
(B) Counter examples are perhaps the best way to

characterize, and to further motivate, approximants that
comply with (R2):
(B1) Many regularization schemes that we employ

routinely because they are convenient technically fail to
generate quasiphysical approximants in the sense of (R2).
A typical example is dimensional regularization. Clearly it
is impossible to interpret a regularized theory at a generic
value of ε≡ 4 − d as a quantum system with a defined
number f of degrees of freedom which an experimentalist
could build. Similar remarks apply to other schemes based
upon analytical continuation such as zeta function regu-
larization [21,22] which, too, is unacceptable by the
requirement (R2).
(B2) Furthermore, (R2) rejects all schemes which are

designed so as to make certain (usually power-law)
divergences invisible, with the justification that they any-
how would be absorbed into bare parameters whose values
do not matter for all practical purposes. Zeta function
regularization is an example again. It is notorious for
“identities” like

X∞
n¼1

n ≡zeta fct: −
1

12
ð2:2Þ

which exhibit a finite part on top of a numerically much
more important divergent one—which it suppresses how-
ever. By way of comparison, a scheme that does comply
with (R2) is a cutoff regularization that would deal with the
divergent sum

P
n n simply by stating that

XN
n¼1

n ¼ 1

2
N2

�
1þO

�
1

N

��
; ð2:3Þ

without expressing any prejudice about the ultimate fate of
the divergence which arises when N → ∞ at a later stage.
As a rule, acceptable regularization schemes must treat bare
parameters as potentially physical. Hence contributions like
the N2-term above must be retained, and their physical
impact along the sequence of approximants must be taken
into account carefully.
(B3) Finally we turn to the perhaps most important issue,

the question of why gravity should be included into the
physical description of the approximants. Figure 1 contrasts
field quantization via the sequences fAppðfÞg with the
standard approach. The horizontal arrows of this highly
schematic diagram represent taking the limit f → ∞, i.e.,
the transition from a finite system to a QFT, while the
vertical arrows symbolize the inclusion of the gravitational
backreaction into the matter system by solving a semi-
classical Einstein equation. The upper left box in Fig. 1
stands for a generic regularized precursor of the QFT,
which does not in general comply with (R2). It consists of
quasiphysical systems in states Ψf ⊗ gμν, with f < ∞, but
the systems live in a spacetime with an arbitrary fixed
metric gμν, which is unrelated to f and the quantum states
Ψf a priori. Now there exist two paths in the diagram which
one can take in order to remove the regulator. Symbolically
speaking they are, respectively,

ðiÞ first down; then horizontal ð2:4Þ

ðiiÞ first horizontal; then down: ð2:5Þ

The path (i) is the one advocated in the present paper: For
each approximant separately we solve the respective
Einstein equation. It contains Tμν½Ψf� which is self-
consistently coupled to the Schrödinger equation for Ψf;
the latter involves the metric which is a solution to the former.
In this manner we arrive at a sequence of configurations
describing the total system, ΨSC

f ⊗ ðgSCf Þμν, f ¼ 0; 1; 2;….
Thereafter, as the second step, we let f → ∞ and (ideally) are
led to a limiting stateΨSC

∞ ⊗ ðgSC∞ Þμνwhich can be interpreted
as pertaining to a full-fledged QFT living on a spacetimewith
metric ðgSC∞ Þμν. It is selected dynamically by self-consistency,
in accord with background independence.
The path (ii) is the familiar one; it does not respect (R2)

and the price one pays for that is the fatal cosmological
constant problem in calculations like Pauli’s. At first one

5Often (but somewhat confusingly) called the “semiclassical
Einstein equation”.

6See Sec. 1.5 of [1] for a discussion of this point.
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takes the field theory limit leading to infinitely many
degrees of freedom, and thereby one does not yet worry
about gravity at all. The construction of the QFT is
performed on a rigid spacetime (RS) whose metric gRSμν
is chosen in a completely arbitrary way, often highly
symmetric, typically flat, so as to ease the calculational
difficulties. In this QFT, one then computes the vacuum
energy density, or induced cosmological constant Λind, and
finds that it is formally infinite in absence of a cutoff.7

Only now, in the second stage one asks about the
backreaction of the vacuum energy on the metric. The
answer is very simple then: If Λind ¼ ∞, the curvature is
infinite and spacetime is degenerate. And even in an
effective field theory setting, the predicted curvature is
too large, by factors like 10120 or so. The lower right box in
Fig. 1 indicates this singular, or at least phenomenologi-
cally unacceptable, state of the combined QFT-gravity
system.8

The main goal of the present paper is to demonstrate by
various sample calculations that the state obtained along
track (i), ΨSC

∞ ⊗ ðgSC∞ Þμν, can be extremely different from
the singular one of (ii). In fact, choosing track (i) the kind of
cosmological constant problem one encounters in the Pauli-
type approaches does not occur. In essence, the requirement
(R2) wants us to perform any QFT calculation in curved
spacetime by proceeding in analogy with track (i) of this

example. This guarantees that background independence
is respected not only by the final theory, but already at
the level of its approximants. As a result, essential
dynamical effects come within reach of practically feasible
calculations.

C. Third requirement: N-type cutoffs

Given a classical field theory, the question is how to
actually manufacture sequences of approximants by means
of which we can hope to find interesting limits that would
qualify as a QFT coupled to gravity. We propose to define
the approximants by imposing a cutoff which is of
“N-type,”a concept which we outline next. It may be seen
as a generalization of the “finite-mode regularization” that
had been used before in a nongravitational context [23–25].
The expression N-type cutoff derives from the fact that in
typical examples the regularization parameter is a positive
integer, N ∈ N, but other cases will occur as well. Using an
N-type cutoff, the number of degrees of freedom f≡ fðNÞ
becomes a function of the cutoff parameter N. In the case
N ∈ N regularized QFTs are thus represented by sequen-
ces fAppðNÞ; N ¼ 0; 1; 2;…g.

1. N cutoffs: Definition

Let us consider the general problem of giving a meaning
to a formal functional integral of the type

Z ¼
Z
F
DðCÞe−S½C�: ð2:6Þ

The integration is over fields CðxÞ that “live” on some
differentiable manifold,ℳ, and belong to a certain space of
functions, F . We assume that the space F is the span of the
basis

FIG. 1. Inclusion of the gravitational backreaction does not commute with the limit f → ∞.

7Or it is finite, but still way too large if the QFT is regarded an
effective one which is valid below a certain plausible UV scale
only.

8Unless stated otherwise, bare parameters are always kept
fixed when N → ∞ in this paper. If one allows them to depend on
N, the ðΛind ¼ ∞Þ problem can be traded for the naturalness
problem of an infinite fine-tuning.
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ℬ ¼ fwαð·Þjα ∈ Ig ð2:7Þ

where I is an appropriate index set. So we can expand the
integration variable,

CðxÞ ¼
X
α∈I

cαwαðxÞ; ð2:8Þ

and reexpress the measure DðCÞ in terms of the expansion
coefficients cα. In typical examples the result will be
proportional to

Q
α∈I dcα then.

Nothing has been gained so far; (2.6) is still an ill-
defined combination of infinitely many integrals. To
regularize it, we introduce a one parameter family of
subsets ℬN ⊂ ℬ labeled by a dimensionless number
N ∈ N (or N ∈ ½0;∞Þ≡Rþ).9 This family of subsets is
required to satisfy

ℬ0 ¼ ∅; ℬ∞ ¼ ℬ; and N2 > N1 ⇒ ℬN2
⊃ ℬN1

:

ð2:9Þ
Thus, for increasing values of N, a continually growing
portion of the basis elements inℬ gets included into the set
ℬN . Eligible sequences of subsets

ℬ0 ⊂ ℬ1 ⊂ ℬ2 ⊂ � � � ⊂ ℬN ⊂ … ⊂ ℬ ð2:10Þ
should be described entirely in terms of the indices in the
set I. For each N ∈ N we introduce a subset of indices
IN ⊂ I such that

ℬN ¼ fwαð·Þjα ∈ INg: ð2:11Þ
Then the specification of a sequence like (2.10) boils down
to a long “bit string” of yes-no decisions: For any given
element of ℬ, say wβ, which is uniquely identified by its
label β ∈ I, we must specify whether β ∈ IN or β ∉ IN, for
all N ¼ 0; 1; 2;…;∞. We stress that no length or momen-
tum scales are involved in the specification of such
sequences fℬNgN¼0;…;∞. The rationale behind the ℬNs
is that integration over their linear span, denoted by
FN ⊂ F , should lead to a well-defined regularized pre-
cursor of the functional integral, viz.

ZN ≡
Z
FN

DðCÞe−S½C�: ð2:12Þ

In the case N ∈ N, (2.12) involves only finitely many
integrals. (If N ∈ Rþ we assume that FN is defined

“sufficiently small” to make (2.12) mathematically mean-
ingful.) We regard ZN as a partition function which
describes an approximant with a sufficiently small, or even
finite number of degrees of freedom, f≡ fðNÞ. They are
realized by f selected modes of a field onℳ. Replacing the
full space of functions F successively by the chain of
subspaces fFNgN¼0;…;∞ is what we will, very broadly,
refer to as a regularization by means of a cutoff of the
N-type.

2. N cutoffs: Properties

The most important property which an N cutoff must
possess (while many others do not) is the following:
Assigning a particular value to N does not imply a
momentum or length scale separating the modes retained
in ℬN from those discarded.
(1) The benefit which we get from the complicated-

looking definition above is thatN cutoffs can be formulated
without the need of a metric. In fact,ℬ andℬN are certain
bases of functions on a given differentiable manifold ℳ.
Hence technically speaking they belong to the manifold’s
differentiable structure, and to define the cutoff no metric
structure is required onℳ. Above we therefore insisted that
the ℬNs are defined in terms of binary decisions operating
on the index set I. This highlights the importance of
adequately labeling the basis functions: The enumeration
of the ℬ elements, i.e., the map I → F , α ↦ wαð·Þ, the
selection of the ℬN elements and their enumeration by
IN → F , α ↦ wαð·Þ, must not involve a metric in any way.
(2) Before discussing practical incarnations of N cutoffs

let us clarify another point. It is essential for our purposes to
keep the steps of regularization and renormalization
strictly separated. By definition, N-type cutoffs are really
not more than a regularization, and they must not imple-
ment any renormalization conditions implicitly.10 At least
for standard field theories, and in absence of gravity, there
is a well-known procedure that can be followed when one
tries to define a continuum limit11 of regularized path
integrals like (2.12). Namely, while the regulator is
removed, one tries to change the bare parameters (masses,
couplings, etc.) which are implicit in S½C� in precisely such
a manner that the ZNs do indeed converge to some limit. If
this is (im-)possible, the theory in question is called (non-)
renormalizable [28]. Clearly the same can be done on the
basis of the above sequences of approximants. However, as
it turns out it is also of interest to take the approximants
at finite N seriously in their own right, and to compare
them as physical systems. They are in different states ΨN ,
but refer to the same values of the bare parameters.9Our general description focuses on N ∈ N mostly since our

later examples will belong to this case. The most important
features of an N cutoff carry over to the case N ∈ Rþ straight-
forwardly, however. Note also that as such field systems having
only a finite number of modes, N ∈ N, are nothing exotic, of
course. This is the usual situation in condensed matter physics
[26], or lattice field theory [27], for example.

10Recall the counterexample of the zeta function regularization
which unavoidably fixes finite parts in its own specific way.

11We follow the common practice and refer to the limit where
the cutoff is removed generally as the “continuum limit” also
when the regularization is not by a lattice.
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The examples worked out in the present paper will be of
this second kind.

3. Eigenbases of metric dependent operators

Next we discuss a special type of N cutoff. While
particularly convenient from the technical point of view,
superficially it might seem that they are inconsistent with
(R3). It is therefore important to see that this is not the case
actually. Let us now explicitly assume that ℳ≡ ðℳ; gμνÞ
is a Riemannian manifold, and let us allow the path integral
to depend manifestly on the metric gμν as a background:

Z½g� ¼
Z

DðC; gÞe−S½C;g�: ð2:13Þ

Furthermore, let K≡K½g� be a self-adjoint positive
operator depending on the metric, the prime example
being the (negative of the) Laplace-Beltrami operator,
K ¼ −□g ≡ −gμνDμDν. We would like the basis ℬ≡
ℬ½g� ¼ fwα½g�ð·Þjα ∈ Ig to be an eigenbasis of K½g� now,
implying that in general the basis functions wαð·Þ≡
wα½g�ð·Þ and their eigenvalues λα½g� will have a parametric
dependence on gμν:

K½g�wα½g�ðxÞ ¼ λα½g�wα½g�ðxÞ; α ∈ I: ð2:14Þ

From here on we proceed in the usual way in order to install
an N cutoff in (2.13). We declare, for all N, which indices
α ∈ I are in IN , so that setting

ℬN ½g� ¼ fwα½g�ð·Þjα ∈ INg ð2:15Þ

yields a sequence fℬNg which obeys the general rules
(2.15), and we can define the approximants by

ZN ½g�≡
Z

spanℬN ½g�

DðC; gÞe−S½C;g�: ð2:16Þ

It is important to understand why this regularization still
amounts to an N cutoff in accordance with (R3): While the
elements of the set ℬN ½g� do indeed depend on the metric,
the crucial property is that the index set IN is metric
independent. This is why we repeatedly emphasized that (in
the discrete case) the sets IN should be the result of nothing
but “binary decisions” applied to the elements of I; as such
they do not define a proper length or mass scale.
To summarize: An N cutoff, even when applied to a

formal functional integral with an explicit metric depend-
ence, is such that its specification in terms of fINg does not
require, and does not involve, a metric. A simple example
illustrates this point. Let ðℳ; gÞ be the round 2-sphere with
radius r. Then K ¼ −□g has the well-known spectrum
lðlþ 1Þ=r2, l ¼ 0; 1; 2;…, which is linked to the metric via
the value of r. Now we can specify an N cutoff by

decreeing that, for example, ℬN contains all spherical
harmonics with l ≤ N and none having l > N, i.e., ℬN ¼
fYlmjðl; mÞ ∈ INg where IN ¼ fðl; mÞjl ¼ 0; 1; 2;…; N;
m ¼ −l;…;þlg. The ℬNs are completely fixed upon
specifying the rule according to which index pairs from
the full I ≡ I∞ are allocated to IN , and this rule has nothing
to do with the continuous parameter r, i.e., with the metric
which we put on the sphere.

4. Continuous spectra

In order to demonstrate thatN cutoffs are not restricted to
discrete spectra, we briefly consider the example of a
foliated cosmological spacetime equipped with the corre-
spondingly adapted spatially flat Robertson-Walker metric

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj: ð2:17Þ

Here coordinate differences ðΔxiÞ≡ Δx, while often
referred to as comoving distances, are not proper distances.
Products aðtÞΔx instead are “proper” with respect to the
metric (2.17). Let us take K to be the spatial part of the
corresponding Laplace-Beltrami operator,

K ¼ −
1

aðtÞ2 δ
ij∂i∂j: ð2:18Þ

Its eigenfunctions are plane waves clearly. A subtlety arises
however when it comes to labeling them, since later on N
cutoffs are defined in terms of the pertinent index set.
From this perspective, a “good” labeling amounts to

writing

wqðxÞ ¼ expðiq · xÞ; q ∈ R3; ð2:19Þ
in terms of the coordinate momentum q; like x≡
ðx1; x2; x3Þ, it is dimensionless, not proper, and in fact
unrelated to any metric. It qualifies as a continuous version
of the generic (multi-)indices α by means of which the ℬN
elements are selected. Hence a perfectly legitimate N cutoff
would, for example, be specified by

ℬN ¼ fwqð·Þjq ∈ INg with IN ¼ fq ∈ R3jjqj ≤ Ng:
ð2:20Þ

In this case N ∈ Rþ, so the sequence of approximants is
labeled in a continuous fashion now. However, there are
also frequently used ways of labeling the eigenfunctions
which are “bad” from the perspective of (R3). In fact, the
eigenvalue of (2.19) is given by

λq ¼
�

q
aðtÞ

�
2 ≡ p2: ð2:21Þ

This motivates using the proper momentum p≡ q=aðtÞ
in order to distinguish the eigenmodes of K, rewriting
(2.19) as
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WpðxÞ ¼ expðiaðtÞp · xÞ; p ∈ R3: ð2:22Þ

When working with the mode functions (2.22) it would
seem natural to impose a cutoff condition on the proper
momentum, like jpj ≤ P, say. But as we discuss next, this
would violate (R3).

5. N cutoffs vs P cutoffs

We close the discussion of the N-type cutoffs by
exhibiting a class of counterexamples which we collec-
tively refer to as cutoffs of “P-type.” They fail to satisfy the
requirement (R3) because of a “mistake” that can be pinned
down quite precisely. Later on we shall then see that this
mistake has a significant impact on the cosmological
constant issue. We return to the spectral problem (2.14)
and, in order to simplify the argument, assume that all
eigenvalues are nondegenerate. Hence, for gμν fixed, there
exists a one-to-one map α ↦ λα½g� which relates eigenval-
ues λ and labels α. It is a common practice to solve this
relationship for the label, obtaining α ¼ α½g�ðλÞ, and to use
the eigenvalues in order to enumerate the eigenfunctions.
The basis writes then

ℬ½g� ¼ fWλ½g�ð·Þjλ ∈ specðKÞg ð2:23Þ

with the reparametrized mode functions

Wλ½g�ðxÞ≡ wα½g�ðxÞjα¼α½g�ðλÞ: ð2:24Þ

Now we come to the delicate point: Being presented with
the basis in the form of (2.23) it is tempting to construct
regularizations by applying selection criteria to the new
label λ, in the same way as with α above. Of course, the first
example that comes to mind is a sequence fℬPgP∈Rþ

obtained by restricting the eigenvalues to lie below a fixed
scale P2:

ℬP ¼ fWλð·Þjλ ≤ P2g: ð2:25Þ

Obviously the familiar momentum space cutoff that is used
abundantly in field theory on flat space is precisely of this
sort, with P≡ Λ in the traditional notation. The back-
ground metric, gμν ¼ δμν or ημν usually, is fixed once and
for all in this case. Nonetheless, the subsets ℬP in (2.25)
do not define a cutoff in accord with (R3), i.e., no N cutoff.
The reason is obvious: Due to the substitution α → α½g�ðλÞ
the enumeration of the basis functions has become explicitly
metric dependent. As we explained above, an “adiabatic” gμν
dependence of wα½g�ðxÞ is perfectly acceptable—as long as
the labeling by the αs does not involve the metric. The new
mode functions Wλ½g�ðxÞ spoil this property. As a result,
regularizations like (2.23) which are defined in terms of their
“index” λ are not N-type cutoffs. Note also that λ and P,
unlike α and N, are not dimensionless: They have canonical
mass dimensions ½λ� ¼ 2 and ½P� ¼ 1, respectively.

An example of such a forbidden metric-related labeling
is (2.22) in the cosmological example above. The proper
momentum p has a magnitude determined by the eigen-
value, jpj2 ¼ λ, and a direction specified by a unit vector
n≡ p=jpj, which serves as a dimensionless degeneracy
index here. Hence (2.22) is equivalent to writing

Wλ;nðxÞ ¼ exp ðiaðtÞ
ffiffiffi
λ

p
n · xÞ: ð2:26Þ

This simple example also makes it clear that our argument
generalizes trivially to spectra with degenerate eigenvalues
if λ is combined with appropriate degeneracy indices. In the
following we shall refer to regularizations of the form
(2.25) collectively as cutoffs of the P-type.

III. A FIRST TYPE OF APPROXIMANTS

In the rest of this paper we perform an explicit inves-
tigation which implements all three requirements (R1), (R2)
and (R3) simultaneously. As a model system, we consider
scalar particles which couple to a classical gravitational
field but do not interact among themselves. The present
section covers the steps leading to the finite approximant
systems.

A. The classical field

Our theoretical laboratory is a free scalar field AðxÞ
which lives on a classical d dimensional spacetime ℳ that
carries an externally prescribed Euclidean metric gμν. We
assume that ℳ is compact and has no boundary, and that
the dynamics of AðxÞ is governed by the matter action

S½A; g� ¼ 1

2

Z
ℳ
ddx

ffiffiffi
g

p fgμνDμADνAþM2A2 þ ξRA2g

¼ 1

2

Z
ℳ
ddx

ffiffiffi
g

p
AKA ð3:1Þ

with a self-adjoint kinetic operator (□g ≡D2 ≡ gμνDμDν)

K ¼ −□g þM2 þ ξRðxÞ: ð3:2Þ

Stationarity of S½A; g�with respect to A implies the equation
of motion

½−□g þM2 þ ξRðxÞ�AðxÞ ¼ 0; ð3:3Þ

while its functional derivative with respect to the metric
gives rise to the Euclidean stress tensor:

Tμν½A; g�ðxÞ ¼ −
2ffiffiffi
g

p δ

δgμνðxÞ
S½A; g�: ð3:4Þ

For arbitrary parameters M and ξ we have
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Tμν½A;g� ¼DμADνA−
1

2
gμν½gρσDρADσAþM2A2þξRA2�

þξ½Rμν−DμDνþgμνD2�A2: ð3:5Þ

Evidently the Rosenfeld-type stress tensor (3.4) is sym-
metric. If evaluated on a solution to the equation of motion,
A≡ Asol, it is also well known to be conserved and, under
certain conditions, traceless:

DμTμν½Asol; g� ¼ 0; ð3:6Þ

gμνTμν½Asol; g� ¼ 0 if ξ ¼ ξcðdÞ and M ¼ 0: ð3:7Þ

Here we abbreviated ξcðdÞ≡ d−2
4ðd−1Þ.

B. The quantum system at finite N

Next, we employ the above field theory as a classical
inspiration in setting up a quantum mechanical system with
finitely many degrees of freedom. Concretely, we identify
those degrees of freedom with the N lowest eigenvalues of
the kinetic operator.
(1) The spectral problem. Given the metric gμν, we

construct the operator (3.2) and consider its eigenvalue
problem on ℳ:

Kun;mðxÞ ¼ Fnun;mðxÞ: ð3:8Þ
The discrete eigenvalues Fn are enumerated by an integer
n ¼ 0; 1; 2; 3;… which labels them in ascending order:
F0 < F1 < F2 < � � �. Allowing for a Dn-fold degeneracy
of Fn, the eigenfunctions un;mðxÞ carry an additional
degeneracy index, or multi-index, m. By analogy with
the generalized spherical harmonics [29,30] we may think
of the indices n and m as a kind of angular momentum and
magnetic quantum number, respectively.
The eigenfunctions fun;mjn ≥ 0;m ¼ 1; 2;…; Dng≡ℬ

form a complete set of scalar functions on ℳ. They can be
orthonormalized with respect to the inner product on
L2ðℳÞ supplied by the metric,Z

ddx
ffiffiffi
g

p
u�n;mðxÞun̄;m̄ðxÞ ¼ δnn̄δmm̄ ð3:9Þ

so that the corresponding completeness relation readsX
n;m

un;mðxÞu�n;mðyÞ ¼
δðx − yÞffiffiffiffiffiffiffiffiffi

gðyÞp : ð3:10Þ

(2) Definition of the approximants. Given the basis ℬ,
we define the quantum mechanical system AppðNÞ by
truncating the setℬ at the level n ¼ N < ∞, retaining only
the eigenfunctions of K with eigenvalues Fn ≤ FN .
Instead of arbitrary fields AðxÞ, we consider only those
that can be expanded in the truncated basis ℬN ≡
fun;mjn ¼ 0; 1;…; N;m ¼ 1;…; Dng, i.e.,

AðxÞ ¼
XN
n¼0

XDn

m¼1

αn;mun;mðxÞ: ð3:11Þ

The degrees of freedom of the quantum system are
represented then by the coefficients fαn;mj0 ≤ n ≤ N;
m ¼ 1;…; Dng. Their total number equalsX

n≤N
Dn ≡ fðNÞ: ð3:12Þ

In a path integral treatment (which will be the topic of
Sec. V below) the functional integral over AðxÞ reduces to
an integration over the finitely many coefficients αn;ms
then. In view of the truncated expansion (3.11) it is
suggestive to visualize the spacetime of AppðNÞ as a fuzzy
sphere [31].
(3) The 2-point function.Ordinarily, the key ingredient of

a free Euclidean field theory is the 2-point correlation
function hÂðxÞÂðyÞig ≡ Gðx; yÞ.12 By Wick’s theorem it
determines all higher n-point functions, and it satisfies

KGðx; yÞ ¼ δðx − yÞffiffiffiffiffiffiffiffiffi
gðxÞp ð3:13Þ

with suitable boundary conditions being specified. In the
case N → ∞, the completeness relation (3.10) gives rise to
a formal solution of (3.13), namely13

Gðx; yÞ ¼
X∞
n¼0

XDn

m¼1

un;mðxÞu�n;mðyÞ
Fn

: ð3:14Þ

For the time being, we define the quantum theory of the
finite field system AppðNÞ by the correspondingly trun-
cated version of Eq. (3.13), namely

KGNðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffi
gðxÞp δNðx; yÞ ð3:15Þ

whereby now both the regularized correlator,

GNðx; yÞ≡
XN
n¼0

XDn

m¼1

un;mðxÞu�n;mðyÞ
Fn

ð3:16Þ

and the modified delta function,

12Depending on the context the caret notation (Â, etc.)
indicates operators or integration variables under a functional
integral. Furthermore, the notation h· · ·ig emphasizes that all
expectation values must be regarded functionals of the metric on
ℳ.

13Here and in the following it is understood that ifK has a zero
mode it is separated off in the usual way. We do not indicate this
notationally.
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δNðx; yÞ≡
ffiffiffiffiffiffiffiffiffi
gðxÞ

p XN
n¼0

XDn

m¼1

un;mðxÞu�n;mðyÞ; ð3:17Þ

are constructed in terms of functions from the truncated set
ℬN only.
(4) Bilinear observables. In the following we are mostly

interested in observables that are bilinear in ÂðxÞ. With the
regularized 2-point function GNðx; yÞ ¼ hÂðxÞÂðyÞigN at
hand it is in principle straightforward to calculate their
expectation values in the state GN corresponds to. Thanks
to the UV cutoff, GNðx; yÞ is nonsingular in the limit
y → x, and so all those observables have well-defined
expectation values. They can be expressed by finite sums
over the functions un;m.
The local monomial DμÂðxÞDμÂðxÞ, for instance,

leads to

hðDμÂÞ2ðxÞi ¼ lim
y→x

h∂x
μÂðxÞ∂μ

yÂðyÞigN
¼ lim

y→x
∂x
μ∂μ

yGNðx; yÞ

¼ lim
y→x

∂x
μ∂μ

y

X
n≤N;m

1

Fn
un;mðxÞu�n;mðyÞ

¼
X
n≤N;m

1

Fn
Dμun;mðxÞDμu�n;mðxÞ ð3:18Þ

which is perfectly finite as long as N < ∞.
A particularly interesting integrated monomial isR
ddx

ffiffiffi
g

p
ÂðxÞKÂðxÞ. Its expectation value counts the

number of degrees of freedomwhich the quantummechani-
cal system AppðNÞ possesses:�Z

ddx
ffiffiffi
g

p
ÂðxÞKÂðxÞi

g

N

¼
Z

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
lim
y→x

KxhÂðxÞÂðyÞigN

¼
Z

ddx
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
lim
y→x

X
n≤N;m

1

Fn
Kxun;mðxÞu�n;mðyÞ

¼
X
n≤N;m

Z
ddx

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
un;mðxÞu�n;mðxÞ

¼
X
n≤N

Dn

¼ fðNÞ: ð3:19Þ

Here we also exploited the eigenvalue equation and the
normalization condition satisfied by the mode functions.
(5) Trace of the stress tensor. The most important

bilinear operator is the energy-momentum tensor of the
field modes that inhabit ℳ. Thanks to the N cutoff, the
operator Tμν½Â; g� which we obtain from the classical

expression (3.5) by letting AðxÞ → ÂðxÞ is not plagued
by any operator product singularities.
Nevertheless, and this is important to be kept in mind,

there is always an ambiguity with regard to the “correct”
energy-momentum tensor of AppðNÞ. As always in quan-
tummechanics, the classical expression for an observable is
at best an “inspiration” when guessing the quantum
operator. After all, the two can differ by any number of
OðℏÞ terms that disappear in the classical limit.
Therefore, if we now declare that Tμν½Â; g� as given by

(3.5) with A → Â is the correct energy-momentum tensor of
our quantum mechanical system, this amounts to a choice
over and above the decision for an N cutoff.
We shall need in particular the operator which represents

the trace of Tμν. It writes, without using the field equations,

Tμ
μ½Â; g� ¼ 1

2
½2 − dþ 4ðd − 1Þξ�DμÂDμÂ

þ 2ðd − 1ÞξÂDμDμÂ

þ 1

2
ð2 − dÞξRÂ2 −

1

2
dM2Â2: ð3:20Þ

The expectation value of (3.20) is easily obtained by the
same steps as above:

hTμ
μ½Â; g�ðxÞigN ¼ 1

2

X
n≤N;m

1

Fn
f½2 − dþ 4ðd − 1Þξ�

×Dμu�n;mðxÞDμun;mðxÞ
þ 4ðd − 1Þξu�n;mðxÞDμDμun;mðxÞ
þ ½ð2 − dÞξRðxÞ − dM2�u�n;mðxÞun;mðxÞg:

ð3:21Þ

Up to this point, gμν is an arbitrary externally prescribed
metric. While it is usually difficult to solve the spectral
problem ofK in a concrete case, it is clear that in principle
(3.21) and its untraced analogue provide us with well-
defined finite expectation values for any choice of gμν.

C. Backreaction on the metric

Next we promote the spacetime metric gμν to a dyna-
mical, yet still classical, quantity which responds to the
energy and momentum carried by the quantum fluctuations
of the finite field system AppðNÞ. We assume this system
to be in its ground state. Classically this means that A ¼ 0
and hence Tμν ¼ 0 everywhere on ℳ. Instead, quantum
mechanically, the vacuum fluctuations of the f degrees of
freedom contribute to the energy and momentum in the
Universe which determine the metric on ℳ.
We assume that the metric is governed by the semi-

classical Einstein equation
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Rμν −
1

2
gμνRþ Λbgμν ¼ 8πGhTμν½Â; g�igN ð3:22Þ

where Λb is a bare cosmological constant. Importantly, the
rhs of the equation (3.22) involves the same metric gμν as its
left-hand side (lhs), both explicitly via the operator
Tμν½Â; g�, and implicitly through the expectation value.
This is what makes solutions to (3.22) self-consistent.
We denote such self-consistently determined metrics by

ðgSCN Þμν in the following. The question we shall be par-
ticularly interested in concerns the dependence of the
solutions on the parameter N, and thus on the number
fðNÞ of degrees of freedom living on ℳ.
In full generality the semiclassical Einstein equa-

tion (3.22) represents an extremyly hard problem; in
principle the expectation value involved must be computed
as an explicit functional of gμν. It is given by sums over
eigenfunctions like in (3.21). Evaluating them requires first
of all solving the spectral problem of K≡K½g� for “all”
metrics gμν.
(1) Maximally symmetric spacetimes. To make some

progress here, we restrict the space of metrics to those of
maximally symmetric Riemannian spaces of positive cur-
vature, i.e., spheres SdðLÞ. They come with only a single
free parameter, namely the radius L, a Euclidean version of
the Hubble length. Wewrite the metric on SdðLÞ in the form

gμνðxÞ ¼ L2γμνðxÞ ð3:23Þ

where γμν is the dimensionless metric on the unit
d-sphere.14 Thus, the determination of self-consistent back-
ground geometries of the type ℳ ¼ SdðLÞ boils down to
finding the N dependence of L≡ LSCðNÞ.
The curvature scalar on spheres is a constant,

R ¼ RðLÞ≡ dðd − 1Þ
L2

:

Therefore the eigenfunctions un;m of K ¼ −□g þM2 þ
ξR coincide with those of the scalar Laplacian□g ¼ DμDμ,
and the eigenvalues of K are

Fn ¼ En þM2 þ ξR ð3:24Þ
with fEng denoting the spectrum of −□g:

−□gun;mðxÞ ¼ Enun;mðxÞ: ð3:25Þ
The eigenvalues En and their multiplicities Dn are well
known [29,30]:

En ¼
nðnþ d − 1Þ

L2
≡ EnðLÞ; n ¼ 0; 1; 2;…; ð3:26Þ

Dn ¼
ð2nþ d − 1Þðnþ d − 2Þ!

n!ðd − 1Þ! : ð3:27Þ

On the sphere,□g has a zero mode, the constant function
appearing at n ¼ 0. We exclude this mode from the degrees
of freedom belonging to AppðNÞ. So, to be precise, their
total number equals

fðNÞ ¼
XN
n¼1

Dn: ð3:28Þ

This, and all similar sums appearing below start at n ¼ 1.
However, for the present analysis the precise treatment of
the low lying modes plays no role; the relevant regime will
always be dominated by n ≫ 1.
(2) The effective Einstein equation. Thanks to the

maximum symmetry of the background geometry we have
hTμνigN ∝ gμν, and so it suffices to analyze the traced, and
now, x-independent Einstein equation:

−
1

2
ðd − 2ÞRðLÞ þ dΛb ¼ 8πGhTμ

μ½Â; g�igN: ð3:29Þ

Moreover, no information is lost when we integrate (3.29)
over spacetime:�

−
1

2
ðd − 2ÞRðLÞ þ dΛb

�
Vol½SdðLÞ�

¼ 8πG
Z

ddx
ffiffiffi
g

p hTμ
μ½Â; g�igN: ð3:30Þ

The virtue of the latter integration is that, upon inserting our
earlier result (3.21) into (3.30), it allows us to perform an
integration by parts on the Dμu�Dμu-terms, and then to
simplify the entire sum by exploiting (3.25) and the
orthonormality of the un;ms.
This brings us to the main result of this section, namely

the following condition for self-consistency:

−
1

2
ðd − 2ÞRðLÞ þ dΛb ¼ 8πG

ΘNðLÞ
Vol½SdðLÞ� : ð3:31Þ

Its main building block is the dimensionless and manifestly
finite-mode sum representing the integrated trace of the
stress tensor:

ΘNðLÞ≡
Z

ddx
ffiffiffi
g

p hTμ
μ½Â; g�igN

¼ −
XN
n¼1

Dn

�
1

2
ðd − 2Þ þ M2

EnðLÞ þ ξRðLÞ þM2

	
:

ð3:32Þ

14Our conventions concerning the assignment of canonical
mass dimensions are such that ½xμ� ¼ ½∂μ� ¼ ½ddx� ¼ ½δðxÞ� ¼ 0,
while ½gμν�¼−½gμν�¼ ½R�¼ ½□g�¼ ½Fn�¼þ2, ½g�≡ ½detðgμνÞ� ¼
−2d, ½γμν� ¼ 0 and ½A� ¼ 1

2
ðd − 2Þ, ½g1=4dA� ¼ −1, ½μ� ¼ −½L� ¼

½P� ¼ þ1.
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Furthermore, the volume in Eq. (3.31) is given by

Vol½SdðLÞ� ¼ 2πðdþ1Þ=2

Γððdþ 1Þ=2ÞL
d: ð3:33Þ

Several remarks are in order at this point.
(3) Limiting cases. For vanishing and very large (infinite)

mass we obtain, respectively,

ΘNðLÞjM¼0 ¼ −
1

2
ðd − 2ÞfðNÞ ð3:34Þ

ΘNðLÞjM→∞ ¼ −
1

2
dfðNÞ: ð3:35Þ

Note that the limit M → ∞ is performed at fixed, finite N.
(4) Background dependent counterpart. It should be

emphasized that the respective L dependencies on the lhs
and rhs of the reduced Einstein equation (3.31) have a very
different origin: The one on the lhs stems from the metric to
be found, i.e., the one in the Einstein tensor. On the rhs
instead, in ΘNðLÞ=Vol½SdðLÞ�, the radius L≡ LRS refers to
a logically different metric of a certain rigid spacetime
(“RS”) in which energy and momentum of the vacuum
fluctuations are computed. Hence, in a traditional back-
ground dependent calculation, Eq. (3.31) would appear
replaced by

−
1

2
ðd − 2ÞRðLÞ þ dΛb ¼ 8πG

ΘNðLRSÞ
Vol½SdðLRSÞ�

: ð3:36Þ

Herein LRS is an absolute constant, fixed by hand once and
for all. In the literature a popular choice of such a rigid
spacetime is flat space ðLRS → ∞Þ since the corresponding
mode functions are technically easiest to deal with.
However, in the rest of this paper we shall have many

opportunities to see that solving (3.36) at fixed LRS can
result in sequences L ¼ LðNÞ which are very different
from those derived in a background independent fashion,
namely by first setting L ¼ LRS and solving Einstein’s
equation thereafter. We believe that the LRS-based sequen-
ces convey a physically wrong picture of what happens in
the limit N → ∞.
(5) Four dimensions. In the following sections we shall

analyze the condition for self-consistent maximally sym-
metric backgrounds in detail and explore the corresponding
sequences

N ↦ LSCðN; ξ;M;G;ΛbÞ ð3:37Þ

in dependence on the various bare parameters. We special-
ize for d ¼ 4 dimensions then, so that the self-consistency
condition becomes

−RðLÞ þ 4Λb ¼
3G
π

ΘNðLÞ
L4

ð3:38Þ

with RðLÞ ¼ 12=L2, and

−ΘNðLÞ ¼
XN
n¼1

Dn

�
1þ ðMLÞ2

nðnþ 3Þ þ 12ξþ ðMLÞ2
	
:

ð3:39Þ
In 4 dimensions, En ¼ nðnþ 3Þ=L2, and the multiplicities
of the eigenvalues are governed by the cubic polynomial

Dn ¼
1

6
ð2nþ 3Þðnþ 2Þðnþ 1Þ: ð3:40Þ

One easily proves by mathematical induction that the sum
(3.28) evaluates to

fðNÞ ¼
XN
n¼1

Dn ¼
1

12
½N4 þ 8N3 þ 23N2 þ 28N�: ð3:41Þ

This is the total number of degrees of freedom inhabiting
our spherical spacetimes in the four dimensional case.
(6) The fuzzy S4. On the 4-sphere, the eigenfunctions

un;m ≡ Ynl1l2m are labeled by four integer quantum num-
bers. Besides n ¼ 0; 1; 2;… which determines the eigen-
value, there is a triple of integers ðl1; l2; mÞ satisfying
n ≥ l1 ≥ l2 ≥ jmj. They play the role of the degeneracy
multi-index m now. The S4 harmonics depend on four
angular coordinates and have the general structure

Ynl1l2mðζ; η; ϑ;φÞ ∝ 4P̄
l1
n ðζÞ3P̄l2

l1
ðηÞ2P̄m

l2
ðϑÞ 1ffiffiffiffiffiffi

2π
p eimφ

ð3:42Þ

where the iP̄
j
k denote generalized associated Legendre

functions, see [32] for a detailed account.
Recalling the construction of the approximants, an

interesting property is the “resolving power” of the basis
functions (3.42) when one restricts n ≤ N in the series
expansions. It is not difficult to show that functions AðxÞ≡
Aðζ; η;ϑ;φÞ represented by such truncated series can
display nontrivial structures down to angular separations
of approximately [33]

Δα ≈
π

N
: ð3:43Þ

The minimum proper distance that can be resolved by the
truncated basis is about Δl ≈ πL=N then. In this sense, the
spacetimes of the approximants are reminiscent of “fuzzy
spheres” [31].

IV. SEQUENCES OF SELF-GRAVITATING
QUANTUM SYSTEMS

Next, we apply the above semiclassical Einstein equation
in order to search for sequences of well-behaved self-
gravitating quantum systems enumerated by the cutoff

MAXIMILIAN BECKER and MARTIN REUTER PHYS. REV. D 102, 125001 (2020)

125001-12



quantum number N. The member labeled “N”, AppðNÞ,
consists of fðNÞ quantized field degrees of freedom. They
inhabit a spacetime whose metric, ðgSCN Þμν, they decide
about in a self-determined, democratic way.

A. Massless scalar field

We begin by considering a massless scalar field in 4
dimensions. Setting M ¼ 0 in (3.39) has the very welcome
consequence that the sum that is to be evaluated boils down
to nothing but the counting function (3.41):

−ΘNðLÞ ¼
XN
n¼1

Dn ¼ fðNÞ ¼ N4

12

�
1þO

�
1

N

��
: ð4:1Þ

We see that upon setting M ¼ 0 the integrated trace ΘN
automatically becomes independent of L and ξ also. It is
given by a pure number, namely the number of degrees of
freedom the quantum system possesses. (The relative
minus sign in ΘN ¼ −f is a consequence of our
Euclidean conventions for the stress tensor.) Hence the
only L dependence on the rhs of the self-consistency
condition (3.38) is due to the volume factor ∝ L4:

12

L2
− 4Λb ¼

3G
π

fðNÞ
L4

: ð4:2Þ

(1) The classical initial point. If we set N ¼ 0 there are
no quantum mechanical degrees of freedom, fð0Þ ¼ 0, and
provided Λb > 0, Eq. (4.2) yields L ¼ ffiffiffiffiffiffiffiffiffiffiffi

Λb=3
p

, i.e., the
radius of the well-known S4 solution to Einstein’s equation
in vacuo.
(2) Exactness. Incidentally, the modified Einstein equa-

tion (4.2) can be reexpressed succinctly in terms of the
curvature scalar as

R − 4Λb ¼
G
48π

fðNÞR2: ð4:3Þ

The R2 term on its rhs might be reminiscent of the
derivative expansions that often are calculated on the basis
of the asymptotic heat-kernel series. It must be stressed
however that (4.3) actually enjoys a much more reliable
status: For spherical spacetimes, the rhs of Eq. (4.3) is an
exact, nonperturbative result and not merely a term in
an asymptotic series. Its derivation does not involve
any expansion in a small coupling or in the number of
derivatives. For M ¼ 0 and in 4 dimensions, curvature
powers both higher and lower than R2 are strictly absent.

B. The background dependent calculation

We begin the discussion of the self-consistency con-
dition (4.2) by solving its background dependent counter-
part. As we mentioned in Sec. III C, in its hTμ

μi-term it has L
replaced by a rigid scale LRS independent of L, the radius

representing the dynamical metric in the symmetry reduced
case. As a consequence, the hTμ

μi-term can be treated as a
contribution to the cosmological constant, yielding

3

L2
¼ ΛtotðNÞ ð4:4Þ

with the modified cosmological constant

ΛtotðNÞ≡ Λb þ
3G
4π

fðNÞ
L4
RS

: ð4:5Þ

(1) Now we let N → ∞ with LRS and Λb fixed. Then the
total cosmological constant behaves as ΛtotðNÞ ∝ N4↗þ
∞ for sufficiently large N. This forces the dynamical radius
to approach zero,

LðNÞ ¼
�
1

3
ΛtotðNÞ

�
−1=2

∝
1

N2
→ 0; ð4:6Þ

so that the curvature scalar of the solution grows unbound-
edly, RðNÞ ¼ 12=LðNÞ2 ∝ N2 → ∞.
What we encounter here is an incarnation of the

cosmological constant problem as it arises from the
Pauli-style calculations. They sum up the vacuum energies
of a certain number of modes propagating on a fixed
spacetime, and thereafter insert the resulting energy density
in one package into Einstein’s equation as part of the
cosmological constant. Then either Λtot becomes unaccept-
ably large for any physically plausible choice of the cutoff
scale, or the bare parameter Λb must be fine-tuned with
unnatural precision.
(2) In the background dependent calculation, one of the

roles played by the rigid metric on ℳ ¼ S4ðLRSÞ consists
in relating the dimensionless cutoff N to a dimensionful
one. The eigenvalue EN of −□, on this background
geometry, is analogous to the dimensionful cutoff scale
(traditionally denoted Λ2) at which an ordinary momentum
cutoff on flat space would become operative. In the case at
hand, the pure number N gives rise to the UV cutoff scale
P according to

P2 ¼ ENðLRSÞ ¼
NðN þ 3Þ

L2
RS

: ð4:7Þ

Note that P and EN have canonical mass dimensions þ1
and þ2, respectively.15 Indeed, (4.7) is an example of a
P-type cutoff.
It sounds like a quite trivial remark—actually it is not, as

we shall see—that P is a monotonically increasing
function of N, and henceN → ∞ is tantamount toP → ∞.

15In the QFT literature, P is denoted as Λ usually. We do not
use this notation to avoid confusion with the cosmological
constant.
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(3) Note also that when reexpressed in terms of P, the
curvature scalar reads, for N ≫ 1 and Λb ¼ 0, say

R ¼ 4Λtot ¼
G
4π

P4: ð4:8Þ

When presented in this fashion, the unphysical quantity
LRS drops out from the final result.16 This may further
contribute to the—false, as it turns out—impression that
invoking a rigid auxiliary spacetime during the intermedi-
ate steps of the calculation is just a harmless technical
convenience.

C. Self-consistent approximants: The case Λb = 0

Let us now begin our search for sequences of approx-
imants which satisfy the requirement of self-consistency.
For various parameter choices of interest we determine
their Hubble radii L≡ LSCðNÞ, and more importantly, the
pertinent scalar curvatures

RSCðNÞ ¼ 12

LSCðNÞ2 : ð4:9Þ

Sometimes it is suggestive to think of the quantum
mechanical term in the effective Einstein equation, at the
point of consistency, to contribute an additional piece to the
cosmological constant; this shifts Λb to a certain ΛSCðNÞ
which satisfies, by definition,

RSCðNÞ ¼ 4ΛSCðNÞ: ð4:10Þ

For the specific example of Eq. (4.2), the modified
cosmological constant reads

ΛSCðNÞ ¼ Λb þ
3G
4π

fðNÞ
LSCðNÞ4 : ð4:11Þ

Of course, the relation (4.11) can be employed only after
having solved Einstein’s equation: this is the very differ-
ence between the background dependent treatment and the
background independent one.
(1) The Λb ¼ 0 solution. Letting N ¼ 1; 2; 3;…, we now

populate spacetime with an increasing number of degrees
of freedom and check if Eq. (4.2) admits self-consistent S4

solutions.
In this subsection we focus on the particularly interesting

case of a vanishing bare cosmological constant, Λb ¼ 0.
After multiplication with L4, assuming L ≠ 0;∞, the self-
consistency condition becomes very simple therefore:

L2 ¼ G
4π

fðNÞ: ð4:12Þ

Obviously, the quantum mechanical contribution to the
Einstein equation has just the correct sign so that there does
indeed exist a self-consistent solution L≡ LSCðNÞ for any
number of degrees of freedom:

LSCðNÞ ¼
�
G
4π

fðNÞ
	
1=2

¼
�

G
48π

�
1=2

N2

�
1þO

�
1

N

��
: ð4:13Þ

The scalar curvature of the spacetimes found are given by

RSCðNÞ ¼ 48π

G
·

1

fðNÞ

¼ 576π

G
·
1

N4

�
1þO

�
1

N

��
: ð4:14Þ

This sequence of self-consistent spacetimes fAppðNÞg
displays a number of highly surprising and unusual
features:
(2) Inflating spheres. When additional scalar modes are

added to the quantum system, i.e.,N is increased, the radius
LSCðNÞ becomes larger, and the curvature RSCðNÞ corre-
spondingly smaller. In the limit N → ∞, the radius of the
sphere approaches infinity, and the self-consistent space-
time that supports those infinitely many field modes
approaches flat space.
This behavior is the exact opposite of what we had found

by means of the background dependent calculation: There,
adding further modes led to a smaller radius, higher
curvature, and a larger effective cosmological constant.
And in the limit N → ∞ the spacetime degenerated to a
point even.
(3) The P cutoff. To understand the origin of the

unexpected result in the background independent case,
let us look at the dimensionful companion of the pure-
number cutoff N. In absence of any absolute metric that
could be employed to turn N into a dimensionful quantity,
i.e., an inverse proper length, only the actually realized,
dynamically determined self-consistent metric can be used
for this purpose. Since this metric depends on N, the (−□)
eigenvalue at the upper end of the sequence, i.e.,
EN ≡P2ðNÞ, acquires a second, indirect dependence on
N now, namely via the radius:

PðNÞ2 ¼ NðN þ 3Þ
ðLSCðNÞÞ2 ¼

4π

G
·
NðN þ 3Þ

fðNÞ : ð4:15Þ

Now, when N increases the novel factor fðNÞ in the
denominator of (4.15) grows ∝ N4 for large N, and so it
overrides the familiar NðN þ 3Þ in the numerator. As a

16Also typical calculations on flat space lead to a result of this
form when the continuous spectrum of 4-momenta is cut off by
p2
μ < P2.

MAXIMILIAN BECKER and MARTIN REUTER PHYS. REV. D 102, 125001 (2020)

125001-14



consequence, the relationship between the dimensionless N
cutoff and its dimensionful counterpart PðNÞ assumes a
rather unusual and unexpected form in the background
independent case; when N ≫ 1,

PðNÞ ¼
�
48π

G

�
1=2 1

N

�
1þO

�
1

N

��
: ð4:16Þ

We see that in the background independent setting the
dimensionful cutoff P is a decreasing function of the
dimensionless integer N.
This is in sharp contradistinction to the standard result

P ≈ N=LRS of (4.7) which one obtains in the background
dependent case.
(i) Note also that the relation (4.16) that connects P and

N depends nonanalytically on Newton’s constant which
hints at its nonperturbative character.
(ii) While at first sight the background independent

relationship P ∝ 1=N seems rather counterintuitive, it is
nevertheless easy to understand its origin:
Each member in the sequence of self-gravitating systems

fAppðNÞgN∈N comes with its own self-consistent, that is,
dynamically determined metric ðgSCN Þμν, here represented
by the radius LSCðNÞ. And each member uses its own,
individual metric in order to convert its number in the
sequence, N, to a dimensionful cutoff scale which then
enjoys the status of an inverse proper length with respect to
this particular metric. It is clear therefore that if ðgSCN Þμν has
a sufficiently strong N dependence, the emergent function
PðNÞ no longer has any reason to depend on N
monotonically.
In the case at hand we encounter the extreme situation

where the N dependence of the metric is so strong that
increasing N actually even lowers the mass scale of the UV
cutoff, PðNÞ.
(iii) It is also remarkable that upon using (4.16) to

eliminate N in favor of P, Eq. (4.14) assumes the form

RSCðNÞ ¼ G
4π

PðNÞ4: ð4:17Þ

This is exactly the same relationship between the curvature
and P as in Eq. (4.8) which resulted from the background
dependent calculation. An yet, there remains the crucial
difference that now in (4.17) both RSCðNÞ → 0 and
PðNÞ → 0 when N → ∞.

D. Self-consistent approximants: The case Λb ≠ 0

Next, we admit a nonvanishing bare cosmological
constant Λb. For now we assume it independent of N.
Provided L ≠ 0;∞, the self-consistency condition (4.2) is
equivalent to a quadratic equation for L2:

2

3
ΛbL4 − 2L2 þ G

2π
fðNÞ ¼ 0: ð4:18Þ

(1) Positive bare cosmological constant. If Λb > 0 this
equation admits the following two branches of solutions:

ðLSC
� ðNÞÞ2 ¼ 3

2Λb

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

GΛb

3π
fðNÞ

r 	
: ð4:19Þ

In Fig. 2 the radii LSC
� ðNÞ are plotted in dependence on N.

The main properties of the two sequences are as follows.
(i) In the pure gravity limit N ¼ 0, f ¼ 0 one obtains the

radii

LSCþ ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3=Λb

p
; ð4:20Þ

LSC
− ð0Þ ¼ 0; ð4:21Þ

so that the “plus” branch reproduces the result from general
relativity, while the “minus” branch has a singular N ¼ 0
limit, which corresponds to a degenerate geometry with
infinite curvature.
(ii) Letting N ¼ 1; 2; 3;…, the radius LSCþ ðNÞ decreases,

while LSC
− ðNÞ increases, describing a meaningful geom-

etry now.
(iii) There exists a critical number Ncrit at which LSCþ and

LSC
− become equal, and beyond which there do not exist any

S4-type solutions to the self-consistency conditions. This
critical number of degrees of freedom inhabiting the
Universe is reached when GΛb

3π fðNcritÞ ¼ 1. If GΛb ≪ 1

we may use the asymptotic form of fðNÞ and obtain

FIG. 2. The two branches of self-consistent solutions LSC
� ðNÞ.

The upper (lower) curve corresponds to the perturbative (non-
perturbative) sequence. Both sequences terminate at Ncrit. No S4

solutions exist beyond this point.
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Ncrit ≈
�
36π

GΛb

�
1=4

: ð4:22Þ

(iv) Sending Λb↘0 at fixed N, the point where the two
branches meet moves out to infinity, both in the L and theN
direction. In this limit the minus branch becomes

lim
Λb↘0

LSC
− ðNÞ ¼

�
G
4π

fðNÞ
	
1=2

; ð4:23Þ

and so it reproduces exactly the solution found in the
previous subsection.
(v) To summarize: For nonzero, positive Λb there exist

two N sequences, a “perturbative” one, LSCþ ðNÞ, and a
“nonperturbative” one, LSC

− ðNÞ.
Along the perturbative sequence, the self-consistent

radius LSCþ ðNÞ starts out from its classical (ℏ ¼ 0) value,
decreases with the number of degrees of freedom, and
causes the curvature RSC

− ðNÞ ¼ 12=LSC
− ðNÞ to increase

correspondingly. As long as N < Ncrit, this behavior is
similar to the one we are familiar with from the Pauli-type
calculations.
The nonperturbative LSC

− ðNÞ sequence instead, while
having a singular initial point atN ¼ 0, describes a series of
universes which become increasingly larger and more
“inhabitable” when further degrees of freedom are added.
Both sequences terminate at the same critical number of

modes living on the approximant’s spacetime. Beyond Ncrit
self-consistent geometries, if they exist, are necessarily
more complicated than round spheres. Qualitatively this
picture is in accord with indirect evidence from the func-
tional renormalization group indicating that vacuum fluc-
tuations on a certain length scale generate curvature
structures on that particular scale [34,35].17

(2) Negative bare cosmological constant. It is quite
remarkable that even if Λb < 0 the condition (4.18) admits
a (single) sequence of self-consistent spacetimes. As the
classical Einstein equation possesses no S4 solutions in this
case, the sequence owes its existence entirely to the
quantum effects:

LSCðNÞ2 ¼ 3

2jΛbj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jΛbjG
3π

fðNÞ
r

− 1

	
: ð4:24Þ

This sequence begins at N ¼ 1, then the radius LSCðNÞ
grows monotonically with N, the curvature decreases, and
for N → ∞ the self-consistent spacetime approaches flat
space finally. Clearly this behavior is a perfect surprise
from both the classical gravity and the background depen-
dent QFT point of view.

E. Massive and nonminimally coupled scalars

Up to now we assumed a vanishing bare mass, and as a
consequence the integrated trace of the stress tensor was
essentially the mode counting function, ΘN ¼ −fðNÞ. In
the general case with M ≠ 0 a partial fraction decompo-
sition of (3.39) with (3.40) expresses ΘN in the following
suggestive form:

−ΘNðLÞ ¼ fðNÞ þ 1

6
ðMLÞ2

�XN
n¼1

ð2nþ 3Þ

þ 2ð2 − zÞ
XN
n¼1

n
nðnþ 3Þ þ z

þ 3ð2 − zÞ
XN
n¼1

1

nðnþ 3Þ þ z

	
: ð4:25Þ

Here we introduced the abbreviation z≡ ðMLÞ2 þ 12ξ.
The leading large-N behavior of the terms in the first,

second and third line of (4.25) is, respectively, ∝ N4, N2

and logðNÞ; the last term, containing a convergent sum,
becomes N independent asymptotically. Hence a nonzero
M has comparatively little impact on ΘN . When N ≫ 1, it
does not modify the dominant N4 and N3 terms coming
from fðNÞ, and shows up at the next-to-next-to leading
order only, being proportional to ðMLÞ2PN

n¼1ð2nþ 3Þ ∝
ðMLÞ2N2. The first term in which ξmakes its appearance is
even more suppressed.
Moreover, taking the limit ML → ∞ directly in

Eq. (3.39) at fixed N, we see that even within the whole
span of masses between M ¼ 0 and M → ∞ the trace
ΘNðLÞ changes only by a modest factor of 2:

ΘNðLÞjM→∞ ¼ 2ΘNðLÞjM¼0: ð4:26Þ

Because of their weak and qualitatively unimportant role
when N ≫ 1 we shall not discuss the case of a nonzero
mass and nonminimal coupling any further.

V. THE PATH INTEGRAL ROUTE

In this section we consider the coupling of the scalar
field degrees of freedom to gravity from an effective action
and functional integral point of view. At first sight it might
seem that not much new can be learned in this way, dealing
with a simple Gaussian theory after all. However, the
specific needs of the present investigation bring certain
aspects to light which are important now, while they often
can be brushed away in typical background dependent
calculations.
For example, generically a scalar plus gravity system is

described by an effective action Γ½A; g� depending on
arbitrary fieldsAðxÞ and gμνðxÞ. However, if one is interested
in the “particle physics” of A on a rigid, say flat, spacetime
only, there is no need to know the A-independent terms of Γ,

17The picture is also in line with a purely classical proposal of
“hiding” the cosmological constant at short scales [36]. See also
[37,38] for related work in the context of QFT.
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i.e., the invariants constructed from gμν alone. For us those
terms are crucial though.
So the plan of this section is, first, to pinpoint precisely

which parts of the functional integral for Γ do, or do not
depend on the metric, and second, install a regulator that
complies with the general requirements of an N cutoff.
The relevant object is the induced gravity action Γscal½g�

which is generated by the vacuum fluctuations of a scalar
field. In the case at hand the latter is governed by the
classical action S½A; g�≡ 1

2

R
ℳ ddx

ffiffiffi
g

p
AKA with K as in

(3.2). The functional Γscal½g� augments the Einstein-Hilbert
action of pure classical gravity

SEH½g� ¼
1

16πG

Z
ddx

ffiffiffi
g

p ð−Rþ 2ΛbÞ ð5:1Þ

to the effective gravitational action

Γ½g� ¼ SEH½g� þ Γscal½g�: ð5:2Þ

The functional Γ½g� is the restriction of the full Legendre
effective action Γ½A; g� to a vanishing scalar field, Γ½g�≡
Γ½A; g�jA¼0. As A has no self-interactions, Γ½A; g� ¼
S½A; g� þ Γscal½g� þ SEH½g�, and therefore the effective field
equation δΓ½A; g�=δAðxÞ ¼ 0 for the expectation value
A≡ hÂi is given by (3.3). For any metric, this equation
possesses the solution AðxÞ ¼ 0, the vacuum case on which
we focus throughout. As defined above, the matter action S
vanishes on this vacuum configuration,18 S½0; g� ¼ 0,
which brings us back to (5.2) for Γ½0; g�≡ Γ½g�.
Writing down the corresponding field equation

δΓ½g�=δgμν ¼ 0, we recover essentially the semiclassical
Einstein equation (3.22), but with the expectation value
hTμν½Â; g�ig now replaced by the stress tensor Tμν

Γ :

Tμν
Γ ½g�ðxÞ≡ −

2ffiffiffi
g

p δ

δgμνðxÞ
Γscal½g�: ð5:3Þ

One of the questions we are going to address is the
precise relationship between these two candidates for a
semiclassical stress tensor, and what the implications are
for the existence of fAppðNÞg sequences.

A. Functional integral and measure

We start out from the general case of arbitrary
d-dimensional, compact Euclidean spacetimes ðℳ; gÞ
without boundary. The functional integral representation
of the induced gravity action due to a scalar field on such
spacetimes reads then [39–41]

e−Γ½g� ¼
Z

DðA; gÞe−S½A;g�: ð5:4Þ

The measure DðA; gÞ brings in an extra metric dependence.
It has the form, for any dimensionality d,

DðA; gÞ ¼
Y
x

½detðgμνðxÞÞ�1=4μdAðxÞ: ð5:5Þ

The mass parameter μ is included here to make DðA; gÞ
dimensionless.
For the purposes of this section we assume that the

functional integral (5.4) has been regularized by restricting
it to a finite number of spacetime points, and attaching
integration variables AðxÞ only to the sites x of, say, a lattice
or a triangulation. The details of this preliminary regulari-
zation are not important though and we do not make them
explicit.
(1) The integral (5.4) with (5.5) is the Euclidean analog

of the quantum mechanical path integral which is strictly
equivalent to applying the rules of canonical quantization.
Its derivation starts out from the operatorial formalism, then
uses discretization techniques to construct a Hamiltonian
functional integral involving a generalized Liouville mea-
sure for paths on phase space, and finally performs the
Gaussian integration over the field momenta to arrive at its
Lagrangian version [39,41]. The same result is obtained by
arguments based upon Becchi-Rouet-Stora-Tyutin invari-
ance [40].
It must be emphasized that the metric dependence

of the above functional measure is by no means anything
“exotic.” In fact, it is the path integral with just thismeasure
which underlies the well-known trace-log formula abun-
dantly used in one-loop computations.
(2) Let us now perform the integration over AðxÞ in (5.4),

thereby paying careful attention to the possibility of hidden
metric dependencies. Given a fixed metric gμν, the usual
procedure consists in first diagonalizing the associated
kinetic operator K≡K½g�, then expanding the field in
terms of its eigenfunctions, AðxÞ ¼ P

n;m αn;mun;mðxÞ, and
finally changing from the integration variables AðxÞ, for all
x, to the set of all αn;m. One might be suspicious that
perhaps some hidden metric dependence creeps in during
this procedure, in particular since the un;ms satisfy ortho-
gonality and closure relations that do depend on the metric.
To show that this is not the case actually we first rewrite the
functional integral in terms of the new field

BðxÞ≡ g1=4ðxÞAðxÞ: ð5:6Þ

It transforms as a scalar density, and has the welcome
property that it renders the transformed measure metric
independent:

18However, had we declared (or had nature told us) that the
correct description of the matter system necessitates the modified
scalar action S0 ≡ S½A; g� þ ΔS½g�, then the equation for A
remains the same, while ΔS½g� makes an additional contribution
to the rhs of (5.2).
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Z Y
x

g1=4ðxÞdAðxÞ exp
�
−
1

2

Z
ddxg1=2AKA

�
¼

Z Y
x

dBðxÞ exp
�
−
1

2

Z
ddxBK̃B

�
: ð5:7Þ

In the integral over BðxÞ, the entire metric dependence
resides in the new kinetic operator

K̃ ≡ g1=4ðxÞKg−1=4ðxÞ: ð5:8Þ

Furthermore, we introduce a new set of basis functions
fvn;mg defined as densitized versions of the un;ms:

vn;mðxÞ≡ g1=4ðxÞun;mðxÞ: ð5:9Þ

According to Eqs. (3.9) and (3.10) they enjoy the propertiesZ
ddxv�n;mðxÞvn̄;m̄ðxÞ ¼ δnn̄δmm̄ ð5:10Þ

X
n;m

vn;mðxÞv�n;mðyÞ ¼ δðx − yÞ: ð5:11Þ

These relations do not involve the metric any longer. Most
importantly, the u’s being eigenfunctions of KðgÞ implies
that the v’s are eigenfunctions of eK, with the same
eigenvalues:

eK½g�vn;mðxÞ ¼ Fnvn;mðxÞ: ð5:12Þ

Being related by a similarity transformation,K and eK have
identical spectra.
Taking advantage of the v basis we can now perform the

B integral of (5.7) in a completely clear-cut manner. After
expanding the field as

BðxÞ ¼
X
n;m

bn;mvn;mðxÞ ð5:13Þ

we change integration variables from BðxÞ to bn;m. The
relations (5.10) and (5.11) imply that the corresponding
Jacobian matrix Jxn;m ≡ ∂BðxÞ=∂bn;m ¼ vn;mðxÞ is ortho-
gonal formally, and has unit determinant therefore.19

Thus the integral (5.7) boils down to

Y
n;m

Z
dbn;m exp

�
−
1

2

X
n;m

Fnb2n;m

�
ð5:14Þ

and hence, up to an irrelevant numerical constant,

expf−Γscal½g�g ¼
�Y

n;m

Fn

μ2

�
−1=2

: ð5:15Þ

This brings us to the (expected, of course) final result:

Γscal½g� ¼
1

2

X
n;m

logðFn=μ2Þ

¼ 1

2

X
n

Dn logðFn=μ2Þ: ð5:16Þ

(3) The careful derivation we just went through high-
lights several points which are particularly relevant here.
(i) The representation (5.16) of the induced gravity

action makes it manifest that Γscal depends on the metric
exclusively via the spectral data of the operators eK, or what
amounts to the same, K. Importantly, this property
emerges only thanks to the presence of the explicit g1=4

factors in the measure DðA; gÞ.
(ii) It is tempting to write (5.16) in the style of an

operator trace,

Γscal½g� ¼
1

2
Tr logðK=μ2Þ ¼ 1

2
Tr logðeK=μ2Þ: ð5:17Þ

We shall refrain from this formal notation however because
it tends to obscure things again.
When the lattice cutoff which we tacitly invoked up

to here is lifted, the trace must be regularized in some
other way, Tr → Trreg, and depending on how this is done,
further, unintended metric dependencies may creep in.
Moreover, with a generic regularization, “Trreg” might fail
to satisfy all defining properties of a trace. If so, given the
relation (5.8) betweenK and eK, one may have difficulties in
establishing the second equality of (5.17), or it is violated even.
Similar remarks apply to the naively equivalent

Γscale½g� ¼ 1
2
logDetðK=μ2Þ. Here the regularization can

destroy the general properties of a determinant by multi-
plicative anomalies. While working at finite N such
difficulties will not concern us now.

B. Induced gravity action with N cutoff

Within the framework advocated in this paper, one
sidesteps the problems raised at the end of the previous
subsection by thinking of Γscal½g� as a quantity whose sole
input information is the spectrum of K, being explicitly
given by Eq. (5.16). To be in line with our earlier discussion

19The conditions of orthogonality, J†J ¼ JJ† ¼ 1, are
easily seen to be nothing but the orthonormality and complete-
ness relations of the v’s in disguise. Suppressing the degen-
eracy indices for clarity, one has indeed, at the formal level,
ðJ†JÞnn̄ ¼ R

ddxðJ†ÞnxJxn̄ ¼ R
ddxJ�xnJxn̄ ¼ R

ddxv�nðxÞvn̄ðxÞ ¼
δnn̄ ≡ 1nn̄, as well as ðJJ†Þxy ¼

P
n JxnðJ†Þny ¼

P
n JxnJ

�
yn ¼P

n vnðxÞv�nðyÞ ¼ δðx − yÞ≡ 1xy.
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we now lift the lattice-type cutoff that was implicitly behind
our derivation, and we replace it by an N cutoff.
(1) TheN cutoff.At this point we return to the maximally

symmetric example ℳ ¼ SdðLÞ and compute the corre-
spondingly restricted functional Γscal½L2γμν�≡ ΓscalðL;NÞ
by equipping (5.16) with the same type of N cutoff as in the
previous sections. Truncating the summation over the □g

eigenvalues at n ¼ N, Eq. (5.16) becomes

ΓscalðL;NÞ ¼ 1

2

XN
n¼1

Dn logð½EnðLÞ þ ξRðLÞ þM2�=μ2Þ:

ð5:18Þ

Specifically when d ¼ 4,

ΓscalðL;NÞ ¼ 1

2

XN
n¼1

Dn log

�
nðnþ 3Þ þ 12ξþ ðMLÞ2

ðμLÞ2
�
:

ð5:19Þ

Recalling that
P

N
n¼1Dn ≡ fðNÞ, it is convenient to rewrite

(5.19) in the form

ΓscalðL;NÞ ¼ − logðμLÞfðNÞ þ ΔΓðML;NÞ ð5:20Þ

where

ΔΓðML;NÞ≡ 1

2

XN
n¼1

Dn log ½nðnþ 3Þ þ 12ξþ ðMLÞ2�:

ð5:21Þ

Simple as it looks, the effective action (5.20) is quite
remarkable and surprising. Let us specialize for massless
scalars for a moment,

ΓscalðL;NÞ ¼ −fðNÞ logðμLÞ þ ΔΓð0; NÞ; ðM ¼ 0Þ:
ð5:22Þ

After having set M ¼ 0 in (5.21), the contribution
ΔΓð0; NÞ is seen to be perfectly independent of L. Thus
we conclude that the exact L dependence of the induced
action is of the form

c1ðNÞ þ c2ðNÞ logðLÞ ð5:23Þ

with N-dependent constants c1;2.
Asymptotically, c1;2 ∝ N4. This L dependence is one of

our main results. In particular we stress that, contrary to
general expectations, no terms proportional to L4 or L2 are
induced.
(2)P cutoffs.Many of the traditional calculations with a

dimensionful UV cutoff at P would instead of (5.23)
produce a structure like, omitting prefactors,

P4L4 þP2L2 þ � � � : ð5:24Þ

It descends from the first terms of the general action [42,43]

Γscal½g� ¼ P4

Z
d4x

ffiffiffi
g

p þP2

Z
d4x

ffiffiffi
g

p
Rþ � � � ð5:25Þ

obtained from a derivative expansion, or by employing the
asymptotic heat-kernel series for early proper times s and
identifying P with 1=

ffiffiffi
s

p
there. Flat space approaches

based upon plane waves and a standard momentum cutoff
p2
μ ≤ P2 also led to (5.25). While the first few terms of the

series (5.25) diverge for P → ∞, they involve invariants
already present in the Einstein-Hilbert action (possibly
generalized by higher derivative terms). Hence the diver-
gences can be absorbed by redefinitions of parameters like
G and Λb.
(3) No quartic (quadratic) renormalization of the cos-

mological (Newton) constant. The potential significance of
the N cutoffs advocated here is understood best by
comparing (5.24) to (5.23). When the dimensionful cutoff
P is employed, the general structure of (5.24), and more
generally of Γscal½g� in (5.25), is fixed to a very large extent
by simple dimensional analysis.
When no other dimensionful parameter is available,

invariants with mass dimension −k cannot but get multi-
plied by a prefactor proportional to Pk, whatever are the
details of the concrete calculation. In particular it is
unavoidable that the invariants

R
d4x

ffiffiffi
g

p
and

R
d4x

ffiffiffi
g

p
R

arise multiplied by P4 and P2, respectively.
While the interpretation of these P dependencies is

somewhat different in fundamental and effective theories,
they always seem to indicate the presence of strong
quantum effects that try to change the values of the
cosmological and Newton’s constant. However, those
effects can very well be a pure artifact of the formalism
employed, namely a dimensionful cutoff plus an asymp-
totic expansion. Being virtually unavoidable, there is no
guarantee that the Pk dependencies reflect any real
physical effect that occurs as a result of specific dynamical
assumptions about the system.
N-type cutoffs, on the other hand, being dimensionless,

are free from this kind of prejudice about the cutoff
dependence of the invariants. Therefore it can be expected
that the N dependences they give rise to are more likely to
contain genuine physics information than the standard P
dependences.
The absence of a P4 term in the exact result (5.23)

indicates already that the cosmological constant issue will
present itself differently here; we shall come back to it in
more detail in Sec. V E.

C. Semiclassical stress tensors: A second candidate

Now we turn to the effective Einstein equation implied
by the stationarity of SEH½g� þ Γscal½g�. Its traced and
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integrated form with Sd metrics inserted has the same
structure as in the previous section,

−
1

2
ðd − 2ÞRðLÞ þ dΛb ¼ 8πG

ΘΓ
NðLÞ

Vol½SdðLÞ� ð5:26Þ

but now the backreaction of the quantum system is
controlled by the quantity

ΘΓ
NðLÞ≡

Z
ddx

ffiffiffi
g

p
TΓ

μ
μ½g�ðxÞ≡TΓscal½g�: ð5:27Þ

It involves the stress tensor (5.3) and the metric
gμν ¼ L2γμν.
In Eq. (5.27) we introduced the derivative operator

T≡ −2
Z

ddxgμνðxÞ
δ

δgμνðxÞ
ð5:28Þ

which we must apply to Γscal from Eq. (5.18) now. To do so
we use the following handy and generally valid rule which
is easily derived by a functional Taylor expansion.
Let F≡ F½gμν� be an arbitrary functional and TF

μν ≡
− 2ffiffi

g
p δF

δgμν
the associated stress tensor. Then TF½g�≡R

ddxTF
μ
μ½g�ðxÞ is given by

TF½g� ¼ d
dα

F½e−2αgμν�





α¼0

ð5:29Þ

where α has the interpretation of a position independent
Weyl parameter. Furthermore, if FðLÞ≡ F½L2γμν� denotes
the restriction of F to metrics on Sd, the operatorT acts on
such functions of the radius according to

TFðLÞ ¼ −L
d
dL

FðLÞ: ð5:30Þ

Upon applying this rule to (5.18) we obtain, for any
dimensionality d,

ΘΓ
NðLÞ ¼

XN
n¼1

Dn

�
1 −

M2

EnðLÞ þ ξRðLÞ þM2

	
: ð5:31Þ

The following points should be noted here.
(1) The arbitrary mass scale μ has dropped out from

(5.31) and the effective Einstein equation.
(2) For every fixed value of N one has the following,

both d and L independent limiting values for small and
large masses, respectively:

ΘΓ
NðLÞjM¼0 ¼ fðNÞ ð5:32Þ

ΘΓ
NðLÞjM→∞ ¼ 0 ð5:33Þ

Obviously very heavy scalars “decouple” and do not
modify Einstein’s equation. This kind of decoupling did
not take place with the first stress tensor candidate,
see Eq. (3.37).
(3) Indeed, ΘΓ

N should be contrasted with its cousin

ΘNðLÞ≡ hTS½Â; g�igN ð5:34Þ

which we computed in the previous section by straight-
forwardly evaluating expectation values. Comparing (5.31)
to (3.32) reveals that the integrated traces differ in all
dimensions by a M- and ξ-independent term:

TΓscal½g� − hTS½Â; g�igN ¼ d
2
fðNÞ: ð5:35Þ

As we are going to demonstrate in the next subsection, this
difference is due to the metric dependence of the mea-
sure DðA; gÞ.
The special case M ¼ 0 makes it particularly clear that

the two candidates for a quantum mechanical stress tensor
entail semiclassical Einstein equations with quite different
properties possibly. In fact, ΘΓ

N jM¼0 ¼ fðNÞ is always
positive, while ΘN jM¼0 ¼ − 1

2
ðd − 2ÞfðNÞ is negative for

all d > 2.

D. The contribution from the functional measure

In order to understand the difference betweenΘN andΘΓ
N

from first principles we return to the discretization-
regularized functional integral (5.4) and its generalization
for arbitrary expectation values,

hOðÂÞig ≡ eþΓscal½g�
Z

DðA; gÞOðAÞe−S½A;g�: ð5:36Þ

They are normalized such that h1ig ¼ 1 for all gμν. (Indeed,
the background metric is left arbitrary in this subsection.)
Apart from the type of regularization, the expectation
values evaluated in Sec. III are of this sort; in particular
the 2-point function hAðxÞAðyÞig ≡Gðx; yÞ and the stress
tensor trace hTS½Â; g�ig ≡ ΘN are examples of (5.36).
(1) A general identity. Let us now apply the derivative

operatorT, the generator of global Weyl transformations of
the metric, to both sides of Eq. (5.4). We obtain

e−Γscal½g�TΓ½g� ¼
Z

DðA; gÞTS½A; g�e−S½A;g�

−
Z

e−S½A;g�TDðA; gÞ: ð5:37Þ

In the last term, the gμν derivative acts upon the metric
dependence of the measure,

TDðA; gÞ ¼
�Y

x0
dAðx0Þ

�
·T

Y
x

g1=4ðxÞ: ð5:38Þ
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On the discrete spacetime the product over x is well
defined, and applying the rule (5.29) to it yields

T
Y
x

g1=4ðxÞ ¼ lim
α→0

d
dα

Y
x

det1=4ðe−2αgμνÞ

¼ lim
α→0

d
dα

Y
x

fe−dα=2det1=4ðgμνðxÞÞg

¼ lim
α→0

d
dα

exp

�
−
X
x

dα
2

�Y
x0
g1=4ðx0Þ

¼
�
−
d
2

X
x

1

�Y
x0
g1=4ðx0Þ: ð5:39Þ

Thus the response of the measure to the T transformation
consists essentially in a multiplication by the number of
spacetime points the regularized functional integral is based
upon:

TDðA; gÞ ¼
�
−
d
2

X
x

1

�
·DðA; gÞ: ð5:40Þ

Hence using (5.40) in (5.37) we obtain the Ward identity
we wanted to derive:

TΓscal½g� − hTS½Â; g�ig ¼ d
2

�X
x

1

�
: ð5:41Þ

This relationship has the same structure as the equa-
tion (5.35) which we had discovered before by an explicit
calculation.
Moreover, the two relations are strictly identical even,

since as long as both the preliminary discretization-based
cutoff and the continuum N cutoff are in place, it holds true
that �X

x

1

�
¼

XN
n¼1

Dn ≡ fðNÞ: ð5:42Þ

The argument here is the familiar one [44]: The point of
contact between the discretization-based cutoff and the N
cutoff is the expansion (5.13); it connects the integration
variables employed by the former, namely fBðxjÞjj ¼
1; 2;…;

P
x 1g where the xjs are the coordinates of the

lattice points, to those of the latter, the expansion coef-
ficients fbn;mjn ¼ 1;…; N;m ¼ 1;…; Dng. Since the lin-
ear relations BðxjÞ ¼

P
n;m bn;mvn;mðxjÞ, j ¼ 1; 2;…,

establish an invertible map between the two sets of
variables it is clear that they must be equal in number,
and this is what proves (5.42).
(2) Inequivalent stress tensor candidates. In summary,

the conclusion about the self-gravitating systems AppðNÞ
constructed in Sec. III and in the present section, respec-
tively, is that they may well describe different physics since

they are based upon inequivalent stress tensors in the
effective Einstein equation. The N → ∞ limits of such
approximants might differ correspondingly. In Sec. III we
followed a kind of “bottom up” approach. It used the
classical stress tensor Tμν ∝ δS=δgμν as an inspiration for
postulating a quantum mechanical observable T̂μ

μ, and
computed its expectation value by appropriately differ-
entiating the 2-point function. Technically this method
appears closer to first quantization than to QFT.
In the present section, on the other hand, the approach is

“top down,” as its inspiration for the stress tensor comes
from the induced gravity action of a QFT already. While
only formal, upon equipping it with an N cutoff this
QFT action leads to well-defined self-gravitating approx-
imants. (The corresponding sequences will be discussed in
Sec. V E below.)
It goes without saying that ultimately only experiment or

additional theoretical criteria can decide about the correct
stress tensor. Like in the renormalization of operator
products that are plagued by short distance singularities,
further input is needed.
(3) Heat-kernel regularization. In Eqs. (5.41) and (5.42)

we encountered the formal sum “
P

x 1” which, by our
regularization, is assigned the value

P
N
n¼1Dn ≡ fðNÞ.

Concerning this crucial sum, it is instructive again to
compare the N cutoff to other types of cutoffs used in
the literature.
We focus on the heat-kernel cutoff here. It can arise in

a variety of ways, Fujikawa’s approach to anomalies20

being a well-known example [40,45]. There are character-
istic differences between those two regularization schemes
which further highlight the inequivalence of N- andP-type
cutoffs.
The heat-kernel method interprets the sum ðPx 1Þ as the

a priori ill defined trace of the unit operator 1 ¼ ðδxyÞ, and
regularizes it, strictly in the continuum, by inserting a
damping factor that suppresses all contributions from
modes with K eigenvalues F≳P2; as suggested by its
name, the parameter P has the dimension of a mass again:�X

x
1

�
reg

¼ Tr½1�reg ≡ Tr½e−K=P2 �: ð5:43Þ

What used to be a pure number, ðPx 1Þ, has become a
functional of the metric by this regularization. Here, too,
the process of removing the regulator is understood to mean
letting P → ∞, rather than f → ∞. For dimensional

20While at first sight the above derivation of the measure
contribution is reminiscent of Fujikawa’s anomaly calculation
[40], it must be stressed that, whenM ¼ 0, in our computation all
contributions to the trace of the stress tensor are proportional toP

x 1 ¼ P
n Dn, hence anomaly- and nonanomalous terms ap-

pear mixed. For their disentangled form, and a detailed discussion
of the Weyl-Ward identities we refer to [8].
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reasons the asymptotics of (5.43) has the structure, in
d ¼ 4,�X

x
1

�
reg

¼
Z

d4x
ffiffiffi
g

p fc4P4 þ c2RP2

þ ðcurvatureÞ2-termsþOðP−2Þg: ð5:44Þ

Explicit calculations find for the ðcurvatureÞ2-terms the
celebrated anomaly structure aE4 − cCμναβCμναβ where E4

is the Euler form density and Cμναβ the Weyl tensor [46,47].
The scheme independent coefficients a and c are known for
many types of fields [46].
On spheres, Eq. (5.44) yields an L dependence of the

form�X
x
1

�
reg

¼ L4P4 þ L2P2 þ constþOðL−2Þ: ð5:45Þ

Being a typical heat-kernel based result, (5.45) must be
contrasted with its perfectly L-independent counterpart
obtained with the N cutoff, Eq. (5.42).

E. A complete N sequence with Λb > 0

In this subsection we discuss the sequences fAppðNÞg
which follow from the 4D effective Einstein equation

−
12

L2
þ 4Λb ¼

3G
π

ΘΓ
N

L4
ð5:46Þ

when the second candidate for the semiclassical stress
tensor is employed; ΘΓ

NðLÞ is given by Eq. (5.31) then.
We restrict the discussion to the case M ¼ 0, implying
that now ΘΓ

N ¼ fðNÞ, as opposed to ΘN ¼ −fðNÞ for the
first candidate in d ¼ 4. As a consequence, there are no
solutions to (5.46) with a vanishing or a negative bare
cosmological constant.
On the other hand, for every given positive Λb ≡ 3=L2

b
there exists a complete sequence of self-consistent radii:

LSCðNÞ2 ¼ 3

2Λb

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þGΛb

3π
fðNÞ

r 	

≡ 1

2
L2
b

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ G

πL2
b

fðNÞ
s #

: ð5:47Þ

The sequence of self-gravitating approximants that live on
the respective spacetimes S4ðLSCðNÞÞ has a number of
remarkable properties:
(1) The systems AppðNÞ exist for all N ¼ 0; 1; 2;…;

the underlying spacetime S4ðLSCðNÞÞ is always non-
degenerate. In particular this sequence does possess a
classical initial point, LSCð0Þ ¼ Lb, contrary to the example
in Sec. IV.

(2) The self-consistent radii (5.47) are a monotonically
increasing function of N. The universe of the approximants
expands when further quantum mechanical degrees of
freedom are added.
This solution, too, disproves the prejudice underlying

the cosmological constant problem which maintains that
vacuum fluctuations increase the effective cosmological
constant, causing the Universe to shrink.
The equation (5.47) becomes most transparent when

f ≫ 1,

LSCðNÞ2 ≈ Lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
4π

fðNÞ
r

: ð5:48Þ

If we also approximate fðNÞ ≈ 1
12
N4 the formula is very

simple and instructive:

LSCðNÞ ≈
�
Gℏ
48π

�
1=4

L1=2
b N: ð5:49Þ

In writing down (5.49) we reinstated Planck’s constant for a
moment. We observe that the relation between LSC and N
becomes linearwhen N ≫ 1, and that it depends on bothG
and ℏ in a nonanalytic way. This is a clear indication of its
nonperturbative origin. As the 4D Planck length is given by
lPl ¼ ðℏG=c3Þ1=2, i.e., lPl ¼ ðℏGÞ1=2 in our units, we can
absorb the ℏ dependence of (5.49) in a dependence on lPl,
yielding

LSCðNÞ ≈ N

ð48πÞ1=4
ffiffiffiffiffiffiffiffiffiffiffi
lPlLb

p
; ð5:50Þ

which is nonanalytic in the Planck length.
(3) If we let N → ∞, the “Hubble” radius LSCðNÞ grows

unboundedly, and spacetime becomes flat for every fixed
value of the bare cosmological constant Λb ≡ 3=L2

b:

S4ðLSCðNÞÞ⟶N→∞
R4: ð5:51Þ

We summarize this behavior as follows: The quantum
field theory describing a free scalar field interacting
with classical gravity is defined as the limit of a sequence
of approximants AppðNÞ which symbolically can be
written as

ðfðNÞ scalar modesÞ ⊗ ðself-consistent spacetimeÞN:
ð5:52Þ

We advocate the point of view that the correct limit for
removing the regulator is N → ∞, rather than P → ∞
where P is any dimensionful cutoff scale. On the basis
of the self-consistency condition considered (maximally
symmetry restricted, second stress tensor) there exists only
one such sequence, namely (5.47), and this sequence
fAppðNÞgN∈N converges in a well-defined way to
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ðfree scalar field; fully quantizedÞ ⊗ R4: ð5:53Þ

Thus, if one quantizes the matter field by this approach,
and starts out from a classical spacetime S4ðLbÞ with Lb
fixed, but arbitrary, the outcome will always be that
the fully quantized scalar field lives on a flat spacetime.
Or stated differently, flat space emerges without any
fine-tuning.
(4) To gain further insight into the background inde-

pendent treatment and its capability to produce a result
diametrically opposite to the standard one, let us look at the
dimensionful cutoffP corresponding to a given value ofN:

PðNÞ2 ≡ ENðLSCðNÞÞ ¼ NðN þ 3Þ
LSCðNÞ2 : ð5:54Þ

For the solution (5.47) we obtain explicitly

PðNÞ2 ¼ 2NðN þ 3Þ
L2
b

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12fðNÞ

N4
T

s #−1

; ð5:55Þ

with the abbreviation

NT ≡ ð12πÞ1=4
�
Lb

lPl

�
1=2

: ð5:56Þ

Therefore, when N ≫ 1, we have in units of mPl ≡ l−1
Pl ,

PðNÞ2 ¼ ð24πÞm2
Pl
N2

N4
T

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
N
NT

�
4

s #−1

: ð5:57Þ

Figure 3 shows a graph of the function PðNÞ for
NT ≫ 1. As expected, the dimensionful UV cutoff scale
is zero at the classical point,PðN ¼ 0Þ ¼ 0, then increases
as we let N ¼ 1; 2; 3;…, but as soon as N comes close to
the “transition” value NT , the curve approaches a plateau
andPðNÞ becomes independent of N. The plateau value in

units of the Planck mass in controlled by the ratio Lb=lPl,
or NT equivalently:

lim
N→∞

PðNÞ ¼ ð24πÞ1=2mPl

NT
: ð5:58Þ

Thus we find that the dimensionful UV cutoff PðNÞ never
reaches infinity, for no value of N whatsoever.
This result is rather striking. It brings us to our main

conclusion:
(4a) In the background independent approach the limits

N → ∞ and P → ∞ are inequivalent. Since, by construc-
tion, it is the limit N → ∞ that removes the regularization,
it follows that it is incorrect to attempt taking the limit
P → ∞ when the gravitational backreaction is taken into
account.
(4b) If, at the classical point N ¼ 0, the bare radius is of

the order of the Planck length or larger, Lb ≳ lPl, then no
member of the sequence fAppðNÞ; 0 ≤ N < ∞g has a
proper UV cutoff larger than about the Planck scale:
PðNÞ≲mPl. [We ignore factors of order unity in (5.56)
and (5.57).]
Here we observe a remarkable dynamical mechanism at

work which can occur only thanks to the background
independent quantization scheme: Even though the regu-
lator is removed fully, i.e., all field modes are integrated
out, no member AppðNÞ in the sequence of approximating
quantum systems ever encounters trans-Planckian energies
or momenta: The systems dynamically adjust their metric
ðgSCN Þμν in such a way that, with respect to this metric, the
dimensionful proper cutoff corresponding to the mode
cutoff at n ¼ N is always situated below the Planck scale:
PðNÞ≲mPl.

VI. MICROSTATES OF DE SITTER SPACE

The Lorentzian analog of S4, de Sitter space, possesses a
Bekenstein-Hawking entropy whose magnitude is deter-
mined by the value of the cosmological constant:

S ¼ 3π

GΛ
: ð6:1Þ

In terms of the Hubble length L≡H−1 ≡ ð3=ΛÞ1=2 it reads

S ¼ π

G
L2 ð6:2Þ

which is also equivalent to S ¼ A=4G, where A denotes
the area of the de Sitter horizon, A ¼ 4πL2. Within the
Euclidean approach to black holes and similar thermal
spacetimes, the Euclidean 4-sphere plays an important role
in the derivation of this result. It serves as a saddle point
which enables the semiclassical evaluation of the gμν
integration [48–50].

FIG. 3. The dimensionful cutoff scale P in dependence on N
according to Eq. (5.55). The corresponding sequence of approx-
imants assumes a positive bare cosmological constant.
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Being purely thermodynamic in nature, it is a long-
standing question what are the microcopic degrees of
freedom that get “counted” by this entropy, and which
kind of quantum-statistical mechanics might govern a
corresponding hidden layer below the (semi-)classical de
Sitter spacetime [51].
The sequences of self-gravitating systems which we have

constructed suggest a specific answer to this question: If we
evaluate the de Sitter entropy for all members of a
sequence,

SðNÞ≡ π

G
LSCðNÞ2; ð6:3Þ

it becomes obvious that the thermodynamic entropy of any
member in the AppðNÞ sequence is determined by pre-
cisely the number of degrees of freedom fðNÞ which have
given birth to its particular spacetime.
To substantiate our claim, we consider the sequence

obtained in Sec. IV C as an example. We assume M ¼ 0
here, and so all results are independent of ξ. Using the stress
tensor of the first type, we found a sequence of systems
having Λb ¼ 0 and, according to (4.12), self-consistent
radii

LSCðNÞ2 ¼ G
4π

fðNÞ: ð6:4Þ

They amount to the dynamically fixed cosmological con-
stants

ΛSCðNÞ≡ 3

LSCðNÞ2 ¼
12π

GfðNÞ : ð6:5Þ

(1) Quantized radii. The absolute dimensionful scale in
this solution is set by the Planck length lPl ≡G1=2, which
assumes the same value for all members of the sequence.
Indeed, their self-consistent radii (Hubble lengths) are
quantized in units of lPl:

LSCðNÞ ¼
�
fðNÞ
4π

�
1=2

lPl ¼
N2ffiffiffiffiffiffiffiffi
48π

p lPl

�
1þO

�
1

N

�	
:

ð6:6Þ

The corresponding spacetimes are well behaved for any
nonzero number f of field modes living in the respective
universe. For f ¼ 0 ¼ N its metric degenerates, and so we
limit ourselves to N ≥ 1, i.e., to universes of a genuinely
quantum mechanical origin.
(2) Experiment may request N < ∞. As we saw, the

sequence (6.4) can be significant for the cosmological
constant problem since, for N → ∞, the effective cosmo-
logical constant ΛSCðNÞ approaches zero. Could we also
construct a QFT limit N → ∞ with a nonzero observed
cosmological constant in the traditional way by making
bare parameters N dependent?

For the specific sequence fAppðNÞg under consideration
the answer is “no.” By virtue of the universal status of G
and lPl in the present case, the formula (6.5) contains no
bare parameter that could be given an appropriate N
dependence.
Nevertheless, let us hypothesize that Eq. (6.5) represents

(the maximum symmetry simplification of) a valid law of
nature, and furthermore that in the real Universe cosmol-
ogists have measured a nonzero, positive cosmological
constant Λobs > 0. Then the unavoidable conclusion is
that the physically realized Universe carries only a finite
number fðNobsÞ of quantummechanical degrees of freedom
rather than a full-fledged quantum field. The integer Nobs is
fixed by the measurement then:

ΛSCðNobsÞ¼! Λobs: ð6:7Þ

In this manner we allow experiment to inform us that the
limit N → ∞ must not be taken in this particular case.
If instead the measurement reveals that Λobs ¼ 0, we do

have to let N → ∞, thus activating all field modes. It
should be clear though that “Nobs < ∞” is a physical
statement about the matter contents of the Universe. Hence
the implication that the limit N → ∞ must not be taken has
a completely different logical status than the mathematical
inequivalence of the limits N → ∞ and P → ∞ discussed
earlier.
In this paper we insisted repeatedly that the approxim-

ants AppðNÞ are more than a generic regularization of a
quantum field theory, namely physical systems per se, with
finitely many degrees of freedom. One of the virtues of this
requirement is that it admits the possibility that spacetime
supports fewer degrees of freedom than would be supplied
by a full-fledged quantum field.
Mindful of this possibility, let us now return to the

entropy of de Sitter space.
(3) The entropy counts field modes. Inserting (6.4) into

(6.3) we obtain the following semiclassical entropies along
the sequence fAppðNÞg:

SðNÞ ¼ 1

4
fðNÞ: ð6:8Þ

This is indeed a remarkable result. It confirms what we
claimed above: For all members in the chain of systems
fAppðNÞg, the Bekenstein-Hawking entropy of their
spacetime equals (up to a factor of 1=4) the number of
scalar degrees of freedom that live on this spacetime. Hence
the area of the respective Hubble spheres, AðNÞ, is an
integer multiple of the fundamental unit l2

Pl,

AðNÞ
l2
Pl

¼ fðNÞ: ð6:9Þ

These findings are in line with the intuitive picture that
the horizon surface is a fuzzy 2-sphere made of discrete
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“tiles.” Points on this surface can be distinguished only if
their angular separation is larger than about Δα ≈ π=N,
which implies

Δl≡ LSCðNÞΔα ≈
ffiffiffiffiffiffiffiffiffiffi
π=48

p
NlPl

�
1þO

�
1

N

��
ð6:10Þ

for their approximate proper distance.
(4) A “Λ-N connection” proven.Now let us assume that,

as described above, experiment has provided us with some
value Λobs > 0. Knowing that

Λobs ¼
12π

GfðNÞ ; ð6:11Þ

this piece of data fixes a certain finite Nobs, which in turn
allows us to infer how many degrees of freedom partici-
pated in the, purely quantum dynamical, generation of the
universe the measurement of Λobs was performed in:

1

4
#ðdegrees of freedomÞ ¼ 1

4
fðNobsÞ ¼

3π

GΛobs
: ð6:12Þ

So we have proven the following property of the de Sitter
spaces governed by the N sequence under consideration:
Up to the (probably inessential) factor 1=4, universes with a
strictly positive cosmological constant are described by a
quantum theory with only a finite number of degrees of
freedom, and this number is given by the Bekenstein-
Hawking entropy of de Sitter space.
This relationship is a particular instance of the conjec-

tured “Λ-N connection” and “N-bound” that have been
speculated about in the literature [52,53] under more
general conditions.21 In its stronger form, the hypothesis
of the N bound claims that in any universe with a positive
cosmological constant Λ, and arbitrary matter contents,
the observed entropy Sobs is always bounded above:
Sobs ≤ 3π=GΛ≡N. Obviously our exact result (6.12)
precisely matches this claim, and saturates the bound with
Sobs ¼ 1

4
fðNobsÞ corresponding to the number N.

(5) Our Universe. Despite its highly idealized character,
it is nevertheless tempting to apply this N sequence to the
real Universe we live in. If we model the latter by an empty
de Sitter space with the observed Hubble radius
LSCðNobsÞ ≈ 1060lPl, then Eq. (6.6) yields Nobs ≈ 1030.

This implies SðNobsÞ ≈ 10120 and an angular uncertainty of
δα ≈ 10−30. By (6.10) this uncertainty corresponds to a
proper length of about δl ≈ 1030lPl ≈ 10−3 cm at the
present time. Remarkably enough, a degree of fuzzyness
of the same order of magnitude has been found in [33] by
logically independent arguments based upon the functional
renormalization group for gravity [1].
We shall come back to the entropy of de Sitter space

elsewhere [57] where we also discuss quantum corrections
to its Bekenstein-Hawking value.

VII. SUMMARY AND OUTLOOK

In this paper we considered quantum fields in contact
with dynamical gravity and proposed a new nonperturba-
tive framework for the efficient investigation of such
systems.
(1) We advocated the point of view that the principle

of background independence should apply already to the
regularized precursors of a quantum field theory, the
approximants. To achieve this, we identified three require-
ments the corresponding calculational scheme must meet.
In particular the approximants should constitute quasi-
physical systems, meaning that, at the very least, they can
be ascribed a well-defined, finite number of quantum
mechanical degrees of freedom which are exposed to,
and self-consistently backreact onto the gravitational field.
In this setting, we reinterpreted the process of removing

the regularization as a comparison of such quasiphysical
systems. Its limit, if it exists, generalizes the usual con-
tinuum limit in that it provides additional information about
the spacetime the quantum field prefers to “live in.” The
spacetime geometry which is actually realized gets selected
in a dynamical fashion, in harmony with background
independence.
At a more technical level, we introduced what we called

cutoffs of the N-type. They allowed us to concretely
construct sequences of gravity-coupled approximants
fAppðNÞg in terms of the field degrees of freedom. The
rationale behind this cutoff scheme is to disentangle the
logically unrelated concepts of a regularization parameter
on one side, and a proper momentum scale on the other.
Besides a careful metric independent enumeration of the
field modes, eigenfunctions of the kinetic operator, the
installation of an N cutoff requires merely a bisection of
the pertinent spectrum, i.e., a rule deciding about to retain,
or not to retain a given mode. Since this rule does not
involve the metric, we were able to perform limits of such
fAppðNÞg sequences which could not be considered
within the standard setting.
(2) The proposed requirements (R1,2,3) for an efficient

quantization scheme were outlined and motivated in Sec. II.
Their interpretation is as follows: At a given level of
technical complexity, it is the calculational schemes which
do meet the requirements that have the best chances to get
close to the true physical answers. In a way, the motivation

21Originally, the N bound grew out of string theory based
arguments which hinted at the possibility of a Λ-N connection
such that all universes with a positive cosmological constant are
governed by a fundamental quantum theory with a finite number
of degrees of freedom only, whereby this number, N, is
determined by the value of Λ [52,53]. For a related discussion
within loop quantum gravity we refer to [54]. Along an
independent line of research, similar indications were found
within the asymptotic safety approach to quantum gravity [55].
For a counting of modes on de Sitter space related to the emergent
gravity paradigm see [56].

BACKGROUND INDEPENDENT FIELD QUANTIZATION WITH … PHYS. REV. D 102, 125001 (2020)

125001-25



for using gravitationally backreacting approximants is
similar to the (well-justified) hope that theories with a
symmetry are best analyzed in a regularization scheme that
respects this symmetry.
The proviso of a fixed level of complexity may be

important here. While there are good reasons to believe that
(R1,2,3) can help us finding the fastest track to the correct
answers, this does not exclude the possibility that the same
answers can also be found by other means, albeit at a
higher price.
(3) As a first example, we applied the set of rules

(R1,2,3) to a Gaussian scalar field. It was quantized in a
universe on whose metric it was allowed to backreact self-
consistently. We focussed on maximally symmetric space-
times, and this enabled us to perform all subsequent
calculations exactly. In particular we never had to invoke
the short time expansion of heat-kernel traces; while this is
a frequently used tool in such studies, usually it has the
disadvantage of generating asymptotic series only. The
exact calculations are a further source of differences
between the present approach and earlier investigations.
The operator which represents the scalar’s energy-

momentum tensor at the quantum level is not unique. In
the standard approach, products of field operators at
coincident points must be given a meaning. This leads
to ambiguities and requires external input over and above
the classical theory. The same is true in the present
approach. We employed two types of quantum stress
tensors, which turned out inequivalent as for their detailed
predictions.
And yet, using either of the stress tensors we found

sequences of approximants which displayed the same
astounding phenomenon: adding further degrees of free-
dom to the quantum system flattens the Universe. This is
exactly the opposite of what background dependent cal-
culations like Pauli’s estimate predict, namely that further
modes imply higher curvature.

We demonstrated explicitly that, as shown in Fig. 1,
taking the QFT limit of infinitely many field modes, and
including the quantum system’s backreaction on the metric,
are two noncommuting operations.
In view of these findings we believe that contrary to

many claims there does not exist any cosmological constant
problem due to quantum vacuum fluctuations. The false
impression of a huge induced cosmological constant arises
only if one takes the wrong path in the diagram of Fig. 1,
namely the one which relies on the dangerous illusion that
there can be a rigid spacetime that would never change,
whatever load of energy and momentum is imposed on it.
(4) Our final application was to the thermodynamics

of de Sitter space. We could prove a Λ-N connection of
the kind speculated about in the literature on entirely dif-
ferent grounds. Computing the semiclassical Bekenstein-
Hawking entropy for the approximants along one of our
sequences, we found that a de Sitter spacetime with a
given cosmological constant is to be identified with one
specific approximant at finite N, rather than a limit of such.
Remarkably enough, its Bekenstein-Hawking entropy
turned out to count the number of field modes that are
governed by this approximant, thus suggesting a natural
interpretation for the microstates of de Sitter spacetime.
(5) It is clear that the present work should be extended in

a number of directions. In this paper the discussion mostly
focused on the approximants per se. Future work will have
to find more physically realistic approximants, and to
determine which sequences actually converge to quantum
field theories with desirable properties. This will require
including self-interactions in the matter sector [57]. The
next steps also include an application to full quantum
gravity, see [8] for a first investigation.
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