
 

Stable bound orbits in black lens backgrounds
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In contrast to five-dimensional Schwarzschild-Tangherlini and Myers-Perry backgrounds, we show that
there are stable bound orbits of massive and massless particles in five-dimensional black lens backgrounds,
in particular, the supersymmetric black lens with Lð2; 1Þ and Lð3; 1Þ topologies. We also show that in the
zero-energy limit of massless particles, there exist stable circular orbits on the evanescent ergosurfaces.
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I. INTRODUCTION

A stable bound particle orbit is an orbit where a particle
keeps moving in a bounded spatial region without reaching
infinity or singularities even if small perturbations are
applied. Such an orbit often appears in astrophysical
phenomena because the stability results in a relatively long
duration. The essence of the mechanism can be seen from
the dynamics of a massive particle in the Schwarzschild
spacetime. A massive particle moving on a stable bound
orbit is localized near a radial potential well, which is made
by a balance between the gravitational potential −Mm=r
and the centrifugal potential l2=ð2m2r2Þ, where M is the
black hole mass, m and l are the mass and angular
momentum of a particle, respectively, and r is the circum-
ferential radius. The relativistic correction effect −Ml2=
ðm2r3Þ becomes dominated near the event horizon and
causes proper relativistic phenomena such as perihelion
shift and the innermost stable circular orbits. These can
explain or predict events in the vicinity of black holes and
other celestial objects, such as stellar orbital motion and
accretion disks. Similarly, it was shown that stable bound
orbits exist in the Kerr black hole spacetime [1].
For photons moving in the Schwarzschild spacetime and

Kerr spacetime, it is very well known that there exist
unstable circular orbits but not stable ones. However, in the
Kerr-Newman spacetime with relatively large electric
charge, stable photon orbits exist on the horizon [2], and
in the 4DMajumdar-Papapetrou spacetimes with two black

holes, they appear even outside the horizon [3–5]. The
existence of such stable bound photon orbits has a
physically significant meaning because it implies instability
of the background spacetime in the following sense: If
they exist, many massless particles (not only photons but
also gravitons, etc.) are stably trapped on the orbits
and accumulate more and more in the finite region of
the spacetime. This will cause so large backreaction to the
background geometry that it will eventually break the
background. On the other hand, from the wave perspective,
linear waves localize in the vicinity of the trapping null
geodesics resulting in a long timescale for the decay [6].
This phenomenon suggests the existence of nonlinear
instabilities of the background spacetime [7].
It is now evident that even within the framework of

vacuum Einstein gravity, there is a much richer variety of
black hole solutions in higher dimensions. For instance,
asymptotically flat, stationary and biaxisymmetric five-
dimensional black holes can have three types of topologies
of the event horizon, a sphere S3, a ring S1 × S2 and lens
spaces Lðp; qÞ [8–11]. The corresponding solutions are,
respectively, called a black hole, a black ring [12–14] and a
black lens [15,16]. For the Schwarzschild-Tangherlini
solution and Myers-Perry solution in five dimensions, it
was shown that there are no stable circular orbits in
equatorial planes [17–21]. For the black ring solutions, it
was shown in contrast to black holes that there exist stable
bound orbits [22–24]. For the black lens solutions, in our
previous work [25], we numerically show examples of
stable bound orbits of particles around the supersymmetric
black lens with the horizon topology of Lð2; 1Þ in the five-
dimensional minimal supergravity.
In this paper, focusing on the supersymmetric black

lenses with Lð2; 1Þ and Lð3; 1Þ topologies in the five-
dimensional minimal supergravity, we give more detail
about the existence of the stable bound orbits for the
massive and massless particles which move around the
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horizon than in the previous paper. In our analysis, we
consider such motion of particles as a two-dimensional
potential problem, where a problem of whether a stable
bound orbit exists for massive or massless particles is
reduced to a simple problem of whether the two-dimen-
sional effective potential has a negative or zero local
minimum. We also discuss if there are stable bound orbits
at infinity because for the five-dimensional Majumdar-
Papapetrou solution with two black holes [26], they can
exist at infinity when the separation of two black holes is
large enough.
The rest of the paper is composed as follows: In the

following Sec. II, we briefly review the supersymmetric
black lens solution in the five-dimensional minimal super-
gravity. In Sec. III, we provide our formalism to show the
existence of stable bound orbits. In Sec. IV, we show that
there are stable bound orbits for supersymmetric black
lenses with Lð2; 1Þ and Lð3; 1Þ topologies. In Sec. V, we
summarize our results and discuss possible generalizations
of our analysis to other black hole backgrounds.

II. BLACK LENSES

A. Solutions

In the five-dimensional minimal supergravity, the local
metric and gauge potential 1-form of the supersymmetric
black lens solutions take the form [15,16]

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ð1Þ

A ¼
ffiffiffi
3

p

2

�
fðdtþ ωÞ − K

H
ðdψ þ χÞ − ξ

�
; ð2Þ

where ds2M is the Gibbons-Hawking metric, which is given
by

ds2M ¼ H−1ðdψ þ χÞ2 þHðdx2 þ dy2 þ dz2Þ; ð3Þ

χ ¼
Xn
i¼1

hi
z − zi
ri

xdy − ydx
x2 þ y2

; ð4Þ

H ¼
Xn
i¼1

hi
ri

≔
n
r1

−
Xn
i¼2

1

ri
; ð5Þ

where ri ≔ jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz − ziÞ2

p
, r ≔ ðx; y; zÞ

and ri ≔ ð0; 0; ziÞ. For the constants zi, we assume z1 ¼
0 < z2 < � � � < zn and H is a harmonic function with point
sources at r ¼ ri on E3. The vectors ∂=∂t, ∂=∂ψ and
∂=∂ϕ ≔ x∂=∂y − y∂=∂x are Killing vectors, where ∂=∂ϕ
is the coordinate basis in the standard polar coordinates
(x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, z ¼ r cos θ). The other
functions and 1-forms are written as

f−1 ¼ H−1K2 þ L; ð6Þ

ω ¼ ωψðdψ þ χÞ þ ω̂; ð7Þ

ωψ ¼ H−2K3 þ 3

2
H−1KLþM; ð8Þ

ω̂¼
Xn
j¼2

�
n
2
k3jþ

3

2
ðk1k2j−kjl1Þ

�
r−zjcosθ

zjrj
dϕ

þ
Xn

i;j¼2ði≠jÞ

�
−
1

2
k3jþ

3

2
kik2j

�

×
r2−ðziþzjÞrcosθþzizj

zjirirj
dϕ

−
3

2

Xn
i¼1

�
−
Xn
j¼1

kjhiþki

�
z−zi
ri

dϕ

−
Xn
j¼2

nk3jþ3ðk1k2j−kjl1Þ
2zj

dϕ−
Xn

i;j¼2ði≠jÞ

hik3jþ3kik2j
2zji

dϕ;

ð9Þ

ξ ¼ −
Xn
i¼1

ki
z − zi
ri

dϕ; ð10Þ

where zji ≔ zj − zi and

K ¼
Xn
i¼1

ki
ri
; ð11Þ

L ¼ 1þ l1
r1

þ
Xn
i¼2

k2i
ri
; ð12Þ

M ¼ −
3

2

Xn
i¼1

ki þ
Xn
i¼2

k3i
2ri

: ð13Þ

As discussed in Ref. [16], from the requirements of
regularity at r ¼ ri ði ¼ 2;…; nÞ and the absence of closed
timelike curves around the horizon r ¼ r1 and the (n − 1)
points r ¼ ri ði ¼ 2;…; nÞ, the parameters (ki≥1, l1, zi≥2)
must satisfy

1þ 1

zi
ðl1 − 2kik1 − nk2i Þ þ

Xn

j¼2ðj≠iÞ

1

jzjij
ðkj − kiÞ2 < 0;

ð14Þ

−
3

2

Xn
j¼1

kj −
3

2
ki þ

nk3i þ 3k1k2i − 3l1ki
2zi

þ
Xn

j¼2ðj≠iÞ

ðkj − kiÞ3
2jzjij

¼ 0 ð15Þ
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for i ¼ 2;…; n and the inequalities

k21 þ nl1 > 0; l21ð3k21 þ 4nl1Þ > 0: ð16Þ

It is shown in Ref. [16] that when the parameters simulta-
neously satisfy these conditions, the point r ¼ r1ð¼ 0Þ
denotes a null degenerate horizon whose spatial cross
section is the lens space Lðn; 1Þ, whereas the points
r ¼ ri ði ¼ 2;…; nÞ give regular points, which correspond
to the merely coordinate singularities like the origin of the
Minkowski spacetime in theGibbons-Hawking coordinates.

B. Evanescent ergosurface

The supersymmetric black lens admits the presence of
evanescent ergosurfaces [15,16], which are defined as
timelike hypersurfaces such that a stationary Killing vector
field becomes null there and timelike everywhere except
there. Reference [27] proved that on such surfaces, mass-
less particles with zero energy (E ¼ 0) relative to infinity
move along stable trapped null geodesics. They exist at
f ¼ 0, which corresponds to

H ¼
Xn
i¼1

hi
ri

¼ 0: ð17Þ

For n ¼ 2, they cross the points z ¼ 2z2=3 and z ¼ 2z2 on
the z axis. For n ¼ 3, they cross the points z satisfying

FðzÞ ≔ 3jz − z2jjz − z3j − jzjjz − z3j − jzjjz − z2j ¼ 0

ð18Þ

on the z axis. It turns out from simple computations that
FðzÞ ¼ 0 has only a single root on Iþ and I1, two roots on
I2 and no root on I−.

C. New coordinates

In the work of the geodesic motion of massive and
massless particles around the black lenses, it is more
convenient to use the coordinates ðη; ξ;ϕ1;ϕ2Þ, defined by

η ¼ 2
ffiffiffi
r

p
cos

θ

2
; ξ ¼ 2

ffiffiffi
r

p
sin

θ

2
; ð19Þ

ϕ1 ¼
ψ þ ϕ

2
; ϕ2 ¼

ψ − ϕ

2
; ð20Þ

than the Gibbons-Hawking coordinates ðr; θ;ϕ;ψÞ, where
ðϕ1;ϕ2Þ are the coordinates with 2π periodicity. It should
be noted that the points ri ¼ ð0; 0; ziÞði ¼ 1; 2;…; nÞ on
the z axis correspond to ðη; ξÞ ¼ ðηi; 0Þði ¼ 1; 2;…; nÞ on
the η axis in the new coordinates, where ηi ≔ 2

ffiffiffiffi
zi

p
.

D. n= 2 case

The case n ¼ 2 coincides with a black lens solution with
the horizon topology of Lð2; 1Þ in Ref. [15]. Equation (15)
is simply written as

z2 ¼
k2ð3k1k2 þ 2k22 − 3l1Þ

3ðk1 þ 2k2Þ
ð> 0Þ; ð21Þ

and the inequalities (14) and (16) are, respectively,

1þ l1 − 2k2k1 − 2k22
z2

< 0; ð22Þ

l21ð3k21 þ 8l1Þ > 0: ð23Þ

The blue-shaded regions D in Fig. 1 show the parameter
region where the inequalities (21)–(23) are simultaneously
satisfied for l1 ¼ 1 under Eq. (21). In particular, we
consider the case of k1 ¼ 0, which simplifies the conditions

)21(–)23 ) as

z2 ¼
2k22 − 3l1

6
> 0; ð24Þ

1þ l1 − 2k22
z2

< 0; ð25Þ

l1 > 0: ð26Þ

FIG. 1. Parameter regions D for the black lens with Lð2; 1Þ
topology.
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E. n= 3 case

The case n ¼ 3 describes a black lens with the horizon
topology of Lð3; 1Þ, which has four independent param-
eters (k1, k2, k3, and l1). In this paper, for simplicity, we
consider only the case of k1 ¼ 0, in which case the
conditions (15) are written as

−
3

2
ð2k2 þ k3Þ þ

3ðk32 − l1k2Þ
2z2

þ ðk3 − k2Þ3
2z32

¼ 0; ð27Þ

−
3

2
ðk2 þ 2k3Þ þ

3ðk33 − l1k3Þ
2z3

þ ðk2 − k3Þ3
2z32

¼ 0; ð28Þ

and the inequalities (14) and (16) are reduced to, respec-
tively,

1þ l1 − 3k22
z2

þ ðk3 − k2Þ2
z32

< 0; ð29Þ

1þ l1 − 3k23
z3

þ ðk3 − k2Þ2
z32

< 0; ð30Þ

l1 > 0: ð31Þ

From Eqs. (27) and (28), z2 and z3 can be written as the
functions of k2, k3 and l1. When we normalize l1 ¼ 1 from
(31), the inequalities (29) and (30) can be denoted by a
certain region in a ðk2; k3Þ plane. This parameter region D
which gives a black lens with Lð3; 1Þ topology is drawn as
the blue-colored region in Fig. 2.

III. OUR FORMALISM

Our method to find stable bound orbits is based on the
previous work [25], where we considered the geodesic
motion of particles around the black lenses as a two-
dimensional potential problem. Now, we give the brief
review as follows. The Hamiltonian of a free particle with
the mass m is written as

H ¼ gμνpμpν þm2; ð32Þ

where pμ is the momentum. From the independence of H
on the coordinates ðt;ϕ1;ϕ2Þ, the momenta ðpt; pϕ1

; pϕ2
Þ

are constants of motion, and we denote them as ðpt; pϕ1
;

pϕ2
Þ ¼ ð−E;Lϕ1

; Lϕ2
Þ. Then, the Hamiltonian can be

written in terms of these constants as

H ¼ 4f
Hðη2 þ ξ2Þ ðp

2
η þ p2

ξÞ þ E2

�
U þm2

E2

�
: ð33Þ

The function U is the effective potential defined by

U ¼ gtt þ gϕ1ϕ1l2ϕ1
þ gϕ2ϕ2l2ϕ2

− 2gtϕ1lϕ1
− 2gtϕ2lϕ2

þ 2gϕ1ϕ2lϕ1
lϕ2

ð34Þ

¼ 1

4ðK2 þHLÞ ½−3K
2L2 þ 8K3M þ 12HKLM

− 4HL3 þ 4H2M2 þ ð4K3 þ 6HKL

þ 4H2MÞðlϕ1
þ lϕ2

Þ þH2ðlϕ1
þ lϕ2

Þ2�

þ ½−2ω̂ϕ þ ðlϕ1
þ lϕ2

Þχϕ þ ðlϕ2
− lϕ1

Þ�2
ðK2 þHLÞη2ξ2 ; ð35Þ

where we have normalized two angular momenta by the
energy as lϕ1

≔ Lϕ1
=E and lϕ2

≔ Lϕ2
=E. Thus we can

consider that the massive and massless particles move on
the two-dimensional space ðη; ξÞ while satisfying the
Hamiltonian constraint H ¼ 0. When we consider that
the particles move in the two-dimensional potential U, the
allowed regions of the motions for massive and massless
particles are restricted to U ≤ −m2=E2 and U ≤ 0, respec-
tively. From the determinant and trace of the Hesse matrix
ðHijÞ ≔ ðU;i;jÞði; j ¼ η; ξÞ of U, we can discuss the exist-
ence of a local minimum. If TrðHijÞ > 0 and detðHijÞ > 0

at a stationary point U;i ¼ 0, U has a local minimum at
the point.
For simplicity, we focus on the shape of the potential U

on the z axis (i.e., θ ¼ 0; π) of E3 in the Gibbons-Hawking
space, which corresponds to η ¼ 0 and ξ ¼ 0 in the
coordinates ðη; ξÞ. The z axis is composed of the nþ 1
intervals: I− ¼ fðη; ξÞjη ¼ 0; ξ > 0g, Ii ¼ fðη; ξÞjηi <
η < ηiþ1; ξ ¼ 0gði ¼ 1; 2;…; n − 1Þ and Iþ ¼ fðη; ξÞjη >
ηn; ξ ¼ 0g. On Iþ and I−, only the particles with the
angular momenta of lϕ2

¼ 0 and lϕ1
¼ 0, respectively, are

FIG. 2. Parameter regions D for the black lens with Lð3; 1Þ
topology (k1 ¼ 0).
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allowed to stay there, whereas on Iiði ¼ 1;…n − 1Þ only
the particles with the angular momenta of the special ratio
of lϕ1

=lϕ2
¼ −ðn − iþ 1Þ=ðn − iÞ are allowed to stay there

because Ii corresponds to the fixed points of the Killing
isometry v ≔ ðn − iÞ∂=∂ϕ1 þ ðn − iþ 1Þ∂=∂ϕ2, and
hence only the particle with a zero angular momentum
of J ≔ pμvμ ¼ ðn − iÞLϕ1

þ ðn − iþ 1ÞLϕ2
¼ 0 can stay

on the axis Ii and otherwise the potential diverges on Ii.
In the above formalism, we must remove the zero-energy

limit E → 0 because lϕ1
and lϕ2

are divided by E. For this
limit, it is better to use the potential U0 defined by

U0 ¼ gϕ1ϕ1L2
ϕ1

þ gϕ2ϕ2L2
ϕ2

þ 2gϕ1ϕ2Lϕ1
Lϕ2

ð36Þ

instead of the potential U, though in the previous work
[25], we considered the zero energy as the limit lϕ1

; lϕ2
→

�∞ of U. The potential U0 takes a simple form of

U0 ¼ H2ðLϕ1
þ Lϕ2

Þ2
4ðK2 þHLÞ þ ½ðLϕ2

− Lϕ1
Þ þ ðLϕ2

þ Lϕ1
Þχϕ�2

ðK2 þHLÞη2ξ2 :

ð37Þ

For this zero-energy limit, massive particles are not allowed
to move because U0 is non-negative, whereas massless
particles can move on U0 ¼ 0, which corresponds to the
intersection of two curves in the ðη; ξÞ plane, H ¼ 0 and
G ≔ ðLϕ2

− Lϕ1
Þ þ ðLϕ2

þ Lϕ1
Þχϕ ¼ 0, because the first

and second terms in Eq. (37) are non-negative. It turns out
hence that massless particles with zero energy always move
on the evanescent surfaces, which correspond to H ¼ 0.
Moreover, U0 ¼ 0 corresponds to a stationary point
because at the point ∂iU0 ¼ 0ði ¼ η; ξÞ also holds.
It can be shown that U0 has a local minimum at such

a stationary point. To this end, let us confirm both
the determinant and trace of the Hesse matrix H ≔
ð∇i∇jU0Þði; j ¼ η; ξÞ are positive at the stationary point,
where ∇i are the covariant derivatives associated with the
two-dimensional conformally flat metric gij in Eqs. (32)
and (33). At just a stationary point such that ∇iU0 ¼
∂iU0 ¼ 0, ∇i∇jU ¼ ∂i∂jU0 can be shown because

∇i∇jU0 ¼ ∂i∂jU0 −Ω−1ð∂iU0∂jΩþ ∂jU0∂iΩ

− δij∂kU0∂kΩÞ; ð38Þ

where Ω2 ≔ Hðη2 þ ξ2Þ=4f, so that it is enough to
compute the determinant and trace of ∂i∂jU, which are
written, respectively, as

detð∂i∂jU0ÞjH¼G¼0

¼ U0
ηηU0

ξξ −U02
ηξjH¼G¼0

¼ ðLϕ1
þ Lϕ2

Þ2ðH;ξG;η −H;ηG;ξÞ2
K4η2ξ2

¼ ðLϕ1
þ Lϕ2

Þ4ðH2
;ξ þH2

;ηÞ2
4K4

> 0; ð39Þ

Trð∂i∂jU0ÞjH¼G¼0

¼ U0
ηη þ U0

ξξjH¼G¼0

¼ 4ðG2
;η þ G2

;ξÞ þ ðLϕ1
þ Lϕ2

Þ2ðH2
;η þH2

;ξÞη2ξ2
2K2η2ξ2

¼ ðLϕ1
þ Lϕ2

Þ2ðH2
;η þH2

;ξÞ
K2

> 0; ð40Þ

where we have used G;η ¼ −ðLϕ1
þ Lϕ2

ÞH;ξηξ=2 and
G;ξ ¼ ðLϕ1

þ Lϕ2
ÞH;ηηξ=2, which are derived from

dχ ¼ �3dHðχϕ;η ¼ −H;ξηξ=2; χϕ;ξ ¼ H;ηηξ=2Þ.
For the particles with J ¼ 0 and ðLϕ1

; Lϕ2
Þ ≠ ð0; 0Þ, one

of the two conditions, G ¼ 0, is always satisfied at least on
I� and Iiði ¼ 1;…; n − 1Þ because χϕ ¼ �1 on I� and
χϕ ¼ 2n − 2iþ 1 on Iiði ¼ 1; 2;…; n − 1Þ. Therefore, for
such particles with zero energy, U0 has a zero local
minimum at the intersection of the evanescent ergosurfaces
and the axes I� and Iiði ¼ 1;…; n − 1Þ. This is why on
such surfaces, massless particles with zero energy move
along stable trapped null geodesics. In the following
sections, we will discuss it from the contours of U0 in
the ðη; ξÞ plane.

IV. STABLE BOUND ORBITS

A. A black lens with the topology Lð2;1Þ
In the previous work, we have seen the existence of

stable bound orbits for the black lens with Lð2; 1Þ topology,
where we have focused on the behavior of the effective
potential U on the z axis of E3 in the Gibbons-Hawking
space. The z axis is composed of the three intervals:
I− ¼ fðη; ξÞjη ¼ 0; ξ > 0g, I1 ¼ fðη; ξÞjη1ð¼ 0Þ < η <
η2; ξ ¼ 0g and Iþ ¼ fðη; ξÞjη > η2; ξ ¼ 0g. On Iþ and
I−, only the particles with the angular momenta of
lϕ2

¼ 0 and lϕ1
¼ 0, respectively, are allowed to stay there,

whereas only ones with the angular momenta of the ratio
lϕ1

=lϕ2
¼ −2 are allowed to stay on I1.

1. I +
First, we begin to comment on the existence of stable

bound orbits on Iþ. Figure 3 shows the typical shape of the
effective potential U with a negative local minimum on Iþ,
where we plot U under the parameter setting ðk1; k2; l1Þ ¼
ð0; 10; 1Þ and the angular momenta ðlϕ1

; lϕ2
Þ ¼ ð−400; 0Þ.

The left figure shows the shape of the effective potential on
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Iþ, which is the intersection of U by ξ ¼ 0ðη2 < ηÞ. The
right figure shows the contours of U for the particles with
the same angular momenta. The red curve in this figure,
which corresponds to U ¼ 0, separates the two-dimen-
sional ðη; ξÞ plane into two regions, the outer region U > 0
and the inner region U < 0. As can be read off from the
contours,U has a negative local minimum at a certain point
ðη; ξÞ ¼ ðηm; 0Þ on the η axis (z ¼ zm on the z axis), where
ηmð¼ 2

ffiffiffiffiffi
zm

p Þ is a certain constant satisfying η2 < ηm. At
the point U;η ¼ U;ξ ¼ 0, detðHijÞ > 0 and TrðHijÞ > 0.
Therefore, both massive and massless particles inside the
red curve are stably bounded in the finite region U ≤
−m2=E2 and U ≤ 0, respectively. This means that there are
stable bound orbits for massive and massless particles.
Furthermore, we consider whether there can exist such

stable bound orbits at infinity z → ∞ðη → ∞; ξ ¼ 0Þ on
Iþ. To this end, let us expand the potential U at z → ∞ on
Iþ as

U ≃ −1þUð1Þ
∞

z
þ Uð2Þ

∞

z2
; ð41Þ

where the constantsUð1Þ
∞ andUð2Þ

∞ are denoted, respectively,
by

Uð1Þ
∞ ¼ l2ϕ1

− 16k22 − 8l1
4

;

Uð2Þ
∞ ¼ −ð14k22 þ 3l1Þl2ϕ1

þ 96k32lϕ1
− 160k42 − 24l21

24
: ð42Þ

After simple computations, we find that 0 < −Uð1Þ
∞ ≪ 1

andUð2Þ
∞ > 0 are the necessary conditions thatU has a local

minimum at infinity because the local minimum is at

z ≃ −2Uð2Þ
∞ =Uð1Þ

∞ . Noting that the condition 0<−Uð1Þ
∞ ≪1

can be denoted by lϕ1
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k22 þ l1Þ

p ∓ ϵð0 <

ϵ ≪ 1Þ, we can confirm that the leading term of Uð2Þ
∞

can be written as

Uð2Þ
∞ ≃ −

2

3
ð24k42 þ 10l1k22 þ 3l21 ∓ 12k32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k22 þ l1Þ

q
Þ

þOðϵÞ: ð43Þ

From the leading terms, we find that Uð2Þ
∞ < 0, which

cannot satisfy the other condition Uð2Þ
∞ > 0. As a result,

there exist no stable bound orbits in the asymptotic region
z → ∞, at least, on the z axis. This suggests that there exists
the outermost stable circular orbit as the boundary of stable
circular orbits.

2. I −
Next, we focus on the potential on I−, where the particles

with angular momenta lϕ1
¼ 0; lϕ2

≠ 0 can stay. The left
graph in Fig. 4 shows the intersection of U by η ¼ 0 for
ðlϕ1

; lϕ2
Þ ¼ ð0; 16Þ in the same choice of the parameters

ðk1; k2; l1Þ. The right figure shows the contours ofU. At the
horizon ðη; ξÞ ¼ ð0; 0Þ, U diverges to −∞ due to the
gravitational force. The potential U seems to have a local
minimum but this is not the case because the Hessian gets
negative. This shows that there exist unbounded orbits of
massless particles on I−. As seen from the right figure, a
negative local minimum exists at the place far from the axis
rather than on it. For massless particles, there are no stable
bound orbits because the red curve U ¼ 0 is not closed,
whereas for massive particles with the mass m, there are
stable bound orbits within the region U ≤ −m2=E2.
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FIG. 3. The left figure shows the effective potential U on Iþðη > η2 ¼ 11.4…; z > z2 ¼ 32.8…Þ for ðk1; k2; l1Þ ¼ ð0; 10; 1Þ and
ðlϕ1

; lϕ2
Þ ¼ ð−400; 0Þ. The right figure shows the two-dimensional plot of U and the red curve corresponds to U ¼ 0.
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Let us discuss whether there can exist stable bound orbits
at the other infinity z → −∞ðη ¼ 0; ξ → ∞Þ on the z axis.
To do so, we expand the potential U at z → −∞ as

U ≃ −1þUð1Þ
−∞

z
þ Uð2Þ

−∞

z2
; ð44Þ

where the constants Uð1Þ
−∞ and Uð2Þ

−∞ are denoted, respec-
tively, by

Uð1Þ
−∞ ¼ −l2ϕ2

þ 16k22 þ 8l1
4

; ð45Þ

Uð2Þ
−∞ ¼ −ð10k22 þ 9l1Þl2ϕ2

þ ð48k32 þ 72k2l1Þlϕ2
− 32k42 − 192k22l1 − 24l21

24
: ð46Þ

The inequalities 0 < Uð1Þ
−∞ ≪ 1 and Uð2Þ

−∞ > 0 are necessary for U to have a local minimum at the infinity z → −∞. The
condition 0 < Uð1Þ

−∞ ≪ 1 can be denoted by lϕ2
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k22 þ l1Þ

p ∓ ϵð0 < ϵ ≪ 1Þ, and the leading term of Uð2Þ
−∞ can be

written as

Uð2Þ
−∞ ≃ −

2

3
ð12k42 þ 26l1k22 þ 6l21 ∓ 3ð2k32 þ 3k2l1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k22 þ l1Þ

q
Þ þOðϵÞ: ð47Þ

From the leading terms, we find that Uð2Þ
−∞ < 0 for any

parameter l1, k2, which cannot satisfy the necessary
condition for the existence of stable bound orbits in the
asymptotic region z → −∞, at least, on the z axis.
Moreover, let us expand U near the horizon z ¼ 0 as

U ≃ −
l21
z2

þ 2l1ð8k22 − 3l1Þ
ð2k22 − 3l1Þz

þOð1Þ; ð48Þ

and then we find that the first and second terms are
negative, which is due to the effect of the attraction by
the horizon. From Fig. 4,U does not make a local minimum
on the z axis.

3. I1
Finally, we consider the potential U on the interval I1,

where the particles with the angular momenta of the special
ratio of lϕ1

=lϕ2
¼ −2 are allowed to stay. Figure 5 shows

the typical behavior of the potential U with a local
minimum for the same set of parameters ðk1; k2; l1Þ ¼
ð0; 10; 1Þ and ðlϕ1

; lϕ2
Þ ¼ ð36;−18Þ. Near the horizon at

ðη; ξÞ ¼ ð0; 0Þ, U increases by the effect of the centrifugal
force, while as closer to the horizon, the potential diverges
to −∞ by the stronger effect of the gravitational force. On
the other hand, near the other center ðη; ξÞ ¼ ðη2; 0Þ, due to
the effect of the centrifugal force, the potential again
increases rapidly and then diverges to ∞. As a result, there
is necessarily a negative local minimum somewhere

10 20 30 40 50

30

20

10

10

20

U

FIG. 4. The left figure shows the effective potential U on I−ðη ¼ 0; ξ > 0Þ for ðk1; k2; l1Þ ¼ ð0; 10; 1Þ and ðlϕ1
; lϕ2

Þ ¼ ð0; 16Þ. The
right figure shows the corresponding two-dimensional plot of U.
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between the horizon ðη; ξÞ ¼ ð0; 0Þ and the center ðη; ξÞ ¼
ðη2; 0Þ on the η axis. This is the reason why there exist
stable bound orbits of massless particles as well as massive
particles in a black lens spacetime.

B. A black lens with the topology Lð3;1Þ
Next, let us consider the black lens with the topology of

Lð3; 1Þ. The z axis of the Gibbons-Hawking space is com-
posed of the four intervals: I− ¼ fðη; ξÞjη ¼ 0; ξ > 0g,
I1 ¼ fðη; ξÞj0 < η < η2; ξ ¼ 0g, I2 ¼ fðη; ξÞjη2 < η <
η3; ξ ¼ 0g and Iþ¼fðη;ξÞjη>η3;ξ¼0g. On Iþ and I−,

only the particles with the angular momenta of lϕ2
¼ 0 and

lϕ1
¼ 0, respectively, are allowed to stay there, whereas

only ones with the angular momenta of the ratio lϕ1
=lϕ2

¼
−ð4 − iÞ=ð3 − iÞ are allowed to stay on Ii (i ¼ 1, 2).

1. I +
First, let us see the shape of the potentialU on Iþ. The left

figure of Fig. 6 shows the shape of the typical effective
potential with a negative local minimum on the z axis for the
particles with the angular momenta of ðlϕ1

; lϕ2
Þ ¼ ð5000; 0Þ

for ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows

2 4 6 8 10

50

50

100

150

200

250

300

U

FIG. 5. The left figure shows the effective potential U on I1ð0 < η < η2 ¼ 11.4…; ξ ¼ 0Þ for ðk1; k2; l1Þ ¼ ð0; 10; 1Þ and
ðlϕ1

; lϕ2
Þ ¼ ð−72; 36Þ. The right figure shows the corresponding two-dimensional plot of U.
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FIG. 6. The left figure shows the potential U for the particles with the angular momenta of ðlϕ1
; lϕ2

Þ ¼ ð5000; 0Þ for
ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows the contours of U for the particles with the same angular momenta. The
red closed curveU ¼ 0 separates the two-dimensional ðη; ξÞ plane into two regions U > 0 and U < 0. The two black points in the right
figure denote the points ðη2; 0Þ and ðη3; 0Þ, where η2 ¼ 6.36…, η3 ¼ 47.91… and the origin (0,0) corresponds to the horizon.
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the contours of U for the particles with the same angular
momenta. The closed red curve in this figure, which
corresponds to U ¼ 0, separates the two-dimensional
ðη; ξÞ plane into two regions, the outer region U > 0 and
the inner regionU < 0. As can be read off from the contours,
U has a negative local minimum at a certain point ðη; ξÞ ¼
ðηm; 0Þ on the η axis (zm on the z axis), where ηmð¼ 2

ffiffiffiffiffi
zm

p Þ
is a certain constant satisfying η2 < ηm. At the point
U;η ¼ U;ξ ¼ 0, detðHijÞ > 0 and TrðHijÞ > 0. Therefore,
both massive and massless particles inside the red curve are
stably bounded in the finite regionU ≤ −m2=E2 andU ≤ 0,
respectively. Thismeans that there are stable bound orbits for
massive and massless particles.
Moreover, let us consider whether there exist stable

bound orbits at infinity z → ∞. To this end, let us expand
the potential U at z → ∞ as

U ≃ −1þUð1Þ
∞

z
þ Uð2Þ

∞

z2
; ð49Þ

where

Uð1Þ
∞ ¼ l2ϕ1

− 16ðk22 þ k2k3 þ k23Þ − 8l1
4

; ð50Þ

and Uð2Þ
∞ can be written as a certain quadratic equation

for lϕ1
. It turns out from this asymptotic behavior that

the inequalities 0 < −Uð1Þ
∞ ≪ 1 and Uð2Þ

∞ > 0 are re-
quired so that U has a local minimum at infinity because

the local minimum is at z ≃ −2Uð2Þ
∞ =Uð1Þ

∞ . The former

condition 0 < −Uð1Þ
∞ ≪ 1 can be denoted in the form of

lϕ1
¼�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk22þk2k3þk23Þþ2l1

p ∓ ϵð0< ϵ≪1Þ, under

whose condition the sign of Uð2Þ
∞ is determined by the

leading term of Uð2Þ
∞ in the expansion Uð2Þ

∞ ≃Uð2Þ
∞0 þOðϵÞ.

However, we can see numerically that the region Uð2Þ
∞0 > 0

does not overlap the parameter region D, which means that
there are no stable bound orbits on the z axis in the
asymptotic region z → ∞.
Next we study the existence of stable bound orbits

near the end point z ¼ z3 of Iþ, near which the potential
behaves as

U ≃
Uð−1Þ

3þ
z − z3

þ Uð0Þ
3þ þ Uð1Þ

3þðz − z3Þ; ð51Þ

where

Uð−1Þ
3þ ¼ −

½ðk2 − k3Þ3z3 þ ððlϕ1
− 3k2 − 6k3Þz3 − 3l1k3 þ 3k33Þz32�2

4z3z32½ðk2 − k3Þ2z3 þ ðl1 − 3k23 þ z3Þz32�
: ð52Þ

We find numerically that Uð−1Þ
3þ > 0 is always satisfied

within the parameter regionD, so that the potential diverges

to ∞ at z ¼ z3. Moreover, when 0 < Uð−1Þ
3þ ≪ 1, Uð1Þ

3þ > 0

and Uð0Þ
3þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uð−1Þ

3þ Uð1Þ
3þ

q
< 0, U has a negative local

minimum near z ¼ z3 on the z axis.
Let us consider the geodesic motion of the massless

particles with zero-energy limit E → 0, in which case it is
more convenient to use the potential U0 rather than U. In
Fig. 7, the left figure shows the typical shape of the
effective potential U0 for the particles with the angular
momenta Lϕ2

≠ 0, where we put ðk1; k2; k3; l1Þ ¼
ð0; 10;−50; 1Þ and ðLϕ1

; Lϕ2
Þ ¼ ð1; 0Þ. The right figure

shows the contours of U0 for the particles with the same
angular momenta. The potential U0 has a zero local
minimum on the evanescent ergosurface, where massless
particles with zero energy are stably trapped.

2. I −
Next, let us see the shapes of the effective potential on

I−. The left figure of Fig. 8 shows the typical shape of
the potential U with a local minimum, where this corre-
sponds to the particles with the angular momenta of

ðlϕ1
; lϕ2

Þ ¼ ð0; 50Þ for ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ.
The right figure shows the contours of U for the parti-
cles with the same angular momenta. The red curve
corresponding to U ¼ 0 is not closed. The potential U
does not have a local minimum on the ξ axis (on the z axis
corresponding to z < 0), but as is seen from the right
contour plots of U, there are the closed contours U ¼
U0ðU0 < 0Þ which cross the ξ axis. Therefore, massive
particles crossing the ξ axis inside the region U ≤ U0 turn
out to be stably bounded. Furthermore, massive particles
can also stably bounded inside closed contours apart from
the ξ axis.
We discuss the existence of stable bound orbits at the

infinity z → −∞ on the z axis. Similarly we expand the
potential U at z → −∞ as

U ≃ −1þUð1Þ
−∞

z
þ Uð2Þ

−∞

z2
; ð53Þ

where

Uð1Þ
−∞ ¼ −l2ϕ2

þ 16ðk22 þ k2k3 þ k23Þ þ 8l1
4

; ð54Þ
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and Uð2Þ
−∞ is a certain quadratic equation for lϕ2

. The

inequalities 0 < Uð1Þ
−∞ ≪ 1 and Uð2Þ

−∞ > 0 are the necessary
conditions for U to have a local minimum at the infinity.

The condition 0 < Uð1Þ
−∞ ≪ 1 can be denoted by lϕ2

¼
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2k22 þ 2k2l3 þ 2k23 þ l1Þ

p ∓ ϵð0 < ϵ ≪ 1Þ, and

then the leading term of Uð2Þ
−∞ can be written as

Uð2Þ
−∞ ≃ Uð2Þ

−∞0 þOðϵÞ. However, we can see numerically

that the region Uð2Þ
−∞0 > 0 does not have an overlap region

with the parameter regionD, which means that there are no
stable bound orbits in the asymptotic region z → −∞ on
the z axis.

Near the horizon z ¼ 0, U behaves as

U ≃ −
l21
z2

þ 2l1ðz2z3 þ k22z3 þ k23z2Þ
z2z3z

: ð55Þ

The negativity of the first and second terms makes U
diverge to −∞ at the horizon z ¼ z1ð¼ 0Þ, which is a pure
effect of gravity.
Moreover, to consider the zero-energy limit for particles

with the angular momenta Lϕ1
¼ 0, let us see Fig. 9. The

left figure shows the effective potential U0 for the particles
with ðLϕ1

; Lϕ2
Þ ¼ ð0; 1Þ under the parameter setting

ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows
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FIG. 7. The left figure shows the potential U0 under the parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ and angular momenta
ðLϕ1

; Lϕ2
Þ ¼ ð1; 0Þ. The right figure shows the contours of U0 for the particles with the same angular momenta. The potential has a local

minimum, whose values are zero on the evanescent ergosurfaces.
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FIG. 8. The left figure shows the effective potential U for the particles with the angular momenta of ðlϕ1
; lϕ2

Þ ¼ ð0; 50Þ for
ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows the contours of U for the particles with the same angular momenta. The red
curve corresponding to U ¼ 0 is not closed.
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the contours of U0 for the particles with the same angular
momenta. The potential U0 does not have a local minimum
for the absence of evanescent ergosurface on the z axis.
Massless particles with zero energy are not stably trapped.

3. I1
Let us discuss the existence of stable bound orbits at the

interval I1 on the z axis. When we expand the potentialU at
z ¼ z2 as

U ≃
Uð1Þ

2−
z − z2

þOð1Þ; ð56Þ

the signature of Uð1Þ
2− does not depend on angular momenta

lϕ1
and lϕ2

of particles, and Uð1Þ
2− < 0 is satisfied within the

whole parameter region. Therefore U diverges to ∞ at
z ¼ z2 on I1. On the other hand, near the horizon z ¼ 0, U
behaves as

U ≃ −
l21
z2

−
2l1½ðk23 þ z3Þz2 þ k22z3�

z2z3z
þ Uð0Þ

1þ þ Uð1Þ
1þz: ð57Þ

The negativity of the first and second terms makes U
diverge to −∞ at the horizon z ¼ z1ð¼ 0Þ, which is a
pure effect of gravity. In order that U has a local mini-
mum near the horizon, U must have a local maximum

because U diverges to ∞ at z ¼ z2. Hence, U
ð1Þ
1þ must be

negative, which can be realized for sufficiently large lϕ1
¼

j − 3lϕ2
=2j because for jlϕ2

j → ∞,

Uð1Þ
1þ ≃ −

ð3k23 þ l1Þz2 þ ð3k22 þ l1Þz3 þ 3z2z3
16l1z2z3

l2ϕ2
< 0:

ð58Þ

Figure 10 shows the typical shape of the effective potential
U. The left figure shows the effective potential on the η axis
(η1 ≤ η ≤ η2) [on the z axis (0 ≤ z ≤ z2Þ] for the particles
with the angular momenta ðlϕ1

; lϕ2
Þ ¼ ð−1500; 1000Þ

under the parameter setting ðk1;k2;k3;l1Þ¼ð0;10;−50;1Þ
and the right figure shows the contours of U for the
particles with the same angular momenta. One can see
from these figures that U has a negative local minimum on
I1 and inside the red curve U ¼ 0, both massive and
massless particles are stably bounded (in the finite region
U ≤ −m2=E2 and U ≤ 0, respectively).
To consider the geodesic motion of the massless particles

with zero-energy limit E → 0, let us see Fig. 11. The left
figure shows the typical effective potential U0 for the
particles with the angular momenta Lϕ1

=Lϕ2
¼ −3=2 under

the parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ and
ðLϕ1

; Lϕ2
Þ ¼ ð3;−2Þ. The right figure shows the contours

of U0 for the particles with the same angular momenta. The
potential has a zero local minimum on the evanescent
ergosurface, where massless particles with zero energy are
stably trapped.

4. I2
Finally, let us discuss the existence of stable bound orbits

on I2. This type of an interval does not exist for the black
lens with Lð2; 1Þ topology. When we expand the potential
U at z ¼ z2; z3 as

200150100500

0.0005

0.001
U'

FIG. 9. The left figure shows the effective potential U0 for the particles with the angular momenta ðLϕ1
; Lϕ2

Þ ¼ ð0; 1Þ under the
parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows the contours of U0 for the particles with the same angular
momenta. The potential does not have a local minimum for the absence of evanescent ergosurface on the z axis.
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U ≃
Uð1Þ

i

z − zi
ði ¼ 2þ; 3−Þ;

regardless of the angular momenta lϕ1
and lϕ2

of particles,

Uð1Þ
2− andUð1Þ

3þ are positive and negative, respectively, within
the parameter region D. Therefore U diverges to ∞ at
z ¼ z2 and z ¼ z3 on I2. As is already expected, U has a
local minimum on I2.
Figure 12 shows the typical shape of the effective potential

U. The left figure shows the effective potential on the η axis
(η2 ≤ η ≤ η3) [on the z axis (z2 ≤ z ≤ z3)] for the particles
with the angular momenta ðlϕ1

; lϕ2
Þ ¼ ð−2000; 1000Þ under

the parameter setting ðk1;k2;k3;l1Þ¼ð0;10;−50;1Þ and the

right figure shows the contours ofU for the particles with the
same angularmomenta. One can see from these figures thatU
has a negative local minimum on I2 and inside the red curve
U ¼ 0, both massive and massless particles are stably
bounded (in the finite region U ≤ −m2=E2 and U ≤ 0,
respectively).
Moreover, to consider the zero-energy limit for parti-

cles with the angular momenta Lϕ1
=Lϕ2

¼ −2, let us
see Fig. 13. The left figure shows the effective potential
U0 for the particles with ðLϕ1

; Lϕ2
Þ ¼ ð−2; 1Þ under the

parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The
right figure shows the contours of U0 for the particles
with the same angular momenta. The potential has two
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FIG. 10. The left figure shows the effective potential U for the particles with the angular momenta ðlϕ1
; lϕ2

Þ ¼ ð−1500; 1000Þ under
the parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows the contours of U for the particles with the same angular
momenta.
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FIG. 11. The left figure shows the typical effective potential U0 for ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ and ðlϕ1
; lϕ2

Þ ¼ ð3;−2Þ. The right
figure shows the contours of U0 for the particles with the same angular momenta. The potential has a local minimum whose values are
zero on the evanescent ergosurface.
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local minima, whose values are zero at the evanescent
ergosurfaces.

V. SUMMARY AND DISCUSSIONS

In this paper, we have analyzed the geodesics for the
supersymmetric black lenses with Lð2; 1Þ and Lð3; 1Þ
topologies in the five-dimensional minimal supergravity.
We have reduced the geodesic motion of particles to a
two-dimensional potential problem, and from the two-
dimensional contour plots of the potential, we have clarified
the existence of the stable bound orbits for the massive and
massless particles. In the previous work [25] on the black
lenswithLð2; 1Þ topology,where one-dimensional potential

was used,we found the stable boundorbits of particles on the
z axis corresponding to two rotational axes (η axis and ξ
axis). In this work, we have found that there also exist
stable bound orbits in a place away from the z axis as well
as on the axis. Moreover, we have discussed the range such
that stable bound orbits exist on the z axis and have shown
that there exist no stable bound orbits in the asymptotic
region z → �∞, at least, on the z axis. This result suggests
that there exists the outermost stable circular orbit as the
boundary of stable circular orbits.
In particular, we have also discussed the geodesic

motion for massless particles with zero energy. We have
proved that for such particles, the potential always has a
local minimum at the intersection of the evanescent
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FIG. 12. The left figure shows the effective potential U for the particles with the angular momenta ðlϕ1
; lϕ2

Þ ¼ ð−2000; 1000Þ under
the parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows the contours of U for the particles with the same angular
momenta.
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FIG. 13. The left figure shows the effective potential U0 for the particles with the angular momenta ðLϕ1
; Lϕ2

Þ ¼ ð−2; 1Þ under the
parameter setting ðk1; k2; k3; l1Þ ¼ ð0; 10;−50; 1Þ. The right figure shows the contours of U0 for the particles with the same angular
momenta. The potential has local minima whose values are zero at the evanescent ergosurfaces.
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ergosurface and the curveGðη; ξ; Lϕ1
; Lϕ2

Þ ¼ 0 in the ðη; ξÞ
plane, where, in particular, for particles with the angular
momenta satisfying either condition Lϕ2

¼ 0 or J ¼ 0, the
intersection exists, at least at the rotational axes. This
means that such particles are stably trapped on the geo-
desics on the evanescent ergosurface, which is exactly
consistent with the mathematical result [27], which proved
that on an evanescent ergosurface, massless particles with
zero energy move along stable trapped null geodesics. As
shown in Ref. [27], for the microstate geometry, the
existence of evanescent ergosurfaces leads to some non-
linear instability. This result does not apply to the solution
with a black hole horizon but the presence of stable bound

orbits of particles with zero energy even in a black
lens background may exhibit corresponding nonlinear
instability.
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