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In this paper we study the dynamics of neutral, electrically charged and magnetized particles around
deformed electrically and magnetically charged Reissner-Nordström black holes. For the neutral test
particles motion, it is shown that the radius of the innermost stable circular orbits (ISCOs) decrease with the
increase in both the black hole charge and positive spacetime deformation. It reaches up to 3.85M at the
value of deformation parameter ϵ ¼ 20.45 in Schwarzschild spacetime case (Q ¼ 0). In the extreme
charged Reissner–Nordstrom black hole case, the ISCO decreases up to 2.26M at the value of deformation
parameter ϵ ¼ 6.17. Moreover, the negative deformation results in an increase in the ISCO radius.
Comparing effects of positive deformation and the Reissner-Nordström black hole charge with spin of
rotating Kerr black holes, it is shown that the extremely charged Reissner-Nordström black hole can mimic
rotating Kerr black hole up to the spin parameter a=M ¼ 0.48, while for the positive deformation with
ϵ ¼ 6.17 the mimic value increases up to a=M ¼ 0.88 implying that the supermassive black hole M87
cannot be considered as Reissner-Nordström black hole. Using this comparison, we estimate charge of the
supermassive black hole Sagittarius A* as Q=M ≃ 0.8287 without deformation which can mimic the spin
of the black hole. When the deformation ϵ ¼ 1, the mimic charge increases up toQ=M ≃ 0.8926. Our study
of the energy extraction from the accretion disk shows that the maximum energy efficiency increases up to
20.02%, which is almost the same for extreme Kerr black hole case (20.6%). We have also considered the
behaviour of ISCO of electrically charged particles showing that the attractive (repulsive) electrostatic
interactions cause rapid increase (slightly decrease) of the ISCO radius. Finally, we have explored the
dynamics of magnetized particles around deformed magnetically charged Reissner-Nordström black hole.
By treating the magnetar PSR J1745-2900, orbiting the supermassive black hole Sagittarius A* as a
magnetized particle, showing that the magnetic charge of pure Reissner-Nordström black hole can mimic
spin of a rotating Kerr black hole up to a=M ≃ 0.82 for the value to be in the range Qm=M ∈ ð0; 0.692Þ.
Moreover, we find that the positive values of the deformation parameter lead to shift the ISCO for the
magnetized particles toward the central object.

DOI: 10.1103/PhysRevD.102.124078

I. INTRODUCTION

The Einstein filed equations encode the spacetime
physics through a system of highly nonlinear coupled
partial differential equations. Due to their nonlinearity,
these equations are extremely difficult to find their exact
analytic solutions in terms of the gravitational potential.
However, soon after their discovery, two very interesting
exact solutions of these equation were obtained by
Schwarzschild in 1916 and Reissner and Nordström in
1916 and 1918, respectively. These solutions respectively

define the fields of a nonrotating neutral pointlike massive
object [spherical symmetric black hole (BH)] and an
electrically and magnetically charged nonrotating BHs in
the framework of the linear electrodynamics for the electric
field of BH generated by its net electric charge [1,2].
Whereas analytic static BH solutions have physical

unavoidable singularity with the infinite spacetime curva-
ture at the center of the BH (r ¼ 0), it cannot be mean-
ingfully explained within the context of classical theory
of GR because of its being not quantum. It is worth
mentioning that there exist so-called regular BH solutions
for electrically and magnetically charged BHs, which avoid
the singularity, in the framework of GR coupled to the
nonlinear electrodynamics discussed by numerous authors
in literature e.g., [3–7].
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On the other hand, the accelerated expansion of the
Universe and the discovery of the new forms of matter such
as so-called dark matter and dark energy, led to the
initiation of the development of alternate theories of
gravity. It is expected that this study when applied to
relativistic cosmology and astrophysics, one may find an
explanation of the above mentioned unexpected phenom-
ena not predicted by the standard cosmological models and
solving the singularity problems in the gravitational field
theory.
In addition, one may use another alternate approach to

find a reasonable spacetime metric perturbing the exact
analytical solution obtained in GR. Then a perturbation
parameter can be expressed through a series of infinitesi-
mally small expansion parameter and this approach can be
termed as the phenomenological parameterization of the
spacetime [8–11]. The detailed properties of the perturbed
spacetime developed by Johannsen and Psaltis in Ref. [9]
have been widely studied by number of authors in various
aspects of relativistic astrophysics of gravitational compact
objects [12–20].
The main issue with the alternate and modified theories

is that they provide predictions similar to those as by GR in
weak gravitational field regime, where it is well tested and
the measurable discrepancies are enhanced as gravity
becomes strong. Consequently, one of the main goals of
the modern relativistic astrophysics is to test the validity of
the GR with respect to alternate theories of gravity using
observational data in the vicinity of BHs obtained in the
strong gravitational field regime. Fortunately, recent trium-
phal discovery of the gravitational waves by LIGO-VIRGO
collaboration [21–23], the detection of the first image of
M87 supermassive BH by EHT collaborations [24,25],
precise observation of the dynamics in supermassive
black hole (SMBH) Sagittarius A* (Sgr A*) and M87
close environment by GRAVITY [26,27] team based on the
advanced generation of observational facilities provide real
opportunity to test extremely strong gravitational fields in
the close BH environment with the most extreme gravita-
tional field that can be found in the Universe. This can serve
as ideal laboratories for testing the theories of gravity in the
strong field regime [28]. Since BH environment is in the
strong gravity regime, it may give a crucial key for testing
gravity theories taking into account a possible degeneracy
between effects of different parameters due to the indirect
measurement of BH main parameters as a total mass
and spin.
It is obvious that the properties of a spacetime can be

studied considering the particle motion and their stability
near the event horizon of BHs. The Spacetime properties,
neutral and electrically and magnetically charged particles
motion around electrically and magnetically charged
Reissner-Nordström and regular BHs has been widely
studied in [29–44]. From an astrophysical point of view,
it is interesting to study the motion of charged particles

around magnetized/charged BHs immersed in the external
magnetic field. The motion of charged [45–54], magnetized
[55–64] and spinning [65–68] particles around BHs with
different parameters in an external asymptotically uniform
magnetic field in various theories of gravity have recently
been studied. While interpreting observations of the hot
spots [69,70] and S-stars motion around SMBH Sgr A*
[71], there is a degeneracy between the prediction made on
the assumption that either the SMBH is rotating or some
other type [31,46,72–78].
In this paper, we explore the dynamics of test particles

around a deformed RN BH. In Sec. II we present a study of
the motion of test particles around deformed charged RN
BH. In Sec. III, we discuss motion of charged particles
around electrically charged deformed RN BH. Magnetized
particle dynamics around a deformed magnetically charged
RN BH is explored in Sec. IV. We summarize main results
in the last section.
Throughout this work we use the signature ð−;þ;þ;þÞ

for the spacetime metric and geometrized unit system
G ¼ c ¼ 1 (However, for an astrophysical application
we will use the speed of light explicitly). Latin indices
run from 1 to 3, while Greek ones take values from 0 to 3.

II. TEST PARTICLE MOTION

The geometry of the spacetime metric around deformed
electrically and magnetically charged RN BH, in spherical
polar coordinates, (xα ¼ ft; r; θ;ϕg) is given in the follow-
ing [78] form:

ds2 ¼ −fð1þ hÞdt2 þ ð1þ hÞf−1dr2
þ r2½dθ2 þ sin2θdϕ2�; ð1Þ

with the following gravitational radially dependent RN
metric function,

f ¼ 1 −
2M
r

þQ2 þQ2
m

r2
: ð2Þ

Associated with the four vector potential in the above
expression for the electromagnetic field around the
deformed electrically and magnetically charged RN BH

Aα ¼
�
−
Q
r
; 0; 0; Qm cos θ

�
; ð3Þ

whereM is the total mass of the BH,Q andQm are the total
electric and magnetic charges, respectively, and the radial
function

h ¼
X∞
k¼1

ϵk

�
M
r

�
k

ð4Þ

is small dimensionless perturbation parameter. Due to its
smallness ϵ0 ¼ 0 (ϵ0 ≪ 1), and similarly ϵ1 ≪ M=r and
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ϵ2 ≃ 4.6 × 10−6 (as obtained using the observational data of
Laser Lunar Ranging experiment (see for details [79]) are
also extremely small. The lowest order nonvanishing param-
eter ϵ3 ¼ ϵ called the deformation parameter, which can be
either positive and/or negative describing oblate and prolate
deformations respectively, and k ¼ 3 (see for details [9]).

A. Equations of motion

In fact for study of neutral particles motion magnetic and
electric charges of the RN BH are equivalent. Due to this
reason, we will call these solutions as charged RN BH.
Conservative quantities of the motion can be easily found
by using the Euler Lagrange equation. The Lagrangian
density for a neutral particle with mass m is,

Lp ¼ 1

2
gμν _xμ _xν; ð5Þ

and the conserved quantities of motion read

−E ¼ pt ¼
∂Lp

∂_t ; _t ¼ E
fð1þ hÞ ; ð6Þ

L ¼ pϕ ¼ ∂Lp

∂ _ϕ ; _ϕ ¼ L
r2sin2θ

; ð7Þ

where E represents energy and, L is the angular momentum
of the particle. Equations of motion for a test particle in the
equatorial plane are then governed by the normalization
condition

gμνuμuν ¼ κ; ð8Þ

where κ 0 and −1 for massless and massive particles,
respectively.
For the massive electrically uncharged particles the

motion is governed by timelike geodesics of the spacetime,
and the equations of motion can be found by using Eq. (8).
Taking into consideration Eqs. (6)–(7), we obtain the
equations of motion in the separated and integrated form as

ð1þ hÞ2 _r2 ¼ E2 − fð1þ hÞ
�
1þ K

r2

�
; ð9Þ

_θ ¼ 1

g2θθ

�
K −

L2

sin2θ

�
; ð10Þ

where K denotes the Carter constant corresponding to the
total angular momentum.
Restricting motion of the particle to the plane, in which

θ ¼ const and _θ ¼ 0, the Carter constant takes the form
K ¼ L2= sin2 θ and the equation of the radial motion can be
expressed in the form,

ð1þ hÞ2 _r2 ¼ E2 − Veff ; ð11Þ

where it can be noted that the term ð1þ hÞ2 in front of
radial velocity _r can be interpreted as the effective mass of
the particles as meff ¼ mð1þ hÞ2 and the effective poten-
tial of the motion of neutral particles reads

Veff ¼ fð1þ hÞ
�
1þ L2

r2 sin2 θ

�
: ð12Þ

Now applying standard conditions for the circular
motion, namely no radial motion (_r ¼ 0) and no forces
in the radial direction ̈r ¼ 0) we obtain the radial profiles of
the specific angular momentum and specific energy for
circular orbits at the equatorial plane (θ ¼ π=2) in the
following form:

L2 ¼ M3r2ϵ½rð8M − 3rÞ − 5Q2� þ 2r5ðMr −Q2Þ
Z

;

E ¼
ffiffiffi
2

p ½rðr − 2MÞ þQ2�ðM3ϵþ r3Þ
r2

ffiffiffiffiffiffi
rZ

p ; ð13Þ

where

Z¼M3ϵ½rð5r−12MÞþ7Q2�þ2r3½rðr−3MÞþ2Q2�.
Figure 1 demonstrates radial profiles of specific and

angular momentum of test particles around deformed RN
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FIG. 1. The radial dependence of specific angular momentum
(top panel) and energy (bottom panel) of the test particle in
circular orbits for the different values of RN BH charge and
spacetime deformation in comparison with Schwarzschild space-
time.

TEST PARTICLES DYNAMICS AROUND DEFORMED REISSNER- … PHYS. REV. D 102, 124078 (2020)

124078-3



BH which correspond to circular orbits for the different
values of deformation parameter at the fixed values of theBH
charge with the comparison to the Schwarzschild case. One
can see that existence of BH charge causes to decrease
minimum values of both specific energy and angular
momentum and the minimum value increases (decreases)
with increasing the value of negative (positive) deformation.
From the expressions in Eq. (13), it can be seen that the

circular orbits are bounded by the distance from the inside
which are determined by Z ¼ 0,
Figure 2 demonstrates minimal distance for circular

orbits of test particles as a function of deformation
parameter (top panel) and the BH charge (bottom panel).
One can see that the increase of both deformation parameter
and charge of the RN BH causes to decrease of the radius.
Moreover, the minimum radius is more sensitive to the
variation of the deformation parameter near extreme value
of the BH charge.

B. Innermost stable circular orbits–ISCO
Traditionally, the stable circular orbits equation is

defined by the standard condition ∂rrV ≥ 0 and ISCO
corresponds to the case when ∂rrV ¼ 0. In this context the
equation for the ISCO radius of neutral particles in the
spacetime (1) takes the following form: w

2M6ϵ2½r2ð96M2 − 74Mrþ 15r2Þ þ 35Q4

þ 6Q2rð7r − 19MÞ� − 2M3r3ϵ½60MQ2r

− 6r2ð6M2 þQ2Þ þ 4Mr3 − 25Q4 þ 3r4�
− 4r6ð9MQ2rþMr2ðr − 6MÞ − 4Q4Þ ¼ 0. ð14Þ

It is quite hard to solve Eq. (14) with respect to the radial
coordinate which corresponds to ISCO radius. For this
reason we try to analyze the behaviour of ISCO radius
numerically which can provide the dependence of ISCO
radius from electric charge of the deformed RN balck hole
(bottom panel) and deformation parameter (top panel).
One can see from Fig. 3 that deformation parameter and

the RN BH charge are responsible in decrease of ISCO
radius. Moreover, the effect of deformation parameter
become much stronger when the BH charge reaches its
extreme value.
Assume consider deformation parameter is a free param-

eter and ISCO radius as a function of it for the fixed values
of the BH charge
In Fig. 4 we provide ISCO radius behaviour on

the variable deformation parameter for the Schwarzschild
and extreme charged RN BH. One may see that ISCO radius
has aminimumvalue at somevalue of deformationparameter
depending on BH charge between ϵ ∈ ð6.17411 ÷ 20.4547Þ
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FIG. 2. The dependence of minimal distance where circular
motion is allowed on RN BH charge (top panel) and spacetime
deformation (bottom panel).
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FIG. 3. The dependence of ISCO radius of test particles around
deformed electrically charged RN BH from the BH charge
(bottom panel) and spacetime deformation (top panel).
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for the range of BH charge Q ∈ ð1; 0Þ, respectively, giving
minimuma for ISCO radius ðriscoÞmin ∈ ð2.2665; 3.8564ÞM.

C. Deformed RN BH versus Kerr BH: Degeneracy
providing the same ISCO radius

Here we will carry out testing the spacetime strong
gravity effects of deformed RN BH on ISCO in real
astrophysical (direct and/or indirect) observations of
ISCO radius. Since positive deformation parameter and
the BH charge cause decrease of ISCO radius, on the other
hand spin of Kerr BH in prograte orbits also provides
similar effect. Due to the degeneracy, from observational
point of view, in these cases it is hard to distinguish the type
of BHs. Here we will carry out detail analysis to distinguish
the effects of spacetime deformation and BH charge from
spin of the Kerr BH.
The well-known expression for ISCO radius of the test

particles at retrograde and prograde orbits around rotating
Kerr BH is [80],

risco ¼ 3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð15Þ

where the following notations are used

Z1 ¼ 1þ ð ffiffiffiffiffiffiffiffiffiffiffi
1þ a3

p þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − a3

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

3
p

;

Z2
2 ¼ 3a2 þ Z2

1:

Here, we will provide a comparison of the effects of
spacetime deformation, electric charge of the deformed
RN BH and spin of rotating Kerr BHs on the ISCO radius.
Figure 5 illustrates degeneracy values of the BH charge

and spin parameters providing the same ISCO radius. One
can see from the figure that the electric charge of non-
deformed RN BH can mimic spin of rotating Kerr BH up to
a=M ¼ 0.479875, and for positive (negative) deformation
the mimic value increases (decrease). For the estimation the
realistic case in which value of charge of RN SMBH Srg
A* can mimic it is obtained spin parameter at ϵ ¼ 0 charge
of SgrA* 103Q=M ¼ 828.71þ70.58

−60.94 [31] and at ϵ ¼ 1 it is

103Q=M ¼ 892.68þ64.62
−55.20 , however the negative deforma-

tion of the BH cannot mimic the spin of the SMBH SgrA*.
Authors of Ref. [81,82] estimate an upper limit for electric
charge of the SMBH SgrA* in order of ≈1015C.
Analysis of ISCO radius at Q=M ¼ 1 shows that

extreme charged deformed RN BH can mimic spin of
rotating Kerr BH up to a=M ¼ 0.881399. This confirms
once again that the SMBHM87 BH cannot be RN BH even
the BH is extremely charged.
Figure 6 illustrates relationship between negative

deformation parameter and spin parameters giving the
same counter-rotating innermost orbits. One may see that
spin parameter can mimic the negative deformation
in the range of ϵ ¼ −16.9535 for the non-Schwarzschild
BH case whenQ ¼ 0, and in the extremely charged RN BH
case the spin parameter cam mimic in the range of
ϵ ∈ ð−21.8525;−5.7133Þ.

D. The energy efficiency

An other interesting issue arises when consider test
particle in Keplerian accretion disk falls down to the central
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FIG. 4. The dependence of ISCO radius from deformation
parameter for the fixed values of the BH charge.
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0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

a
M Q=0

Q=M

FIG. 6. Relations of degeneracy values of negative deformation
and spin of Kerr BH providing the same value for innermost
stable prograde orbits.

TEST PARTICLES DYNAMICS AROUND DEFORMED REISSNER- … PHYS. REV. D 102, 124078 (2020)

124078-5



BH and extracts energy which converted to (electromag-
netic and/or gravitational) radiation(s). The radiated energy
is determined by the difference of the rest energy of the
particle measured by local observer and the energy of the
particle at ISCO, which reflects spacetime properties.
Consequently, the energy efficiency of accretion disk can
be calculated through the following expression [83]

η ¼ 1 − Ejr¼rISCO ; ð16Þ
where EISCO is the energy of the particle at the ISCO which
is characterized by ratio of the binding energy (BH- particle
system) and rest energy of test particle.
The dependence of the energy efficiency from electric

charge of RN BH for the different values of deformation
parameter is shown in Fig. 7. One can see from the figure
that energy efficiency from the accretion disk increases as
the increase of electric charge of the BH. Moreover, the
existence of positive (negative) deformation causes to
increase (decrease) of the efficiency.
Now we are interested to calculate value of deformation

parameter when the energy efficiency reaches its maximum
value depending on the BH charge. As we know, the charge
can be jQj=M → ½0; 1�, therefore we will test the maximum
of energy efficiency at this range of the BH charge. Assume
that deformation parameter as a free parameter of the
energy efficiency and one may find the critical deformation
parameter which makes the energy efficiency maximum by
solving the following equation numerically

∂ϵηðϵ; QÞ ¼ 0; ð17Þ

with respect to deformation parameter and substitute the
critic deformation parameter calculated into ηðϵ; QÞ for the
given value of the BH charge Q.
Figure 8 shows dependence of energy efficiency from

deformation parameter for the values of the BH electric
charge Q ¼ 0 and Q ¼ M. One may see from Fig. 8 that
the maximum value of the energy efficiency at ϵ ¼ 32 for
non-Schwarzschild BH case Q ¼ 0 provides maximum
efficiency η ¼ 13.3975% and when ϵ ¼ 9.07407 for the

extremely charged RN BH case Q=M ¼ 1 it provides
maximum efficiency η ¼ 20.0167%. Since energy effi-
ciency from extreme Kerr BHs is around 20.6%. In fact
the bolometric luminosity of accretion disk brightness is
proportional to the energy efficiency of the central BH
through the relation η ¼ Lbol=ð _Mc2Þ, where _M is the
accretion rate [84]. From this point of view one may
conclude that extremely charged RN BH with the defor-
mation parameter ϵ ¼ 9.07407 does is not distinguishable
from the nearly extreme rotating Kerr BH providing the
same total bolometric luminosity. For a rapidly rotating
Kerr BH the inner edge of the accretion disk is considerably
closer to the event horizon than for a Shwarzschild BH. For
a maximally rotating BH, the inner edge can be as close as
1.2M, while for the Schwarzschild ISCO radius is 6M. This
is 5 times closer than for a nonrotating black hole, and the
velocities of the material can be ultrarelativistic in addition
to a gravitational redshift from the central BH. Fitting of the
spectrum and luminosity can indicate that the inner edge of
the disk is at ≈2M and the high luminosity, but it cannot
indicate exactly whether the BH is spinning quite rapidly or
RN BH. More data can be used in order to rule out the
alternate BH candidates [85–89]. X-ray missions such as
XMM (Newton) and AXAF (Chandra) offer greatly
increased sensitivity and would be able to map the
luminosity and inner regions of accretion disks around
black holes in detail.

III. MOTION OF ELECTRICALLY CHARGED
PARTICLES AROUND DEFORMED
ELECTRICALLY CHARGED RN BH

Here we will study of electrically charged particles
motion around deformed electrically charged RN BH with
e as electric charge of the particle. The Lagrangian for
electrically charged particles in electromagnetic fields has
the following form:

L ¼ 1

2
mgμνuμuν þ euμAμ: ð18Þ
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FIG. 7. Dependence of energy efficiency from the charge of RN
BH for the different values of the parameter ϵ.
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FIG. 8. Dependence of energy efficiency from the deformation
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For the case of deformed electrically charged RN BH the
specific angular momentum is exactly the same as neutral
particle’s angular momentum. However, the specific energy
is different from neutral particle’s energy due to existence
of At and it can be obtained by,

gtt_tþ qAt ¼ −E; ð19Þ

where “dot" represents derivative with respect to proper
time, q ¼ e=ðmcÞ is the specific electric charge of the
particle and electric charge e.
One can find the equation of motion for electrically

charged particles with the Lagrangian (18) using the Euler-
Lagrange equations [29],

uμ∇μuν ¼ qFν
σuσ; ð20Þ

where Fν
σ ¼ gμνFμσ and Fμσ ¼ Aσ;μ − Aμ;σ is the electro-

magnetic field tensor. Using the Eqs. (19)–(20), one may
easily find the equation of motion of the charged particles
in the equatorial plane (θ ¼ π=2) in the following form:

_t ¼ 1

fð1þ hÞ
�
E −

qQ
r

�
; ð21Þ

ð1þ hÞ2 _r2 ¼
�
E −

qQ
r

�
2

− fð1þ hÞ
�
1þ L2

r2

�
: ð22Þ

The effective potential for charged particles in the
equatorial plane (where θ ¼ π=2 and _θ ¼ 0) can be easily
found by solving the equation _r ¼ 0 in Eq. (22) with
respect to the specific energy (E ¼ Veff ) and we have

V�
effðrÞ ¼

qQ
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þ hÞ

�
1þ L2

r2

�s
: ð23Þ

In this study, we will investigate the positive root of
the effective potential–Vþ

eff , in Eq. (23), while the second
solution is not interesting physically because:

(i) when, jqQ=rj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þ hÞð1þ L2=r2Þ

p
the second

root of the effective potential V−
eff is negative

FIG. 9. Effective potential analysis for the radial motion of electrically charged particles around deformed electrically charged RN BH
for the different values of deformation parameter, charge of the BH and the particle.
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(ii) when, jqQ=rj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þhÞð1þL2=r2Þ

p
the effective

potential V−
eff has neither maximum nor minimum.

Radial dependence of effective potential for radial
motion of electrically charged particles around electrically
charged RN BH for different values of deformation
parameter, BH and particle charge shown are in Fig. 9.
The left column corresponds to pure RN BH, middle and
right correspond for the values of deformation parameter
ϵ ¼ 10 and ϵ ¼ −10, respectively. The top row corresponds
to the fixed value of the electric charge of the BH Q ¼ 0.5
with comparison to the Schwarzschild hole for negatively
and positively charged particles, middle and bottom rows
correspond to positively and negatively charged particles,
respectively. One can see from the figure (the first row from
left to right) that the maximum of the effective potential
increases (decreases) with the increase of positive (neg-
ative) deformation parameter and for the positively charged
particles the maximum of the effective potential increases

(decreases) with the increase of BH charge. However, for
negatively charged particles, the maximum decreases
(increases) in the cases of ϵ ≤ 0 (ϵ > 0).

A. Stable circular orbits

In this subsection,wewill focus our attention to the studies
of stable circular orbits of electrically charged particles
around deformed electrically charged RN BH at the equa-
torial plane through the following standard conditions:

Veff ¼ E; V 0
eff ¼ 0; V 0

eff ≥ 0: ð24Þ

The circular orbits can be stable for the critical value of
angular momentum Lcr ≥ Lmin which describes through the
solution of the equation V 0

eff ¼ 0 with respect to the specific
angular momentum, and we have:

L2
� ¼ fM3ϵðrð5r − 12MÞ þ 7Q2Þ þ 2r3ðrðr − 3MÞ þ 2Q2Þg−2

� 2qQr7=2½rðr − 2MÞ þQ2�ðM3ϵþ r3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M3ϵ½rð5r − 12MÞ þ 7Q2� þ r3½4rðr − 3MÞ þ ðq2 þ 8ÞQ2�

q
þ 2q2Q2r5½rðr − 2MÞ þQ2�ðM3ϵþ r3Þ þ r2fM3ϵ½rð8M − 3rÞ − 5Q2� þ 2r3ðMr −Q2Þg
× fM3ϵ½rð5r − 12MÞ þ 7Q2� þ 2r3½rðr − 3MÞ þ 2Q2�g: ð25Þ

One can see from Eq. (25) that there are two positive real
solution for the specific angular momentum and it is for
positive qQ, L2þ < L2

− and for negative qQ, it is L2
− > L2þ.

In other words, these two solutions are symmetric
with respect to the substitution of the sign of qQ and this
aspect of the symmetries describes the nature of Coulomb
(repulsive and attractive) interaction in the specific angular
momentum of electrically charged particles for circular
orbits.

L2þjqQ<0 ¼ L2
−jqQ>0 < L2þjqQ>0 ¼ L2

−jqQ<0: ð26Þ

Despite symmetries of the solutions Eq. (25), the condition
given by Eq. (26) shows our hesitance to choose
which solution is correct to study the electrically charged
particles dynamics at the equatorial plane for circular stable
orbits. In order for the choice of the solution to be correct,
we simply discuss the dynamics of charged particles.
Obviously that there are three forces acting on the charged
particle around deformed electrically charged RN BH,
(i) Coulomb, (ii) gravitational and (iii) centrifugal forces.

(i) Coulomb and gravitational forces are the same in
direction for qQ < 0 attracting the particle into the
central object, then centrifugal force balances the
attractive forces when the orbit of the particle is
stable and circular. In this case, we have to take
bigger solutions using the definition in Eq. (26).

(ii) Coulomb and centrifugal forces play the same role
compensating gravitational forces in the circular
orbits. Thus, this requires smaller one from the
definition Eq. (26).

This can be interpreted as follows: the circular orbits can
exist at the values of angular momentum for positive qQ
with angular momentum in the range L2

− ≤ L2 ≤ L2þ and
negative qQ with angular momentum in the range
L2
− ≥ L2 ≥ L2þ. This implies that taking above into con-

siderations, we will work with the positive solution of the
critical specific angular momentum of electrically charged
particle for circular motion in Eq. (25).
The value of critical angular momentum for electrically

charged particles in the case of pure RN BH takes the form,

L2
� ¼ r2

2½rðr − 3MÞ þ 2Q2�2
�
r2
�
2Mðr − 3MÞ � qQ

r2
½rðr − 2MÞ þQ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4rðr − 3MÞ þ ðq2 þ 8ÞQ2

q �
þQ2r½ðq2 − 2Þr − 2Mðq2 − 5Þ� þ ðq2 − 4ÞQ4

�
; ð27Þ
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and for neutral particles (q ¼ 0) the form is given in
Eq. (13) and ϵ ¼ 0 takes the following form:

L2
� ¼ r2ðMr −Q2Þ

rðr − 3MÞ þ 2Q2
;

At least in the Schwarzschild BH when Q ¼ 0, the angular
momentum takes the standard form

L2
� ¼ Mr2

r − 3M
:

Figure 10 illustrates radial dependence of specific
angular momentum of charged particles around deformed
electrically charged RN BH for the different values of
deformation parameter. One may see that the minimum
value for the specific angular momentum increases
(decreases) for positive (negative) charges and the existence
of positive (negative) deformation parameter causes to
increase (decrease) of the specific angular momentum.
However, it is quite difficult to observe the effect of charge
of particle at the position where the specific angular
momentum is minimum (which corresponds to ISCO).
Thus we will study the effects of particle’s charge effects on
the ISCO radius in detail in the next section together with
the spacetime deformation.

Radial profiles of specific energy of charged particles
around deformed electrically charged RN BH for the
different values of deformation parameter shown are in
Fig. 11. One can see from the figure that the energy
increases (decreases) with the increase of positively (neg-
atively) charged particles due to negative Coulomb
interaction.
Now we will analyze the condition which make L2

� real.
For this, we require the part inside the square root in
Eq. (25) to be always non-negative:

2M3ϵ½rð5r − 12MÞ þ 7Q2�
þ r3½4rðr − 3MÞ þ ðq2 þ 8ÞQ2� ≥ 0: ð28Þ

At the same time condition given in Eq. (28) also ensures
that the denominator of Eq. (25) should not be zero. One
may see that it is impossible to solve Eq. (28) with respect
to the radial coordinate. One way to see the effect of
spacetime deformation and charge of particle on minimum
radius for circular orbits is to solve it numerically and show
in plot form.
Figure 12 illustrates the dependence of minimum radius

for circular orbits of electrically charged particles around
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FIG. 10. The radial dependence of specific angular momentum
and energy of positively (top panel) and negatively (bottom
panel) charged particles in circular orbits for the different values
of RN BH charge and spacetime deformation.
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FIG. 11. The radial dependence of specific energy of positively
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particles in circular orbits for the different values of RN BH
charge and spacetime deformation in comparison to the
Schwarzschild spacetime.
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deformed RN BH from charge of the BH for the different
values of particle’s charge and spacetime deformation. One
can see that the minimum value for radius of circular orbits
increases (decreases) on the existence of negative (positive)
deformation and the effects of particle’s charge on the
radius is reasonable near the extreme value of the BH
charge and it is very sensitive for pure RN BH spacetime.
The solution of Eq. (28) with respect to the radial

coordinate provides the lower value for radius of the
circular orbit of particle when L is still real at ϵ ¼ 0.
Fortunately, it is possible to get analytic expression for
minimal radius for circular orbits in the following form:

rcrit ¼
3

2
M

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

q2 þ 8

9

Q2

M2

r �
: ð29Þ

Again, in order to have real value for rcrit, we require the
expression under the square root in expression (29) to be
non-negative: 9M2 − ðq2 þ 8ÞQ2 ≥ 0. This provides range
of values for particles charge which allows them to be in
circular orbits. This implies that particles with the values
out of the range cannot be in circular orbits due to higher
Coulomb interaction:

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2=Q2 − 8

q
≤ q ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2=Q2 − 8

q
: ð30Þ

Expression (30) indicates the allowed value of the charge
of the test particle required for circular stable orbits.
Now we will investigate the radius of ISCOs using

the condition V 00
eff ≥ 0. Obviously, the ISCO radius

behavior strongly depends on the Coulomb interaction
(the sign of qQ) and spacetime deformation. Therefore, we
will study the ISCO radius of electrically charged particles
with the specific electric charge q ¼ 1 for cases qQ > 0
and qQ < 0.

In Fig. 13 we demonstrate dependence of ISCO radius of
(positively and negatively) charged particles around
deformed RN BH from electric (positive and negative)
charge of the BH for different values of deformation
parameter. One can see that ISCO radius is rapidly increased
with the increase of the BH charge when the sign of qQ is
positive (decreased) due to attractive nature of Coulomb
interaction. Thus, ISCO radius goes outward from (comes
close to) the central object where the forces acting on the
charged particle are balanced. Moreover, the existence of
negative (positive) deformation causes increase (decrease)
of ISCO radius for the fixed values of the BH and particle
charge. We have tested the effects of spacetime deformation
on ISCO radius of electrically charged particle in Fig. 13 in
the fixed values of the deformation parameter. However, in
order to see/understand deeply the effects of spacetime
deformation we will consider the parameter as a free
parameter of the ISCO radius.
The dependence of ISCO radius of electrically charged

particles with specific charge parameter q ¼ �1 from
deformation parameter for positive and negative signs of
qQ (repulsive and attractive Coulomb force, in the top and
bottom panels, respectively) at different values of the BH
charge is presented in Fig. 14. One can see from the figures
that in both cases the increase of negative (positive)
deformation parameter causes increase of the ISCO radius
and the effect of negative deformation is more stronger than
the effect of positive one, especially when it becomes more
stronger at larger values of the BH charge.
We will now analyze both electric charge of the BH and

spacetime deformation effects on ISCO radius for the cases
when sign of qQ is positive and negative.
Figure 15 demonstrates relations between spacetime

deformation and RN BH charge providing different values
of ISCO radius of the charged particle with the specific
electric charge q ¼ �1 for attractive and repulsive
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FIG. 12. The dependence of minimal distance where
circular motion is allowed from RN BH charge and spacetime
deformation.
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FIG. 13. Dependence of ISCO radius of electrically charged
particle with the specific charge q ¼ �1 (top and bottom panels,
respectively) from the electric charge of BH Q=M for the
different values of deformation parameter.

BOKHARI, RAYIMBAEV, and AHMEDOV PHYS. REV. D 102, 124078 (2020)

124078-10



Coulomb interaction, at bottom and top panels, respectively.
One can see from the figures that when qQ > 0 (qQ < 0) in
order for the charged particle to stay in the same ISCO
deformation parameter has to be increased (decreased) with
the increase of BH charge. Moreover, in case when qQ is
negative there are two degeneracy values for deformation
parameter at Q < Qcrit for a given values of ISCO radius.
Onemay explain this that since electrostatic interaction does
not change the increase of spacetime deformation it, causes
increase of the specific angularmomentumgiving additional
gravitational attractive effects.

IV. MAGNETIZED PARTICLES MOTION
AROUND DEFORMED MAGNETICALLY

CHARGED RN BH

In this section, we explore the motion of magnetized
particles around the deformed magnetically charged RN
BH. The nonvanishing component of the electromagnetic
field tensor can be found using 4-potential provided in
Eq. (3) in the following form:

Fθϕ ¼ −Qm sin θ: ð31Þ
From this nonzero component of the electromagnetic

field tensor, one can easily obtain component of the

magnetic field generated by magnetic charge of the
deformed RN BH measured by zero angular momentum
observer (ZAMO) by the following relations

Bα ¼ 1

2
ηαβσμFβσwμ; ð32Þ

wherewμ is four-velocity of the proper observer, ηαβσγ is the
pseudotensorial form of the Levi-Civita symbol ϵαβσγ with
the relations

ηαβσγ ¼
ffiffiffiffiffiffi
−g

p
ϵαβσγ ηαβσγ ¼ −

1ffiffiffiffiffiffi−gp ϵαβσγ; ð33Þ

and g ¼ detjgμνj ¼ −ð1þ hÞr2sin2θ for spacetime metric
(1). Thus, the orthonormal radial component of the mag-
netic field is

Br̂ ¼ Qm

r2
: ð34Þ

One can easily see from Eq. (34) that the radial component
of the magnetic field around the deformed magnetically
charged BH does not reflect the effects of the spacetime

0.0 0.2 0.4 0.6 0.8 1.0
60

50

40

30

20

10

0

10

Q M

q 1,qQ>0

risco/M=6

risco /M=7

risco /M=8

risco/M=4

risco/M=5

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0

50

100

150

200

Q M

q 1,qQ<0

risco/M=6

risco/M=7

risco /M=8

risco/M=4

risco/M=5

FIG. 15. Relations between deformation parameter and electri-
cally charge of RN BH with the specific charge jqj ¼ 1 (top and
bottom panels, respectively) for different values of ISCO radius.
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gemetry (1) and formally looks like an expression in the
Newtonian framework.
Equation of motion of magnetized particles in the

spacetime exterior to the magnetically charged BH can
be described by the Hamilton-Jacobi equation, first for-
mulated by de-Felice in Ref. [55]

gμν
∂S
∂xμ

∂S
∂xν ¼ −

�
m −

1

2
DμνFμν

�
2

; ð35Þ

where the product of the polarization and electromagnetic
field tensors DμνFμν stands for the interaction between the
magnetic field generated by the magnetic charge of the BH
and dipole moment of the magnetized particle. Here, the
polarization tensor Dμν corresponds to the magnetic dipole
moment of the magnetized particle and it can be described
by the relation [55]:

Dαβ ¼ ηαβσνuσwν; Dαβwβ ¼ 0; ð36Þ

where μν is the four-vector of the magnetic dipole moment
measured by the proper observer. The electromagnetic field
tensor has the following form:

Fαβ ¼ w½αEβ� − ηαβσγwσBγ: ð37Þ

The product of polarization and electromagnetic tensors
in Eq. (35) can be obtained using Eq. (36) in the following
form:

DμνFμν ¼ 2μα̂Bα̂; ð38Þ

where μ ¼
ffiffiffiffiffiffiffiffi
μîμ

î
q

is the norm of the dipole magnetic
moment of magnetized particles measured also by the
proper observer.
In the case when the direction of the external magnetic

field coincides with that of the magnetic dipole moment of
the magnetized particles, the magnetic interaction will be in
the equilibrium state with the minimum energy. In order to
provide the magnetized particle a stable equilibrium, we
assume that the magnetic dipole moment direction is
the same as that of the magnetic field generated by the
magnetic charge of the deformed RN BH being parallel to
the equatorial plane and has the following orthonormal
components: μî ¼ ðμr̂; 0; 0Þ.
Moreover, the second part of the condition (36) allows

one to study the particle motion in the ZAMO frame and the
choice of the observer velocity may help to avoid a relative
motion problem. The magnitude of the magnetic moment is
constant and maintained during the motion. One may
therefore rewrite the interaction term of the Homilton-
Jacobi equation given in Eq. (35) using Eqs. (38) and (31)
in the following form:

DαβFαβ ¼
2μQm

r2
: ð39Þ

Now, one can investigate the radial motion of magnetized
particles around the deformed magnetically charged RN
BHs at the equatorial plane using Eqs. (35) and (39)

ð1þ hÞ2 _r2 ¼ E2 − Veffðr; l;BÞ: ð40Þ

The effective potential for the radial motion has the
following form:

Veffðr; l;B; QmÞ ¼
�
1 −

2M
r

þQ2
m

r2

��
1þ ϵ

M3

r3

�
×

��
1 −

B
r2

�
2

þ L2

r2

�
: ð41Þ

Here we introduce the relation B ¼ μQm=m being respon-
sible for the interaction between dipole magnetic moment
of the magnetized particles and the proper magnetic field
created by magnetic charge of the deformed RN BH. For
the qualitative analysis, we introduce another new param-
eter β ¼ μ=ðmMÞ which characterizes properties of the
magnetized particle and the central BH which is always
positive. In real astrophysical scenario, when magnetized
neutron star treated as a test magnetized particle orbiting
around a SM BH, the parameter β can be described as

β ¼ BNSR3
NS

2mNSMSMBH

≃ 0.034
�

BNS

1012 G

��
RNS

106 cm

��
mNS

1.4 ×M⊙

�
−1

×

�
MSMBH

3.8 × 106 M⊙

�
−1
: ð42Þ

For example, the value of the parameter β for the
magnetar SGR (PSR) J1745–2900 (μ≃1.6×1032 G·cm3

and m ≈ 1.5 M⊙ [90]) orbiting around the SMBH Sgr A*
(M ≃ 3.8 × 106 M⊙) can be calculated using observational
data and can be approximately estimated as,

β ¼ μPSR J1745−2900

mPSR J1745−2900MSgrA�
≈ 10.2: ð43Þ

The circular stable orbits of magnetized particles can
also be defined by the standard conditions given in
Eq. (24). Specific angular momentum and energy of the
magnetized particle along the circular orbits can be
expressed by the following expressions:
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L2 ¼ r5ðr2 − BÞ
2Z

�
ϵM3

r3

�
9BQ2

m

r4
−
16MB
r3

þ 7B − 5Q2
m

r2
þ 8M

r
− 3

�
þ 2M

r

�
1þ 2B −Q2

m

Mr
−
B
r2

�
5 −

3Q2
m

Mr

���
;

E2 ¼ 2r
Z

�
1þ ϵ

M3

r3

�
2
�
1 −

2M
r

þQ2
m

r2

�
2

ðr4 − B2Þ: ð44Þ

Equation (44) is clear to see the effects of spacetime
deformation and charge of the RN BH. By the reason we
provide below graphical and numerical analysis.
Figure 16 demonstrates radial dependence of specific

energy and angular momentum of magnetized particles
around the deformed magnetically charged RN BH for
different values of the deformation parameter and fixed
values of the BH charge Qm=M ¼ 0.5 and the parameter
β ¼ 10 for the magnetar PSR J1745-2900 orbiting SgrA*

treated as a magnetized particle. One can see from the
figure that the existence of positive deformation of space-
time and magnetic dipole moment of magnetized particles
lead to decrease both specific angular momentum and
energy, while negative deformation acts in the oppositely.
Equation for ISCO radius can easily be found taking into

account the standard conditions given in Eq. (24) and the
effective potential provided in Eq. (41) in the follow-
ing form:

4r6fB2½r2ð30M2 − 21Mrþ 4r2Þ þQ2rð12r − 37MÞ þ 12Q4� þ r4½9MQ2rþMr2ðr − 6MÞ − 4Q4�g
þ 2M3r3ϵfB2½r2ð180M2 − 132Mrþ 25r2� þ 2Q2rð39r − 110MÞ þ 69Q4Þ þ r4½6r2ð6M2 þQ2Þ þ 60MQ2r

þ 4Mr3 − 25Q4 þ 3r4�g þ 2M6ϵ2fB2½r2ð192M2 − 162Mrþ 35r2� þ 2Q2rð45r − 109MÞ þ 63Q4Þ
þ r4½r2ð74Mr − 96M2 − 15r2Þ þ 6Q2ð19M − 7rÞ − 35Q4�g ≥ 0: ð45Þ

One can notice that the form of Eq. (45) is quite
complicated to solve with respect to the radial coordinate
r which defines the ISCO radius. For this reason we prefer
solve the Eq. (45) numerically and present the ISCO
profiles in plot form.
Figure 17 demonstrates the dependence of ISCO radius

of magnetized particles from the magnetic charge of the
deformed RN BH (top panel) and deformation parameter
(bottom panel) for the different values of the magnetic
charge of the BH and deformation parameter at the fixed

value of the parameter β ¼ 10 (for the magnetar again).
One can see from the first sight that ISCO radius
decreases with increasing magnetic charge of pure RN
BH (at ϵ ¼ 0) and the existence of magnetic dipole
moment of magnetized particles lead to the decreasing to
be “faster” due to magnetic interaction between the
magnetic dipole moment of magnetized particle and
magnetic charge of the BH. Moreover, the increase of
positive (negative) spacetime deformation decreases
(increases) the ISCO radius.
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FIG. 16. Radial profiles of the specific angular momentum (top panel) and energy (bottom panel) of the magnetized particles around
deformed magnetically charged RN BH in circular orbits for the different values of deformation parameter ϵ and for the fixed values of
magnetic charge of the BH Qm=M ¼ 0.5 and the parameter β ¼ 10 for the magnetar PSR J1745-2900 orbiting SgrA*.
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Now, here we provide comparisons of effects of
deformed magnetically charged RN and Kerr BHs on
ISCO radius of magnetized particles. Note that the mag-
netized particles can be considered as test neutral particles
in the absence of external or/and proper magnetic field
around Kerr BHs. Let us focus on showing the degeneracy
between the magnetic charge of the deformed RN BH and
the spin of rotating Kerr BH providing exactly the same
values of ISCO radius for different values of the deformed
RN BH.
Figure 18 illustrates relationship between degeneracy

values of spin of the rotating Kerr BH and deformed
magnetically charged RN BH providing the same values for
ISCO radius of the magnetar orbiting SgrA* with the
parameter β ¼ 10 for different values of the deformation
parameter. From the figure one can notice that by a detailed
numerical analysis of ISCO radius of the magnetar with the
parameter β ¼ 10 that in pure RN BH case the magnetic
charge of the BH is in the range Qm=M ∈ ð0; 0.692Þ. It
mimics the spin parameter of the Kerr BH up to a=M ≃ 0.8.
In the case when deformation parameter ϵ ¼ 10 the mimic
values of the magnetic charge of the deformed RN BH and
the spin of the Kerr BH providing the same value for ISCO
radius of the magnetized particle with the parameter

β ¼ 10, takes the values in the range of Qm=M ∈
ð0; 0.5856Þ and a=M ∈ ð0.415; 0.87Þ, while in the case
of the negative value of the deformation parameter
ϵ ¼ −10, the degeneracy values Qm=M ∈ ð0.71; 1Þ
and a=M ∈ ð0.415; 0.527Þ.

V. CONCLUSION

In this paper,we have first focused on the discussion of the
dynamics of neutral particles around a deformed RN BH.
The performed analysis of specific energy and angular
momentum have shown that the increase of positive (neg-
ative) specetime deformation leads to decrease (increase) of
the energy and angular momentum. The minimum
value of radius for circular orbits decreases with increase
in both positive deformation parameter and the BH charge,
while it increases in the presence of negative spacetime
deformation. From the study of ISCO, we find that ISCO
radius reaches its minimum value (risco=M ¼ 3.8564) at the
deformation parameter ϵ ¼ 20.4547 in the Schwarzschild
spacetimeQ ¼ 0. In the extreme chargedRNcase, the ISCO
radius reaches its minimum at ϵ ¼ 6.1741 taking the
value risco=M ¼ 2.2665.
In addition, the static deformed RN BH reflects the

effects of rotating Kerr BH providing exactly the same
ISCO radius for the test neutral particles. Taking into
account that pure RN BH charge can mimic spin of rotating
Kerr BH up to a=M ≃ 0.48, it implies that the gravitational
effects of the spin of supermassive RN BH SgrA* is
equivalent to the charge Q=M ≃ 0.83. The charge of the
deformed RN BH with deformation parameter ϵ ¼ 6.1741
can mimic the BH spin parameter up to a=M ≈ 0.88. It
confirms that effect of a charge of RN BH cannot cover the
effects of the spin of SMBH M87 which is estimated as
a=M ¼ 0.9� 0.05 [91].
Similar effects of spacetime deformation have also been

discussed in the study of energy efficiency from accretion
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to the deformed RN BH together with its charge. The
maximum efficiency (e13.4%) may occur at ϵ ¼ 32 for
Schwarzchild BH, while for extremely charged RN BH it
reaches up to 20.02% with the spacetime deforma-
tion ϵ ¼ 9.07.
In the second part of the paper, we have explored motion

of electrically charged particles around electrically charged
deformed RN BH. It is found that there are two solutions
for the square of the specific angular momentum for
circular motion of electrically charged particles, which
are due to symmetry with respect to the replacement of
qQ → −qQ being responsible for the nature of the
Coulomb interaction. It is observed that the ISCO radius
rapidly increases with increasing RN BH charge in the case
of attractive interaction(qQ < 0) while it decreases with
respect to increase in charge of RN BH for the repulsive
Coulomb interaction (qQ > 0). There is a critical value for
the BH charge where ISCO radius goes to infinity due to
strong attractive Coulomb force and the critical value
marginally increases (decreases) with the increase of
spacetime deformation due to the dominating behavior
of the electric forces. Analysis of the effects of spectime
deformation on ISCO radius have shown that the effect
becomes stronger for large values of the BH charge.
Moreover, it is found that electrically charged particle
can be orbiting in the same ISCO radius around the
deformed RN BH with two values of the deformation
parameter for Q < Qcrit (qQ < 0).
Finally, we have also thoroughly studied the magnetized

particle’s motion around deformed magnetically charged
RN BH, treating the magnetar SGR (PSR) J1745-2900
(orbiting SMBH SgrA*) as a magnetized particle. It is
shown that increasing the magnetic charge of the deformed

RN BH, ISCO radius of magnetized particle decreases
faster than that of the neutral particle. The detailed
comparison of the effects of magnetic charge of deformed
RN BH with that of the spin of the rotating Kerr BH have
shown that for pure RN BH spacetime the magnetic charge
of the BH [being in the range Qm=M ∈ ð0; 0.692Þ] can
mimic the spin parameter of the Kerr BH up to
a=M ≃ 0.812. In cases when deformation parameter
ϵ ¼ 10 and ϵ ¼ −10, the mimic values of the magnetic
charge of the deformed RN BH and the spin of the Kerr BH
lies between the ranges Qm=M ∈ ð0; 0.5856Þ; a=M ∈
ð0.415; 0.87Þ and Qm=M ∈ ð0.71; 1Þ; a=M ∈ ð0; 0.527Þ,
respectively. The obtained results on the influence of the
magnetic interaction on the ISCO orbits shows that the
observed degeneracy between magnetic and BH parameters
(being responsible for strong gravitational field) are sig-
nificant candidate problems for a future study regarding
measurement of the electromagnetic field by the alternate
methods. It is hoped that this will possibly explain how the
effects of the gravitational field can be extracted and an
understanding of gravity theories in the strong field regime
can be achieved.
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