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Wave optics may need to be considered when studying the lensed waveforms of gravitational waves
(GWs). However, the computation of the diffraction integral (amplification factor) in wave optics is
challenging and time consuming. It is vital to develop an accurate and efficient method to calculate the
amplification factor for detecting lensed GW systems. In this paper, we investigate the convergence of the
diffraction integral for gravitational lensing of GWs and analyze the accuracy and efficiency of a number of
numerical methods that can be used to calculate this integral, including the integral mean method,
asymptotic expansion method, Levin’s method, zero points integral method, etc. We further introduce a
new method by combining the zero points integral and the asymptotic expansion methods to calculate the
diffraction integral, which provides an efficient and accurate way to calculate the lensed waveform of GWs.
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I. INTRODUCTION

The wave optics is frequently considered for the gravi-
tational lensing of gravitational waves (GWSs) because the
GW wavelengths can be comparable or even larger than the
Schwarzschild radius of lens objects (i.e., 4 2 Rg) in many
cases, which provides accurate GW waveform estimates
after the lensing [1-5]. Schneider et al. [6] and Takahashi
and Nakamura [2] derive the formulas for diffraction
integral of the amplification factor by adopting the eikonal
approximation, thin lens approximation, and the small
angle approximation, in the wave optics regime. The wave
optics is also needed when considering the intensity of
lensed electromagnetic (EM) wave at the caustics because it
is divergent in the geometrical optics limit [6-8], although
geometrical optics is sufficient to describe the EM wave
lensing in most realistic astrophysical cases as 4 < Rg.

Detection of the gravitational lensing of GW events
needs accurate and efficient calculations of the lensed GW
signal. The extraction of lensed GW signal is based on the
matched filtering method, which is sensitive to the lensed
GW waveform [1,3,4,9] and needs the construction of a
template bank with a large number of lensed GW templates.
Therefore, an accurate and efficient numerical integral
method for calculating the diffraction integral would be
vital for lensed GW detection. However, it is a difficult
challenge to accurately compute the traditional diffraction
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integral derived for gravitational lensing of GWs (or EM
waves) in the wave optics regime [2]. The reason is that it is
a general (improper) integral defined on an infinite area and
the integrand is a rapidly oscillating function, which is
usually difficult to integrate by using ordinary numerical
methods such as the Gaussian quadrature. It is time
consuming to obtain accurate results by using ordinary
integration methods since a little change of the settings for
the upper limit of the integral leads to a large change in the
integral value. In addition, the traditional diffraction inte-
gral is highly oscillatory even at infinity, and thus it is
possibly not well defined by means of the usual conver-
gence definition (see calculation method of such integral
introduced in [10]). It is important to make it clear whether
such an integral is slowly or weakly convergent.

In this paper, we demonstrate the diffraction integral is
Cesaro summable, which means it is convergent in the
mean. And we show that the Cesaro sum of traditional
diffraction integral is basically consistent with the general
diffraction integral without the small-angle approximation.
This suggests that the small-angle approximation is a good
approximation and the traditional diffraction integral for-
mulas can compute the lensed waveform with high accu-
racy. Then we overview a number of numerical methods to
calculate the diffraction integral that have been introduced
in the literature, including the time delay contour integra-
tion method [11], asymptotic expansion method [12,13],
Levin’s method [14], Filon-type method [15,16], etc. (see
[17-19] for a summary). We further introduce several new
methods like the integral mean, zero points integral, and
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zero points-asymptotic expansion methods to calculate this
integral. We explicitly demonstrate the validity of these
new methods, and compare them with other methods in
the literature on the aspects of convergence, accuracy,
efficiency, etc.

This paper is organized as follows. In Sec. II, we derive
the general formulas of diffraction theory and discuss the
accuracy of the traditional diffraction integral. In Sec. III,
we investigate the convergence of the diffraction integrals,
and prove it is convergent in the mean. Then we introduce
several numerical methods to compute diffraction integrals
and compare them in Sec. I'V. Conclusions and discussions
are summarized in Sec. V.

Throughout the paper, we adopt the geometrical unit
system G = ¢ = 1.

II. WAVE OPTICS

Based on [2], under the eikonal approximation, GW
tensor can be described as a scalar wave

h;w = ¢(t)e;w,

where e, is the polarization tensor, and ¢(¢) represents the
GW waveform in time domain. We use ¢ to represent the
waveform in the frequency domain as the Fourier transform
of ¢.

For the source-lens-observer system, we use Dg (D) to
represent the distance between source (lens) and observer,
and Dy g the distance between source and lens. As shown in
Fig. 1, the GW emitted from a source at a position 7 in the
source plane reaches point P (€) on the lens plane and is
finally received by the distant observer. The distance
between point P and the observer is r, 8 and € represent
the angle between the normal vector of lens plane and GW
propagation direction at the position of observer and
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FIG. 1. Cartoon diagram to illustrate the geometrical configu-
ration of the observer-lens-GW source system (modified from
[13]). Here D; and Dg represent the distances from the observer
to the lens and source, respectively, and D;g represents the
distance between the lens and source; # and € are the position
vectors of the source on the source plane and GW on the lens
plane, respectively; n is the normal vector of the lens plane. The
volume V is enclosed by a spherical surface with radius R and the
lens plane but does not include the lens.

source, respectively, and @ represents the circular fre-
quency of GW. It can be proven that the observed lensed
waveform in the frequency domain ¢ OLbS propagating in a
curved spacetime can be expressed as a surface integral at

lens plane
eiwr 5
) - iw cos 9’45] ,

L :—// d%{ <—ia)cos9 -
(1)

where the scalar wave at lens plane can be expressed as
¢ = Ae'Sr, and A and S, represent the amplitude and phase
of GW. More details about the derivation are described in
Appendix A. Due to r = Dy / cos 8, we have

elor
r

Pss = —4 D // d*Ee'™a(cos @ + cos @) cos O,  (2)
LDy,

where 14 is the time delay, cos® = Dy /\/D? + & and

cos® = Dyg/\/Dig + (E—1n)*.

The amplification factor of the lens can be defined as

{blc; S ’ 11

F(a), ,1) — #), (3)
¢obs((‘)’ ’1)

where @, = Dlg—SsAe"SPO, thus we have

Flw,g) = DLDLS 47”/ d*Ee’ &) (cos O+ cos @) cos ),

(4)

where the phase Spy is absorbed into 7z4. By defining

¢

. . .. . - Dy
dimensionless quantities, i.e., x =z Y=zp. M

Bropy So(1 + 2w, T(x,y) = 2525 & 14(E,m), with & as
a normalized constant of length, Eq. (4) can be reduced to

F(w,y) = 4w // d*xe™T*Y) (cos O + cos @) cos 0. (5)
i
L Dis
Here cos = 0 cosd = 0 and
(4 (%) ()’
1 2
Tey) = e —yP -y + uly).  (6)

with w(x) representing the lens potential, and ¢,,(y)
representing the arrival time in the unlensed case.

A. Axial symmetric case

In polar coordinate system (x, 8,), where 6, is the angle
between x and y, Eq. (5) can be written as
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F W e [ a0
(W’Y)—4—m.£ xx/o x

2 )2
X exp {iw <§+E—xycos¢9x —y(x) —I—d)m(y))]
x (cos@+cos@')cos b, (7)

where

Dis
o ] (8)

cos@ =
2
\/(DLS) + 2 +g—§y2—2g—ixy0059x

If the lens mass distribution is axial symmetric, y(x) =
w(x) is independent of 6,.

B. Traditional form from small angle approximation

If we adopt the small-angle approximation, i.e., cosf=~1,
cos@ ~1,r = Dy /cos@ ~ Dy, which should be proper for
most astrophysical lensing systems, then Eq. (2) can be
reduced to

Pt = 5 [[ @eesslionen). ©)

Similarly, the amplification factor can be expressed as

y) = Zim// d*x exp[iwT (x,y)]. (10)

This formula is widely used in the calculation of
amplification factor in the wave optics regime (e.g., see
[2-5,20,21]). In the axial symmetric case,

Flw,y) = 2% WO/ 2 4 ) A dxe™P 2w ()
2n .
X / dgxe—zwxycosgx
0

_ %eiwﬂ/zwmm) / ™ xdxe™ 2 (wxy),
0

(11)
where the Bessel function

1 [~ .
J()(Z) — _/ ezzcosﬁdg.
0

T

C. Accuracy of the small angle approximation

Since % and %s are usually large numbers, we can
expand cosine functions into series to estimate the errors of

Eq. (10). When x, y are relatively small, ?L, ’z}s
can expand cos @ and cos @' in the form of series and we
have

> X, y, we

(cosG—I—cosG’)coseN1 3 <x>2 1 ( —D—LJ’>
~ . D_L - DL
2 4\2:) T4\ s
+ooe (12)

If we regard Eq. (5) as the standard results, this expansion
can also give an estimate to the relative error of the
traditional Eq. (10), which is roughly

of(E)) o) o

Usually, normalization length is taken as Einstein radius

So=rg= 4GCZZWL —DLSSDL = \/ZRS —DLSSDL, where Rg is the
Schwarzschild radius of the lens object. For typical lens

DL D p. _ /D
systems, D;g~ Dy ~Dg and §L &L)S \/ﬁ = R—:.
Therefore, the relative error of the integrand in Eq. (10)
is ~(22 o+ v = y)

For general lens systems, distance Dy ~ Dy~ 1.7 Gpc
(z ~ 1, assuming the concordance flat ACDM cosmology),
lens mass M; <102 My [4,22], thus these two ratios

DL ~ DLg ~ & > S5
[ Ry ~ 10°.

Ol(5%)*] < 10719, which is negligible. There might be
some extreme rare cases, for example, the lens system is
a nearby galaxy/dark matter halo with distance D; ~1Mpc
and the GW source is at z~ 1, or the lens system is
a galaxy/dark matter halo close to the GW source
(D1g ~ 1 Mpc) and the GW soure is at z~ 1, in which
one of the two ratios ( g é: 21s) is possibly as small as ~10°.

The error is only the order of

In such cases, the difference between Eq. (10) and Eq. (5)
can be estimated. As an example, we adopt the singular
isothermal sphere (SIS) lens model (see [2]) to estimate this
difference. We use F; to represent the traditional diffraction
integral [Eq. (10)], F, to represent the general diffraction
integral [Eq. (5)], thus |F || — |F,| is the module difference
between two integrals and arg(F,) — arg(F,) is the phase
difference. When y = 10, w ~ 0.1, we obtain |F|—|F,| ~
1074, arg(F,) — arg(F,) ~ 107>, Therefore, the waveform
error induced by the small angle approximation would be
<6h/h ~ 10~* for most cases. Such an error is negligible
since it cannot be detected ((5h|6h) < 1 [23]) when the
signal to noise ratio (SNR) < 10%, which is satisfied for
most GW detection. Therefore, we conclude here that the
traditional diffraction integral derived from the small angle
approximation is sufficiently accurate to derive the ampli-
fication factor for lensed GW signals.

III. CONVERGENCY OF INTEGRAL

In this section, we first discuss the convergence of the
diffraction integrals [Egs. (10) and (5)] and demonstrate
the traditional diffraction integral equation (10) is (C, 1)
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summable. The meanings about (C,1) summable and
Cesaro summability are described in Appendix B.

A. Convergence analysis

The traditional diffraction integral equation (10)
appears not absolutely convergent when x — co. The term
exp[iwT(x,y)] is a highly oscillating function, and
the “amplitude” of the oscillation does not decay with
increasing upper limit of the integral x,. In the axial
symmetric case, when x — 0o, Amp(Jy(x)) o« x~ which
is always oscillating between 4x7%3, where Amp(---)
represents the amplitude of the oscillation of - - -, and thus
lim,_, o, xJo(x) = oo. The other term ¢™*/2~¥() is usually
rapidly oscillating with increasing x to large values.
However, this seeming divergence or singularity can be

removed by variable substitution z = "2—2, which will be
discussed in Sec. IVA in detail.

Taking the Navarro-Frenk-White (NFW) model [24] as
an example, we set y(x) = £ (In?£ — arctanh?(V'1 — x?))'
with k = 1 and y = 0, where « is the dimensionless mass

surface density parameter [25]; then we can obtain
XU .
|F| = w’/ xdxe™ /2y ()| (14)
0

where x, is the upper limit of the integral.

Figure 2 shows the integral |F| [Eq. (14)] as a function of
the upper limit x, for two different w, which is a highly
oscillatory function. Such an oscillating behavior of the
integral at x, — oo suggests that it could be slowly or
weakly convergent. Although this integral is not convergent
under the usual convergence definition, we can still gen-
eralize the definition of convergence for it as long as it is
(C, 1) summable, i.e., it is convergent to a value L in the
mean, and thus L can be defined as the integral value of
Eq. (10). As shown in Sec. III B, the traditional diffraction
integral equation (10) is usually (C, 1) summable and we
obtain a convergent integral value L when we use any
special integration method to numerically calculate such a
highly oscillatory improper integral.

Similar to the traditional diffractional integral form
[Eq. (10)], the general diffraction integral [Eq. (5)]
is also rapidly oscillatory when x is small. However,
when x - o0, cosf o 1/x, cos@ o« 1/x, and thus
exp[iwT (x,y)](cos @ + cos @) cos O o exp[iwT (x, y)]/x?,
where exp[iwT'(x,y)] is bounded above. In this case,
a finite constant C can always be found so that
exp[iwT (x,y)](cos @ + cos @) cos @ < Cx~2. Thus the inte-
gral [ d?xexp[iwT(x,y)](cosO + cos@) cosd < nC s
absolutely convergent even at infinity. Thus this improper
integral can be well defined.

"It should be noticed that when x > 1, —arctanh?v/1 — x? is
replaced by arctan? Vx> — 1 in the complex field.
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FIG. 2. The |F| as the function of x,. The integral value is
rapidly oscillatory with increasing upper limit x,. Even if it is
convergent at infinity, it must be slowly convergent.

B. The Cesaro summability of traditional
diffraction integral

Equation (10) can be expressed as

Flwy) = oo / P x{cos[wT(x,y)] + i sin[wT(x,y)]}.
(15)

The geometrical meaning of this 2D integral is a complex
volume V., = Vi, + Vi, where Vi, (V},) represents the
volume of the real (imaginary) part of the integral. V§,
(where a = c, s) can be expressed as the positive volume
V4 (the part with integrand greater than zero) minus the
negative volume |V%| (the part with integrand less than
zero), similar to that in Longman [10].

According to that the zero curves [, (or [}) satisfy wT' =
(n+4)r (or wT = nx) for coswT (or sinwT), we can
divide the total volume V§, into infinite parts V¢, (or V)
where V¢ (or V) satisfy (—3+n)r <wl < (3+n)x
[or nmt <wTl < (n+ 1)x], with n=0,1,2,3,.... Since
wT >0, V{ actually represents the volume on the zone
where 0 <wT < iz For coswT (or sinwTl), when
(=34 2k)w <wT < (3+2k)x [or 2kx < wT < (2k+ 1)x),
the volume V5, (V) is positive; when (3 + 2k)z < wT <
(34 2k)z [or (2k + 1)x < wT < (2k + 2)x], the volume
VSier (or V5, 1) is negative, here k =0,1,2,3,.... Thus

0

Vi =y ve=> (=1)"|val.
n=0

n=0

Hence we can then transform the improper integral into two
alternate series » o>, V4. The improper integral is (C, 1)
summable to V., i.e., series » % , V4 is (C, 1) summable
to V§, for both a =c, s.
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According to Eq. (6), T(x) o x*> when x — oo since y(x)
is usually much smaller than x? [e.g., y(x) ~Inx for the
point mass model, or x for the SIS model; Takahashi [13].2
We set T(x) =~ Cyx? (Cy > 0) when x — oo, V¢ (or V3) is
defined on the zone S5, (or S3) where (n — §)r < wCrx? <
(n+3r [or nr <wCrx* < (n+ 1)xl, ie., (n—%r <
©<(n+Yr [or nr<®<(n+1)x], here we set
® = wCrx?. Thus we have

|Vf,|z‘ / d*x cos(wCrx?)
Su

(n+h)z
= L/ i dtbcos(d))’
(

WCT n—)n

2
WCT

when 7 is substantially large. Similarly, we also have

VS|~ ——
Vil e

Z for both
a = cand s whenn > m and m is a large 1nteger The series

when 7 is a large integer. Therefore, |Vi| — -2~

tot_zv _ZV(I Z 1)”|Vn|
n=m+1
m . =) ~ n2—77:
a n=0 V” +n=1;¢—1( 1) WCT’

where a =c or s, which means the partial sum P{ =
k_, V% is oscillating with k with an amplitude of =& 2” -even

at k > co. When k<m, P§ =3 * v when k>m
P =P+ 55 [(-1)f = (= 1) ). Therefore Ve is always

oscillating with an amplitude of Z- s and possibly not

convergent. However, the above demonstration 18 not strict
since many approximations were adopted and we cannot
draw the conclusion that the diffraction integral must
be divergent at infinity. Above proof assumes that the
integrals are axisymmetric thus [3” dO, = 2z, actually,
& dO e st = 2 )y (wxy) < [37dO, = 2w become
smaller and smaller with increasing x and basically
always less than 2z. Thus the amplitude of oscillation is
actually not constant, but become weaker and weaker.

*For other lens potentials y(x), see [26]. If y(x) grows faster
than the geometrical time delay % with increasing x, this integral
may be divergent. However, such a case is extremely rare. If
w(x) — x» when x — oo, where B represents the index of the
power law. As long as the total mass of lens is finite, we should
have f < 0. For example, the total mass of SIS model with # = 1
has been divergent due to its mass-radius relation M(r) o r.

Due to Amp(Jo(x)) & x7%%, we have |Vii| & & Jo(wxy) o

when x — c0. As long as the 1ntegral 1s convergent

wC, \/W
to a value L, it is easy to prove that it must be (C, 1)

summable to the same value L [27]. Nevertheless, as an
approximation, this at least tells us that the diffraction
integral must be slowly convergent although it is not
divergent.

Even if V{, is divergent, we can still redefine

(S P s P D - (D]
= lim (> 1 1
e\t S n+
m
:P(X Va
m+WCT ZO n+WCT )

This limit exists and can be well defined. According to
Eq. (6), we usually have the constant Cr = % when there is
no shear. Shear could change the coefficient C [11]. Thus
the integral equation (15) is (C, 1) summable to

m gs m
V= _Vi+—(- m+i{2v;+—
n=0 n=0

where m is a large integer. If one wants to study the
deviation of T « x?, one can regard C; as the polynomial
expansion of 1/x: Cy(x) = Cro(1 + co/x + - -+).

In conclusion, the integral equation (15) is (C,1) sum-
mable to Eq. (16) as long as T(x) o x> when x — oco. In
practical numerical calculations, Vi, ~ > 1" P¢/(m + 1)
can always be served as a good numerical estimation for
V&, even if T(x) o x? is not satisfied when x — oo, or the
constant Cy is not known.

S

IV. NUMERICAL INTEGRATION METHODS

The diffraction integral is difficult to directly compute as
discussed above (see Fig. 2). A numerical integration
method is needed to calculate the amplification factor
for most lens models, except that for the point mass lens
model the amplification factor can be expressed analyti-
cally (see Takahashi and Nakamura [2] and Takahashi
[13]). Below we overview and introduce a number of
numerical integration methods to calculate this oscillatory
integral. In the method of Ulmer and Goodman [11], the
location of geometrical optics images are required to know
at first and the line integration on constant time delay may
be difficult to compute. We do not expand the discussion on
this method as it may be not so convenient in generating a
lensed GW template bank with all kinds of parameters and
lens models.
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A. Integral mean method For this integral
According to the definition of (C,1) summability, a
rapidly osc1llator.y improper integral 1 = J§° g(z)dz can be I(c0) = / e (VE) g (wyv/2z)dz.
calculated by using its integral mean, i.e., 0
© L where the oscillation amplitude of the integrand g(z) goes
/0 9(z)dz = bh_{f,loIC(b)’ (17) to zero at infinity. This integral represents the area A closed
in g(z) with z axis. [When g(z) < 0, the area is negative.]
where The zero points of integrand ¢(z) divide the total area A into
many small areas A; (A; can be negative). As long as
b z > % A; is convergent, this integral is convergent.
Ic(b) = o 1= )9(z)dz In the nonaxial symmetric case, w(x) = y(x,0,),

(see Appendix B), and the factor 1 -3 weakens the
amplitude of the oscillation of this integral at large z.
In reality, we can use /-(b) to approximate I, where b is
such a large number that the fluctuation of /-(b) is within
the error precision. We can also discretize the integral mean
into I(z;) = 1, I(z;), where I(z;) = [5' g(z)dzand zjis  hyus
a large number. However, this algorithm may be not so
efficient like /(D). 2
In the axial symmetric case, we make the transform g(z) = e™ A dﬁxe_iw("’(‘/z'gx)*\/ﬂy cos ;)

z = x*/2, according to Eq. (11), and thus

F(W,y) = %eiw()ﬂﬂ#»(/)m(y)) A dzeiwz

X /2” dgxe_iw(‘//(\/z_&,gx)""\/zyCOSHX)7 (18)
0

o for I¢(2).
F(w,y) = W i /248,0) / dze™ vV 1 (wyy/27). For illustration, the blue lines in Figs. 3 and 4 show two
! 0 examples of the amplitude and phase of the amplification
factor obtained from the integral mean method for the NFW
lens model and the point mass lens model, respectively. As
seen from these two figures, the integral mean method

For the denotation of /-(z), we have

_ Liw(z—y (V22 / .
9(z) = ™V I (wyv/2z). works well in the aspect of convergence, though the
L oo —03¢ 'H0.4
2.4 C
Lo A ﬁ 0.1 —04F 0.2
! —05[ A
A 0.0 . K \/JA 0.0
_20f & T .
5 I [ + v
N = —0.6F 1
il —0.1 Y +-0.2
— Dir. Int. _0.7:— —— Dir. Int. J
1.6 e Ic(b) —0.2 - — [C(b) 1 —04
1 — Asy. Exp. n, =2 L —— Asy. Exp. ny =2 |
i — Asy. Exp. n, =7 —0.8 — Asy. Exp. ny, =7 A
14 Ll Ll ... 103 il il C 0106
100 10! 10? 10° 10° 10t 102 10°
b b

FIG. 3. The amplification factor as a function of the upper limit b of the integration range for the NFW lens model, with y = 0.1,
w =10, and k = 1. Left and right panels show the module |F| and phase arg(F) of the amplification factor as the function of b,

respectively. The right vertical axis (e,) indicates the relative error of |F| (left) or arg(F) (right), i.e., ¢, = ‘F};lf?" (left) or e, = %

(right), where |F,| =~ 2.0495 or arg(F,) ~ —0.5237 represents the referenced true value obtained by the computation. For simplicity, here
we set ¢,,(y) = 0. The green line represents the direct integration of 7(b) by using the Gauss quadrature. The blue line represents the
results /-(b) obtained by using the integral mean method. The red and black lines represent the results obtained by using the asymptotic
expansion method with n, = 2 and 7, respectively.
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4.6~
7 0.05
4.4
I VA 0.00
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Y AR Lo L L L
100 10! 102 103

b

FIG. 4. The module of the amplification factor as a function of the upper limit b of the integration range for the point mass lens model,

with y = 0.1, w = 10. The right vertical axis (¢,) indicates the relative error of |F|, i.e., €,

461 ]
f 10.05
44 ﬁ ]
-\ VA 0.00
[ 4-0.05
4.0 ]
r — Levin ]
L — Ic(b) -1—0.10
3.8 — Asy. Exp. ny =2 ]
I _— As\ Exp ny =77
100 10 102 103
b
= %] where |F,| represents the true val
AR | Tep value

obtained by the computation of analytical expression. The green line in the left panel represents the direct integration by using the
Gaussian quadrature. The blue line in each panel represents the integral mean /-(b). The black and red solid lines in each panel are
obtained by using the asymptotic expansion method with n, = 2 and 7, respectively. The purple line in the right panel is obtained by
using Levin’s method. They all converge to the value of the analytical expression for the point mass lens model (black dashed horizontal
line; see [2]). The black dashed lines are covered by the red line. Only the module |F| is shown here. For the phase, it is similar to that for

the module, as shown in Fig. 3.

convergence is not as faster as those with the asymptotic
expansion method.

B. Asymptotic expansion method

The diffraction integral can be calculated by using the
asymptotic expansion method [12,13,28,29]. An improper
integral with oscillatory integrand, similar to the diffraction
integral, may be expressed as

/ﬂodze"“’zf(z):Ahdze"“’zf(z)—l—Amdze"“’zf(z) (19)

0

b . iz o ol®7 H
—A dze“"zf(z)—l—eiw f(z)|2°—/) eiw —](;(Zz)dz (20)
© n—1
[ denpto LT | G
0 n= z=b

Because e is always oscillating, this method assumes
that integrand f(z) and its any n-order derivative
0"f(z)/0z" go to zero at infinity [12,29]. This condition
may be difficult to be satisfied in the usual definition for
diffraction integral on infinite area, however, under the
definition of (C, 1) summability,

lWZ

dz

7200 [W

Since e™* is oscillating between positive and negative
values, the positive parts and negative parts will nearly

counteract. As long as the integral [P <> f(2) is always
finite even when b — oo, the above limit will go to zero.
For its derivatives, we can also draw similar conclusions.

According to Eq. (11), in the axial symmetric case, f(z)
in the asymptotic expansion method is

V2T (wyv/22).

Since Jo(x) = 0 when x — o0, 9"f(z)/9z" — 0 at infinity
is easy to be satisfied. In the nonaxial symmetric case, f(z)
is a little complex and it is

flz)=emv

£l2) = / 10, WO Ty eost).
0

The asymptotic expansion method contains the priori
assumption that these integrals are all convergent at infinity,
so that additional terms can be obtained to suppress the
oscillation of the integral as shown in Fig. 3.

One may have to set an upper limit for n (n, rather than
n = o0) in practical calculations using the asymptotic
expansion method and assume that the higher order
derivatives with n > n, can be ignored:

iwz iwb S nan 1f
Ing (b)= dze flz)+e Z ST (22)

z=b

The error of I, (b) as the approximation of I(c0) is
O(eiwb(i/w>11u+1f(n )

(b)) > 0 when b — oo, especially
when w is large. In principle, choosing a larger n, may

124076-7



XIAO GUO and YOUJUN LU

PHYS. REV. D 102, 124076 (2020)

lead to faster convergence of this integral to some extent.
However, we find that the function is almost most rapidly
convergent when n, = 7 in our practical calculation. For a
larger n,, this method may lead to a divergent result, which
may be caused by the numerical errors in the calculations of
higher order derivatives with n > 7. The black and red lines
in Fig. 3 show the numerical results of the magnitude (right
panel) and phase (right panel) of the amplification factor
obtained by using the asymptotic expansion method with
n, = 2 and 7, respectively, for the NFW lens model, while
the black and red lines in Fig. 4 correspondingly show the
results for the point mass lens model. As seen from both
figures, the asymptotic expansion method offers a rapid
convergence of the diffraction integral with increasing b in
practical calculations.

C. Levin’s method

Levin’s method can be used to compute such oscillatory
integral

1(b) = /bf(X)eiq(")dx,

where f(x) is a nonoscillatory function [14]. Levin’s
method for a one-dimensional integral has three steps:
(1) Choosing linearly independent base functions u;(x),
k=1,2,...,n, like polynomials, or Chebyshev
polynomials and so on, whose properties are similar
to f(x).

(2) Solving ¢ from collocation equations
Zaku;c(xj) +iq'(x;) z au(x;) = f(x;),
k=1 k=1

where x; =a+ (j—1)(b—a)/(n—1), and j=
1,2,...,n.

(3) Computing 7,(b) as the approximation to /(b):

1,(b) = Zakuk(b)eiq(b) - Zakuk(a)ei‘I(“).
k=1 k=1

For Levin’s method, it just transforms an arbitrary
nonoscillatory function f(x) into the linear combinations
of many independent base functions u;(x), k = 1,2, ...,n
and their derivatives. Then it can transform the integral into
the difference between the summation of linear combina-
tions of base functions times ¢4™) at the upper and lower
limits (b and a) of the integral. When b is finite, this
method is easy to realize. The purple line in the right panel
of Fig. 4 shows an example obtained by using Levin’s
method, where the base function u;(x) are Chebyshev
polynomials. The integral value is basically consistent
with the direct integration, which is slowly convergent.

However, when b — oo, we cannot make sure that the base
functions on infinite interval lim,_ g > 7, azu(b)e'd)
are convergent in the usual definition. For example, if the
base functions are polynomials, it is obviously divergent in
the usual integration definition because u;(x) — co when
x — oo. However, according to (C, 1) summability, it is
sufficient to have

. ”— ) bzn, au (x>eiq(x)dx
Z}Lnolo;akuk(b)ezq(b) = lim fo k=0 %k Uk 0.

b—0 b

(23)

as long as the mean below is convergent. Although we
cannot make sure the above limit must be convergent,
which may depend on the choices of the base functions and
g(x), this convergent condition is weaker than the usual
definition. Since €™ is rapidly oscillating between
positive and negative values when x is large, most parts
of the integral vanish just like an alternate series as long as
u(x) does not grow up fast.

For the diffraction integral to be computed, a = 0.
Combining with the integral mean, we can generalize
the Levin method to the integral on infinite intervals, i.e.,

I(c0) %0 — Zakuk(O)eiq(O). (24)
=1

We can choose a large b as an approximation to it.

In addition, one may make variable substitution to trans-
form the infinite interval into finite interval. Although the
integral after transformation may be defined on a finite
interval, it is still rapidly oscillating near the singularity.
Therefore, the variable substitution cannot solve the prob-
lem of oscillatory integral.

D. Zero points integral method

The diffraction integral over infinite interval can be also
computed by using the method in Longman [10], which
transforms the integral into a series summation. Then some
mathematical methods may be used to accelerate the
convergence of series to obtain the integral value such
as the Euler’s transformation of series (see [27]). The speed
of convergence partly depends on the choice of the method
to accelerate the convergence of series. However, for this
zero points integral method, it may be difficult to find the
exact positions of all zero lines of the integrand, especially
for two-dimensional diffraction integrals. For some specific
integrands of the diffraction integral like the integrands
consist of Jy(x), this method can be improved accordingly
and thus can provide an efficient way to compute the
integral.

For the diffraction integral in axial symmetric case, our
aim is to compute this integral /(oo), where
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b
1(b) = / dze™ =) ] (wyy/22).
0

When y #0, we need to find out the zero points of
Jo(wyv/2z). We set the kth zero points of Jo(x) as
x=ji, k=1,2,3,.... Thus the =zero points of
Jo(wyv/27) are z; :%. Within the neighborhood of
Zy, the amplitude of the oscillation of this integral is the
smallest, thus the error of evaluation of the integral value
would be the smallest as long as the error of the position of
zero point j, is accurate. We just need to compute these
integrals (z;), which can be computed by the Guassian
quadrature or Levin’s method, thus we have

I(co) = lim1(z;) (25)

as long as I(oo0) does exist. Even when /(c0) does not exist
or it is slowly convergent, we can redefine the (C, 1) sum of
this integral (see Appendix B) as

"]
Ics(OO) = lim Z (Zk), (26)
where the adoption of the (C, 1) sum I¢g(z,,) = > 1, %

can accelerate the convergence of /(z,). This would be an
efficient method to compute /(o0). Nevertheless, when & is
large, for example, k = 20, the 20th zero point of Jy(z) is
270 & 1925 in our later examples, this method is possible to
require to calculate the integral 7(z,y), where 2,4 is quite
large. When b is a large number, the calculation of 1(b)
may be time consuming and have a large error.

E. Zero points asymptotic expansion method

In order to avoid computing integral /(z;) at large z, we
introduce a new method by combining the zero points
integral method and the asymptotic expansion method
together, which we denote as the zero points asymptotic
expansion method. It only needs to compute the integral
I(z;) when k is a small integer. As for this new method,
we have

o =t £

n=1 =7

(27)

We can use 5 g (z;) as the approximation of /(o). If we
combine I-g(z;) with the asymptotic expansion method,
we have

. Iag (2
Ics g (o0) = Jim z %(k) (28)

here we can discard the first one or two zero points if they
have relative large errors. This method is not only as
accurate as other methods but also much more efficient than
other methods.

Taking the point mass lens model and the NFW lens
model as two examples, here we calculate the amplification
factor to investigate the aspects of convergence, accuracy,
and efficiency for these new methods based on zero points
integral 1(z), Ics(zx), and the combination of I(z;)
[/cs(zx)] with the asymptotic expansion method, i.e., the
zero points asymptotic expansion methods 1, (zy)
[{cs.akg. (zx)]. Figures 5 and 7 show the results obtained
by using the zero points asymptotic expansion method and
its comparison with those from other methods for the point
mass lens model and the NFW lens model, respectively.
Figure 6 shows the relative errors in log-log plot for point
mass model, with which the relative errors of different
methods can be seen more clearly. Although the accuracy
of the zero points integral method is not as high as the
asymptotic expansion method at the same z;, it is much
more efficient as it only needs to calculate the integral
values at a limited number of (zero) points to reach the
same accuracy. The main reason is that it discards unnec-
essary integral values which bring violent oscillation, and
thus enables a much more efficient way to obtain high
computational accuracy, which will be further discussed in
Sec. IVE.

For two-dimensional integral I, (o), where

Iz(b) = /b dzeiwz /2” dgxe—iw<l//(\/2_2.9x)+\/2_zycosHX)’
0 0

we can also find out the zero points of I, (z) =

[27 dO, e~ W (V20.) V2 eos0) g Jong as they exist. To
figure out their zero points, we only need to calculate out
the zero points of real function |/, (z)|. This integral is not
difficult to compute as long as w and z are not very large.
The time to find out these zero points is short, which is
much less than the time to compute the two-dimensional
integral. We have tested it for some cases. It really works.

F. Summary for the comparisons
of different methods

In this section, we summarize our main results by
comparing different numerical methods in calculating the
diffraction integral introduced above and comment on its
convergence and efficiency.

We show the integral results by using the direct inte-
gration, the asymptotic expansion method, and the integral
mean method to compute the traditional diffraction integral
with parameters (w,y) = 10, 0.1 in Fig. 3 for the point
mass lens model and Fig. 4 for the NFW lens model,
respectively. The green lines show the integral values
obtained from the direct integration of I(b) with the
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FIG. 5. Left panel: amplitude of the amplification factor |F| as a function of the upper limit b for the integration range, obtained by

using several different methods for the point mass lens model with y = 0.1, w = 10. The purple dotted line and the red solid line
represent the results obtained by using the asymptotic expansion method with n, = 2 and 7, respectively. The brown points, blue points,
green points, and black points represent the results obtained by using the zero points integral method [/(z;)], the average of the zero
points integrals /g (z; ), the zero points asymptotic expansion method 7, g (z;) with n, = 7 and its mean /g 4 g (21 ), respectively. The
horizontal black dashed line represents the analytical result (see [2]). Right panel: accuracy of the amplitude of the amplification factor
|F| — |Fp| calculated by using different methods. |F,| represents the true value obtained by the computation of analytical expression.
The legend is the same as for the left panel. Here we discard the first two points which have large errors for the black line.
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FIG. 6. The absolute value of the relative error |¢,| of |F| as a function of the upper limit b for the integration range in log-log diagram,
obtained by using several different methods for the point mass lens model with y = 0.1, w = 10 (w = 100) in the left (right) panel. The
horizontal black dotted line represents the precision set for the numerical integration in our calculation. Curves and symbols with
different colors/types represent the methods the same as those in Fig. 5. We choose the 20th to 100th zero points in the right panel. The

relative errors of Icg g, —7(2;) become much smaller after averaging tens of points.

Gauss quadrature method, which are rapidly oscillating and
slowly [or just (C, 1)] convergent with increasing b. The
blue lines show the integral values of /-(b) obtained by
using the integral mean method and the Gauss quadrature
method, which are not a highly oscillatory function of b and
quickly convergent to a certain value. However, this method
underestimates the integral value if choosing a small b. The
red lines and black lines are the integral values computed

by using the asymptotic expansion method with n, = 2 and
7, respectively, which apparently converge fast with
increasing b. The purple line in the right panel of Fig. 4
shows the integral results computed by using Levin’s
method, which is basically similar to that of direct
integration (green line). To obtain the improper integral
value on the infinite interval, we may need to generalize the
method as discussed in Sec. IV C.
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FIG.7. Legend similar to Fig. 5, but for the NFW lens model, which does not have an analytical expression for the integral value and a
reference value is taken as |F,| = 2.049479253200136. We also show the integral mean /(b) in this figure as its deviation is relatively

small in this case.

Figures 5-7, as mentioned in Sec. IVE, show the
comparison of the integral results obtained by using the
zero points integral method and the zero points asymptotic
expansion method with that obtained by the asymptotic
expansion method. Obviously the zero points integrals
I(z;) (brown points) and I5(z;) (blue points) converge
relatively much faster than both the direct integration
(green line in Fig. 4) without significant oscillation at
the same b and the integral mean /~(b) (blue line in Fig. 4).
However, they converge at significantly larger b compared
with that derived by using the second-order asymptotic
expansion (purple dotted line). The zero points asymptotic
expansion method is an excellent choice to compute the
diffraction integral. Although it obtains the same integral
values with asymptotic expansion at the same b = z;, but it
is much more efficient in obtaining the convergent value
sine, it only needs to calculate a small number of the
integral values at zero points. In addition, we can also
average these integral values at zero points or use other
methods to accelerate the convergence of the integral [27].

One has to determine a proper upper limit b by observing
the variation of the integral value with increasing & (or x). If
the integral value does not change significantly (within the
required precision) with increasing b, then it is assumed to
be convergent, although the convergence is not completely
proved. For the integral mean method, when b > 100, the
diffraction integral is nearly convergent with an error less
than 0.1 for those cases shown in Figs. 5 and 7. For the
asymptotic expansion method with n, > 2, the diffraction
integral is basically convergent with an error < 0.001 when
b > 10. For n, =7, the diffraction integral is convergent
with an error < 0.001 even when b is as small as 2. The
zero points integral /(z;) is convergent when k > 8 with an
error < 0.001, and the mean of the zero points integrals
Ics(zi) is convergent when k > 2 with an error < 0.001.

For the method by combining the zero points integral 7(z;)
with the second-order or seventh-order asymptotic expan-
sion, their errors are all less than 0.001. Once adopting
k > 3 (k > 1), the calculation errors of the combination of
I(z;) with second(seventh)-order asymptotic expansion is
much less than 107>. When the error of |F| is less than
0.001, the error of the GW template is less than 0.001,
which means only if the SNR of signal reaches nearly 1000,
two templates can be distinguished [23].

Generally, for a larger w, it is required to set a larger wb
in order to reach the same accuracy for almost all integral
methods. When w = 100, or even 103, these methods still
work well. The right panel in Fig. 6 also shows the relative
errors of different integration methods for w = 100.
However, if w is too large, e.g., w > 10°, it appears that
all integral methods involving Gaussian quadrature cannot
work effectively simply due to too many oscillations in the
integral which may be easily left out by coarse sampling. In
theory, Levin’s method and the Filon method for an integral
on finite interval will become more accurate when w is
much higher [30]. However, it is still unclear whether this
rule is also applicable to improper integral. For very high w
like w > 10°, if we still want to adopt zero points
asymptotic expansion, we may need to use Levin’s method
or Filon-type method to calculate 1(b) or I(z;) on finite
interval, not usual Gaussian quadrature then use asymptotic
expansion to compute this left expansion terms.
Fortunately, when w > 103, the wave optics can be usually
well approximated by the geometrical optics [4,13,25).°

3This criterion requires parameter &, = rg, where rg is
Einstein radius. For NFW model, &, = r, is usually not the
Einstein radius but scale radius for convenience. Thus this critical
value of w from wave optics to geometrical optics may be much
different in such a case.
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The computation of amplification factor in geometrical
optics approximation is easy to perform.

The parameter y may not have a significant influence
on the speed of convergence of F(w,y). However, |F|
becomes larger if adopting a smaller y, which requires the
computation of F(w,y) to reach higher relative errors if it
can reach the same absolute error. Therefore, to reach the
same absolute accuracy, it usually requires a larger b for a
smaller y.

The integral mean method can be used to accelerate the
convergence in calculating the diffraction integral, but it is
less efficient than the asymptotic expansion method. The
asymptotic expansion method leads to a fast convergence in
calculating the diffraction integral, especially when choos-
ing n, = 7 in our cases. However, the asymptotic expan-
sion method still needs to evaluate the integral (b) which
is usually rapidly oscillating. If one only evaluates (z;)
at zero points, one can obtain the convergent value
more efficiently. The calculation errors of the zero points
integral method is slightly larger than that of the asymptotic
expansion method with n, =2 at the same b = z.
However, the zero points integral method enables the
removal of rapid oscillation of the integral value by
choosing proper zero points. With this method, the integral
values are needed to compute only at a limited number of
zero points. This is why it enables an efficient estimate of
the integral with high accuracy but costing much less
computational time. The combination of the zero points
integral method and the asymptotic expansion method can
have both advantages of these two methods. The asymp-
totic expansion method makes use of the information of the
integrand derivatives to accelerate the convergence. With
this method, b is not necessarily to be set as an extremely
large value, as long as the error is within the required
precision. The zero points integral method avoids the rapid
oscillation of integral value I(b). Therefore, the zero
points asymptotic expansion method is fast and efficient
and enables the estimate of the diffraction integral with
extremely high accuracy.

The integral mean method, asymptotic expansion
method, zero points integral method and so on can also
be used to the computation of two-dimensional integrals,
merely two-dimensional integral usually costs much more
time than a one-dimensional integral under the same
condition. Take the axial symmetric one-dimensional
diffraction integral as an example; if we substitute the
Bessel function Jj(z) by the integral I, (z) with respect to
angle 6, they also can be numerically calculated to obtain
the same integral value as the one-dimensional diffraction
integral. To accelerate the numerical computation of
the two-dimensional diffraction integral, one may interpo-
late Iy (z) to obtain an approximate interpolate function
P(z) = Iy (z). One may have to compute more points of
Iy (z) in order to avoid the loss of details of /, (z). For
example, for the point mass model, I, (z) is highly

oscillatory near z = 0. If one wants to use interpolation
to accelerate the computation of the two-dimensional
integrals and keep high accuracy at the same time, one
needs to sample many more points near z = 0. With this
interpolation, one can compute the secondary integral
I,(b) = [P ™P(z), also a one-dimensional integral, with
relatively high efficiency. This one-dimension integral
can be calculated out by the integral mean method, the
asymptotic expansion method, the zero points integral
method, or the zero points asymptotic expansion method
and so on. We summarize the whole process to quickly
compute the two-dimensional integral as follows:

(1) computing I, (z) for a number of sampling points,
e.g., 10000 points or so, sampling more points near
the oscillatory points to achieving high accuracy;

(2) interpolating Iy (z) and obtaining interpolation func-
tion P(z) ~ 1y (2);

(3) computing 1,(b) ~ ¥ e™*P(z) by using one of the
methods introduced in this paper, i.e., the integral
mean method, the asymptotic expansion method, the
zero points integral method, or the zero points
asymptotic expansion method, and so on to obtain
the estimate value of /(o).

Therefore, one may only need to compute two one-
dimensional integrals, i.e., Iy (z) and [} e™*P(z), respec-
tively. The consuming time for using such a method to
obtain the two-dimension diffraction integral at a given
accuracy is on the same order of magnitude for that using
the one-dimensional diffraction integral.

Levin’s method is a common method to compute the
integral of a highly oscillating function. It transforms the
integral problem into the solution of an algebraic equation
system. It is feasible for some lens models, such as the SIS
lens model and the point mass model. For the NFW lens
model, however, it is difficult to calculate by using this
method possibly due to the singularity of arctanh(1).
Although the procedure for Levin’s method is a little
tedious, it can be used to compute the diffraction integral
with some ready-made mathematic softwares, e.g., the
Nintegrate With LevinRule in the Mathematica software
directly.

All these integral methods can be used to compute not
only the traditional diffraction integral, but also the general
diffraction integral [see Eq. (5)].

V. CONCLUSIONS

The wave optics may be important for the gravitational
lensing of GWs that will be probably detected by future
GW detectors since the GW wavelength can be comparable
to the Einstein radius of the lens. For the detection of such
GW lensing events, it is important to obtain the lensed GW
signals accurately and efficiently by calculating the dif-
fraction integrals, of which the integrand is rapidly oscil-
lating. In this paper, we investigate the convergence of the
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diffraction integrals and find that the traditional diffraction
integral, obtained by using the small angle approximation,
is usually convergent. Even not convergent under the usual
definition, it is also (C, 1) summable. We overview some
methods that can be used to calculate the diffraction
integral introduced in the literature, such as the asymptotic
expansion method, Levin’s method, etc. We further intro-
duce several new methods to compute the diffraction
integral, such as the integral mean method, the zero points
integral method, and a hybrid method by combining the
zero points integral method with the asymptotic expansion
method, and we compare these new methods with Levin’s
method and the asymptotic expansion method in terms of
the convergence and efficiency. We find that each method
has its advantages and disadvantages, and the zero points
asymptotic expansion method is probably the most efficient
numerical recipe to compute the diffraction integral with
the highest accuracy and least computational burden, as it
only needs to evaluate the integral values at several zero
points of the oscillating integrand. These methods can also
be used to compute the two-dimensional diffraction integral
efficiently and accurately, and the time it takes is roughly
on the order of that for computing two one-dimensional
integrals. These efficient numerical integral methods would
be important for efficient and fast calculations of a large
template bank of lensed GW signals in the wave optics
regime, which must be used for the matched filtering search
of lensing GW events in the future.
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APPENDIX A: THE DERIVATION OF THE
DIFFRACTION INTEGRAL IN WAVE OPTICS

Assuming GWs propagate under the gravitational poten-
tial U(r) (1) of a lens object/system, the background
spacetime is given by [31]

ds> = —(1+20)dP* + (1 = 20)dr* = g dx*dx*. (A1)

We regard the influence of GW on the background
spacetime as a linear perturbation #,,, i.e.,

B
gﬂl/ = gitl-/) + h;w'

Adopting the transverse traceless Lorentz gauge condition
R, =0, hj, = 0, then we have

i + 2R 9~

where the semicolon represents the covariant derivative

corresponding to the metric g,(,]z), R{(l]z/)}y

tensor of the background spacetime. If the GW wavelength
(4) is much less than the curvature radius of the background
spacetime (R), we have

is the Riemann

Hed —
Bt = 0.

Adopting the eikonal approximation by [32], GWs can be
expressed as a form of scalar wave,

h;w = ¢eﬂl/’

where ¢, is the GW polarization tensor. Since U < 1, the
change of GW polarization tensor is small thus it can be
regarded as a constant (see [33]). Therefore, the scalar
wave is a proper approximation for the cases considered in
this paper (U < 1). The propagation equation of the scalar

wave is
0u(\/~g™g®0,) =0,

where 0, =0/0x*. With the background spacetime
equation (A1), Eq. (A2) in the frequency domain can be
expressed as

(A2)

(V2 4+ 0?)p = 40*U, (A3)
where @ = 2z f is the circular frequency of GW, f the GW
frequency, and ¢ the Fourier transform of ¢. This equation
can be solved by using the Green function method.

Figure 1 shows the geometrical configuration of the
observer-lens-source system. Various parameters involved
in such a physical system are described in the figure caption
[13]. Adopting the thin lens approximation, U = 0 inside
the volume V (see Fig. 1), then Eq. (A3) can be reduced to
the Helmholtz equation,

(V2 + 0?)p = 0. (A4)

The Green function of a spherical wave e’ /r centering
around the observer must satisfy

ior

(V2 +0?)

= —475%(r). (AS)

where r is the distance from the observer. Combining
Egs. (A4) and (A5) together, the scalar field detected by the
observer is then
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» 1 » eiour eiwr »
Lo=—— i _f vyl (A
obs A // av |:¢ r r ¢:| ( 6)

When R — o0, V — o0, the above volume integral can be
transformed into a surface integral on the lens plane S by
the Green’s theorem

a iwr
_ 42 i
obs // §|: on r

The scalar wave is expressed as

l(l)r a

¢] (A7)

B = Aeisr, (A8)

where A and Sp are the amplitude and phase, respectively.
According to the eikonal approximation, the phase can be
written as [13]

Sp = (l)(td - l"), (Ag)

where #4 is the time delay (see its detailed expression in
[2,6]). After substituting the expression of the scalar wave
equation (A2) into Eq. (A7), we can obtain Eq. (1).

APPENDIX B: CESARO SUMMABILITY

According to [27], for a series,

n
Sy, = E ag,
k=0

we can define Cesaro Summability as follows.
If

. SoF s+
lim
n—co n+1

:S’

we declare s, is (C, 1) summable and have

ian =s (C,1).

n=0

For a improper integral over infinite interval such as

ffooo f(t)dt’ if

lim R( —m)f(t)dt—L,

R—o0 -R

then we declare [®_ f(#)dt is (C, 1) summable to L or

/_:f(t)dt =L

The oscillatory improper mtegral in this paper [5° f(¢)dt
likes the Fourier integral [5° g(f)e™'dt and could be
divergent under the usual integral convergence definition.
However, it may be (C, 1) summable to a finite value L, if it
satisfies

(C.1).

We can prove that this formula is the limit of the integral
mean of [ f(¢)dr when the upper limit goes to infinity.
Under the definition of (C, 1) summability,

Amf(t)dtsgi_{n l/R dT/T dif (1)

= lim / dt/ T f(1)
= 1.
Reoo 0 dt R f(t)’

R
where w represents the integral mean of G(7T') over
[0, R]. In addition, if the integral is convergent to a value L
under the usual integral convergence definition, it is also
(C, 1) summable to the same value L [27].
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