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Wave optics may need to be considered when studying the lensed waveforms of gravitational waves
(GWs). However, the computation of the diffraction integral (amplification factor) in wave optics is
challenging and time consuming. It is vital to develop an accurate and efficient method to calculate the
amplification factor for detecting lensed GW systems. In this paper, we investigate the convergence of the
diffraction integral for gravitational lensing of GWs and analyze the accuracy and efficiency of a number of
numerical methods that can be used to calculate this integral, including the integral mean method,
asymptotic expansion method, Levin’s method, zero points integral method, etc. We further introduce a
new method by combining the zero points integral and the asymptotic expansion methods to calculate the
diffraction integral, which provides an efficient and accurate way to calculate the lensed waveform of GWs.
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I. INTRODUCTION

The wave optics is frequently considered for the gravi-
tational lensing of gravitational waves (GWs) because the
GWwavelengths can be comparable or even larger than the
Schwarzschild radius of lens objects (i.e., λ≳ RS) in many
cases, which provides accurate GW waveform estimates
after the lensing [1–5]. Schneider et al. [6] and Takahashi
and Nakamura [2] derive the formulas for diffraction
integral of the amplification factor by adopting the eikonal
approximation, thin lens approximation, and the small
angle approximation, in the wave optics regime. The wave
optics is also needed when considering the intensity of
lensed electromagnetic (EM) wave at the caustics because it
is divergent in the geometrical optics limit [6–8], although
geometrical optics is sufficient to describe the EM wave
lensing in most realistic astrophysical cases as λ ≪ RS.
Detection of the gravitational lensing of GW events

needs accurate and efficient calculations of the lensed GW
signal. The extraction of lensed GW signal is based on the
matched filtering method, which is sensitive to the lensed
GW waveform [1,3,4,9] and needs the construction of a
template bank with a large number of lensed GW templates.
Therefore, an accurate and efficient numerical integral
method for calculating the diffraction integral would be
vital for lensed GW detection. However, it is a difficult
challenge to accurately compute the traditional diffraction

integral derived for gravitational lensing of GWs (or EM
waves) in the wave optics regime [2]. The reason is that it is
a general (improper) integral defined on an infinite area and
the integrand is a rapidly oscillating function, which is
usually difficult to integrate by using ordinary numerical
methods such as the Gaussian quadrature. It is time
consuming to obtain accurate results by using ordinary
integration methods since a little change of the settings for
the upper limit of the integral leads to a large change in the
integral value. In addition, the traditional diffraction inte-
gral is highly oscillatory even at infinity, and thus it is
possibly not well defined by means of the usual conver-
gence definition (see calculation method of such integral
introduced in [10]). It is important to make it clear whether
such an integral is slowly or weakly convergent.
In this paper, we demonstrate the diffraction integral is

Cesàro summable, which means it is convergent in the
mean. And we show that the Cesàro sum of traditional
diffraction integral is basically consistent with the general
diffraction integral without the small-angle approximation.
This suggests that the small-angle approximation is a good
approximation and the traditional diffraction integral for-
mulas can compute the lensed waveform with high accu-
racy. Then we overview a number of numerical methods to
calculate the diffraction integral that have been introduced
in the literature, including the time delay contour integra-
tion method [11], asymptotic expansion method [12,13],
Levin’s method [14], Filon-type method [15,16], etc. (see
[17–19] for a summary). We further introduce several new
methods like the integral mean, zero points integral, and
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zero points-asymptotic expansion methods to calculate this
integral. We explicitly demonstrate the validity of these
new methods, and compare them with other methods in
the literature on the aspects of convergence, accuracy,
efficiency, etc.
This paper is organized as follows. In Sec. II, we derive

the general formulas of diffraction theory and discuss the
accuracy of the traditional diffraction integral. In Sec. III,
we investigate the convergence of the diffraction integrals,
and prove it is convergent in the mean. Then we introduce
several numerical methods to compute diffraction integrals
and compare them in Sec. IV. Conclusions and discussions
are summarized in Sec. V.
Throughout the paper, we adopt the geometrical unit

system G ¼ c ¼ 1.

II. WAVE OPTICS

Based on [2], under the eikonal approximation, GW
tensor can be described as a scalar wave

hμν ¼ ϕðtÞeμν;

where eμν is the polarization tensor, and ϕðtÞ represents the
GW waveform in time domain. We use ϕ̃ to represent the
waveform in the frequency domain as the Fourier transform
of ϕ.
For the source-lens-observer system, we use DS (DL) to

represent the distance between source (lens) and observer,
andDLS the distance between source and lens. As shown in
Fig. 1, the GW emitted from a source at a position η in the
source plane reaches point P (ξ) on the lens plane and is
finally received by the distant observer. The distance
between point P and the observer is r, θ and θ0 represent
the angle between the normal vector of lens plane and GW
propagation direction at the position of observer and

source, respectively, and ω represents the circular fre-
quency of GW. It can be proven that the observed lensed
waveform in the frequency domain ϕ̃ L

obs propagating in a
curved spacetime can be expressed as a surface integral at
lens plane

ϕ̃L
obs ¼

1

4π

Z Z
S
d2ξ

�
ϕ̃

�
−iω cos θ

eiωr

r

�
−
eiωr

r
iω cos θ0ϕ̃

�
;

ð1Þ

where the scalar wave at lens plane can be expressed as
ϕ̃ ¼ AeiSp , and A and Sp represent the amplitude and phase
of GW. More details about the derivation are described in
Appendix A. Due to r ¼ DL= cos θ, we have

ϕ̃L
obs ¼

ωA
4πiDL

Z Z
S
d2ξeiωtdðcos θ þ cos θ0Þ cos θ; ð2Þ

where td is the time delay, cos θ ¼ DL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

L þ ξ2
p

and
cos θ0 ¼ DLS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

LS þ ðξ − ηÞ2
p

.
The amplification factor of the lens can be defined as

Fðω; ηÞ ¼ ϕ̃ L
obsðω; ηÞ

ϕ̃obsðω; ηÞ
; ð3Þ

where ϕ̃obs ¼ DLSA
DS

eiSP0 , thus we have

Fðω;ηÞ¼ DS

DLDLS

ω

4πi

ZZ
S
d2ξeiωtdðξ;ηÞðcosθþ cosθ0Þcosθ;

ð4Þ

where the phase SP0 is absorbed into td. By defining
dimensionless quantities, i.e., x ¼ ξ

ξ0
, y ¼ DL

ξ0DS
η, w ¼

DS
DLSDL

ξ20ð1þ zLÞω, Tðx; yÞ ¼ DLDLS
DS

ξ−20 tdðξ; ηÞ, with ξ0 as
a normalized constant of length, Eq. (4) can be reduced to

Fðw; yÞ ¼ w
4πi

Z Z
S
d2xeiwTðx;yÞðcos θ þ cos θ0Þ cos θ: ð5Þ

Here cos θ ¼
DL
ξ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDL
ξ0
Þ2þx2

q , cos θ0 ¼
DLS
ξ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDLS
ξ0

Þ2þðx−DS
DL

yÞ2
q and

Tðx; yÞ ¼ 1

2
jx − yj2 − ψðxÞ þ ϕmðyÞ; ð6Þ

with ψðxÞ representing the lens potential, and ϕmðyÞ
representing the arrival time in the unlensed case.

A. Axial symmetric case

In polar coordinate system ðx; θxÞ, where θx is the angle
between x and y, Eq. (5) can be written as

FIG. 1. Cartoon diagram to illustrate the geometrical configu-
ration of the observer-lens-GW source system (modified from
[13]). Here DL and DS represent the distances from the observer
to the lens and source, respectively, and DLS represents the
distance between the lens and source; η and ξ are the position
vectors of the source on the source plane and GW on the lens
plane, respectively; n is the normal vector of the lens plane. The
volume V is enclosed by a spherical surface with radius R and the
lens plane but does not include the lens.
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Fðw;yÞ ¼ w
4πi

Z
∞

0

xdx
Z

2π

0

dθx

×exp

�
iw

�
x2

2
þ y2

2
− xycosθx −ψðxÞþϕmðyÞ

��

× ðcosθþ cosθ0Þcosθ; ð7Þ

where

cos θ0 ¼
DLS
ξ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðDLS
ξ0
Þ2 þ x2 þ D2

S
D2

L
y2 − 2 DS

DL
xy cos θx

r : ð8Þ

If the lens mass distribution is axial symmetric, ψðxÞ ¼
ψðxÞ is independent of θx.

B. Traditional form from small angle approximation

If we adopt the small-angle approximation, i.e., cosθ≃1,
cos θ0 ≃ 1, r ¼ DL= cos θ ≃DL, which should be proper for
most astrophysical lensing systems, then Eq. (2) can be
reduced to

ϕ̃ L
obsðω; ηÞ ¼

ωA
2πiDL

ZZ
d2ξ exp½iωtdðξ; ηÞ�: ð9Þ

Similarly, the amplification factor can be expressed as

Fðw; yÞ ¼ w
2πi

ZZ
d2x exp½iwTðx; yÞ�: ð10Þ

This formula is widely used in the calculation of
amplification factor in the wave optics regime (e.g., see
[2–5,20,21]). In the axial symmetric case,

Fðw; yÞ ¼ w
2πi

eiwðy2=2þϕmðyÞÞ
Z

∞

0

xdxeiwðx2=2−ψðxÞÞ

×
Z

2π

0

dθxe−iwxy cos θx

¼ w
i
eiwðy2=2þϕmðyÞÞ

Z
∞

0

xdxeiwðx2=2−ψðxÞÞJ0ðwxyÞ;

ð11Þ

where the Bessel function

J0ðzÞ ¼
1

π

Z
π

0

eiz cos θdθ:

C. Accuracy of the small angle approximation

Since DL
ξ0

and DLS
ξ0

are usually large numbers, we can
expand cosine functions into series to estimate the errors of
Eq. (10). When x, y are relatively small, DL

ξ0
, DLS

ξ0
≫ x, y, we

can expand cos θ and cos θ0 in the form of series and we
have

ðcos θ þ cos θ0Þ cos θ
2

≈ 1 −
3

4

�
x
DL
ξ0

�
2

−
1

4

�x − DS
DL

y
DLS
ξ0

�2

þ � � � : ð12Þ

If we regard Eq. (5) as the standard results, this expansion
can also give an estimate to the relative error of the
traditional Eq. (10), which is roughly

ϵ ¼ O
��

x
DL
ξ0

�
2
�
þO

��jx − DS
DL

yj
DLS
ξ0

�2�
: ð13Þ

Usually, normalization length is taken as Einstein radius

ξ0 ¼ rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GML
c2

DLSDL
DS

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RS

DLSDL
DS

q
, where RS is the

Schwarzschild radius of the lens object. For typical lens

systems, DLS ∼DL ∼DS and DL
ξ0
∼ DLS

ξ0
∼ DLffiffiffiffiffiffiffiffiffi

RSDL
p ¼

ffiffiffiffiffi
DL
RS

q
.

Therefore, the relative error of the integrand in Eq. (10)
is ∼ðx2 þ jx − yj2Þ RS

DL
.

For general lens systems, distance DL ∼DLS ∼ 1.7 Gpc
(z ∼ 1, assuming the concordance flat ΛCDM cosmology),
lens mass ML ≲ 1012 M⊙ [4,22], thus these two ratios
DL
ξ0
≃ DLS

ξ0
≃

ffiffiffiffiffi
DL
RS

q
≳ 105. The error is only the order of

O½ð x
105
Þ2� ≲ 10−10, which is negligible. There might be

some extreme rare cases, for example, the lens system is
a nearby galaxy/dark matter halo with distance DL∼1Mpc
and the GW source is at z ∼ 1, or the lens system is
a galaxy/dark matter halo close to the GW source
(DLS ∼ 1 Mpc) and the GW soure is at z ∼ 1, in which
one of the two ratios (DL

ξ0
; DLS

ξ0
) is possibly as small as ∼103.

In such cases, the difference between Eq. (10) and Eq. (5)
can be estimated. As an example, we adopt the singular
isothermal sphere (SIS) lens model (see [2]) to estimate this
difference. We use F1 to represent the traditional diffraction
integral [Eq. (10)], F2 to represent the general diffraction
integral [Eq. (5)], thus jF1j − jF2j is the module difference
between two integrals and argðF1Þ − argðF2Þ is the phase
difference. When y ¼ 10, w ∼ 0.1, we obtain jF1j−jF2j∼
10−4, argðF1Þ − argðF2Þ ∼ 10−5. Therefore, the waveform
error induced by the small angle approximation would be
≲δh=h ∼ 10−4 for most cases. Such an error is negligible
since it cannot be detected (hδhjδhi < 1 [23]) when the
signal to noise ratio ðSNRÞ≲ 104, which is satisfied for
most GW detection. Therefore, we conclude here that the
traditional diffraction integral derived from the small angle
approximation is sufficiently accurate to derive the ampli-
fication factor for lensed GW signals.

III. CONVERGENCY OF INTEGRAL

In this section, we first discuss the convergence of the
diffraction integrals [Eqs. (10) and (5)] and demonstrate
the traditional diffraction integral equation (10) is ðC; 1Þ
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summable. The meanings about ðC; 1Þ summable and
Cesàro summability are described in Appendix B.

A. Convergence analysis

The traditional diffraction integral equation (10)
appears not absolutely convergent when x → ∞. The term
exp½iwTðx; yÞ� is a highly oscillating function, and
the “amplitude” of the oscillation does not decay with
increasing upper limit of the integral xu. In the axial
symmetric case, when x → ∞, AmpðJ0ðxÞÞ ∝ x−0.5 which
is always oscillating between �x−0.5, where Ampð� � �Þ
represents the amplitude of the oscillation of � � �, and thus
limx→∞ xJ0ðxÞ ¼ ∞. The other term eiwðx2=2−ψðxÞÞ is usually
rapidly oscillating with increasing x to large values.
However, this seeming divergence or singularity can be
removed by variable substitution z ¼ x2

2
, which will be

discussed in Sec. IVA in detail.
Taking the Navarro-Frenk-White (NFW) model [24] as

an example, we set ψðxÞ ¼ κ
2
ðln2 x

2
− arctanh2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
ÞÞ1

with κ ¼ 1 and y ¼ 0, where κ is the dimensionless mass
surface density parameter [25]; then we can obtain

jFj ¼ w

����
Z

xu

0

xdxeiwðx2=2−ψðxÞÞ
����; ð14Þ

where xu is the upper limit of the integral.
Figure 2 shows the integral jFj [Eq. (14)] as a function of

the upper limit xu for two different w, which is a highly
oscillatory function. Such an oscillating behavior of the
integral at xu → ∞ suggests that it could be slowly or
weakly convergent. Although this integral is not convergent
under the usual convergence definition, we can still gen-
eralize the definition of convergence for it as long as it is
ðC; 1Þ summable, i.e., it is convergent to a value L in the
mean, and thus L can be defined as the integral value of
Eq. (10). As shown in Sec. III B, the traditional diffraction
integral equation (10) is usually ðC; 1Þ summable and we
obtain a convergent integral value L when we use any
special integration method to numerically calculate such a
highly oscillatory improper integral.
Similar to the traditional diffractional integral form

[Eq. (10)], the general diffraction integral [Eq. (5)]
is also rapidly oscillatory when x is small. However,
when x → ∞, cos θ ∝ 1=x, cos θ0 ∝ 1=x, and thus
exp½iwTðx; yÞ�ðcos θ þ cos θ0Þ cos θ ∝ exp½iwTðx; yÞ�=x2,
where exp½iwTðx;yÞ� is bounded above. In this case,
a finite constant C can always be found so that
exp½iwTðx; yÞ�ðcos θ þ cos θ0Þ cos θ < Cx−2. Thus the inte-
gral

R
d2x exp½iwTðx; yÞ�ðcos θ þ cos θ0Þ cos θ < πC is

absolutely convergent even at infinity. Thus this improper
integral can be well defined.

B. The Cesàro summability of traditional
diffraction integral

Equation (10) can be expressed as

Fðw; yÞ ¼ w
2πi

ZZ
d2xfcos½wTðx; yÞ� þ i sin½wTðx; yÞ�g:

ð15Þ

The geometrical meaning of this 2D integral is a complex
volume V tot ¼ Vc

tot þ iVs
tot, where Vc

tot (Vs
tot) represents the

volume of the real (imaginary) part of the integral. Vα
tot

(where α ¼ c, s) can be expressed as the positive volume
Vαþ (the part with integrand greater than zero) minus the
negative volume jVα

−j (the part with integrand less than
zero), similar to that in Longman [10].
According to that the zero curves lcn (or lsn) satisfy wT ¼

ðnþ 1
2
Þπ (or wT ¼ nπ) for coswT (or sinwT), we can

divide the total volume Vα
tot into infinite parts Vc

n (or Vs
n)

where Vc
n (or Vs

n) satisfy ð− 1
2
þ nÞπ < wT < ð1

2
þ nÞπ

[or nπ < wT < ðnþ 1Þπ], with n ¼ 0; 1; 2; 3;…. Since
wT ≥ 0, Vc

0 actually represents the volume on the zone
where 0 < wT < 1

2
π. For coswT (or sinwT), when

ð−1
2
þ2kÞπ<wT < ð1

2
þ2kÞπ [or 2kπ < wT < ð2kþ 1Þπ],

the volume Vc
2k (V

s
2k) is positive; when ð1

2
þ 2kÞπ < wT <

ð3
2
þ 2kÞπ [or ð2kþ 1Þπ < wT < ð2kþ 2Þπ], the volume

Vc
2kþ1 (or Vs

2kþ1) is negative, here k ¼ 0; 1; 2; 3;…. Thus

Vα
tot ¼

X∞
n¼0

Vα
n ¼

X∞
n¼0

ð−1ÞnjVα
nj:

Hence we can then transform the improper integral into two
alternate series

P∞
n¼0 V

α
n. The improper integral is ðC; 1Þ

summable to V tot, i.e., series
P∞

n¼0 V
α
n is ðC; 1Þ summable

to Vα
tot for both α ¼ c, s.

FIG. 2. The jFj as the function of xu. The integral value is
rapidly oscillatory with increasing upper limit xu. Even if it is
convergent at infinity, it must be slowly convergent.

1It should be noticed that when x > 1, −arctanh2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
is

replaced by arctan2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
in the complex field.
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According to Eq. (6), TðxÞ ∝ x2 when x → ∞ since ψðxÞ
is usually much smaller than x2 [e.g., ψðxÞ ≃ ln x for the
point mass model, or x for the SIS model; Takahashi [13].2

We set TðxÞ ≃ CTx2 (CT > 0) when x → ∞, Vc
n (or Vs

n) is
defined on the zone Scn (or Ssn) where ðn − 1

2
Þπ < wCTx2 <

ðnþ 1
2
Þπ [or nπ < wCTx2 < ðnþ 1Þπ], i.e., ðn − 1

2
Þπ <

Φ < ðnþ 1
2
Þπ [or nπ < Φ < ðnþ 1Þπ], here we set

Φ ¼ wCTx2. Thus we have

jVc
nj≈

����
Z Z

Scn

d2x cosðwCTx2Þ
����

¼
���� π

wCT

Z ðnþ1
2
Þπ

ðn−1
2
Þπ

dΦ cosðΦÞ
����

¼ 2π

wCT
;

when n is substantially large. Similarly, we also have

jVs
nj ≈

2π

wCT
;

when n is a large integer. Therefore, jVα
nj → 2π

wCT
for both

α ¼ c and s when n > m andm is a large integer. The series

Vα
tot ¼

X∞
n¼0

Vα
n ¼

Xm
n¼0

Vα
n þ

X∞
n¼mþ1

ð−1ÞnjVnj

¼
Xm
n¼0

Vα
n þ

X∞
n¼mþ1

ð−1Þn 2π

wCT
;

where α ¼ c or s, which means the partial sum Pα
k ¼P

k
n¼0 V

α
n is oscillating with kwith an amplitude of 2π

wCT
even

at k → ∞. When k ≤ m, Pα
k ¼

P
k
n¼0 V

α
n; when k > m,

Pα
k ¼ Pα

m þ π
wCT

½ð−1Þk − ð−1Þm�. Therefore Vα
tot is always

oscillating with an amplitude of 2π
wCT

, and possibly not
convergent. However, the above demonstration is not strict
since many approximations were adopted and we cannot
draw the conclusion that the diffraction integral must
be divergent at infinity. Above proof assumes that the
integrals are axisymmetric thus

R
2π
0 dθx ¼ 2π, actually,R

2π
0 dθxe−iwxy cos θx ¼ 2πJ0ðwxyÞ ≤

R
2π
0 dθx ¼ 2π become

smaller and smaller with increasing x and basically
always less than 2π. Thus the amplitude of oscillation is
actually not constant, but become weaker and weaker.

Due to AmpðJ0ðxÞÞ ∝ x−0.5, we have jVα
nj ≈ 2π

wCT
J0ðwxyÞ ∝

2π
wCT

ffiffiffiffiffiffi
wxy

p when x → ∞. As long as the integral is convergent

to a value L, it is easy to prove that it must be ðC; 1Þ
summable to the same value L [27]. Nevertheless, as an
approximation, this at least tells us that the diffraction
integral must be slowly convergent although it is not
divergent.
Even if Vα

tot is divergent, we can still redefine

Vα
tot ≡ lim

n→∞

Xn
k¼0

Pα
k

nþ 1

¼ lim
n→∞

�Xm
k¼0

Pα
k

nþ 1
þ

Xn
k¼mþ1

Pα
m þ π

wCT
½ð−1Þk − ð−1Þm�
nþ 1

�

¼ Pα
m þ π

wCT
ð−1Þm ¼

Xm
n¼0

Vα
n þ

π

wCT
ð−1Þm:

This limit exists and can be well defined. According to
Eq. (6), we usually have the constant CT ¼ 1

2
when there is

no shear. Shear could change the coefficient CT [11]. Thus
the integral equation (15) is ðC; 1Þ summable to

V tot¼
Xm
n¼0

Vc
nþ

2π

w
ð−1Þmþ i

�Xm
n¼0

Vs
nþ

2π

w
ð−1Þm

�
; ð16Þ

where m is a large integer. If one wants to study the
deviation of T ∝ x2, one can regard CT as the polynomial
expansion of 1=x: CTðxÞ ¼ CT0ð1þ c0=xþ � � �Þ.
In conclusion, the integral equation (15) is ðC; 1Þ sum-

mable to Eq. (16) as long as TðxÞ ∝ x2 when x → ∞. In
practical numerical calculations, Vα

tot ≈
P

m
k¼0 P

α
k=ðmþ 1Þ

can always be served as a good numerical estimation for
Vα
tot even if TðxÞ ∝ x2 is not satisfied when x → ∞, or the

constant CT is not known.

IV. NUMERICAL INTEGRATION METHODS

The diffraction integral is difficult to directly compute as
discussed above (see Fig. 2). A numerical integration
method is needed to calculate the amplification factor
for most lens models, except that for the point mass lens
model the amplification factor can be expressed analyti-
cally (see Takahashi and Nakamura [2] and Takahashi
[13]). Below we overview and introduce a number of
numerical integration methods to calculate this oscillatory
integral. In the method of Ulmer and Goodman [11], the
location of geometrical optics images are required to know
at first and the line integration on constant time delay may
be difficult to compute. We do not expand the discussion on
this method as it may be not so convenient in generating a
lensed GW template bank with all kinds of parameters and
lens models.

2For other lens potentials ψðxÞ, see [26]. If ψðxÞ grows faster
than the geometrical time delay x2

2
with increasing x, this integral

may be divergent. However, such a case is extremely rare. If
ψðxÞ → xβ when x → ∞, where β represents the index of the
power law. As long as the total mass of lens is finite, we should
have β < 0. For example, the total mass of SIS model with β ¼ 1
has been divergent due to its mass-radius relation MðrÞ ∝ r.
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A. Integral mean method

According to the definition of ðC; 1Þ summability, a
rapidly oscillatory improper integral I ¼ R∞

0 gðzÞdz can be
calculated by using its integral mean, i.e.,

Z
∞

0

gðzÞdz ¼ lim
b→∞

ICðbÞ; ð17Þ

where

ICðbÞ ¼
Z

b

0

�
1 −

z
b

�
gðzÞdz

(see Appendix B), and the factor 1 − z
b weakens the

amplitude of the oscillation of this integral at large z.
In reality, we can use ICðbÞ to approximate I, where b is

such a large number that the fluctuation of ICðbÞ is within
the error precision. We can also discretize the integral mean
into ĪðzjÞ ¼

Pj
i¼1 IðziÞ, where IðziÞ ¼

R zi
0 gðzÞdz and zj is

a large number. However, this algorithm may be not so
efficient like ICðbÞ.
In the axial symmetric case, we make the transform

z ¼ x2=2, according to Eq. (11), and thus

Fðw; yÞ ¼ w
i
eiwðy2=2þϕmðyÞÞ

Z
∞

0

dzeiwðz−ψð
ffiffiffiffi
2z

p ÞÞJ0ðwy
ffiffiffiffiffi
2z

p Þ:

For the denotation of ICðzÞ, we have

gðzÞ ¼ eiwðz−ψð
ffiffiffiffi
2z

p ÞÞJ0ðwy
ffiffiffiffiffi
2z

p Þ:

For this integral

Ið∞Þ ¼
Z

∞

0

eiwðz−ψð
ffiffiffiffi
2z

p ÞÞJ0ðwy
ffiffiffiffiffi
2z

p Þdz;

where the oscillation amplitude of the integrand gðzÞ goes
to zero at infinity. This integral represents the area A closed
in gðzÞ with z axis. [When gðzÞ < 0, the area is negative.]
The zero points of integrand gðzÞ divide the total area A into
many small areas Ai (Ai can be negative). As long asP∞

i¼1 Ai is convergent, this integral is convergent.
In the nonaxial symmetric case, ψðxÞ ¼ ψðx; θxÞ,

Fðw; yÞ ¼ w
2πi

eiwðy2=2þϕmðyÞÞ
Z

∞

0

dzeiwz

×
Z

2π

0

dθxe−iwðψð
ffiffiffiffi
2z

p
;θxÞþ

ffiffiffiffi
2z

p
y cos θxÞ; ð18Þ

thus

gðzÞ ¼ eiwz
Z

2π

0

dθxe−iwðψð
ffiffiffiffi
2z

p
;θxÞþ

ffiffiffiffi
2z

p
y cos θxÞ

for ICðzÞ.
For illustration, the blue lines in Figs. 3 and 4 show two

examples of the amplitude and phase of the amplification
factor obtained from the integral mean method for the NFW
lens model and the point mass lens model, respectively. As
seen from these two figures, the integral mean method
works well in the aspect of convergence, though the

FIG. 3. The amplification factor as a function of the upper limit b of the integration range for the NFW lens model, with y ¼ 0.1,
w ¼ 10, and κ ¼ 1. Left and right panels show the module jFj and phase argðFÞ of the amplification factor as the function of b,

respectively. The right vertical axis (ϵr) indicates the relative error of jFj (left) or argðFÞ (right), i.e., ϵr ¼ jFj−jFtj
jFtj (left) or ϵr ¼ argðFÞ−argðFtÞ

j argðFtÞj
(right), where jFtj ≈ 2.0495 or argðFtÞ ≈ −0.5237 represents the referenced true value obtained by the computation. For simplicity, here
we set ϕmðyÞ≡ 0. The green line represents the direct integration of IðbÞ by using the Gauss quadrature. The blue line represents the
results ICðbÞ obtained by using the integral mean method. The red and black lines represent the results obtained by using the asymptotic
expansion method with nu ¼ 2 and 7, respectively.
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convergence is not as faster as those with the asymptotic
expansion method.

B. Asymptotic expansion method

The diffraction integral can be calculated by using the
asymptotic expansion method [12,13,28,29]. An improper
integral with oscillatory integrand, similar to the diffraction
integral, may be expressed as

Z þ∞

0

dzeiωzfðzÞ¼
Z

b

0

dzeiωzfðzÞþ
Z

∞

b
dzeiωzfðzÞ ð19Þ

¼
Z

b

0

dzeiωzfðzÞþeiωz

iω
fðzÞj∞b −

Z
∞

b

eiωz

iw
∂fðzÞ
∂z dz ð20Þ

¼
Z

b

0

dzeiωzfðzÞ þ eiωb
X∞
n¼1

ð−1Þn
ðiωÞn

∂n−1f
∂zn−1

����
z¼b

: ð21Þ

Because eiωz is always oscillating, this method assumes
that integrand fðzÞ and its any n-order derivative
∂nfðzÞ=∂zn go to zero at infinity [12,29]. This condition
may be difficult to be satisfied in the usual definition for
diffraction integral on infinite area, however, under the
definition of ðC; 1Þ summability,

lim
z→∞

eiwz

iw
fðzÞ≡ lim

b→∞

1

b

Z
b

0

dz
eiwz

iw
fðzÞ:

Since eiwz is oscillating between positive and negative
values, the positive parts and negative parts will nearly

counteract. As long as the integral
R
b
0

eiwz
iw fðzÞ is always

finite even when b → ∞, the above limit will go to zero.
For its derivatives, we can also draw similar conclusions.
According to Eq. (11), in the axial symmetric case, fðzÞ

in the asymptotic expansion method is

fðzÞ ¼ e−iwψð
ffiffiffiffi
2z

p ÞJ0ðwy
ffiffiffiffiffi
2z

p Þ:

Since J0ðxÞ → 0 when x → ∞, ∂nfðzÞ=∂zn → 0 at infinity
is easy to be satisfied. In the nonaxial symmetric case, fðzÞ
is a little complex and it is

fðzÞ ¼
Z

2π

0

dθxe−iwðψð
ffiffiffiffi
2z

p
;θxÞþ

ffiffiffiffi
2z

p
y cos θxÞ:

The asymptotic expansion method contains the priori
assumption that these integrals are all convergent at infinity,
so that additional terms can be obtained to suppress the
oscillation of the integral as shown in Fig. 3.
One may have to set an upper limit for n (nu rather than

n ¼ ∞) in practical calculations using the asymptotic
expansion method and assume that the higher order
derivatives with n > nu can be ignored:

IA:E:ðbÞ¼
Z

b

0

dzeiwzfðzÞþeiwb
Xnu
n¼1

ð−1Þn
ðiwÞn

∂n−1f
∂zn−1

����
z¼b

: ð22Þ

The error of IA:E:ðbÞ as the approximation of Ið∞Þ is
Oðeiwbði=wÞnuþ1fðnuÞðbÞÞ → 0 when b → ∞, especially
when w is large. In principle, choosing a larger nu may

FIG. 4. The module of the amplification factor as a function of the upper limit b of the integration range for the point mass lens model,

with y ¼ 0.1, w ¼ 10. The right vertical axis (ϵr) indicates the relative error of jFj, i.e., ϵr ¼ jFj−jFpj
jFpj , where jFpj represents the true value

obtained by the computation of analytical expression. The green line in the left panel represents the direct integration by using the
Gaussian quadrature. The blue line in each panel represents the integral mean ICðbÞ. The black and red solid lines in each panel are
obtained by using the asymptotic expansion method with nu ¼ 2 and 7, respectively. The purple line in the right panel is obtained by
using Levin’s method. They all converge to the value of the analytical expression for the point mass lens model (black dashed horizontal
line; see [2]). The black dashed lines are covered by the red line. Only the module jFj is shown here. For the phase, it is similar to that for
the module, as shown in Fig. 3.
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lead to faster convergence of this integral to some extent.
However, we find that the function is almost most rapidly
convergent when nu ¼ 7 in our practical calculation. For a
larger nu, this method may lead to a divergent result, which
may be caused by the numerical errors in the calculations of
higher order derivatives with n > 7. The black and red lines
in Fig. 3 show the numerical results of the magnitude (right
panel) and phase (right panel) of the amplification factor
obtained by using the asymptotic expansion method with
nu ¼ 2 and 7, respectively, for the NFW lens model, while
the black and red lines in Fig. 4 correspondingly show the
results for the point mass lens model. As seen from both
figures, the asymptotic expansion method offers a rapid
convergence of the diffraction integral with increasing b in
practical calculations.

C. Levin’s method

Levin’s method can be used to compute such oscillatory
integral

IðbÞ ¼
Z

b

a
fðxÞeiqðxÞdx;

where fðxÞ is a nonoscillatory function [14]. Levin’s
method for a one-dimensional integral has three steps:
(1) Choosing linearly independent base functions ukðxÞ,

k ¼ 1; 2;…; n, like polynomials, or Chebyshev
polynomials and so on, whose properties are similar
to fðxÞ.

(2) Solving αk from collocation equations

Xn
k¼1

αku0kðxjÞ þ iq0ðxjÞ
Xn
k¼1

αkukðxjÞ ¼ fðxjÞ;

where xj ¼ aþ ðj − 1Þðb − aÞ=ðn − 1Þ, and j ¼
1; 2;…; n.

(3) Computing InðbÞ as the approximation to IðbÞ:

InðbÞ ¼
Xn
k¼1

αkukðbÞeiqðbÞ −
Xn
k¼1

αkukðaÞeiqðaÞ:

For Levin’s method, it just transforms an arbitrary
nonoscillatory function fðxÞ into the linear combinations
of many independent base functions ukðxÞ, k ¼ 1; 2;…; n
and their derivatives. Then it can transform the integral into
the difference between the summation of linear combina-
tions of base functions times eiqðxÞ at the upper and lower
limits (b and a) of the integral. When b is finite, this
method is easy to realize. The purple line in the right panel
of Fig. 4 shows an example obtained by using Levin’s
method, where the base function ukðxÞ are Chebyshev
polynomials. The integral value is basically consistent
with the direct integration, which is slowly convergent.

However, when b → ∞, we cannot make sure that the base
functions on infinite interval limb→∞

P
n
k¼0 αkukðbÞeiqðbÞ

are convergent in the usual definition. For example, if the
base functions are polynomials, it is obviously divergent in
the usual integration definition because ukðxÞ → ∞ when
x → ∞. However, according to ðC; 1Þ summability, it is
sufficient to have

lim
b→∞

Xn
k¼0

αkukðbÞeiqðbÞ ¼ lim
b→∞

R
b
0

P
n
k¼0αkukðxÞeiqðxÞdx

b
¼ 0;

ð23Þ

as long as the mean below is convergent. Although we
cannot make sure the above limit must be convergent,
which may depend on the choices of the base functions and
qðxÞ, this convergent condition is weaker than the usual
definition. Since eiqðxÞ is rapidly oscillating between
positive and negative values when x is large, most parts
of the integral vanish just like an alternate series as long as
ukðxÞ does not grow up fast.
For the diffraction integral to be computed, a ¼ 0.

Combining with the integral mean, we can generalize
the Levin method to the integral on infinite intervals, i.e.,

Ið∞Þ ≈ 0 −
Xn
k¼1

αkukð0Þeiqð0Þ: ð24Þ

We can choose a large b as an approximation to it.
In addition, one may make variable substitution to trans-

form the infinite interval into finite interval. Although the
integral after transformation may be defined on a finite
interval, it is still rapidly oscillating near the singularity.
Therefore, the variable substitution cannot solve the prob-
lem of oscillatory integral.

D. Zero points integral method

The diffraction integral over infinite interval can be also
computed by using the method in Longman [10], which
transforms the integral into a series summation. Then some
mathematical methods may be used to accelerate the
convergence of series to obtain the integral value such
as the Euler’s transformation of series (see [27]). The speed
of convergence partly depends on the choice of the method
to accelerate the convergence of series. However, for this
zero points integral method, it may be difficult to find the
exact positions of all zero lines of the integrand, especially
for two-dimensional diffraction integrals. For some specific
integrands of the diffraction integral like the integrands
consist of J0ðxÞ, this method can be improved accordingly
and thus can provide an efficient way to compute the
integral.
For the diffraction integral in axial symmetric case, our

aim is to compute this integral Ið∞Þ, where
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IðbÞ≡
Z

b

0

dzeiwðz−ψð
ffiffiffiffi
2z

p ÞÞJ0ðwy
ffiffiffiffiffi
2z

p Þ:

When y ≠ 0, we need to find out the zero points of
J0ðwy

ffiffiffiffiffi
2z

p Þ. We set the kth zero points of J0ðxÞ as
x ¼ jk, k ¼ 1; 2; 3;…. Thus the zero points of

J0ðwy
ffiffiffiffiffi
2z

p Þ are zk ¼ j2k
2w2y2. Within the neighborhood of

zk, the amplitude of the oscillation of this integral is the
smallest, thus the error of evaluation of the integral value
would be the smallest as long as the error of the position of
zero point jk is accurate. We just need to compute these
integrals IðzkÞ, which can be computed by the Guassian
quadrature or Levin’s method, thus we have

Ið∞Þ ¼ lim
k→∞

IðzkÞ ð25Þ

as long as Ið∞Þ does exist. Even when Ið∞Þ does not exist
or it is slowly convergent, we can redefine the ðC; 1Þ sum of
this integral (see Appendix B) as

ICSð∞Þ ¼ lim
m→∞

Xm
k¼1

IðzkÞ
m

; ð26Þ

where the adoption of the ðC; 1Þ sum ICSðzmÞ ¼
P

m
k¼1

IðzkÞ
m

can accelerate the convergence of IðznÞ. This would be an
efficient method to compute Ið∞Þ. Nevertheless, when k is
large, for example, k ¼ 20, the 20th zero point of J0ðzÞ is
z20 ≈ 1925 in our later examples, this method is possible to
require to calculate the integral Iðz20Þ, where z20 is quite
large. When b is a large number, the calculation of IðbÞ
may be time consuming and have a large error.

E. Zero points asymptotic expansion method

In order to avoid computing integral IðzkÞ at large zk, we
introduce a new method by combining the zero points
integral method and the asymptotic expansion method
together, which we denote as the zero points asymptotic
expansion method. It only needs to compute the integral
IðzkÞ when k is a small integer. As for this new method,
we have

Ið∞Þ ¼ IðzkÞ þ eiωzk
X∞
n¼1

ð−1Þn
ðiωÞn

∂n−1f
∂zn−1

����
z¼zk

: ð27Þ

We can use IA:E:ðzkÞ as the approximation of Ið∞Þ. If we
combine ICSðzkÞ with the asymptotic expansion method,
we have

ICS;A:E:ð∞Þ ¼ lim
m→∞

Xm
k¼1

IA:E:ðzkÞ
m

; ð28Þ

here we can discard the first one or two zero points if they
have relative large errors. This method is not only as
accurate as other methods but also much more efficient than
other methods.
Taking the point mass lens model and the NFW lens

model as two examples, here we calculate the amplification
factor to investigate the aspects of convergence, accuracy,
and efficiency for these new methods based on zero points
integral IðzkÞ, ICSðzkÞ, and the combination of IðzkÞ
[ICSðzkÞ] with the asymptotic expansion method, i.e., the
zero points asymptotic expansion methods IA:E:ðzkÞ
[ICS;A:E:ðzkÞ]. Figures 5 and 7 show the results obtained
by using the zero points asymptotic expansion method and
its comparison with those from other methods for the point
mass lens model and the NFW lens model, respectively.
Figure 6 shows the relative errors in log-log plot for point
mass model, with which the relative errors of different
methods can be seen more clearly. Although the accuracy
of the zero points integral method is not as high as the
asymptotic expansion method at the same zk, it is much
more efficient as it only needs to calculate the integral
values at a limited number of (zero) points to reach the
same accuracy. The main reason is that it discards unnec-
essary integral values which bring violent oscillation, and
thus enables a much more efficient way to obtain high
computational accuracy, which will be further discussed in
Sec. IV F.
For two-dimensional integral I2ð∞Þ, where

I2ðbÞ≡
Z

b

0

dzeiwz
Z

2π

0

dθxe−iwðψð
ffiffiffiffi
2z

p
;θxÞþ

ffiffiffiffi
2z

p
y cos θxÞ;

we can also find out the zero points of IθxðzÞ≡R
2π
0 dθxe−iwðψð

ffiffiffiffi
2z

p
;θxÞþ

ffiffiffiffi
2z

p
y cos θxÞ as long as they exist. To

figure out their zero points, we only need to calculate out
the zero points of real function jIθxðzÞj. This integral is not
difficult to compute as long as w and z are not very large.
The time to find out these zero points is short, which is
much less than the time to compute the two-dimensional
integral. We have tested it for some cases. It really works.

F. Summary for the comparisons
of different methods

In this section, we summarize our main results by
comparing different numerical methods in calculating the
diffraction integral introduced above and comment on its
convergence and efficiency.
We show the integral results by using the direct inte-

gration, the asymptotic expansion method, and the integral
mean method to compute the traditional diffraction integral
with parameters ðw; yÞ ¼ 10, 0.1 in Fig. 3 for the point
mass lens model and Fig. 4 for the NFW lens model,
respectively. The green lines show the integral values
obtained from the direct integration of IðbÞ with the
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Gauss quadrature method, which are rapidly oscillating and
slowly [or just ðC; 1Þ] convergent with increasing b. The
blue lines show the integral values of ICðbÞ obtained by
using the integral mean method and the Gauss quadrature
method, which are not a highly oscillatory function of b and
quickly convergent to a certain value. However, this method
underestimates the integral value if choosing a small b. The
red lines and black lines are the integral values computed

by using the asymptotic expansion method with nu ¼ 2 and
7, respectively, which apparently converge fast with
increasing b. The purple line in the right panel of Fig. 4
shows the integral results computed by using Levin’s
method, which is basically similar to that of direct
integration (green line). To obtain the improper integral
value on the infinite interval, we may need to generalize the
method as discussed in Sec. IV C.

FIG. 6. The absolute value of the relative error jϵrj of jFj as a function of the upper limit b for the integration range in log-log diagram,
obtained by using several different methods for the point mass lens model with y ¼ 0.1, w ¼ 10 (w ¼ 100) in the left (right) panel. The
horizontal black dotted line represents the precision set for the numerical integration in our calculation. Curves and symbols with
different colors/types represent the methods the same as those in Fig. 5. We choose the 20th to 100th zero points in the right panel. The
relative errors of ICSA:E:nu¼7ðzkÞ become much smaller after averaging tens of points.

FIG. 5. Left panel: amplitude of the amplification factor jFj as a function of the upper limit b for the integration range, obtained by
using several different methods for the point mass lens model with y ¼ 0.1, w ¼ 10. The purple dotted line and the red solid line
represent the results obtained by using the asymptotic expansion method with nu ¼ 2 and 7, respectively. The brown points, blue points,
green points, and black points represent the results obtained by using the zero points integral method [IðzkÞ], the average of the zero
points integrals ICSðzkÞ, the zero points asymptotic expansion method IA:E:ðzkÞ with nu ¼ 7 and its mean ICS;A:E:ðzkÞ, respectively. The
horizontal black dashed line represents the analytical result (see [2]). Right panel: accuracy of the amplitude of the amplification factor
jFj − jFpj calculated by using different methods. jFpj represents the true value obtained by the computation of analytical expression.
The legend is the same as for the left panel. Here we discard the first two points which have large errors for the black line.
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Figures 5–7, as mentioned in Sec. IV E, show the
comparison of the integral results obtained by using the
zero points integral method and the zero points asymptotic
expansion method with that obtained by the asymptotic
expansion method. Obviously the zero points integrals
IðzkÞ (brown points) and ICSðzkÞ (blue points) converge
relatively much faster than both the direct integration
(green line in Fig. 4) without significant oscillation at
the same b and the integral mean ICðbÞ (blue line in Fig. 4).
However, they converge at significantly larger b compared
with that derived by using the second-order asymptotic
expansion (purple dotted line). The zero points asymptotic
expansion method is an excellent choice to compute the
diffraction integral. Although it obtains the same integral
values with asymptotic expansion at the same b ¼ zk, but it
is much more efficient in obtaining the convergent value
sine, it only needs to calculate a small number of the
integral values at zero points. In addition, we can also
average these integral values at zero points or use other
methods to accelerate the convergence of the integral [27].
One has to determine a proper upper limit b by observing

the variation of the integral value with increasing ξ (or x). If
the integral value does not change significantly (within the
required precision) with increasing b, then it is assumed to
be convergent, although the convergence is not completely
proved. For the integral mean method, when b > 100, the
diffraction integral is nearly convergent with an error less
than 0.1 for those cases shown in Figs. 5 and 7. For the
asymptotic expansion method with nu ≥ 2, the diffraction
integral is basically convergent with an error < 0.001 when
b > 10. For nu ¼ 7, the diffraction integral is convergent
with an error < 0.001 even when b is as small as 2. The
zero points integral IðzkÞ is convergent when k > 8 with an
error < 0.001, and the mean of the zero points integrals
ICSðzkÞ is convergent when k > 2 with an error < 0.001.

For the method by combining the zero points integral IðzkÞ
with the second-order or seventh-order asymptotic expan-
sion, their errors are all less than 0.001. Once adopting
k > 3 (k > 1), the calculation errors of the combination of
IðzkÞ with second(seventh)-order asymptotic expansion is
much less than 10−5. When the error of jFj is less than
0.001, the error of the GW template is less than 0.001,
which means only if the SNR of signal reaches nearly 1000,
two templates can be distinguished [23].
Generally, for a larger w, it is required to set a larger wb

in order to reach the same accuracy for almost all integral
methods. When w ¼ 100, or even 103, these methods still
work well. The right panel in Fig. 6 also shows the relative
errors of different integration methods for w ¼ 100.
However, if w is too large, e.g., w ≫ 103, it appears that
all integral methods involving Gaussian quadrature cannot
work effectively simply due to too many oscillations in the
integral which may be easily left out by coarse sampling. In
theory, Levin’s method and the Filon method for an integral
on finite interval will become more accurate when w is
much higher [30]. However, it is still unclear whether this
rule is also applicable to improper integral. For very high w
like w > 103, if we still want to adopt zero points
asymptotic expansion, we may need to use Levin’s method
or Filon-type method to calculate IðbÞ or IðzkÞ on finite
interval, not usual Gaussian quadrature then use asymptotic
expansion to compute this left expansion terms.
Fortunately, when w > 103, the wave optics can be usually
well approximated by the geometrical optics [4,13,25].3

FIG. 7. Legend similar to Fig. 5, but for the NFW lens model, which does not have an analytical expression for the integral value and a
reference value is taken as jFtj ¼ 2.049479253200136. We also show the integral mean ICðbÞ in this figure as its deviation is relatively
small in this case.

3This criterion requires parameter ξ0 ¼ rE, where rE is
Einstein radius. For NFW model, ξ0 ¼ rs is usually not the
Einstein radius but scale radius for convenience. Thus this critical
value of w from wave optics to geometrical optics may be much
different in such a case.

CONVERGENCE AND EFFICIENCY OF DIFFERENT METHODS … PHYS. REV. D 102, 124076 (2020)

124076-11



The computation of amplification factor in geometrical
optics approximation is easy to perform.
The parameter y may not have a significant influence

on the speed of convergence of Fðw; yÞ. However, jFj
becomes larger if adopting a smaller y, which requires the
computation of Fðw; yÞ to reach higher relative errors if it
can reach the same absolute error. Therefore, to reach the
same absolute accuracy, it usually requires a larger b for a
smaller y.
The integral mean method can be used to accelerate the

convergence in calculating the diffraction integral, but it is
less efficient than the asymptotic expansion method. The
asymptotic expansion method leads to a fast convergence in
calculating the diffraction integral, especially when choos-
ing nu ¼ 7 in our cases. However, the asymptotic expan-
sion method still needs to evaluate the integral IðbÞ which
is usually rapidly oscillating. If one only evaluates IðzkÞ
at zero points, one can obtain the convergent value
more efficiently. The calculation errors of the zero points
integral method is slightly larger than that of the asymptotic
expansion method with nu ¼ 2 at the same b ¼ zk.
However, the zero points integral method enables the
removal of rapid oscillation of the integral value by
choosing proper zero points. With this method, the integral
values are needed to compute only at a limited number of
zero points. This is why it enables an efficient estimate of
the integral with high accuracy but costing much less
computational time. The combination of the zero points
integral method and the asymptotic expansion method can
have both advantages of these two methods. The asymp-
totic expansion method makes use of the information of the
integrand derivatives to accelerate the convergence. With
this method, b is not necessarily to be set as an extremely
large value, as long as the error is within the required
precision. The zero points integral method avoids the rapid
oscillation of integral value IðbÞ. Therefore, the zero
points asymptotic expansion method is fast and efficient
and enables the estimate of the diffraction integral with
extremely high accuracy.
The integral mean method, asymptotic expansion

method, zero points integral method and so on can also
be used to the computation of two-dimensional integrals,
merely two-dimensional integral usually costs much more
time than a one-dimensional integral under the same
condition. Take the axial symmetric one-dimensional
diffraction integral as an example; if we substitute the
Bessel function J0ðzÞ by the integral IθxðzÞ with respect to
angle θx, they also can be numerically calculated to obtain
the same integral value as the one-dimensional diffraction
integral. To accelerate the numerical computation of
the two-dimensional diffraction integral, one may interpo-
late IθxðzÞ to obtain an approximate interpolate function
PðzÞ ≈ IθxðzÞ. One may have to compute more points of
IθxðzÞ in order to avoid the loss of details of IθxðzÞ. For
example, for the point mass model, IθxðzÞ is highly

oscillatory near z ¼ 0. If one wants to use interpolation
to accelerate the computation of the two-dimensional
integrals and keep high accuracy at the same time, one
needs to sample many more points near z ¼ 0. With this
interpolation, one can compute the secondary integral
I2ðbÞ ≈

R
b
0 eiwzPðzÞ, also a one-dimensional integral, with

relatively high efficiency. This one-dimension integral
can be calculated out by the integral mean method, the
asymptotic expansion method, the zero points integral
method, or the zero points asymptotic expansion method
and so on. We summarize the whole process to quickly
compute the two-dimensional integral as follows:
(1) computing IθxðzÞ for a number of sampling points,

e.g., 10000 points or so, sampling more points near
the oscillatory points to achieving high accuracy;

(2) interpolating IθxðzÞ and obtaining interpolation func-
tion PðzÞ ≈ IθxðzÞ;

(3) computing I2ðbÞ ≈
R
b
0 eiwzPðzÞ by using one of the

methods introduced in this paper, i.e., the integral
mean method, the asymptotic expansion method, the
zero points integral method, or the zero points
asymptotic expansion method, and so on to obtain
the estimate value of Ið∞Þ.

Therefore, one may only need to compute two one-
dimensional integrals, i.e., IθxðzÞ and

R
b
0 eiwzPðzÞ, respec-

tively. The consuming time for using such a method to
obtain the two-dimension diffraction integral at a given
accuracy is on the same order of magnitude for that using
the one-dimensional diffraction integral.
Levin’s method is a common method to compute the

integral of a highly oscillating function. It transforms the
integral problem into the solution of an algebraic equation
system. It is feasible for some lens models, such as the SIS
lens model and the point mass model. For the NFW lens
model, however, it is difficult to calculate by using this
method possibly due to the singularity of arctanh(1).
Although the procedure for Levin’s method is a little
tedious, it can be used to compute the diffraction integral
with some ready-made mathematic softwares, e.g., the
NIntegrate with LevinRule in the Mathematica software
directly.
All these integral methods can be used to compute not

only the traditional diffraction integral, but also the general
diffraction integral [see Eq. (5)].

V. CONCLUSIONS

The wave optics may be important for the gravitational
lensing of GWs that will be probably detected by future
GW detectors since the GW wavelength can be comparable
to the Einstein radius of the lens. For the detection of such
GW lensing events, it is important to obtain the lensed GW
signals accurately and efficiently by calculating the dif-
fraction integrals, of which the integrand is rapidly oscil-
lating. In this paper, we investigate the convergence of the
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diffraction integrals and find that the traditional diffraction
integral, obtained by using the small angle approximation,
is usually convergent. Even not convergent under the usual
definition, it is also ðC; 1Þ summable. We overview some
methods that can be used to calculate the diffraction
integral introduced in the literature, such as the asymptotic
expansion method, Levin’s method, etc. We further intro-
duce several new methods to compute the diffraction
integral, such as the integral mean method, the zero points
integral method, and a hybrid method by combining the
zero points integral method with the asymptotic expansion
method, and we compare these new methods with Levin’s
method and the asymptotic expansion method in terms of
the convergence and efficiency. We find that each method
has its advantages and disadvantages, and the zero points
asymptotic expansion method is probably the most efficient
numerical recipe to compute the diffraction integral with
the highest accuracy and least computational burden, as it
only needs to evaluate the integral values at several zero
points of the oscillating integrand. These methods can also
be used to compute the two-dimensional diffraction integral
efficiently and accurately, and the time it takes is roughly
on the order of that for computing two one-dimensional
integrals. These efficient numerical integral methods would
be important for efficient and fast calculations of a large
template bank of lensed GW signals in the wave optics
regime, which must be used for the matched filtering search
of lensing GW events in the future.
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APPENDIX A: THE DERIVATION OF THE
DIFFRACTION INTEGRAL IN WAVE OPTICS

Assuming GWs propagate under the gravitational poten-
tial UðrÞ (≪1) of a lens object/system, the background
spacetime is given by [31]

ds2 ¼ −ð1þ 2UÞdt2 þ ð1 − 2UÞdr2 ≡ gðBÞμν dxμdxν: ðA1Þ

We regard the influence of GW on the background
spacetime as a linear perturbation hμν, i.e.,

gμν ¼ gðBÞμν þ hμν:

Adopting the transverse traceless Lorentz gauge condition
hνμ;ν ¼ 0, hμμ ¼ 0, then we have

h;αμν;α þ 2RðBÞ
αμβνh

αβ ¼ 0;

where the semicolon represents the covariant derivative

corresponding to the metric gðBÞμν , R
ðBÞ
αμβν is the Riemann

tensor of the background spacetime. If the GW wavelength
(λ) is much less than the curvature radius of the background
spacetime (R), we have

h;αμν;α ¼ 0:

Adopting the eikonal approximation by [32], GWs can be
expressed as a form of scalar wave,

hμν ¼ ϕeμν;

where eμν is the GW polarization tensor. Since U ≪ 1, the
change of GW polarization tensor is small thus it can be
regarded as a constant (see [33]). Therefore, the scalar
wave is a proper approximation for the cases considered in
this paper (U ≪ 1). The propagation equation of the scalar
wave is

∂μ

� ffiffiffiffiffiffiffiffiffiffiffi
−gðBÞ

q
gðBÞμν∂νϕ

	
¼ 0; ðA2Þ

where ∂μ ≡ ∂=∂xμ. With the background spacetime
equation (A1), Eq. (A2) in the frequency domain can be
expressed as

ð∇2 þ ω2Þϕ̃ ¼ 4ω2Uϕ̃; ðA3Þ

where ω ¼ 2πf is the circular frequency of GW, f the GW
frequency, and ϕ̃ the Fourier transform of ϕ. This equation
can be solved by using the Green function method.
Figure 1 shows the geometrical configuration of the

observer-lens-source system. Various parameters involved
in such a physical system are described in the figure caption
[13]. Adopting the thin lens approximation, U ≈ 0 inside
the volume V (see Fig. 1), then Eq. (A3) can be reduced to
the Helmholtz equation,

ð∇2 þ ω2Þϕ̃ ¼ 0: ðA4Þ

The Green function of a spherical wave eiωr=r centering
around the observer must satisfy

ð∇2 þ ω2Þ e
iωr

r
¼ −4πδ3ðrÞ; ðA5Þ

where r is the distance from the observer. Combining
Eqs. (A4) and (A5) together, the scalar field detected by the
observer is then
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ϕ̃ L
obs ¼ −

1

4π

Z
V
dV

�
ϕ̃∇2

eiωr

r
−
eiωr

r
∇2ϕ̃

�
: ðA6Þ

When R → ∞, V → ∞, the above volume integral can be
transformed into a surface integral on the lens plane S by
the Green’s theorem

ϕ̃ L
obs ¼

1

4π

Z Z
S
d2ξ

�
ϕ̃

∂
∂n

eiωr

r
−
eiωr

r
∂
∂n ϕ̃

�
: ðA7Þ

The scalar wave is expressed as

ϕ̃ ¼ AeiSP ; ðA8Þ

where A and SP are the amplitude and phase, respectively.
According to the eikonal approximation, the phase can be
written as [13]

SP ¼ ωðtd − rÞ; ðA9Þ

where td is the time delay (see its detailed expression in
[2,6]). After substituting the expression of the scalar wave
equation (A2) into Eq. (A7), we can obtain Eq. (1).

APPENDIX B: CESÀRO SUMMABILITY

According to [27], for a series,

sn ¼
Xn
k¼0

ak;

we can define Cesàro Summability as follows.
If

lim
n→∞

s0 þ s1 þ � � � þ sn
nþ 1

¼ s;

we declare sn is ðC; 1Þ summable and have

X∞
n¼0

an ¼ s ðC; 1Þ:

For a improper integral over infinite interval such asR∞
−∞ fðtÞdt, if

lim
R→∞

Z
R

−R

�
1 −

jtj
R

�
fðtÞdt ¼ L;

then we declare
R∞
−∞ fðtÞdt is ðC; 1Þ summable to L or

Z
∞

−∞
fðtÞdt ¼ L ðC; 1Þ:

The oscillatory improper integral in this paper
R∞
0 fðtÞdt

likes the Fourier integral
R
∞
0 gðtÞeiwtdt and could be

divergent under the usual integral convergence definition.
However, it may be ðC; 1Þ summable to a finite value L, if it
satisfies

lim
R→∞

Z
R

0

R − t
R

fðtÞdt ¼ L:

We can prove that this formula is the limit of the integral
mean of

R
fðtÞdt when the upper limit goes to infinity.

Under the definition of ðC; 1Þ summability,

Z
∞

0

fðtÞdt≡ lim
R→∞

1

R

Z
R

0

dT
Z

T

0

dtfðtÞ

¼ lim
R→∞

1

R

Z
R

0

dt
Z

R

t
dTfðtÞ

¼ lim
R→∞

Z
R

0

dt
ðR − tÞ

R
fðtÞ;

where

R
R

0
GðTÞdT
R represents the integral mean of GðTÞ over

½0; R�. In addition, if the integral is convergent to a value L
under the usual integral convergence definition, it is also
ðC; 1Þ summable to the same value L [27].

[1] T. T. Nakamura, Phys. Rev. Lett. 80, 1138 (1998).
[2] R. Takahashi and T. Nakamura, Astrophys. J. 595, 1039

(2003).
[3] Z. Cao, L.-F. Li, and Y. Wang, Phys. Rev. D 90, 062003

(2014).
[4] L. Dai, S.-S. Li, B. Zackay, S. Mao, and Y. Lu, Phys. Rev. D

98, 104029 (2018).
[5] K. Liao, M. Biesiada, and X.-L. Fan, Astrophys. J. 875, 139

(2019).

[6] P. Schneider, J. Ehlers, and E. E. Falco, Gravitational
Lenses (Springer-Verlag, New York, 1992).

[7] R. J. Bontz and M. P. Haugan, Astrophys. Space Sci. 78,
199 (1981).

[8] S. Deguchi and W. D. Watson, Astrophys. J. 307, 30 (1986).
[9] J. Creighton and W. Anderson, Gravitational-Wave Physics

and Astronomy: An Introduction to Theory, Experiment and
Data Analysis (Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2011).

XIAO GUO and YOUJUN LU PHYS. REV. D 102, 124076 (2020)

124076-14

https://doi.org/10.1103/PhysRevLett.80.1138
https://doi.org/10.1086/377430
https://doi.org/10.1086/377430
https://doi.org/10.1103/PhysRevD.90.062003
https://doi.org/10.1103/PhysRevD.90.062003
https://doi.org/10.1103/PhysRevD.98.104029
https://doi.org/10.1103/PhysRevD.98.104029
https://doi.org/10.3847/1538-4357/ab1087
https://doi.org/10.3847/1538-4357/ab1087
https://doi.org/10.1007/BF00654034
https://doi.org/10.1007/BF00654034
https://doi.org/10.1086/164389


[10] I. M. Longman, Math. Proc. Cambridge Philos. Soc. 52, 764
(1956).

[11] A. Ulmer and J. Goodman, Astrophys. J. 442, 67
(1995).

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes in Fortran 77, 2nd ed.
(Cambridge University Press, Cambridge, England, 1992).

[13] R. Takahashi, Ph.D. thesis, Kyoto University, 2004.
[14] D. Levin, Math. Comput. 38, 531 (1982).
[15] L. N. G. Filon, Proc. R. Soc. Edinburgh 49, 3847 (1930).
[16] S. Xiang, Numer. Math. 105, 633 (2007).
[17] A. Iserles and S. P. Nrsett, BIT 46, 549 (2006).
[18] A. Iserles, S. Nørsett, and S. Olver, in Numerical

Mathematics and Advanced Applications, edited by A. B.
de Castro, D. Gómez, P. Quintela, and P. Salgado (Springer,
Berlin, 2006), pp. 97–118.

[19] A. J. Moylan, D. E. McClelland, S. M. Scott, A. C. Searle,
and G. V. Bicknell, The Eleventh Marcel Grossmann Meet-
ing, in Proceedings of the MG11 Meeting on General
Relativity, Berlin, Germany (World Scientific Publishing
Company, 2008), pp. 807–823, https://doi.org/10.1142/
9789812834300_0038.

[20] J. M. Diego, O. A. Hannuksela, P. L. Kelly, G. Pagano, T.
Broadhurst, K. Kim, T. G. F. Li, and G. F. Smoot, Astron.
Astrophys. 627, A130 (2019).

[21] J. M. Diego, Phys. Rev. D 101, 123512 (2020).
[22] S.-S. Li, S. Mao, Y. Zhao, and Y. Lu, Mon. Not. R. Astron.

Soc. 476, 2220 (2018).
[23] L. Lindblom, B. J. Owen, and D. A. Brown, Phys. Rev. D

78, 124020 (2008).

[24] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J.
490, 493 (1997).

[25] R. Takahashi, Astron. Astrophys. 423, 787 (2004).
[26] C. R. Keeton, arXiv:astro-ph/0102341.
[27] DLMF, in NIST Digital Library of Mathematical Functions,

Release 1.0.27 of 2020-06-15 (2020), edited by F.W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders,
H. S. Cohl, and M. A. McClain, http://dlmf.nist.gov/.

[28] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,
Numerical Recipes in C: The Art of Scientific Computing,
2nd ed. (Cambridge University Press, Cambridge, England,
1997).

[29] A. Deañ, D. Huybrechs, and A. Iserles, Chapter 2: Asymp-
totic theory of highly oscillatory integrals, in Computing
Highly Oscillatory Integrals (Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2018), pp. 5–28,
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123
.ch2.

[30] A. Deañ, D. Huybrechs, and A. Iserles, Chapter 3: Filon and
Levin Methods, in Computing Highly Oscillatory Integrals
(Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 2018), pp. 29–57, https://epubs.siam.org/doi/pdf/
10.1137/1.9781611975123.ch3.

[31] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation,
Physics Series, 1st ed. (W. H. Freeman, New York, 1973).

[32] C. Baraldo, A. Hosoya, and T. T. Nakamura, Phys. Rev. D
59, 083001 (1999).

[33] S. Hou, X.-L. Fan, and Z.-H. Zhu, Phys. Rev. D 100,
064028 (2019).

CONVERGENCE AND EFFICIENCY OF DIFFERENT METHODS … PHYS. REV. D 102, 124076 (2020)

124076-15

https://doi.org/10.1017/S030500410003187X
https://doi.org/10.1017/S030500410003187X
https://doi.org/10.1086/175422
https://doi.org/10.1086/175422
https://doi.org/10.1090/S0025-5718-1982-0645668-7
https://doi.org/10.1007/s00211-006-0051-0
https://doi.org/10.1007/s10543-006-0071-2
https://doi.org/10.1142/9789812834300_0038
https://doi.org/10.1142/9789812834300_0038
https://doi.org/10.1142/9789812834300_0038
https://doi.org/10.1142/9789812834300_0038
https://doi.org/10.1051/0004-6361/201935490
https://doi.org/10.1051/0004-6361/201935490
https://doi.org/10.1103/PhysRevD.101.123512
https://doi.org/10.1093/mnras/sty411
https://doi.org/10.1093/mnras/sty411
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.1103/PhysRevD.78.124020
https://doi.org/10.1086/304888
https://doi.org/10.1086/304888
https://doi.org/10.1051/0004-6361:20040212
https://arXiv.org/abs/astro-ph/0102341
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch2
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975123.ch3
https://doi.org/10.1103/PhysRevD.59.083001
https://doi.org/10.1103/PhysRevD.59.083001
https://doi.org/10.1103/PhysRevD.100.064028
https://doi.org/10.1103/PhysRevD.100.064028

