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Free fall is only approximately universal in general relativity: different extended bodies can fall in
different ways, depending on their internal dynamics. Nevertheless, certain aspects of free fall are
independent of those dynamics. This paper derives universal constraints on extended-body motion which
hold in all vacuum type D spacetimes. Working in the quadrupole approximation, we show that in addition
to the (previously known) constraints imposed by Killing vectors, two components of the gravitational
torque must vanish. Furthermore, of the ten components of a body’s quadrupole moment, four are found to
be irrelevant, two can affect only the force, and the remaining four can affect both forces and torques. As an
application, we consider the capabilities of a hypothetical spacecraft which controls its motion by
controlling its internal structure. In the Schwarzschild spacetime, such a spacecraft can control its mass, and
by doing so, it can stabilize unstable orbits, escape from bound orbits, and more—all without a rocket.
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I. INTRODUCTION

A geodesic can be uniquely fixed by specifying an initial
position and an initial velocity. To the extent that bodies in
general relativity move on geodesics, free fall is therefore
universal: all objects with the same initial position and the
same initial velocity have the same past and future.
However, it is only approximately true that freely falling
objects move on geodesics. More completely, the laws of
motion depend on a body’s spin as well as its quadrupole
and higher moments. And because the time dependence of
the quadrupole and higher moments depends on a body’s
small-scale features, different bodies can fall in different
ways. This paper explores which aspects of extended-body
motion are nevertheless universal, obtaining constraints
which hold for all possible bodies in all vacuum type D
spacetimes (including Schwarzschild and Kerr). While our
focus is on extended test bodies in the quadrupole approxi-
mation, some results also hold at higher multipole orders.
Much of the prior literature on quadrupole effects in

general relativity has been motivated by astrophysics. It has
therefore focused on bodies which have special types of
moments and which move in Schwarzschild or Kerr
backgrounds [1–9]. In some cases, quadrupole moments
were assumed to be permanent and to evolve quasirigidly
[1,3–5]. In others, moments were assumed to be induced—
determined either by a body’s spin [2,7–9] or by an external
tidal field [2,9]. While these are reasonable models for self-
gravitating astrophysical objects, they are not the only
possibilities allowed by the laws of physics.
Here, we allow for more general moments and more

general metrics. There are two reasons for this. First,

weakening assumptions clarifies the underlying theory. It
allows us to see that the Petrov type of a spacetime can be
used to simplify the laws of motion, and that in type D
spacetimes, conformal Killing-Yano tensors play an impor-
tant role. Our second reason for generalizing previous work
is that there may be interesting systems whose quadrupole
moments differ from those which have already been
considered. It is possible that some astrophysical systems
behave unexpectedly, and it is important to understand the
space of possibilities.
Considering more general moments also allows us to

address questions which are not motivated by astrophysics.
For example, can a spacecraft control its motion simply by
controlling its internal structure? Indeed it can. Even in
Newtonian gravity, a spacecraft which manipulates its
shape can modulate the forces and torques which act upon
it. While these modulations may be small, their effects can
grow arbitrarily large [10–13]. This phenomenon requires
that a body’s moments be neither quasirigid nor induced.
By investigating motion in a more general context, this
paper provides a framework for understanding “rocket-free
maneuvering” also in a relativistic context.
Following initial work by Wisdom [14], there has been a

significant amount of literature already devoted to under-
standing rocket-free motion in general relativity [15–23].
The most striking claim which has sometimes been made is
that relativistic extended bodies can “swim in spacetime”
[14,17], a description chosen due to similarities with the
swimming of microorganisms at low Reynolds numbers
[24,25]: in certain limits, net translations were found to
depend only on the sequence of shapes a spacecraft attains,
and not on the speed of that sequence. This claim is
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nevertheless controversial [20,23]. Although we do not
directly address it, understanding motion in a more general
context at least provides a basis for investigating whether or
not it is possible to swim in spacetime.
Our discussion is initially general but then specializes.

Section II reviews the theory of extended test bodies in
general relativity, focusing on the quadrupole approxima-
tion and on the simplifications which arise in vacuum
(but otherwise arbitrary) spacetimes. Section III specializes
to vacuum type D geometries, determining all possible
quadrupolar forces and torques. General constraints are
derived, and the Kerr and Schwarzschild cases are exam-
ined in detail. Section IV specializes further, focusing
on spin-free, torque-free bodies in the Schwarzschild
spacetime. It illustrates how such bodies can use their
quadrupole moments to control their motion. There are
four Appendixes. Appendix A explains our notation and
conventions and provides a table of symbols. Appendix B
lists coordinate expressions relevant to the Kerr and
Schwarzschild geometries. Appendix C reviews the defi-
nitions of eccentricity and semilatus rectum for geodesics
in the Schwarzschild spacetime. Finally, Appendix D pro-
vides some intuition for relativistic quadrupole moments
by computing the moment associated with a variable-
length rod.

II. THEORY OF MOTION: A REVIEW

There are many perspectives on motion in general
relativity. The one adopted here is due primarily to
Dixon [26–30], who derived laws of motion through all
multipole orders and without any slow motion or similar
assumptions. Although these laws were originally obtained
only in a test body regime, the formalism has since been
generalized to allow for nontrivial self-interaction [31,32].
The discussion here is nevertheless confined to the consi-

deration of extended test bodies; self-forces and self-
torques are ignored. In addition, we assume that (i) a body
can be described by a spatially compact stress-energy
tensor Tab, and (ii) that Tab must be conserved:

∇bTab ¼ 0: ð2:1Þ

Nongravitational external forces are therefore excluded, as
are cases where a body absorbs or ejects material (such as
rocket fuel). This section summarizes certain aspects of
Dixon’s formalism, focusing on the quadrupole approxi-
mation and on the simplifications which arise in vacuum
backgrounds. Except for some results on mass and momen-
tum quadrupoles in Sec. II C [cf. Eqs. (2.12) and (2.13)], it
is a review. More detailed reviews may be found in
Refs. [28,29,32], although it is the perspective in
Ref. [32] which is the closest to the one adopted here.

A. Multipole moments, worldlines, and foliations

Fundamentally, Dixon’s formalism is a theory of multi-
pole moments. It introduces a set of moments which are
optimized for describing stress-energy tensors, i.e., rank-2,
symmetric tensor fields which are also conserved. Had the
moments not been constructed with care, stress-energy
conservation would imply an evolution equation for each
moment. However, it is a central result of Dixon’s formal-
ism that with appropriate definitions, the conservation
equation constrains only the monopole and dipole moments
[27]. The four partial differential equations (2.1) are in fact
equivalent to the ten ordinary differential equations which
evolve a body’s linear and angular momenta. These latter
equations are what we refer to as the laws of motion.
As with any multipole expansion, Dixon’s constructions

require a choice of origin. This takes the form of a
worldline Z, which is assumed here to be timelike.
Additionally, there must be a way to identify each point
on Z with the “simultaneous” points within a body’s
worldtube. Mathematically, this is accomplished by fixing
a collection Σ≡ fΣsjsg of hypersurfaces which foliate the
worldtube. Each leaf of that foliation is assumed to intersect
Z exactly once, so all points in Σs are identified as being
synchronous with the point

zs ≡ Z ∩ Σs ð2:2Þ

on Z. The time parameter s is arbitrary.
Now, an extended body occupies an extended worldtube.

Dixon’s constructions effectively replace that worldtube
with the worldline Z. Moreover, they replace Tab with an
infinite set of multipole moments. These are tensors on Z.
Different choices for Z and Σ result in different moments.
Although it is possible in principle to transform between
different sets of moments, the practical utility of the
multipole expansion depends on reasonable choices for
Z and Σ. In a Newtonian multipole problem, the analog of
Z is typically fixed by placing it at a body’s center of mass
[28,32]. However, fixing the origin is logically the final
step in the theory. Most results do not depend on it, whether
in the Newtonian context or in the relativistic one. For this
reason, we leave Z and Σ as arbitrary until describing
relativistic center of mass conditions in Sec. II E. Those
conditions are applied below in Sec. IV, but not in Sec. III.

B. Generalized momentum and generalized force

The laws of motion implied by stress-energy conserva-
tion affect a body’s linear and angular momenta. However,
the linear and angular momenta may be viewed as two
aspects of a more fundamental object, the generalized
momentum [33]

PξðsÞ≡
Z
Σs

dSaTa
bξ

b: ð2:3Þ
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This takes as input a vector field ξa and a worldline
parameter s. The allowed vector fields here are known
as generalized Killing fields. They are constructed from Z
and Σ, and complete definitions may be found in
Refs. [33,34]. For our purposes, it suffices to note that
there is a sense in which the generalized Killing fields
preserve geodesic distances away from Z. They are exactly
Killing on Z, in the sense that

LξgabjZ ¼ ∇cLξgabjZ ¼ 0: ð2:4Þ

Furthermore, any generalized Killing field is uniquely
determined by specifying itself and its (antisymmetric)
first derivative anywhere on Z. Since these data may be
specified freely, the space of generalized Killing fields is
always ten-dimensional. If an ordinary Killing field exists,
it is also a generalized Killing field. These statements
together imply that in maximally symmetric spacetimes, all
generalized Killing fields are ordinary Killing fields.
For fixed s, the generalized momentum is a vector not at

any tangent space in spacetime, but on the ten-dimensional
vector space dual to the space of generalized Killing fields
[32]. The ten components of this vector determine the four
components of a body’s linear momentum and the six
components of its angular momentum. Despite its abstract-
ness, working with the generalized momentum simplifies
discussions of conservation laws and allows for calcula-
tions which simultaneously describe a body’s translational
and rotational degrees of freedom.
The interesting point is now to understand the general-

ized force, which is the rate of change of the generalized
momentum. This may be computed using stress-energy
conservation: if wc is a time evolution vector field for Σ, it
follows from Eqs. (2.1) and (2.3) that

d
ds

Pξ ¼
1

2

Z
Σs

TabLξgabwcdSc: ð2:5Þ

This is exact. It illustrates that the generalized force—
which determines ordinary forces and torques—measures
the degree by which the generalized Killing fields fail to be
genuinely Killing. If there exists a genuine Killing field ψa,
it is immediate that the associated component of the
generalized momentum is conserved: Pψ ¼ const.

C. Quadrupole moments

In principle, the generalized force can always be com-
puted using Eq. (2.5). However, directly evaluating the
integral in that expression would require a detailed knowl-
edge of Tab. This can be avoided, as much as possible, by
assuming (i) that the body is small compared to the length
scales set by the geometry, and (ii) thatZ is not too far from
the body’s “center.” With these assumptions, Lξgab can be
expanded about zs. The first two terms in that expansion
vanish on account of Eq. (2.4). The third results in [32]

d
ds

PξðsÞ ¼ −
1

6
J̃abcdðsÞLξRabcdðzsÞ þ…; ð2:6Þ

where J̃abcd is the quadrupole moment of Tab. This moment
depends on both Z and Σ, and has the same algebraic
properties as a Riemann tensor:

J̃abcd ¼ J̃½ab�cd ¼ J̃ab½cd�; J̃½abc�d ¼ 0: ð2:7Þ

All aspects of a body’s internal structure which are relevant
to its motion are encoded, at this order, in Pξ and in J̃abcd.
Although quadrupole moments are typically used in

contexts where a body’s small-scale features are not known,
they can be computed in terms of those features, when
available. The general result [27] is involved and not
reproduced here. However, if Riemann normal coordinates
with origin zs are introduced and denoted by xα, the
quadrupole moment can be approximated by

J̃αβγδðsÞ ¼
Z
Σs

dSσx½αðwjσjTβ�½δ þ Tβ�σ _z½δs

þ _zβ�s Tσ½δÞxγ� þ…; ð2:8Þ

where the omitted terms here have relative magnitude
½ðbody sizeÞ=ðcurvature scaleÞ�2. Appendix D applies this
to compute the quadrupole moment of a rod whose length is
a freely specifiable function of time.
In general, Eq. (2.7) implies that J̃abcd has 20 indepen-

dent components. However, not all of those components
affect the motion. In vacuum geometries, at least ten of
them are irrelevant [4,31,35]. This may be seen by noting
that if Rab ¼ Racb

c ¼ 0, and if

Jabcd ≡ ðJ̃abcdÞTF ¼ J̃abcd þ gb½cJ̃d�faf

− ga½cJ̃d�fbf þ
1

3
J̃fhfhga½cgd�b ð2:9Þ

denotes the trace-free component of J̃abcd, it follows from
Eq. (2.4) that1

ðJabcd − J̃abcdÞLξRabcd ¼ 0: ð2:10Þ

Comparison with Eq. (2.6) then shows that the trace-free
moment Jabcd can be used to compute the same forces and
torques as the full moment J̃abcd; the ten trace components
J̃acbc are irrelevant. However, even this does not complete
the counting of irrelevant quadrupole components. It is
shown in Sec. III below that in vacuum spacetimes which
are of Petrov type D, at least four additional components
decouple from the laws of motion.

1Equation (2.10) is valid also for vacuum solutions with
nonzero cosmological constant Λ, in which case Rab ¼ Λgab.
Nevertheless, we assume Λ ¼ 0 below.
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As alluded to above, stress-energy conservation imposes
no differential constraints on the evolution of J̃abcd [27]. It
follows that there are also no universal evolution equations
for the trace-free moment Jabcd. Except where forbidden by
energy conditions, there exist conserved stress-energy
tensors—and therefore physically realizable bodies—in
which Jabcd evolves in any manner whatsoever (so long
as it retains the algebraic symmetries of a Weyl tensor).
This is essential for the discussion in Sec. IV below, as it
ensures that at least in principle, spacecraft can be engi-
neered to have quadrupole moments which vary in any
specified manner. In particular, they may be engineered to
control their quadrupole moments in order to control their
motion.
Some intuition for Jabcd may be gained by decomposing

it into its mass and momentum components. Any such
decomposition first requires a choice of frame. Choosing
one by fixing a unit timelike vector τa, existing decom-
positions for J̃abcd, which originated in Ref. [30], have
employed a mass quadrupole Q̃ab ¼ Q̃ðabÞ, a rank-3
momentum quadrupole Π̃abc ¼ Π̃a½bc�, and a rank-4 stress
quadrupole S̃abcd ¼ S̃½ab�cd ¼ S̃ab½cd�. These tensors satisfy
Π̃½abc� ¼ S̃½abc�d ¼ 0 and are fully orthogonal to τa. In terms
of them,

J̃abcd ¼ S̃abcd − τ½aΠ̃b�cd − τ½cΠ̃d�ab − 3τ½aQ̃b�½cτd�: ð2:11Þ

In nonvacuum backgrounds, the relative complexity of this
decomposition is essential. In the vacuum context of
interest here, it can be simplified. This is because
Eq. (2.10) allows J̃abcd to be replaced by Jabcd in the laws
of motion, and for the latter, the stress quadrupole can be
discarded, the trace of the mass quadrupole is irrelevant,
and the rank-3 momentum quadrupole can be replaced by a
rank-2 momentum quadrupole. More precisely, it is useful
to define a new set of mass and momentum quadrupoles by

Qab ≡
�
Q̃ab þ 4

3
S̃acbc

�
TF
; ð2:12aÞ

Πab ≡ −Π̃ða
cdϵ

bÞcdfτf; ð2:12bÞ

where the trace-free operation in the first line is to be
performed using the spatial projector gab þ τaτb. Both Qab

and Πab are symmetric, trace-free, and orthogonal to τa.
Each has five independent components. Use of Eqs. (2.9)
and (2.11) shows that they completely determine the trace-
free stress-energy quadrupole:

Jabcd ¼
�
1

2
ðτ½aΠb�fϵcdfh þ τ½cΠd�fϵabfhÞτh

− 3τ½aQb�½cτd�
�
TF
: ð2:13Þ

Note that this is an expansion for Jabcd while Eq. (2.11) is
an expansion for J̃abcd.

D. Linear momentum, angular momentum,
force, and torque

We now use the generalized momentum Pξ to define a
body’s linear momentum pa and its angular momentum
Sab ¼ S½ab�, both of which are tensors on Z. The definition
is implicit. For all generalized Killing fields [32,33],

PξðsÞ ¼ paðsÞξaðzsÞ þ
1

2
SabðsÞ∇aξbðzsÞ: ð2:14Þ

For fixed ξa, this shows that Pξ is a linear combination of
linear and angular momentum components. All compo-
nents of pa and Sab may be extracted by varying over the
full ten-dimensional space of generalized Killing fields.
Alternatively, explicit integrals for the momenta may be
found in Refs. [26,27,32].
A force Fa and a torque Nab ¼ N½ab� can be defined

similarly, using the generalized force dPξ=ds. For all
generalized Killing fields,

d
ds

PξðsÞ ¼ FaðsÞξaðzsÞ þ
1

2
NabðsÞ∇aξbðzsÞ: ð2:15Þ

Evolution equations for pa and Sab follow by differentiat-
ing Eq. (2.14), comparing the result with Eq. (2.15), and
then varying over all generalized Killing fields. Using
ð∇c∇aξb þ Rabcdξ

dÞjZ ¼ 0, which follows from Eq. (2.4),
these steps result in Dixon’s equations [27,28,32,33]

_pa ¼ −
1

2
Rabcd _zbsScd þ Fa; ð2:16aÞ

_Sab ¼ 2p½a _zb�s þ Nab: ð2:16bÞ

Furthermore, comparison of Eqs. (2.6), (2.10), and
(2.15) shows that in the quadrupole approximation, the
force and torque are given by

Fa ¼ −
1

6
Jbcdf∇aRbcdf; Nab ¼ 4

3
Jcdf½aRb�

fcd ð2:17Þ

in vacuum spacetimes. Contributions from the octupole and
higher-order moments may be found in Refs. [27,28,32]
(without restriction to the vacuum case).
As already noted, Killing fields generate conservation

laws; if ψa is Killing, Pψ is conserved. Using Eq. (2.14),
this is equivalent to the conservation of a linear combina-
tion of linear and angular momentum components:

Pψ ¼ paψ
a þ 1

2
Sab∇aψb ¼ const: ð2:18Þ
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It also follows from Eq. (2.15) that for each Killing field, a
linear combination of force and torque components must
vanish. In particular,

Faψ
a þ 1

2
Nab∇aψb ¼ 0: ð2:19Þ

These results are exact. They are also preserved at every
multipole order [30].
It may be noted that our force and torque are not

necessarily equal to _pa and _Sab. Although the difference
terms in Eq. (2.16) are sometimes referred to as forces and
torques, this is physically inappropriate [28,32]. They are
purely kinematic consequences of the fact that a local
Poincaré transformation at zs may look different from that
same transformation at zsþds. For example, a local Lorentz
transformation about one point is equivalent to a Lorentz
transformation about another point together with a trans-
lation. Similarly, a local translation at one point is equiv-
alent, at another point, to a local translation together with a
local Lorentz transformation. These geometric effects make
the linear and angular momenta appear to mix when
evaluated at different points on Z; they are responsible

for the − 1
2
Rabcd _zbsScd and 2p½a _zb�s terms in Dixon’s equa-

tions. Such terms do not affect the generalized momentum,
whose variations are intrinsically dynamical. Indeed, it is
only these dynamical variations which we refer to as forces
and torques.

E. Center of mass and the momentum-velocity relation

Everything said so far has been valid regardless of the
choice of worldline Z or the foliation Σ. In fact, the
foliation plays no explicit role in the application of
the formalism. It arises only when relating the momenta
or the moments to the stress-energy tensor. Nevertheless, Σ
can be fixed by letting each Σs be formed from the set of
spacelike geodesics which emanate from zs and are
orthogonal at that point to paðsÞ. Furthermore, Z may
be fixed by supposing that [28,30]

Sabpb ¼ 0: ð2:20Þ

This can be interpreted as requiring that the mass dipole
moment vanish for a zero-momentum observer. As both pa

and Sab depend on Z and Σ, these definitions are highly
implicit. Nevertheless, it has been shown that under
appropriate conditions, solutions exist and are unique
[36,37]. We refer to the resulting Z as the center of mass
worldline.
The center of mass velocity _zas may now be related to the

momentum pa. In Newtonian physics, the analogs of these
quantities are proportional to one another. However, that is
not a definition. It is instead a consequence of the
definitions for the momentum and the center of mass
position. Relativistically, the relation between momentum

and center of mass velocity must also be derived. This was
first accomplished by Ehlers and Rudolph [30], who
showed that these quantities are not necessarily propor-
tional. To describe their result, first write the momentum in
terms of a (not necessarily constant) rest mass m≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−papap

> 0 and a unit vector ua, such that

pa ¼ mua; uaua ¼ −1: ð2:21Þ

If the worldline parameter s is then normalized such that

_zasua ¼ −1; ð2:22Þ

Eqs. (2.16) and (2.20) may be shown to imply that

m_zas ¼ pa − Na
bub

−
Sab½mFb − 1

2
ðpc − Nc

eueÞSdfRbcdf�
m2 þ 1

4
SbcSdfRbcdf

: ð2:23Þ

Note that _zas does not appear on the right-hand side of this
expression. In general, s is not a proper time and ua is not
tangent to _zas . The difference m_zas − pa is nevertheless
orthogonal to pa, and is referred to as the hidden mechani-
cal momentum [34,38]. Also, it is assumed here that the
denominator m2 þ 1

4
SbcSdfRbcdf never vanishes in any

situation where this equation is to be applied. If it did
vanish, that would signal a breakdown of the center of mass
condition.
When the center of mass condition is applied, Sab can

have only three nonzero components. Nevertheless, the
torque Nab is not similarly constrained. Three of its six
components directly contribute to changes in the angular
momentum. Inspection of Eq. (2.23) shows that the
remaining three torque components, determined by
Na

bub, contribute to the hidden momentum.

III. EXTENDED-BODY EFFECTS IN TYPE D
SPACETIMES

Although our interest is primarily in the Kerr and
Schwarzschild geometries, many results can be derived
just as easily while assuming only that the spacetime is
vacuum and of Petrov type D. This includes Kerr as a
special case, although it also allows for accelerating black
holes, objects with nonzero NUT charge, and more [39,40].
This section examines the gravitational forces and torques
which act on extended bodies in arbitrary vacuum type D
spacetimes. It does not impose any center of mass
conditions.

A. Geometry of type D spacetimes

Simple expressions for forces and torques require
decompositions adapted to the spacetime geometry.
More precisely, they require a tetrad adapted to the

EXTENDED-BODY MOTION IN BLACK HOLE SPACETIMES: … PHYS. REV. D 102, 124075 (2020)

124075-5



principal null directions of that geometry. By definition,
there are two such directions in type D spacetimes.
Choosing the real null vectors la and na to be tangent
to those directions, it is convenient to introduce a complex
null vector ma such that ðla; na; ma; m̄aÞ is a tetrad whose
only nonvanishing scalar products are

m · m̄ ¼ −l · n ¼ 1: ð3:1Þ

This implies that gab ¼ 2½mðam̄bÞ − lðanbÞ�. Tetrads with
these properties are unique up to the discrete swaps
la ↔ na and ma ↔ m̄a, and the rescalings

la ↦ λla; na ↦ λ−1na; ma ↦ eiζma; ð3:2Þ

where λ ≠ 0 and ζ are real but otherwise arbitrary.
Fixing any tetrad in this class, it is convenient to define

from it a basis of complex 2-forms, given by

Xab ¼ 2l½amb�; Yab ¼ 2n½am̄b�;

Zab ¼ 2ðl½anb� −m½am̄b�Þ ð3:3Þ

and their complex conjugates. The only nonvanishing inner
products in this basis follow from

ZabZab ¼ 2XabYab ¼ −4: ð3:4Þ

It may be noted that iZab is a square root of the metric in the
sense that gab ¼ −Za

cZbc. Additionally, the basis elements
Xab, Yab, and Zab are self-dual, meaning that, e.g.,
X�
ab ¼ iXab, where X�

ab ≡ 1
2
ϵab

cdXcd denotes the Hodge
dual. The conjugate basis elements X̄ab, Ȳab, and Z̄ab are
anti-self-dual, so, e.g., X̄�

ab ¼ −iX̄ab. Our main motivation
for introducing this basis is that it allows the curvature (and
later the quadrupole moment) to be written down and
manipulated without having to perform coordinate
computations.
In order to write down the curvature, first note that since

la and na are both tangent to repeated principal null
directions,

l½aRb�cdflcld ¼ n½aRb�cdfncnd ¼ 0: ð3:5Þ

These equations and the vacuum condition Rab ¼ 0 can be
used to show that the Riemann tensor is fixed up to a
complex scalar Ψ:

Rabcd ¼ 2Re½ΨðZabZcd − XabYcd − YabXcdÞ�: ð3:6Þ

Here, Ψ ¼ − 1
4
RabcdXabYab is more commonly denoted by

Ψ2, and is one of five Weyl scalars Ψ0;…;Ψ4 [41,42]. In
type D spacetimes and with a tetrad of the given type, the
other scalars vanish and are not used below.

Many of the most mathematically interesting character-
istics of type D spacetimes follow from the fact that they
admit a Killing spinor κAB ¼ κðABÞ, which is defined to
satisfy ∇A0ðAκBCÞ ¼ 0 [43]. The relevant point for our
purposes is that the existence of this spinor implies the
existence of two real conformal Killing-Yano tensors.
These are the real and imaginary components of the
complex 2-form corresponding to κABϵ̄A0B0 . In order to
write this down more explicitly, it is convenient to
introduce a spinor dyad ðoA; ιAÞ such that la ¼ oAōA

0

and na ¼ ιA ῑA
0
, in which case κAB ¼ Ψ−1=3oðAιBÞ [44].

Introducing an arbitrary constant χ for later convenience,
a complex conformal Killing-Yano tensor derived from κAB
is then

Kab ≡ χΨ−1=3Zab: ð3:7Þ

This satisfies the conformal Killing-Yano equation

∇ðaKbÞc ¼ gabKc −KðagbÞc; ð3:8Þ

where Ka ≡ 1
3
∇bKba. As Zab is self-dual, so is Kab. The

square of a conformal Killing-Yano tensor is a rank-2
conformal Killing tensor, which generates quadratic con-
servation laws for null geodesics. Although there do not
appear to be generalizations of these conservation laws
which apply for massive extended bodies, Kab will never-
theless be seen to play an important role in the analysis of
their motion.
Before explaining this, it is instructive to provide an

example of the structures just described. The Kerr space-
time with mass M and specific angular momentum a is
vacuum and type D. Its metric is given, in Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ, by Eq. (B1) below. An explicit null
tetrad is provided by Eq. (B2), and in terms of that, the
Weyl scalar appearing in Eq. (3.6) is

Ψ ¼ −
M

ðr − ia cos θÞ3 : ð3:9Þ

In the a ¼ 0 Schwarzschild case, Ψ is real. Otherwise, it is
complex. Turning to the conformal Killing-Yano tensor
Kab and allowing for arbitrary a, it is convenient to choose
the χ in Eq. (3.7) such that

Kab ¼ iðr − ia cos θÞZab: ð3:10Þ

In coordinates, this is given by Eq. (B3). Its real component
is an ordinary (divergence-free) Killing-Yano tensor, the
square of which is the rank-2 Killing tensor which
determines the Carter constants for Kerr geodesics.
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B. Quadrupolar forces and torques in type D spacetimes

We now compute forces and torques in general vacuum
type D spacetimes, allowing for arbitrary quadrupole
moments but no octupole or higher moments. Contrary
to common practice, we do not decompose the quadrupole
moment into mass and momentum components. Instead,
we observe that simple results for the force and torque arise
when the quadrupole moment is expressed in a form which
is adapted to the background geometry, and not to, e.g., a
body’s rest frame.
The decomposition adopted here takes advantage of the

fact that the trace-free quadrupole moment Jabcd has the
same algebraic properties as a Weyl tensor. It is therefore
possible to decompose it into the five complex scalars

J0 ≡ 1

4
JabcdXabXcd; J1 ≡ 1

8
JabcdXabZcd; ð3:11aÞ

J2 ≡ −
1

4
JabcdXabYcd ¼ 1

16
JabcdZabZcd; ð3:11bÞ

J3 ≡ −
1

8
JabcdYabZcd; J4 ≡ 1

4
JabcdYabYcd; ð3:11cÞ

which are analogous to the five Weyl scalars Ψ0;…;Ψ4.
These definitions are equivalent to the expansion

Jabcd ¼ 2Re½J0YabYcd þ J1ðYabZcd þ ZabYcdÞ
þ J2ðZabZcd − XabYcd − YabXcdÞ
− J3ðXabZcd þ ZabXcdÞ þ J4XabXcd�: ð3:12Þ

It is now straightforward to compute quadrupolar forces
and torques for arbitrary extended bodies: combining
Eqs. (2.4), (2.6), (3.4), (3.6), (3.7), and (3.11) shows that
the generalized force dual to any generalized Killing field
ξa is

d
ds

Pξ ¼Faξ
aþ 1

2
Nab∇aξb

¼−8Re
�
J2LξΨþ 1

2
χ−1Ψ4=3ðJ3Xab − J1YabÞLξKab

�
:

ð3:13Þ

This is valid for bodies with arbitrary internal structure and
for any Σ and Z. The only assumption is that the
generalized force can be truncated at quadrupole order.
Regardless, the result splits into two parts: one proportional
to LξΨ and the other to LξKab. These terms measure the
degrees by which ξa fails to generate symmetries for the
Weyl scalar Ψ or the conformal Killing-Yano tensor Kab.
One consequence of Eq. (3.13) is that since J0 and J4 are

absent from that expression, they cannot affect a body’s
motion. It is only J1, J2, and J3 which influence dPξ=ds.
The ten real force and torque components are thus

determined by three complex quadrupole components.
This means that there must be a minimum2 of four real
constraints on the force and torque. Type D spacetimes
admit either two or four Killing fields [45], so at least in
cases with only two Killing fields, these constraints cannot
only be of the form (2.19). There must be additional
constraints which are not derivable from Killing fields.
To identify these additional constraints, it can be useful

to work with Fa and Nab instead of dPξ=ds. Varying
Eq. (3.13) over all generalized Killing fields while noting
that XabLξZab ¼ 4maLξla and YabLξZab ¼ −4m̄aLξna,

Fa ¼ −8Re½J2∇aΨþ 2ΨðJ1m̄b∇anb þ J3mb∇albÞ�;
ð3:14Þ

and

Nab ¼ 16Re½ΨðJ1Yab þ J3XabÞ�: ð3:15Þ

Thus, while the force depends on J1, J2, and J3, the torque
depends only on J1 and J3. Additionally, combining
Eq. (3.15) with Eqs. (3.4) and (3.7) shows that

NabKab ¼ 0: ð3:16Þ

At least when the spacetime admits only two Killing fields,
this is the constraint which is not derivable from Killing
vectors. It implies that two real torque components must
vanish, regardless of a body’s internal structure.
Another perspective on force and torque constraints may

be gained by noting that

Fa ¼ Re½m̄bðXcd∇anb þ Ȳcd∇albÞ�Ncd − 8ReðJ2∇aΨÞ;
ð3:17Þ

which follows from Eqs. (3.14) and (3.15). If this equation
is contracted with a Killing field, Eqs. (3.5) and (3.16) can
be used to show that it implies the Killing constraint (2.19).
More generally, this can be viewed as describing that
component of the force which may be varied independently
of the torque: if a spacecraft has actively adjusted J1 and J3
to produce a desired torque—subject to the constraint
(3.16)—the force can be varied only via ReðJ2∇aΨÞ. As
LψΨ ¼ 0 for any Killing vector ψa, forces can thus be
controlled, independently of torques, only in directions
which are “not Killing.” This provides an intuitive sense in
which a body can “grab on to the geometry” only in
directions where the geometry is changing.

2If Ψ is real, as it is in Schwarzschild, ImJ2 cannot affect the
motion. There are then five force and torque constraints instead
of four.
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C. Conservation laws in Kerr

We now specialize to a Kerr spacetime with massM and
specific angular momentum a. As given by Eq. (B4), there
are two Killing vectors in these spacetimes: ta, which
generates a time translation, and ψa

ð3Þ, which generates a

rotation. Each of these Killing vectors implies a conserva-
tion law and also a constraint on the force and torque.
Beginning with ta, it follows from Eqs. (2.18), (3.9), and

(3.10) that the energy

E≡ −Pt ¼ −pata þ
1

2
ImðΨSabKabÞ ð3:18Þ

must be conserved, regardless of a body’s internal dynam-
ics. Using Eq. (2.19), the corresponding constraint on the
force and torque is

Fata ¼
1

2
ImðΨNabKabÞ: ð3:19Þ

Both this and Eq. (3.18) hold through all multipole orders.
However, use of Eq. (3.16) shows that in the quadrupole
approximation,

Fata ¼ 0: ð3:20Þ

Similar calculations may be performed using the rota-
tional Killing field ψa

ð3Þ. Its existence implies that the

angular momentum component Pψ ð3Þ must be conserved,

and also that Faψ
a
ð3Þ þ 1

2
Nab∇aψb

ð3Þ ¼ 0. In the quadrupole

approximation where Eq. (3.16) holds, the force and torque
constraint is more explicitly

Faψ
a
ð3Þ ¼

1

2
Im

��
r2 − 2Mrþ a2

ðr − ia cos θÞ2
�
Xab þ Yab

�

× Nab sin θ: ð3:21Þ

D. Conservation laws in Schwarzschild

We now discuss forces and torques in a Schwarzschild
spacetime with mass M. In standard Schwarzschild coor-
dinates ðt; r; θ;ϕÞ, the metric components are given by the
a ¼ 0 case of the general Kerr expression (B1). Unlike
other members of the Kerr family, Schwarzschild space-
times admit four Killing vector fields: ta, which generates
time translations, and ψa

ð1Þ, ψa
ð2Þ, and ψa

ð3Þ, which all

generate rotations. The coordinate components of these
vector fields are given by Eq. (B4).
It is convenient to employ a 3-vector notation where the

rotational Killing fields are viewed as elements of the triple

ψ⃗a ≡ ðψa
ð1Þ;ψ

a
ð2Þ;ψ

a
ð3ÞÞ: ð3:22Þ

The existence of these Killing fields then implies that the
angular momentum “3-vector”

L⃗≡ Pψ⃗ ≡ ðPψ ð1Þ ;Pψ ð2Þ ;Pψ ð3Þ Þ ð3:23Þ

must be conserved. To better understand the implications of
this conservation law, it is useful to introduce a number of
additional definitions. First, motivated by standard trans-
formations between Cartesian and polar coordinates in R3,
define the 3-vector basis

z⃗≡ rðsin θ cosϕ; sin θ sinϕ; cos θÞ; ð3:24aÞ

θ⃗≡ ðcos θ cosϕ; cos θ sinϕ;− sin θÞ; ð3:24bÞ

ϕ⃗≡ ð− sinϕ; cosϕ; 0Þ: ð3:24cÞ

If a linear momentum 3-vector is then introduced via3

p⃗≡ ffiffiffi
2

p
Re½pamaðθ⃗ − iϕ⃗Þ�; ð3:25Þ

and if “×” is used to denote the standard cross product on
R3, a calculation shows that

paψ⃗
a ¼ z⃗ × p⃗: ð3:26Þ

Combining this with Eqs. (2.18) and (3.23) finally shows
that by defining

S⃗≡ 1

2
Sab∇aψ⃗b; ð3:27Þ

we recover the Newtonian relation

L⃗ ¼ z⃗ × p⃗þ S⃗ ð3:28Þ

between different types of angular momenta. Given this, it
is natural to interpret L⃗, z⃗ × p⃗, and S⃗ as the total, orbital,
and spin angular momenta, respectively. Only L⃗ is neces-
sarily conserved.
Nearly identical calculations can be used to describe

constraints on the forces and torques which are imposed by
the rotational Killing fields: if force and torque 3-vectors
are defined such that

z⃗ × F⃗≡ Faψ⃗
a; N⃗ ≡ 1

2
Nab∇aψ⃗b; ð3:29Þ

it follows from Eq. (2.19) that

3Any terms in p⃗ which may be proportional to z⃗ are irrelevant
for our purposes and are excluded.
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N⃗ þ z⃗ × F⃗ ¼ 0: ð3:30Þ

This and Eq. (3.28) are valid through all multipole orders.
Additional insight may be gained by examining the

components of these equations which lie parallel to z⃗. For
this purpose, it is first useful to note that

∇aψ⃗b ≡ Re½ðð1 − 2M=rÞXab − ȲabÞðϕ⃗þ iθ⃗Þ
−Kabðz⃗=r2Þ�: ð3:31Þ

Then, dotting Eq. (3.28) with z⃗ while using Eq. (3.27)
shows that

ðz⃗=rÞ · L⃗ ¼ −
1

2r
ReðSabKabÞ: ð3:32Þ

The left-hand side here is proportional to the cosine of the
angle between z⃗ and L⃗. Changes in this angle therefore
require changes in ReðSabKabÞ=r. If there is no spin, z⃗must
lie in the plane orthogonal to L⃗.
A similar calculation applied to the force and torque

constraint (3.30) shows that z⃗ · N⃗ ¼ 0. Equivalently,

ReðNabKabÞ ¼ Nabmam̄b ¼ Nθϕ ¼ 0: ð3:33Þ

This might appear to be a weaker form of the torque
constraint (3.16). However, the two results have different
regimes of validity. Equation (3.33) was obtained using the
three rotational Killing fields in Schwarzschild, and is valid
through all multipole orders. By contrast, the derivation of
Eq. (3.16) assumed less about the spacetime—requiring
only that it be vacuum and type D—but more about the
multipole structure—requiring that all contributions
beyond the quadrupole be ignorable. The conclusion here
is that in Schwarzschild, the real component of Eq. (3.16) is
in fact exact, and may be viewed as a consequence of the
Killing constraints. The imaginary component of that
equation, ImðNabKabÞ ¼ Ntr ¼ 0, is independent of the
Killing constraints and may be violated beyond quadru-
pole order.
In Schwarzschild, there are five force and torque con-

straints in the quadrupole approximation. Four of these
constraints are due to the Killing fields and one to the
imaginary component of Eq. (3.16). In more general Kerr
spacetimes with a ≠ 0, there are instead four force and
torque constraints in the quadrupole approximation. Two of
these are due to the Killing fields and two to the real and
imaginary components of Eq. (3.16). This distinction
between the Kerr and Schwarzschild cases is summarized
in Table I.

IV. ACTIVELY CONTROLLED MOTION IN THE
SCHWARZSCHILD SPACETIME

Our focus in Sec. III was on determining which forces
and torques could (or could not) be produced by appro-
priately structured bodies. This amounted to finding con-
straints on the possible equations of motion. However,
except with the conservation laws implied by Killing fields,
it is not obvious how constraints on the equations of motion
translate into constraints on their solutions. This section
discusses some of those solutions.
Doing so requires specialization: we restrict to spin-free,

torque-free bodies in Schwarzschild. These bodies are
assumed to actively control their quadrupole moments,
both to maintain a torque-free state and to control their
motion. If octupole and higher moments are ignored, we
shall see that the orbits of such bodies are controlled
only by ReJ2. That component of the quadrupole moment
can be varied to control a body’s mass, and from that, radial
falls can be slowed or accelerated, unstable orbits can be
stabilized, and bound orbits can change their eccentricities.
The analysis here may be viewed as the relativistic

generalization of the Newtonian discussion in Ref. [13]. In
that context, bodies were also assumed to be torque-free, in
part to avoid maneuvers in which a spacecraft would be
likely to spin itself apart. The same argument could be
applied also in the relativistic context to motivate the
torque-free condition. However, setting Nab ¼ 0 can also
be viewed as a mathematical convenience. It allows some of
the versatility of extended-body effects to be explored
while avoiding many of the complications which would
arise without it. Although it would be interesting to also
explore spin and torque effects, these are left for later work.

A. Torque-free bodies

The motion of an extended body simplifies considerably
when no torque acts upon it. Restricting to the quadrupole
approximation, it follows from Eq. (3.15) that this occurs if
and only if the quadrupole moment is such that

J1 ¼ J3 ¼ 0: ð4:1Þ
Equivalently, the torque vanishes if and only if the
conformal Killing-Yano tensor Kab is an eigenbivector
of the quadrupole moment:

TABLE I. Numbers of real force and torque constraints in Kerr
and Schwarzschild spacetimes. Exact constraints are of the form
(2.19) and follow from Killing fields. Constraints which are
necessarily valid only at quadrupole order are of the form (3.16).
Differing numbers of quadrupole constraints are due to the fact
that in Schwarzschild, the real component of Eq. (3.16) is not
independent from the Killing constraints.

Spacetime Exact Quadrupole Total

Kerr 2 2 4
Schwarzschild 4 1 5
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JabcdKcd ¼ −4J2Kab: ð4:2Þ

These results hold in any vacuum type D spacetime.
Specializing to the Schwarzschild case while recalling
Eq. (3.14), the force on a torque-free body is simply

Fa ¼ −J∇aΨ; ð4:3Þ

where it is convenient to define

J ≡ 8ReJ2: ð4:4Þ

The motion is therefore affected by only a single real
quadrupole component: J . Like all components of the
quadrupole moment, this is unconstrained by stress-energy
conservation. It may be viewed as a kind of control
parameter for suitably engineered spacecraft.
In terms of Jabcd, it follows from Eqs. (3.10) and (3.11)

that the control parameter can be written as

J ¼ −
1

2
ReðJabcdKabKcd=r2Þ: ð4:5Þ

Similarly, the torque-free condition (4.1) is equivalent to
the two complex equations

JabcdðXab � YabÞKcd ¼ 0: ð4:6Þ

By substituting Eq. (2.13) into these equations, they can be
rewritten in terms of the mass and momentum quadrupoles
Qab and Πab. In general, the resulting expressions are
complicated. However, in the Newtonian limit where
Πab → 0, r=M → ∞, and τa → ∂t, they reduce to

J ¼ 3

2
Qrr; Qrθ ¼ Qrϕ ¼ 0: ð4:7Þ

This is equivalent to stating that in the Newtonian limit, ∂r
must be an eigenvector of Qa

b, and that the corresponding
eigenvalue is 2

3
J . These results agree with the purely

Newtonian analysis in Ref. [13], where the control param-
eter denoted there by q is equivalent to our 2

3
J .

1. Spin-free bodies

We would like to consider bodies which are not only
torque-free, but also spin-free.4 It is therefore necessary to
ensure that if the torque vanishes, an angular momentum
which is initially zero will remain zero. This is not

automatically the case, as it follows from Eq. (2.16) that

for a torque-free body, _Sab ¼ 2p½a _zb�s . The right-hand side
of this equation is present even in Newtonian physics [32],
where it can be eliminated by placing the origin at the
center of mass. A similar strategy is effective also in
the relativistic context: imposing the center of mass
condition (2.20) here and in the remainder of this section,
the momentum-velocity relation (2.23) implies that
in the torque-free case, there is some αc such that
_Sab ¼ p½aSb�cαc. One solution is Sab ¼ 0. It is therefore
consistent to consider nonspinning bodies when Nab ¼ 0

and Sabpb ¼ 0.
The spin-free, torque-free condition [and the center of

mass condition (2.20)] are assumed throughout the remain-
der of this section. It then follows from Eqs. (2.16) and
(4.3) that

_pa ¼ −J∇aΨ: ð4:8Þ

Also, the parameter normalization (2.22) and the momen-
tum-velocity relation (2.23) imply that pa ¼ mua ¼ m_zas .
The hidden momentum therefore vanishes and s is a proper
time. Furthermore, the energy (3.18) and the angular
momentum (3.28) reduce to

E ¼ −pata; L⃗ ¼ z⃗ × p⃗: ð4:9Þ

These quantities are constant, regardless of J .

2. Effective potentials and effective masses

The motion of torque-free, spin-free bodies can be
described using an effective potential. To derive this, first
note that the unchanging direction of L⃗ implies that the
motion must be planar. Without loss of generality, we
therefore restrict to the θ ¼ π=2 equatorial plane. Applying
the conservation of L≡ jL⃗j then determines the azimuthal
motion in terms of the radial motion:

dϕ
ds

¼ L
mr2

: ð4:10Þ

Furthermore, the radial motion follows by combining this
with gab _zas _zbs ¼ −1 and with the conservation of energy.
The result is most conveniently expressed using a time
parameter s0 which is related to s via

ds0

ds
¼ M=m: ð4:11Þ

In terms of this,

�
dr
ds0

�
2

þΦeffðr;mÞ ¼ ðE=MÞ2; ð4:12Þ

4The spin-free and torque-free assumptions are logically
independent. Clearly, a torque-free body can spin. More interest-
ingly, some torqued bodies need not spin. Adopting the center of
mass condition (2.20), it follows from Eqs. (2.16) and (2.23) that
torques satisfying Nab ¼ 2u½aNb�cuc cannot spin up an initially
nonspinning body. Such a torque would instead influence the
dynamics via the hidden momentum pa −m_zas ¼ Na

bub.
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where

Φeffðr;mÞ≡ ðm=MÞ2ð1 − 2M=rÞ½1þ ðL=mrÞ2� ð4:13Þ

is the effective potential. Also, dϕ=ds0 ¼ L=Mr2. Except
for some unconventional rescalings, these equations are
superficially identical to textbook results [46] on geodesics
in the Schwarzschild spacetime. They are more general,
however. This is because, for geodesics, m is fixed. For
extended bodies, m can vary.
In fact, if precession effects are excluded, all nontrivial

aspects of the spin-free, torque-free dynamics are deter-
mined by variations in the mass. How m varies follows
from Eq. (4.8), which implies that

d
ds

ðm − JΨÞ ¼ −Ψ
d
ds

J : ð4:14Þ

This suggests that it is useful to define the “effective mass”

meff ≡m − JΨ ¼ mþ JM=r3: ð4:15Þ

In general, both m and meff depend on time. Although
either mass determines the other, it can be convenient to
keep both in mind:meff tends to simplify calculations while
m has a simpler interpretation. More specifically, m is an
“osculating mass,” meaning that the osculating geodesic
has specific energy E=m and specific angular momentum
L=m. If J is initially nonzero but is then rapidly reduced to
zero, the subsequent motion will be a geodesic with those
parameters. The physical distinction between m and meff
may be clarified by noting that the Newtonian potential
energy due to a body’s quadrupole moment is −JM=r3

[13,26]. The difference m −meff may therefore be inter-
preted as the gravitational potential energy due to a body’s
quadrupole moment.
Although our primary interest is in cases where J varies,

it is instructive to first suppose that it is fixed. In that case,
Eq. (4.14) implies thatmeff is fixed as well. This is a special
case of the more general result that m − 1

6
JabcdRabcd is

constant when ðDMJabcd=dsÞRabcd ¼ 0, where the operator
DM=ds is a generalized Fermi derivative along Z [26].
Regardless, the qualitative features of orbits with con-
stant J can be read off just by plotting Φeffðr;mÞ ¼
Φeffðr;meff þ JΨÞ. Three such curves are displayed in
Fig. 1.
Generalizing slightly, effective potential plots can be

used in standard ways wheneverm depends only on r. This
includes cases where J is constant, although there are other
possibilities as well. Regardless, if m depends only on r,
orbits are effectively fixed. Except in the context of
stabilization—cf. Sec. IV C below—such cases are not
particularly interesting. Much more dramatic extended-
body effects arise when m changes secularly over time,

which can be arranged by appropriately cycling J over
many orbits. This is discussed in Sec. IV D below.

3. Piecewise-constant J

In most of the applications considered below, J is
piecewise constant. This models an idealized spacecraft
which has been engineered to rapidly switch between two
or more torque-free configurations. Although objects can-
not switch states instantaneously without violating energy
conditions, this aspect of the idealization does not appear to
be essential: finite switching times result in more compli-
cated calculations but similar conclusions.
To understand what happens when J is piecewise

constant, it suffices to understand how this parameter
affects m or meff. Between state changes, meff is fixed
while m is not. During a state change, Eq. (4.14) implies
that if J rapidly switches to J þ δJ ,

δm ¼ 0; δmeff ¼ −ΨδJ : ð4:16Þ

This result is used below to construct control strategies
where changes in J have prescribed consequences.
Similar results arise also in Newtonian gravity. However,

the interpretation is different. In a relativistic context, E is
constant while m and meff are not. In a Newtonian context,
the mass is constant while the energy is not. Despite
appearances, these statements are consistent. It is only

FIG. 1. Effective potential energies with constant J and
L ¼ 4meffM. The mass m is given here by Eq. (4.15) with
meff ¼ const. The dashed curve represents the J ¼ 0 point-
particle case. For the two solid curves, J ¼ �2meffM2, where
the curve with positive J is lower. The horizontal line corre-
sponds to ðE=meffÞ2 ¼ 0.99, and the red markers are the turning
points for a point-particle orbit with that energy. An extended
body with this energy and with J ¼ −2meffM2 would have a
larger radius of pericenter. A body with this energy and with
J ¼ þ2meffM2 would have no pericenter at all; it would plunge
into the central mass. Note however that these comparisons are
not to be interpreted as applying to a single object which switches
between different values of J . As described by Eq. (4.16),
changing configurations in this way would change E=meff .
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definitions which differ. In fact, there are two definitions of
energy used in the Newtonian analysis in Ref. [13]. One of
these behaves like E −m and the other like E −meff .

B. Radial infall

The simplest type of motion which might be considered
is radial infall. In that case, there is one interesting question:
can a mass use extended-body effects to slow or accelerate
its fall? This question has been addressed before [15,18,21–
23], using constrained Lagrangians which were purported
to describe cyclically deforming spacecraft. Here, we
show—without introducing interior models—that nonspin-
ning, torque-free spacecraft can indeed control their falls.
However, in contrast with some claims in the literature, no
control remains if a body’s configuration is cycled at high
frequencies.
Suppose that an object begins at rest with initial mass mi

and initial radius ri. Then Eqs. (4.11)–(4.13) imply that
after falling to a smaller radius rf < ri, the radial speed is
given by

�
drf
ds

�
2

¼
�
mi

mf

�
2

ð1 − 2M=riÞ − ð1 − 2M=rfÞ: ð4:17Þ

The speed of a fall can therefore be controlled by control-
ling mf=mi. If a body increases its mass, it would fall more
slowly than a geodesic with the same initial and final radii.
If it decreases its mass, it would fall more quickly.
Whether the mass increases or decreases, and by how

much, is determined by J . From Eq. (4.14),

mf=mi ¼ 1 −
3M
mi

Z
ri

rf

�
J
R4

�
dR: ð4:18Þ

This ratio is as small as possible—which maximizes the
speed of a fall—when J is as large as possible for as long
as possible. Similarly, the speed of a fall can be minimized
by making J as small as possible for as long as possible. If
J can vary only in a fixed interval ½J −;J þ�, the largest
effects are therefore obtained by holding this parameter
constant at its maximum or minimum value. In those cases,

mf=mi ¼ 1 − ðJ �M=miÞð1=r3f − 1=r3i Þ: ð4:19Þ

Falls are accelerated when J þ > 0 and slowed when
J − < 0. However, extremely large quadrupole moments
would be required to have a significant effect.

C. Orbital stabilization

We now consider circular motion, showing that
extended-body effects can be used to stabilize the unstable
circular geodesics with radii between 3M and 6M. Again
suppose that J can vary throughout the fixed interval
½J −;J þ�. A nearly circular orbit can then be stabilized by

switching J between J − and J þ when r crosses a fixed
set point rc. More precisely, suppose that5

J ¼
	
J þ; r > rc;

J −; r ≤ rc:
ð4:20Þ

We assume that the orbit is not precisely circular with
radius rc. Then, if r increases above rc, it follows from
Eq. (4.16) that meff increases by ðJ þ − J −ÞM=r3c. If r
decreases below rc, the effective mass decreases by this
same amount. As meff is related to m via Eq. (4.15), there
must be a constant mc such that for all r,

m ¼ mc − JMð1=r3 − 1=r3cÞ: ð4:21Þ
This depends only on the current value of r, and not on the
body’s history. It may be substituted into the effective
potential (4.13) in order to determine the behavior of orbits
under the control law (4.20).
The result is not interesting unless rc is chosen appro-

priately. If the body has angular momentum L, we now set
this radius to be equal to the radius of an unstable circular
geodesic with specific angular momentum L=mc. The set
point rc is therefore chosen to satisfy

L=mc ¼
rcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc=M − 3
p : ð4:22Þ

Use of this and Eq. (4.21) results in the effective pote-
ntial plotted in Fig. 2. In the point-particle case where
J � ¼ 0, the effective potential has a local maximum at

FIG. 2. Stabilization of the unstable geodesic at rc ¼ 5M. The
mass m is given here by Eq. (4.21). The dashed orange curve
denotes the point-particle effective potential for which J � ¼ 0.
The effective potential associated with the solid blue curve
applies for an extended body with J � ¼ �mcM2=4, where
the body switches between these values when crossing r ¼ rc.
Extended-body effects are seen to stabilize the ordinarily unstable
circular orbit at r ¼ rc.

5The discussion here is chosen to be as simple as possible,
using a “bang-bang” control strategy without hysteresis. Many
refinements are possible.
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r ¼ rc; orbits near that radius are unstable. For an extended
body in which J þ and J − have opposite signs, there is
instead a local minimum at r ¼ rc; orbits near that radius
are stable.

D. Orbital maneuvering

Extended-body effects may be used not only to stabilize
a given geodesic, but also to move from one geodesic to
another. This is because, although each individual orbit is
close to a geodesic when J is small, the approximating
geodesic can change considerably over many orbits. There
are restrictions, however. We now determine which orbital
maneuvers are available to spin-free, torque-free bodies. In
this context, orbital changes are determined entirely by
changes in m. Our discussion begins without specifying
precisely how mass changes occur. Later, we examine a
specific strategy for obtaining large mass changes from
small, cyclic variations in J .

1. Motion through the space of geodesics

If a body changes its mass, its orbit may be characterized
by the geodesic which instantaneously approximates it.
Over time, however, the approximating (or osculating)
geodesic may be viewed as drifting through the space of all
possible geodesics. In order to describe this, it is convenient
to introduce coordinates on the space of geodesics. Two
such coordinate systems are considered here.
Our first set of coordinates on the space of geodesics—

really geodesics modulo rotations and time translations—is
comprised of the specific energy E=m and the specific
angular momentum L=m. If an extended body changes its
mass, the conservation of E and L implies that the geo-
desics which instantaneously approximate its orbit must be
confined to a straight line in the coordinates ðE=m;L=mÞ.
Different mass-changing bodies can move on different
lines, each of which is characterized by the slope L=E.
Mass increases move the approximating geodesics towards
the E=m ¼ L=m ¼ 0 origin. Mass decreases move them
away. Although these statements are simple to derive, their
physical implications are not immediately apparent.
It is more intuitive to describe a body’s motion using a

different set of coordinates on the space of geodesics: the
eccentricity e and semilatus rectum p. These quantities
generalize the eccentricity and semilatus rectum which
appear in the Newtonian two-body problem.6 Their precise
definitions are given in Appendix C and elsewhere [47–49],
although the idea is that e and p are defined to preserve, up
to a nondimensionalization of p, the Keplerian relations

between themselves, the radius of apocenter rþ, and the
radius of pericenter r−. This means that

r� ¼ pM
1 ∓ e

: ð4:23Þ

Equivalently,

pM ¼ 2rþr−
rþ þ r−

; e ¼ rþ − r−
rþ þ r−

: ð4:24Þ

As explained in Appendix C, these relations hold through-
out the region of parameter space described by

p ≥ 6þ 2e; 0 ≤ e < 1: ð4:25Þ

If e ¼ 0, a geodesic is circular and stable, with radius pM.
If e → 1, a geodesic extends to arbitrarily large radii: it is
unbound. If p ¼ 6þ 2e, the geodesic asymptotically
approaches an unstable circular geodesic with radius
2pM=ðp − 4Þ. For the remainder of this section, we use
ðe; pÞ as coordinates on the space of geodesics. The
coordinates ðE=m;L=mÞ are related via Eq. (C2).
For a torque-free extended body in Newtonian physics,

extended-body effects can be used to change e but not p
[13]. We now show that in a relativistic context, changes in
m change both e and p. To see this, note that the
conservation of E and L implies that the geodesics which
approximate the motion of a mass-changing body must lie
on a level curve of

ðE=LÞ2 ¼ ðp − 2Þ2 − 4e2

M2p3
; ð4:26Þ

viewed as a function of e and p. A number of these curves
are plotted in Fig. 3. Crucially, they can be separated into
two categories, depending on whether or not they extend to
the p ¼ 6þ 2e separatrix. If a level curve does not extend
to the separatrix, an initially bound geodesic can eventually
be made unbound. If a level curve does extend to the
separatrix, escape is impossible.
If escape is possible, Eq. (4.25) implies that p > 8 as

e → 1. Using Eq. (4.26), this condition can be satisfied
only when

EM=L < 1=4: ð4:27Þ

A more intuitive characterization may be obtained by
supposing that an orbit is initially circular, with radius
ri. Escape is then possible for all

ri > 2ð3þ
ffiffiffi
5

p
ÞM ≈ 10.5M: ð4:28Þ

Transferring from a stable circular orbit to an unbound orbit
is accomplished by decreasingm. From Eq. (C2), the initial
and final masses must be related by

6For a Keplerian ellipse with semimajor axis a and eccentricity
e, the semilatus rectum is að1 − e2Þ. Geometrically, this is the
half-length of the chord which passes through a focus and is
orthogonal to the major axis of the ellipse. The Newtonian
semilatus rectum is also proportional to the square of the angular
momentum of the orbiting body.
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mf=mi ¼
1 − 2M=riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=ri

p : ð4:29Þ

This ratio is smallest when ri saturates the bound (4.28), in
which case mf=mi ≈ 0.958. It may also be shown that in a
post-Newtonian limit where p → ∞, escaping from an
initially circular orbit with pi ¼ ri=M results in the semi-
latus rectum pf ¼ pi − 4=pi þ � � � The first deviation from
the constant-p Newtonian expectation therefore occurs at
second post-Newtonian order.
If EM=L ≥ 1=4, a body cannot use mass changes to

escape from a bound orbit. Instead, a decreasing mass
would eventually result in the approximating geodesic
approaching the separatrix. If this approach is not made
with care, instability would set in and the body would
plunge. However, extended-body effects can be used to
stabilize the approach. In that case, the orbit would
eventually tend towards an unstable circular geodesic. In
other words, it is possible—in the strong-field regime—to
use mass changes to transfer between pairs of circular
orbits. The initial and final radii of these orbits cannot be
chosen at will, but must be related by

�
1 − 2M=ri
1 − 2M=rf

�
2

¼ ri
rf

: ð4:30Þ

Transitions are therefore possible between circular geo-
desics with radii between 4M and 2ð3þ ffiffiffi

5
p ÞM. Except in

the degenerate case where ri ¼ rf ¼ 6M, this transition
always occurs from a stable geodesic to an unstable one, or
vice versa. Furthermore, the mass change required to
perform such a maneuver is described by

ðmf=miÞ2 ¼
ri
rf

�
1 − 3M=rf
1 − 3M=ri

�
: ð4:31Þ

An example of an extended body maneuvering between
two circular geodesics is provided in Fig. 4. The body
considered there begins near an unstable geodesic with
radius 5.0M, which is initially stabilized by the method
discussed in Sec. IV C. Using the mass-increasing tech-
nique discussed below, this is then converted into a stable
circular geodesic with radius 7.4M. The process requires a
total mass increase of approximately 0.25%. Note that
although the initial and final geodesics are nearly circular,
the intermediate geodesics are not.

2. Changing mass

We now explain how it is that large changes in mass can
be produced without correspondingly large quadrupole
moments. First, it is clear from Eqs. (4.14) and (4.15) that
changes in meff are produced by changes in J . However, if
J changes and then returns to its original value, it is not
necessarily true thatmeff also returns to its original value. In
fact, appropriately designed cycles can result in net
increases or decreases in meff . Although each such change
may be small, a body in a bound orbit can complete many
cycles, eventually resulting in a significant mass change.
A single cycle may be viewed as a closed curve in the

space parametrized byΨ and J . It follows from Eqs. (4.14)
and (4.15) that the magnitude of the change Δmeff in the
effective mass is equal to the area enclosed by that curve. If
J is again allowed to vary throughout the interval
½J −;J þ�, a body in a noncircular orbit can optimally
change its mass by choosing the rectangular cycle illus-
trated in Fig. 5. This corresponds to setting

J ¼
	
J −; _r > 0;

J þ; _r ≤ 0;
ð4:32Þ

which decreases the mass. A body can instead increase its
mass by swapping the roles of J − and J þ in this
expression, which corresponds to reversing the directions
of the arrows in Fig. 5. With either of these strategies,
J is piecewise constant and the effective mass changes
only when passing through pericenter or apocenter, where
it jumps according to Eq. (4.16). Applying the mass-
decreasing strategy over one orbit, J returns to its original
value while

FIG. 3. Trajectories through the space of geodesics when m is
slowly varied. Geodesics are labeled by their semilatus rectum p
and eccentricity e. The shaded portion of the plot is the region
excluded by Eq. (4.25). As indicated by the arrows, moving along
any curve from right to left corresponds to a body increasing its
mass. Points on the vertical axis correspond to stable circular
orbits with radii pM. For curves above the dashed line,
decreasing mass eventually results in an unbound orbit. For
curves below the dashed line, decreasing mass eventually results
in an intersection with the separatrix. Geodesics on the separatrix
asymptotically approach unstable circular orbits, even when
e ≠ 0.
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Δmeff ¼ −ðJ þ − J −ÞMð1=r3− − 1=r3þÞ

¼ −2eðJ þ − J −Þ
�
3þ e2

p3M2

�
: ð4:33Þ

Repeating such a cycle over multiple orbits would result in
a continually decreasing mass, at least until e → 1 or
p → 6þ 2e. If a mass-increasing cycle were used instead,

the mass would continue to increase until the orbit
circularizes.
Changes in meff induce changes in the eccentricity e and

the semilatus rectum p. In the mass-decreasing case,
Eqs. (4.33) and (C2) imply that over each orbit,

Δe ¼ 2

�
J þ − J −

L2=m

�

×
ð3þ e2Þ½p − 8þ ð12=pÞð1 − e2Þ�

ðp − 6Þ2 − 4e2
; ð4:34Þ

and

Δp ¼ −16
�
J þ − J −

L2=m

�
eð3þ e2Þ

ðp − 6Þ2 − 4e2
: ð4:35Þ

The denominators in both of these expressions vanish on
the separatrix, which is a consequence of the instability
which sets in as p → 6þ 2e. Another implication of these
expressions is that even though Δmeff and Δp both vanish
as e → 0, the same is not true forΔe. It is therefore possible
for a body to increase its eccentricity even if its orbit is
initially circular. This is because a circular orbit can be
made slightly eccentric by changing J , and this small
eccentricity may be used to build up a larger eccentricity—
and eventually an appreciable mass change.
Last, we note that changes in meff , p, and e can be seen

to depend on J � only via the difference J þ − J −.
However, this is not the only measure of the quadrupole
moment which affects the dynamics. Without entering into
details, the sum J þ þ J − controls the rate of orbital
precession. It has a similar effect also in Newtonian
gravity [13].

V. DISCUSSION

Our results may be grouped into two categories. First, in
Sec. III, we derived general characteristics associated with
the laws of motion in vacuum type D spacetimes. Second,
in Sec. IV, we applied those characteristics to understand
the behavior of actively controlled spacecraft in the
Schwarzschild spacetime. We now discuss these results
separately.

A. Constraints on the laws of motion

Working in vacuum type D spacetimes and in the
quadrupole approximation, we have shown that all gravi-
tational forces and torques can be summarized by
Eq. (3.13), or equivalently by Eqs. (3.14) and (3.15).
These results depend on the background geometry only
via Lie derivatives of the Weyl scalar Ψ and of the
conformal Killing-Yano tensor Kab. One consequence is
that at least four of a body’s ten quadrupole components
cannot affect its motion. Similarly, at least four force and
torque combinations are impossible, regardless of a body’s

FIG. 4. Transition from one circular orbit to another. The
motion begins in a nearly circular orbit with radius 5.0M. It
ends in a nearly circular orbit with radius 7.4M. There are four
control regimes, with boundaries marked by vertical lines.
Initially, the orbit is stabilized by switching J according to
Eq. (4.20). Next, the body is destabilized towards larger radii by
briefly setting J ¼ J −, which places it in a nearly geodesic orbit
with p ¼ 6.7 and e ¼ 0.33. Between s ¼ 220M and s ¼ 1290M,
J is switched according to Eq. (4.32). This increases m and
decreases e. Finally, all extended-body effects are switched off
when s > 1290M. In all phases except the last, J � ¼ �miM2=8,
where mi denotes the initial value for m. This plot was obtained
by numerically integrating Eqs. (4.12) and (4.14).

FIG. 5. The mass-decreasing cycle described by Eq. (4.32). The
area enclosed by the cycle is jΔmeff j. The arrows indicate the
direction of increasing time. If such a cycle were repeated many
times, the area here would slowly change as rþ and r− evolve in
response to the changing mass.
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internal structure: beyond the Killing constraints with the
form (2.19), we have shown that the torque must be
constrained by NabKab ¼ 0. Taken together, all force
and torque constraints involve either Killing vectors or
conformal Killing-Yano tensors. However, unlike the
former of these constraints, the latter do not appear to
be related to conservation laws.
The calculations used to derive these results can easily

be extended to understand how forces and torques behave
in spacetimes which are not necessarily type D. For
example, a straightforward calculation similar to the one
which led to Eq. (3.13) shows that in the quadrupole
approximation, the generalized force in any vacuum type N
spacetime is

d
ds

Pξ ¼
4

3
Re½Ψ4ðJ0YabþJ1ZabÞLξXab−J0LξΨ4�: ð5:1Þ

Here, the lone principal null direction is now tangent
to la, so the only nonvanishing Weyl scalar is Ψ4≡
1
4
RabcdYabYcd. Physically, this result could be used to

describe how extended bodies move in response to a
gravitational wave. The absence of J2, J3, and J4 implies
that at least six real quadrupole components are irrelevant
in vacuum type N spacetimes. This contrasts with the four
irrelevant components found in the type D case. Similarly,
there are at least six constraints on force and torque
combinations in vacuum type N spacetimes. Some type
N spacetimes admit only a single Killing vector [40], so in
at least some cases, the majority of these constraints are not
due to Killing fields. It may also be seen that unlike in the
type D case, a spacecraft which actively controls its torque
can, in a type N background, have no independent control
over its force.

B. Applications to rocket-free spacecraft

Our second category of results involve spacecraft which
actively control their quadrupole moments in order to
control their motion. Perhaps surprisingly, the behavior

of spin-free, torque-free bodies in Schwarzschild is almost
identical to the behavior of torque-free Newtonian bodies in
spherically symmetric gravitational fields. For example, the
torque-free condition is equivalent, in both cases, to an
eigenvector condition on the quadrupole moment: in the
Newtonian case, it is the radial vector which must be an
eigenvector of the mass quadrupole moment [13]. In the
relativistic case, it is Kab which must be an eigen(bi)vector
of Jabcd. The eigenvalues associated with these eigenvec-
tors control the motion. More precisely, they control the
force, which is structurally identical in both the Newtonian
and relativistic cases. These and other characteristics of the
Newtonian and relativistic problems are compared in
Table II.
There are only two significant differences between the

capabilities of spin-free, torque-free spacecraft in the
Newtonian and relativistic contexts: in Schwarzschild,
(i) unstable geodesics may be stabilized, and (ii) it is
possible to transfer between certain pairs of circular orbits
with radii between 4M and 2ð3þ ffiffiffi

5
p ÞM. In a spherically

symmetric Newtonian field, there are, by contrast, no
instabilities to stabilize. It is also not possible, in the
Newtonian context, to transfer from one circular orbit to
another (unless the torque-free condition is lifted). These
differences are not due to any intrinsically relativistic
effects in the theory of motion, but rather to the relative
complexity of the Schwarzschild geometry. This is evi-
denced by the fact that features similar to those seen
in Schwarzschild can also be found in Newtonian
systems which are not spherically symmetric. For ex-
ample, unstable point-particle orbits can arise around
highly oblate Newtonian masses, and these may be stabi-
lized in a manner similar to the relativistic stabilization
discussed in Sec. IV C [13].
This is not to say that extended-body effects are always

similar in Newtonian and relativistic contexts. If the spin-
free and torque-free assumptions made in Sec. IVare lifted,
there can be essential differences. One such difference is
that the relativistic theory allows a body to directly control

TABLE II. Comparison of spin-free, torque-free bodies in Schwarzschild and torque-free bodies in a spherically
symmetric Newtonian potential. Results and notation in the rightmost column are taken from Ref. [13]. Forces are
seen to be identical if the relativistic control parameter J is identified with the Newtonian 3

2
q. The final two rows

refer to cases where the control parameter rapidly jumps between two values, as described here in Sec. IVA 3.

Concept Relativistic Newtonian

Quadrupole moment Jabcd Qij

Torque-free condition JabcdKcd ¼ −4J2Kab Qi
jrj ¼ qri

Torque-free quadrupole force ∇aðJM=r3Þ ∇ið32 qM=r3Þ
Torque-free control parameter J ¼ 8ReJ2 q
Always constant E, L m, L
Constant when control parameter is constant meff E
Constant when control parameter jumps m ¼ meff − JM=r3 Ept ¼ Eþ 3

2
qM=r3

Effect of control parameter jump δmeff ¼ δJM=r3 δE ¼ − 3
2
δqM=r3
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its hidden mechanical momentum: even though it follows
from Eq. (2.16) that pa cannot change on very short time
scales, Eq. (2.23) implies that _zas can vary as rapidly as the
multipole moments can be varied. A body can therefore
exert direct control not only over its acceleration, but also
over its velocity. This is a fundamentally non-Newtonian
effect. Some of its consequences have been investigated
previously in cosmological backgrounds [16].
While we have not focused here on direct velocity

control in black hole spacetimes—which is not possible
in the spin-free, torque-free context of Sec. IV—some
brief comments are in order. First, it follows from
Eq. (2.23) that in an (at least instantaneously) spin-
free context, the directly controllable portion of the
velocity is _zas ¼ ð…Þ − Na

bpb=m2. Furthermore, use of
Eq. (3.16) shows that in Schwarzschild and in the quadru-
pole approximation, a body whose momentum is initially
aligned with ta can directly control only its angular
velocities _θ and _ϕ. Rapidly altering _r is not possible unless
L ≠ 0. A body which falls radially in Schwarzschild
can have a small amount of angular momentum, and it
can use this angular momentum to directly alter the speed
of its fall. However, the magnitude of this effect would be
quadratic in the quadrupole moment and therefore
minuscule.

APPENDIX A: NOTATION AND CONVENTIONS

This paper assumes four spacetime dimensions. Sign and
index conventions follow those ofWald [46]: the metric gab is
assumed to have signature þ2. Units are used in which
c ¼ G ¼ 1. Abstract spacetime indices are denoted by
a; b;…, spinor indices by A;B;…, four-dimensional coor-
dinate indices by μ; ν;…, and other numerical indices by
i; j;… The Riemann tensor Rabc

d satisfies 2∇½a∇b�ωc ≡
ð∇a∇b −∇b∇aÞωc ¼ Rabc

dωd for any 1-form ωa. In some
places, arrows are placed over symbols to denote triples which
are analogous to Euclidean 3-vectors. Overdots are used to
denote derivatives onlywith respect to theworldline parameter
s, not with respect to other parameters such as s0. The notation
ð…ÞTF is used to indicate the trace-free component of the
object inside the parentheses, where the trace-free operation is
performed in such away that itmaintains the index symmetries
and orthogonality properties of the original object. The main
symbols used in the paper are summarized in Table III.

APPENDIX B: KERR AND SCHWARZSCHILD
GEOMETRIES

This Appendix collects various facts and conventions
related to the Kerr and Schwarzschild spacetimes. In
Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the line element

TABLE III. Table of symbols. There are two categories: symbols associated with the spacetime geometry and
symbols associated with a body moving in that geometry.

Symbol Description Reference

la, na, ma, m̄a Null tetrad (3.1)
Xab, Yab, Zab Self-dual 2-form basis elements (3.3), (3.4)
Kab Self-dual conformal Killing-Yano tensor (3.7), (3.10), (B3)
Ψ Weyl scalar more commonly denoted by Ψ2 (3.6), (3.9)
M, a Kerr mass and specific angular momentum (B1)
ta, ψa

ðiÞ Killing vector fields (B4)

t, r, θ, ϕ Boyer-Lindquist coordinates (B1)
z⃗, θ⃗, ϕ⃗ 3-vector basis in Schwarzschild (3.24), (3.28)
Z, zs Reference worldline and a point on that worldline (2.2)
Σ, Σs Foliation Σ ¼ fΣsjsg and a leaf in that foliation (2.2)
s, s0 Worldline parameters (2.22), (4.11)
ξa Generalized Killing vector (2.3), (2.4)
Tab Stress-energy tensor (2.1), (2.3)
Pξ Generalized momentum (2.3), (2.14)
pa, Sab Linear and angular momenta (2.16), (2.14)
Fa, Nab Force and torque (2.15), (2.16), (2.17)
m, meff Ordinary and effective masses (2.21), (4.15)
J̃abcd Full quadrupole moment (2.7), (2.8), (2.11)
Jabcd Trace-free quadrupole moment (2.9), (2.13)
Qab, Πab Mass and momentum quadrupole moments (2.12), (2.13)
J0;…; J4 Analogs of Weyl scalars for Jabcd (3.11), (3.12)
J 8ReJ2 (4.3), (4.4)
Φeff Effective potential (4.12), (4.13)
E, L⃗ Energy and angular momentum (3.18), (3.23), (3.28), (C2)
e, p Eccentricity and semilatus rectum (4.23), (4.24), (C2)
rþ, r− Radii of apocenter and pericenter (4.23)
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of a Kerr spacetime with mass M and specific angular
momentum a is

ds2 ¼ −
�
1−

2Mr
ΣK

�
dt2 −

4aMr
ΣK

sin2θdtdϕþ ΣK

ΔK
dr2ΣKdθ2

þ ðr2 þ a2Þ2 −ΔKa2sin2θ
ΣK

sin2θdϕ2; ðB1Þ

where ΔK ≡ r2 − 2Mrþ a2 and ΣK ≡ r2 þ a2 cos2 θ. If
a ¼ 0, this reduces to the Schwarzschild metric in standard
coordinates.
The discussion in Sec. III makes use of a null basis

ðla; na; ma; m̄aÞ in which the first two elements are aligned
with the spacetime’s principal null directions. Much of that
discussion is valid in any vacuum type D spacetime.
However, in the special case of the Kerr spacetime, one
example of an appropriate basis is

ffiffiffi
2

p
la ¼ 1

ΔK
½ðr2 þ a2Þ∂t þ ΔK∂r þ a∂ϕ�; ðB2aÞ

ffiffiffi
2

p
na ¼ 1

ΣK
½ðr2 þ a2Þ∂t − ΔK∂r þ a∂ϕ�; ðB2bÞ

ffiffiffi
2

p
ma ¼ ia sin θ∂t þ ∂θ þ i csc θ∂ϕ

rþ ia cos θ
: ðB2cÞ

With this choice, la is tangent to the outgoing principal
null direction. Similarly, na is tangent to the ingoing
principal null direction. Other possible tetrads can be
related to this one by the rescalings (3.2) and the discrete
swaps la ↔ na and ma ↔ m̄a.
A significant role is played in the paper by the self-dual

conformal Killing-Yano tensor Kab. In Kerr, this is related
to the coordinates and the tetrad via Eqs. (3.3) and (3.10).
Using Eq. (B2), its coordinate components are

Kab ¼
1

2
dðt − aϕÞ ∧ d½iðr − ia cos θÞ2�

þ ðr − ia cos θÞ3d
�

r cos θ
r − ia cos θ

�
∧ dϕ: ðB3Þ

Although computed using a specific tetrad, this is in fact
invariant under the rescalings (3.2). In Schwarzschild, it
reduces to Kab ¼ r½iðdt ∧ drÞ − r2 sin θðdθ ∧ dϕÞ�.
Our final comments are concerned with Killing vectors.

In the Schwarzschild spacetime, there are four independent
Killing vectors, denoted here by

ψa
ð1Þ ≡ − sinϕ∂θ − cot θ cosϕ∂ϕ; ðB4aÞ

ψa
ð2Þ ≡ cosϕ∂θ − cot θ sinϕ∂ϕ; ðB4bÞ

ψa
ð3Þ ≡ ∂ϕ; ta ≡ ∂t: ðB4cÞ

The three ψa
ðiÞ generate rotations while t

a generates time
translations. In Kerr spacetimes with a ≠ 0, only ta and
ψa
ð3Þ remain Killing.

APPENDIX C: ECCENTRICITY, SEMILATUS
RECTUM, AND THE SEPARATRIX

In Sec. IV, two methods are used to parametrize bound
timelike geodesics in the Schwarzschild spacetime. The
first method parametrizes an equatorial geodesic by its
specific energy E=m and its specific angular momentum
L=m. The second parametrization instead describes an
equatorial geodesic in terms of its eccentricity e and
semilatus rectum p. Up to a nondimensionalization of p,
these parameters are defined to preserve the nonrelativistic
Keplerian relations between p, e, and the turning points r�
[47–49]; cf. Eqs. (4.23) and (4.24). There are, however,
subtleties. This Appendix reviews the definitions for e and
p and shows that these parameters are constrained by the
inequalities (4.25).
First, note that Eq. (4.13) can be used to show that for

any timelike geodesic, a radial turning point rt must satisfy

0 ¼ r3t ½E2 −M2Φeffðrt; mÞ� ¼ ðE2 −m2Þr3t
þ 2m2Mr2t − L2rt þ 2L2M: ðC1Þ

The right-hand side here is a cubic polynomial in rt, so
there are three possible solutions. If two of those solutions
can be written as r1 ≡ pM=ð1þ eÞ and r2 ≡ pM=ð1 − eÞ
for some e and p, Vièta’s formulas imply that the third
solution must be r3 ¼ 2pM=ðp − 4Þ. Vièta’s formulas also
imply that

ðE=mÞ2 ¼ ðp − 2Þ2 − 4e2

pðp − 3 − e2Þ ; ðC2aÞ

ðL=mÞ2 ¼ p2M2

p − 3 − e2
; ðC2bÞ

which relates the geodesic parametrizations ðE=m;L=mÞ
and ðe; pÞ.
The subtlety here is that although p and e are motivated

by the hope that the radii of pericenter and apocenter are
given by r− ¼ r1 and rþ ¼ r2, this is not guaranteed
without additional restrictions: there is nothing in the
discussion thus far which precludes r− or rþ from being
equal to r3 instead of r1 or r2. We now characterize those
portions of the parameter space where r� are related to e
and p in the expected way.
Noting that the apocenter cannot lie below the pericenter,

and that neither can lie below the event horizon, enforcing
the expected identification between r1, r2, and r� implies
that r2 ≥ r1 > 2M. This can occur only when the eccen-
tricity lies in the interval e ∈ ½0; 1Þ. Next, the radius of a
geodesic must evolve freely between its pericenter and its
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apocenter, which occurs when 1 > ðE=MÞ2 > Φeffðr;mÞ
for all r ∈ ðr1; r2Þ. This and the eccentricity constraint
together imply that the semilatus rectum must satisfy p ≥
6þ 2e. These constraints are summarized by Eq. (4.25).
They imply that r− ¼ r1, rþ ¼ r2, and r3 ≤ r− ≤ rþ.
In the space of geodesics parametrized by e and p, the

line p ¼ 6þ 2e is known as the separatrix. On it, r1 ¼ r3
and ðE=MÞ2 is equal to the local maximum of Φeffð·; mÞ, at
least when e > 0. Eccentric geodesics on the separatrix are
homoclinic: they asymptotically approach an unstable
circular orbit in both the future and the past. In fact, the
homoclinic orbits have the same specific energies and
specific angular momenta as the exactly circular geodesics
which they approach. However, while a homoclinic geo-
desic can be described by an eccentricity and a semilatus
rectum, an unstable circular geodesic cannot. This is
because, for unstable circular orbits below 6M, rþ is equal
to r3 instead of r2.

APPENDIX D: QUADRUPOLE MOMENT OF A
VARIABLE-LENGTH ROD

Most of our discussion has characterized the relevant
aspects of an object’s internal structure by its quadrupole
moment. However, no attempt has been made to connect
those moments to particular internal models. This
Appendix provides some intuition by computing the
quadrupole moment for two masses connected by a
variable-length strut. For simplicity, we restrict to flat
spacetime, in which case Eq. (2.8) can be used to compute
J̃abcd in terms of a stress-energy tensor Tab. We also assume
that in the Minkowski coordinates ðt; x; y; zÞ, the hyper-
surfaces Σs are the hyperplanes with constant t.
Our first task is to find a stress-energy tensor which

physically describes two masses connected by a variable-
length strut. The main criteria are that Tab must (i) be
conserved, (ii) have spatially compact support, and (iii) have
positive mass. As noted on page 89 of Ref. [46], conserved
stress-energy tensors in flat spacetime can be written as

Tab ¼ ∇c∇dUacbd; ðD1Þ

where Uabcd is constrained only to satisfy Uabcd ¼
U½ab�cd ¼ Uab½cd� ¼ Ucdab. A slender body oriented along
the x axis might therefore be described by a Uabcd whose
only nonzero components follow from

Utxtxðt; x; y; zÞ ¼ mlðtÞUðx=lðtÞÞδðyÞδðzÞ: ðD2Þ

Here, m is a (constant) mass, l > 0 is a freely specifiable
length, and U is a dimensionless profile function.
Substituting this into Eq. (D1) shows that the resulting
stress-energy tensor has compact support when U00ðx̄Þ and
x̄U0ðx̄Þ −Uðx̄Þ vanish at large distances, say when
jx̄j ¼ jx=lj > 1. In order to satisfy these conditions and

to ensure that the mass is indeed given by m, it suffices to
assume that

Uðx̄Þ ¼ 1

2
jx̄j ðD3Þ

for all jx̄j > 1. Next, the spatial components of the
momentum vanish can be made to vanish, meaning that
pa ¼ m∂t, when Z

∞

−∞
x̄U00ðx̄Þdx̄ ¼ 0: ðD4Þ

This also ensures that Sab ¼ 0, so the center of mass
condition (2.20) is satisfied.
In order to compute the corresponding quadrupole

moment, it follows from Eq. (2.8) that its only nontrivial
components are determined by

J̃txtx ¼ 3

4
ml2

Z
∞

−∞
x̄2U00ðx̄Þdx̄: ðD5Þ

The trace-free quadrupole moment Jabcd ¼ ðJ̃abcdÞTF there-
fore has the momentum component Πab ¼ 0 and the mass
component

Qab ¼ ml2ð∂x ⊗ ∂xÞTF
Z

∞

−∞
x̄2U00ðx̄Þdx̄: ðD6Þ

Regardless of the time dependence of l, this is identical to
the Newtonian mass quadrupole which would result from a
rod with mass density ðm=lÞU00ðx=lÞδðyÞδðzÞ.
As a more specific model, consider two identical point

masses connected by a variable-length massless strut. Such
a system can be described by

Uðx̄Þ¼ 1

2
½ðx̄þ1ÞΘðx̄þ1Þþðx̄−1ÞΘðx̄−1Þ− x̄�; ðD7Þ

where Θ denotes the Heaviside step function. The integral
in Eq. (D6) is then equal to unity. Moreover, the nonzero
components of the stress-energy tensor are

Ttt ¼ 1

2
ðm=lÞδðyÞδðzÞ½δðx̄ − 1Þ þ δðx̄þ 1Þ�; ðD8Þ

Ttx ¼ 1

2
ðm=lÞδðyÞδðzÞ½δðx̄ − 1Þ − δðx̄þ 1Þ�∂tl; ðD9Þ

Txx ¼ 1

2
mδðyÞδðzÞ½Θðx̄þ 1Þ − Θðx̄ − 1Þ�∂2

t lþ Tttð∂tlÞ2:
ðD10Þ

Although there are first and second derivatives of l in Tab,
no such derivatives appear in Jabcd. It may also be noted
that if d2l=dt2 ≠ 0, the interior of the strut carries a stress
but has no energy or momentum density (as seen by an
observer with 4-velocity ∂t). The strut therefore violates the
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dominant energy condition,7 as expected from its descrip-
tion as “massless.” Last, since l is an arbitrary function of
time, it is possible for the end masses here to have spacelike
trajectories. This occurs when j∂tlj > 1, in which case the
dominant energy condition is violated not only in the
interior of the rod, but also at its end points.

Using different choices for U, it is possible to construct
models which do not violate energy conditions (at least
when l does not vary too rapidly). However, these models
would no longer be interpreted as describing massless
struts. Whether massless struts are retained or not, it is
nevertheless possible to generalize this calculation in order
to describe linkages involving any number of masses and
struts. Although such calculations might technically be
performed assuming that the spacetime is flat, the resulting
quadrupole moments would remain good approximations
also in more general spacetimes, at least for bodies which
are small compared to the local curvature scales.
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