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We investigate static and rotating charged spherically symmetric solutions in the framework of fðRÞ
gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient,
dual description for the electromagnetic Lagrangian, and using as an example the square-root fðRÞ
correction, we solve analytically the involved field equations. The obtained solutions belong to two
branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that
arises purely from the gravitational modification with no general relativity limit. The novel black hole
solution has a true central singularity which is hidden behind a horizon; however, for particular parameter
regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the
thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and
Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that
negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are
thermodynamically stable for suitable model parameter regions.
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I. INTRODUCTION

The detection of gravitationalwaves from the binary black
hole and binary neutron star mergers by the LIGO-VIRGO
collaboration [1–3] opened the new era of multimessenger
astronomy. In this novel window to investigate the universe
the central role is played by spherically symmetric compact
objects and black holes. Since their properties are determined
by the underlying gravitational theory recently there has been
an increased interest in studying such solutions in various
extensions of general relativity (GR).
The simplest modification of GR arises by generalizing

the action through arbitrary functions of the Ricci scalar,
resulting in fðRÞ gravity [4,5]. Nevertheless, one can build
more complicated constructions using higher-order correc-
tions, such as the Gauss-Bonnet term G and its functions
[6–9], Lovelock combinations [10,11], Weyl combinations
[12], higher spatial derivatives as in Hořava-Lifshitz gravity
[13], etc. On the other hand, one can be based in the
teleparallel formulation of gravity, and construct its mod-
ifications such as in fðTÞ gravity [14–16], in fðT; TGÞ
gravity [17], etc. Hence, in all these classes of modified

gravity one can extract the spherically symmetric black
hole solutions and study their properties [18–57].
In general, the obtained spherically symmetric solutions

can be classified either in branches which are extensions of
the corresponding GR solutions, coinciding exactly with
them in a particular limit, or to novel branches that appear
purely from the gravitational modification and do not
possess a GR limit. In both cases, the obtained black holes
and compact objects present new properties which may be
potentially detectable in the gravitational waves arising
from mergers. Thus, studying the properties of spherically
symmetric solutions in various modified gravities is crucial
in order to put the new observational tool of multimes-
senger astronomy to work.
It is the aim of the present study to derive new charged

black hole solutions in the context of fðRÞ gravity,
allowing additionally for possible nonlinearities in the
Maxwell sector. The plan of the manuscript is as follows:
In Sec. II, we present a convenient way to handle the
possible electrodynamic nonlinearities. In Sec. III we
extract static and rotating spherically symmetric black hole
solutions and in Sec. IV we calculate all the thermody-
namical quantities such as the entropy, Hawking temper-
ature, heat capacity, and Gibbs free energy, analyzing
additionally the stability of the solutions. Finally, Sec. V
is devoted to discussion and conclusions.

*nashed@bue.edu.eg
†msaridak@noa.gr

PHYSICAL REVIEW D 102, 124072 (2020)

2470-0010=2020=102(12)=124072(10) 124072-1 © 2020 American Physical Society

https://orcid.org/0000-0003-1500-0874
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.124072&domain=pdf&date_stamp=2020-12-29
https://doi.org/10.1103/PhysRevD.102.124072
https://doi.org/10.1103/PhysRevD.102.124072
https://doi.org/10.1103/PhysRevD.102.124072
https://doi.org/10.1103/PhysRevD.102.124072


II. DUAL REPRESENTATION OF NONLINEAR
ELECTRODYNAMICS

In this section we present a new way for the description
of nonlinear electrodynamics, which is valid independently
of the specific electromagnetic Lagrangian and which
allows for an easy handling concerning the derivation of
field equations. We start with a general gauge-invariant
electromagnetic Lagrangian of the form LðF Þ, where
F ¼ 1

4
F αβF αβ is the usual antisymmetric Faraday tensor

defined as F αβ ¼ 2V ½α;β�, with Vμ the gauge potential
1-form and where square brackets denote symmetrization
[58]. As usual, linear, Maxwell electrodynamics is obtained
for LðF Þ ¼ 4F.
For the purposes of this work we consider a dual

representation, introducing the auxiliary field Pαβ,
which has been proven convenient if one desires to
embed electromagnetism in the framework of general
relativity [59,60]. In particular, we impose the Legendre
transformation

H ¼ 2FLF − L; ð1Þ

with LF ≡ ∂L
∂F . Defining

Pμν ¼ LFF μν; ð2Þ

we immediately find that H is an arbitrary function of the
invariant

P ¼ 1

4
PαβPαβ ¼ L2

FF : ð3Þ

Using (1), the Lagrangian of nonlinear electrodynamics can
be represented in terms of P as

L ¼ 2PHP − H; ð4Þ

while

F μν ¼ HPPμν; ð5Þ

with HP ¼ ∂H
∂P.

The field equations thus acquire the form [59]

∂νð
ffiffiffiffiffiffi
−g

p
PμνÞ ¼ 0; ð6Þ

and the corresponding energy-momentum tensor is
given as

Tnlemν
μ ≡ 2ðHPPμαPνα − δνμ½2PHP − H�Þ: ð7Þ

We mention that in general (7) has a nonvanishing
trace

Tnlem ¼ 8ðH − HPPÞ; ð8Þ

which becomes zero only in the case of the linear theory.
Finally, the electric and magnetic fields in spherical
coordinates can be calculated as [59,60]

E ¼
Z

F trdr ¼
Z

HPPtrdr;

Br ¼
Z

F rϕdϕ ¼
Z

HPPrϕdϕ;

Bθ ¼
Z

F θrdr ¼
Z

HPPθrdr;

Bϕ ¼
Z

Fϕrdr ¼
Z

HPPϕrdr: ð9Þ

III. STATIC AND ROTATING BLACK HOLE
SOLUTIONS IN NONLINEAR
MAXWELL f ðRÞ GRAVITY

In this section we consider nonlinear electrodynamics in
a gravitational background governed by fðRÞ gravity, and
we extract charged black hole solutions. The total action is
written as [61]

St ¼
1

2κ

Z ffiffiffiffiffiffi
−g

p
fðRÞd4xþ

Z ffiffiffiffiffiffi
−g

p
LðF Þd4x; ð10Þ

where
ffiffiffiffiffiffi−gp

is the determinant of the metric gμν and κ is the
gravitational constant (from now on we set κ ¼ 1 and all
quantities are measured in these units). Performing varia-
tion with respect to the metric leads to the gravitational field
equations [62,63]:

ξμν ¼ RμνfR −
1

2
gμνfðRÞ − 2gμνΛþ gμν□fR

−∇μ∇νfR − 8πTnlem
μν ≡ 0; ð11Þ

where □ is the D’Alembertian operator defined as
□ ¼ ∇α∇α, ∇αVβ is the covariant derivative of the

vector Vβ, fR ≡ dfðRÞ
dR , and the electromagnetic energy-

momentum tensor Tnlem
μν is given by (7). Additionally,

taking the trace of (11) gives

ξ ¼ RfR − 2fðRÞ − 8Λþ 3□fR −Tnlem; ð12Þ

with Tnlem given by (8).

A. Static solutions

In order to extract black hole solutions we consider a
spherically symmetric metric of the form

ds2 ¼ HðrÞdt2 − dr2

HðrÞ − r2ðdθ2 þ sin2 θdϕ2Þ: ð13Þ

Thus, the corresponding Ricci scalar becomes
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R ¼ 2 − r2H00 − 4rH0 − 2H
r2

; ð14Þ

where from now on primes denote derivatives with respect
to r. Concerning the electromagnetic potential 1-form we
consider the general ansatz [64]

V ≔ qðrÞdtþ nðϕÞdrþ sðrÞdϕ; ð15Þ

with qðrÞ,sðrÞ,nðϕÞ three free functions reproducing the
electric and magnetic charges in the vector potential where
P ¼ dV and V ¼ Vνdxν.
In the following, without loss of generality, and just to

provide an example of the method at hand, we focus on the
square-root fðRÞ correction to general relativity, where
fðRÞ ¼ R − 2α

ffiffiffiffiffi
R

p
[65,66]. Inserting the metric (13) and

the potential (15) into the general field equations (11), (12),
(6) we obtain the following nonvanishing field equations:

ξt
t¼ 1

4r6
ffiffiffiffiffiffi
R5

p f2Rr6HH000 þ3r6HH0002þ r3H000½r2H00ð12H− rH0Þ−4r2H02−2rð31H−1ÞH0 þ48Hð1−HÞ�

þ2r6H003þ4r4H002ð6rH0 þ15H−4Þþ2r2H00½57r2H02þ14rH0ð57H−5Þþ4ð5þ4H−3H2Þ�
þ200r3H03þ4r2H02ð96H−85Þþ8rH0ðH−1Þð27H−23Þþ32ðH−1Þ2ð2H−1Þg

−
2rsin2θq0q00ð2r2H− rH0 þ1−HÞ

2r3sin2θq0q00 þ ðs0−nϕÞ½2Hs00 þ ðs0−nϕÞðrH0−2HÞ�

−
ðs0−nϕÞf2rHs00ð1− rH0−H−Hr2Þ− ðs0−nϕÞ½r2H02− rð1þHþ2r2HÞ�þ2HðH−1− r3H0− r2HÞg

2r2½2rHs00ðs0−nϕÞþ2r3sin2θq0q00 þ ðs0−nϕÞ2ðrH0−2HÞ� ¼ 0; ð16Þ

ξt
ϕ ¼ 4rHH0q0ðs0 − nϕÞ

2r3sin2θq0q00 þ ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ� ¼ 0; ð17Þ

ξr
r ¼ 1

4r4
ffiffiffiffiffiffi
R3

p f4r2
ffiffiffiffiffiffi
R3

p
ð2r2H − rH0 −H þ 1Þ þ α½r3H000ðrH0 þ 4HÞ − 2r4H002 þ 4r2H00½ð3þHÞ − 4rH0�

− 50r2H02 þ 4rH0ð15 − 17HÞ − 16ð1þ 2H2 − 3HÞ�g ¼ 0; ð18Þ

ξθ
θ ¼ 1

4r6
ffiffiffiffiffiffi
R5

p
f2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g

× fr5
ffiffiffiffiffiffi
R5

p
frH00f2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g − 1

2
rH02ðs0 − nϕÞ2 − 2r4H0q02sin2θ

− ½q0q00r3sin2θ − 2rHs00ðs0 − nϕÞ�ð2rH −H0Þ − ðH þ r2HÞ½ðs0 − nϕÞ2 − 2rHðϕ02 − 2s0nϕ þ s02Þ�g
− αf2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g
× f2r6RHH000 − 3r6HH0002 þ 2r3H000½r2H00ðrH0 − 7HÞ þ 4r2H02 þ 2rH0ð14H − 1Þ − 22Hð1 −HÞ�
− 4r4½r2H003 þH002ð18H þ 9rH0 − 5Þ� − 4r2H00½33r2H02 þ rH0ð27H − 34Þ þ 10H þ 8 − 18H2�
− 208r3H03 − 4r2H02ð81H − 74Þ þ 8rð15H − 16Þð1 −HÞ þ 16ð1 − 4H þ 5H2 − 2H3Þgg≡ 0; ð19Þ

ξϕ
ϕ ¼ 1

4r6
ffiffiffiffiffiffi
R5

p
f2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g

× f2r5
ffiffiffiffiffiffi
R5

p
frH00f2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g − ½rH02=2 − ðH þ r2HÞ�ðs0 − nϕÞ2

− r½q0q00r2sin2θ þ 2Hs00ðs0 − nϕÞ�ð2rH −H0Þ − 2r½HHðϕ02 − 2s0nϕ þ s02Þ − r3H0q02sin2θ�g
þ αf2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g
× f2r6RHH0000 þ 3r6HH0002 − 2r3H000½r2H00ðrH0 − 7HÞ þ 4r2H02 þ 2rH0ð14H − 1Þ − 22Hð1 −HÞ�
þ 4r4½r2H003 þH002ð18H þ 9rH0 − 5Þ� þ 4r2H00½33r2H02 þ rH0ð27H − 34Þ þ 10H þ 8 − 18H2�
þ 208r3H03 þ 4r2H02ð81H − 74Þ − 8rH0ð15H − 16Þð1 −HÞ − 16ð1 − 4H þ 5H2 − 2H3Þgg≡ 0; ð20Þ
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ξϕ
t ¼ 4r3H0sin2θq0ðs0 − nϕÞ

2rHs00ðs0 − nϕÞ − 2r3sin2θq0q00 þ ðs0 − nϕÞ2ðrH0 − 2HÞ : ð21Þ

Finally, the trace equation (12) becomes

ξ ¼ 1

2r6
ffiffiffiffiffiffi
R5

p
f2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g

× fr4
ffiffiffiffiffiffi
R5

p
fr2H00f2r3sin2θq0q00 − ðs0 − nϕÞ½2rHs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g þ 4r5H0q02sin2θ

− rð1þ 4r2H − 2rH0 −HÞ½2q0q00r2sin2θ − 2Hs00ðs0 − nϕÞ� − ½2r2H02 − rð3H þ 4r2Hþ 1Þ�ðs0 − nϕÞ2
− 2H½ϕ02 − 2s0nϕ þ s02�ð1þ 2r3H0 −H þ 4r2HÞg
þ αf2r3sin2θq0q00 − ðs0 − nϕÞ½2Hs00 þ ðs0 − nϕÞðrH0 − 2HÞ�g
× f2r6RHH0000 þ 3r6HH0002 − 2r3H000½r2H00ðrH0 − 6HÞ þ 4r2H02 þ 2rH0ð16H − 1Þ − 24Hð1 −HÞ�
þ 4r6H003 þ 2r4H002ð3 − 17H − 5rH0Þ − 4r2H00½41r2H02 − 2rH0ð16H0 − 23Þ þ 4ðH þ 3 − 4H2Þ�
− 136r3H03 þ 2r2H02ð106 − 117HÞ þ 8rH0ð15H − 13Þð1 −HÞ − 16ð2H − 1Þð1 −HÞ2gg≡ 0: ð22Þ

From Eqs. (17) and (21) we acquire

sðrÞ ¼ c4r; nðϕÞ ¼ c4ϕ: ð23Þ

Inserting (23) into Eqs. (19) and (20) it is easy to show that
two of the other equations coincide, namely ξθ

θ ¼ ξϕ
ϕ.

Therefore, the system of differential equations (16), (18),
(19), and (20) reduces to three differential equations of
three unknowns,HðrÞ, H and, qðrÞ, which can be solved to
give the following analytical solutions:

−HðrÞ ¼ c
2
þ c1

r
þ c2
r2
; qðrÞ ¼ c3

r
;

HðrÞ ¼ α½3c2 þ 4ðc− 1Þr�r2 þ ffiffiffiffiffiffiffiffiffiffi
2− c

p ½ðc− 2Þr2 − 2c1�
4

ffiffiffiffiffiffiffiffiffiffi
2− c

p
r4

;

ð24Þ

−HðrÞ ¼ c
2
−

1

3αr
−

1

3αr2
; qðrÞ ¼ c3

r
;

HðrÞ ¼ α½−3þ 12ðc− 1Þr�r2þ ffiffiffiffiffiffiffiffiffiffi
2− c

p ½3αðc− 2Þr2þ 2�
12

ffiffiffiffiffiffiffiffiffiffi
2− c

p
r4

:

ð25Þ

We stress that we adjust the constants c1 and c2 so that
solutions (24) and (25) satisfy the trace Eq. (22), too,
and hence the whole solution structure is consistent.
Additionally, concerning the parameter c we deduce that
it must be non-negative in order to maintain the metric
signature and also the value 0 is excluded too in order to
obtain asymptotic flat spacetime at r → ∞. If α ¼ 0 then
solution (24) holds for any 0 < c while solution (25) does

not exist; nevertheless if α ≠ 0 then we should restrict c to
0 < c < 2 in both solutions in order to acquire real HðrÞ.
Concerning the function P we find PðrÞ ¼ c2

3

2r4. Hence,
knowing HðrÞ we can find that

HðPÞ¼ P
4c23

f−4c1þ
ffiffiffi
2

p
ðc−2Þc3P−1=2

þαc3½Pð1−c=2Þ�−1=2½3c2þ27=4ðc−1Þ ffiffiffiffiffi
c3

p
P−1=4�g:

ð26Þ

Therefore, knowing from (1) that H ¼ 2FLF − L and
from (3) that P ¼ L2

FF , we can rewrite (26) as

2FLF − L ¼ L2
FF
4c23

f−4c1 þ
ffiffiffi
2

p
ðc − 2Þc3L−1

F F−1=2

þ αc3L−1
F ½F ð1 − c=2Þ�−1=2

× ½3c2 þ 27=4ðc − 1Þ ffiffiffiffiffi
c3

p
L−1=2
F F−1=4�g; ð27Þ

which is a differential equation for LðF Þ.
According to the value of c the solution of the above

differential equation will give a corresponding correction to
the standard electromagnetic Lagrangian. Since for our novel
solution we have 0 < c < 2, in the rest of thework we focus
on the case c ¼ 1, since this leads to the simple solution (but
still a novel solution comparing to general relativity)

LðF Þ ¼ c23
c1

F þ c3ffiffiffiffiffi
c1

p
ffiffiffiffi
F

p
c4 þ c1c24: ð28Þ

As one can see, the first term is standard linear electromag-
netism, while the second term is the nonlinear correction of a
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square-root form. In the general c case the correction terms
take more complicated forms.
Let us analyze the properties of the obtained spherically

symmetric solutions (24), (25). These can be rewritten in
the standard form as

ds12 ¼ −
�
c
2
−
2M
r

þ q2

r2

�
dt2 þ dr2

ðc
2
− 2M

r þ q2

r2Þ
þ r2dΩ2;

where M ¼ −
c1
2
; q ¼ ffiffiffiffiffi

c2
p

; ð29Þ

for (24), and

ds22 ¼ −
�
c
2
−
2M
r

þ q2

r2

�
dt2 þ dr2

ðc
2
− 2M

r þ q2

r2Þ
þ r2dΩ2;

where M ¼ 1

6α
; q ¼ 1ffiffiffiffiffiffi

6α
p ; ð30Þ

for (25). The first solution branch includes the GR solution
in the limit α → 0 and c → 2 (solution (24) is the
generalization of those obtained in [67] in the static and
noncharged case; see also [37,68–70]). On the other hand,
the second branch exists only in the case α ≠ 0, and thus it
is a novel solution that arises from the fðRÞ gravitational
modification as well as from the electrodynamic non-
linearity. Hence, the two solutions, although looking
similar, they are fundamentally different, and the fact that
the mass of solution (30) depends only on 1=α is a
reflection of the novelty of the solution (such a connection
between the gravitational modification parameters with
the black hole quantities, in specific exact solutions, is
known to be the case in many modified gravity theories). In
this work we are interested in solution (30), i.e., (25),
exactly because it is a novel one with no general rela-
tivity limit.
In order to investigate the horizons and singularities of

the above solutions we calculate the Kretschmann, the
Ricci tensor square, and the Ricci invariants. For (24)
we find

RμνλρRμνλρ¼r−8f8c1ð7c1−r2Þþ4c1rð12c2þcrÞ
þcr4ðc−4Þþ4c2r2ð3c2−2rÞþ4r3ðrþc2cÞg;

RμνRμν¼
8c1ðc1þr2Þþcr2ðcr2−4c1Þþ4r4ð1−cÞ

18α2r8
;

R¼2−c
r2

; ð31Þ

while for (25) we acquire

−RμνλρRμνλρ ¼ ð9α2r8Þ−1f56þ9r4α2½c−2�2
−12αr3ðc−2Þ−12r2½αðc−2Þ−1�þ48rg;

RμνRμν ¼
9r4α2ðc−2Þ2þ12αr2ðc−2Þþ8

18α2r8
;

R¼ 2−c
r2

: ð32Þ

Expressions (31), (32) reveal that the spherically symmetric
solutions exhibit a true singularity at r ¼ 0. Although in the
GR case this singularity is always hidden by a horizon,
when the fðRÞ correction is switched on this is not always
the case; namely, a naked singularity may appear. This
issue will be investigated in the next section.
Lastly, concerning the electric and magnetic charges,

expressions (9) give

E¼½ðc−2Þr2−8m� ffiffiffiffiffiffiffiffiffiffi
2−c

p þr2α½ðc−1Þrþ3q2�
4c3r

ffiffiffiffiffiffiffiffiffiffi
2−c

p ;

Bϕ¼
c4rð½2ðc−2Þr2þ16m� ffiffiffiffiffiffiffiffiffiffi

2−c
p þ3r2α½ðc−1Þþ2q2�Þ

24c32
ffiffiffiffiffiffiffiffiffiffi
2−c

p ;

Br¼
c4ϕð½ðc−2Þr2þ8m� ffiffiffiffiffiffiffiffiffiffi

2−c
p þr2α½2ðc−1Þþ3q2�Þ

4c32
ffiffiffiffiffiffiffiffiffiffi
2−c

p ;

ð33Þ

whileBθ ¼ 0. Equation (33) shows in a clear way that when
the constant c4 ¼ 0we have no magnetic fields; namely, the
magnetic fields are related to the integration constant c4.

B. Rotating solutions

In this subsection we derive rotating solutions that satisfy
the field equations (11), (12), and (6). In order to achieve
this we apply the following transformation [71,72]:

ϕ̄ ¼ Ξϕþ ωt;

t̄ ¼ Ξtþ ωϕ; ð34Þ

with ω being the rotation parameter and Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

p
.

Applying (34) to the metric (13) we obtain

ds2 ¼ ½Ξ2HðrÞ−ω2r2 sin2 θ�dt2 − dr2

HðrÞ− r2dθ2

− ½Ξ2r2 sin2 θ−ω2H�dϕ2 þ 2ωΞ½H − r2 sin2 θ�dtdϕ;
ð35Þ

where HðrÞ is given by the previously extracted static
solutions (24), (25), and 0 ≤ r < ∞, −∞ < t < ∞,
0 ≤ ϕ < 2π. We mention that the static configuration
(13) can be recovered as a special case of the above general
metric, if the rotation parameter ω is set to zero. Hence, for
the general gauge potential (15) we acquire the form

NEW ROTATING BLACK HOLES IN NONLINEAR MAXWELL … PHYS. REV. D 102, 124072 (2020)

124072-5



V̄ ¼ ½ΞqðrÞ þ ωsðrÞ�dt̄þ nðϕÞdrþ ½ωqðrÞ þ ΞsðrÞ�dϕ̄:
ð36Þ

Note here that although the transformation (34) leaves the
local properties of spacetime unaltered, it does change them
globally as has been shown in [71], since it mixes compact
and noncompact coordinates. Thus, the two metrics (13)
and (35) can be locally mapped into each other but not
globally [71,72].
To conclude, we have succeeded in deriving new rotating

charged black hole solutions in fðRÞ gravity, using as a
specific example the case fðRÞ ¼ R − 2α

ffiffiffiffiffi
R

p
. Similarly to

the static case, these belong to two branches, one that
contains the Kerr-Newman metric, namely the rotating
charged black hole solution of general relativity, as a
particular limit [the one arising inserting (24) into (35)]
and one that arises purely from the gravitational modifi-
cation and does not recover the general relativity solution
[the one arising inserting (25) into (35)]. Concerning the
singularity properties, as is clear from (35), these will be the
same with the static solution (13). Therefore, at r ¼ 0 we
obtain a true singularity, and close to r ¼ 0 the behavior of
the invariants is ðK;RμνRμνÞ ∼ r−8 and ðRÞ ∼ r−2.

IV. THERMODYNAMICS

In this section we focus on the investigation of the
thermodynamic properties of the obtained black hole
solutions. Since solution (24) contains the general relativity
result, in the following analysis we focus on the novel
solution (25) that arises solely from the gravitational
modification [64,66,73].
We start by introducing the Hawking temperature

as [74–77]

Th ¼
H0ðrhÞ
4π

; ð37Þ

where the event horizon is located at r ¼ rh which
represents the largest positive root of HðrhÞ ¼ 0 that
satisfies H0ðrhÞ ≠ 0. The Bekenstein-Hawking entropy of
fðRÞ gravitational theory is given by [78,79]

SðrhÞ ¼
1

4
AfRðrhÞ; ð38Þ

with A being the area of the event horizon. Additionally, the
quasilocal energy in fðRÞ gravity is defined as [78,79]

EðrhÞ¼
1

4

Z
drh½rh2ffðRðrhÞÞ−RðrhÞfRðrhÞgþ2fRðrhÞ�:

ð39Þ

Finally, we can express the black hole mass as a function of
the horizon rh and the charge q, which for the case (25),
(30) becomes

Mh ¼
rh
2

�
c
2
þ q2

rh2

�
: ð40Þ

The relation between the metric function HðrÞ and the
radial coordinate r is presented in Fig. 1, which shows the
possible horizons of the solution. Note that since, in this
work for simplicity, we are using natural units; in order to
be closer to physical cases we should have taken much
larger values ofM and q, and then the radial distance would
take much larger values too while α would take much
smaller values. However, since in mathematical terms the
physical properties of the solutions do not depend on the
scale, and in order to avoid graphs with very large/small
numbers, we prefer to remain in these representative
numbers of order one since they are adequate in order to
provide the physical features of the solution.
Moreover, the relation between Mh and the horizon

radius is depicted in Fig. 2. As one can see, there is a
limiting horizon radius after which there is no horizon and
the black hole singularity will be a naked singularity. This
“degenerate horizon” value rdg can thus be calculated by

the condition ∂Mh∂rh ¼ 0, which for solution (25), (30) yields

rdg ¼
ffiffiffi
2

p
qffiffiffi
c

p :

FIG. 1. The metric function HðrÞ vs the radial coordinate r, for
solution (25) with c ¼ 1, for various mass and charge choices.
The black hole horizon is determined by the condition HðrÞ ¼ 0.
The “degenerate horizon” rdg marks the limiting value after
which there is no horizon and the central singularity becomes a
naked one (see text).
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Hence, as we can see, the cosmic censorship theorem can
be violated in nonlinear Maxwell fðRÞ gravity.
Concerning the Hawking temperature (37), calculating it

using the black hole solution (25) we find

Th ¼
crh2 − 2q2

8πrh3
: ð41Þ

We mention that Th does not depend directly on the
gravitational modification parameter α (although it indi-
rectly does since the latter affects the horizon). In Fig. 3 we
depict the temperature behavior as a function of the
horizon. As we observe, for suitable parameter values this
can be negative, and, according to (41), this happens when

c < 2q2

rh2
. This implies a formation of an ultracold black hole

[80,81], which reveals the capabilities of the scenario
at hand.
As a next step, using expression (38) the entropy of the

black hole (25) is calculated as

Sh ¼
πrh2ð

ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p
− αrhÞffiffiffiffiffiffiffiffiffiffiffi

2 − c
p : ð42Þ

In Fig. 4 we show the behavior of the entropy as a function
of the horizon. Hence, by imposing the entropy positivity
condition we obtain

α <

ffiffiffiffiffiffiffiffiffiffiffi
c − 2

p

rh
:

This is one of the main results of the present work, and
shows that the gravitational correction of fðRÞ gravity
must be suitably small in order to avoid nonphysical black
hole properties (see also the discussion in [82–87] for the
entropy negativity in various theories of modified gravity).
Similarly, using expression (39) we find the quasilocal

energy of the black hole (25) as

Eh ¼
rhð4

ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p þ 4rhα − 3rhcαÞ
8

ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p : ð43Þ

From (43) we conclude that in order to have a positive value
of the quasilocal energy we must have

c >
4

3
and α <

4
ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p

rhð3c − 4Þ ð44Þ

FIG. 2. The black hole mass as a function of the horizon rh, for
solution (25) with c ¼ 1, for various charge choices.

FIG. 3. The black hole temperature (41) as a function of the
horizon rh, for solution (25), for solution (25) with c ¼ 1, for
various charge choices.

FIG. 4. The black hole entropy (42) as a function of the horizon
rh, for solution (25), for various choices of the gravitational
modification parameter α.

NEW ROTATING BLACK HOLES IN NONLINEAR MAXWELL … PHYS. REV. D 102, 124072 (2020)

124072-7



or

c <
4

3
and α >

4
ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p

rhð3c − 4Þ : ð45Þ

We continue by examining the black hole thermo-
dynamical stability. As it is known, in order to analyze
it one has to examine the sign of its heat capacity Ch, given
as [88–90]:

Ch ¼
dEh

dTh
¼ ∂Mh

∂rh
�∂Th

∂rh
�

−1
; ð46Þ

where Eh is the energy. If the heat capacity Ch > 0 then the
black hole is thermodynamically stable; i.e., a black hole
with a negative heat capacity is thermally unstable.
Concerning the heat capacity of the black hole solution
(25), using Eq. (46) we acquire

Ch ¼
2πrh2ð2q2 − crh2Þ

crh2 − 6q2
: ð47Þ

We mention that Ch does not depend directly on the
gravitational modification parameter α, but only indirectly
through the effect of α on the horizon. This expression
implies that in order to obtain a positive heat capacity we
must have

q > �0.5r
ffiffiffi
c

p
: ð48Þ

In Fig. 5 we depict Ch as a function of the horizon, where
we observe that if q satisfies the above inequality then
stability is obtained. We mention here that a negative heat
capacity is associated with a negative temperature, which
corresponds to rh < rdg. At rh ¼ rdg both the temperature

and the heat capacity are exactly zero on the black hole
horizon. When rh > rdg, both temperature and heat capac-
ity are positive and the solution is in thermal equilibrium.
Indeed, the thermodynamical stability of charged black
holes has been widely studied in various modified gravity
theories, e.g., the thermodynamics of Bardeen (regular)
black holes [91], of Schwarzschild-AdS solutions in two
vacuum scales case [92], of solutions in noncommutative
geometry [93–96], etc.
Finally, let us make some comments on the Gibbs free

energy, namely the free energy in the grand canonical
ensemble, defined as [79,97]

GðrhÞ ¼ EðrhÞ − TðrhÞSðrhÞ: ð49Þ

Inserting (41), (42), and (43) into (49) we find

Gh ¼
ð6q2 þ cr2hÞ

ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p þ αrhðr2h − 2q2Þ
8rh

ffiffiffiffiffiffiffiffiffiffiffi
2 − c

p : ð50Þ

The behavior of the Gibb’s energy of the black holes (25) is
presented in Fig. 6 for particular values of the model
parameters. As we can see it is always positive when α > 0
which implies that it is more globally stable.

V. DISCUSSION AND CONCLUSION

The radical advance in multimessenger astronomy opens
the possibility to test general relativity and investigate
modified gravity by the gravitational and electromagnetic
waves profile that arise from mergers of spherically
symmetric objects, such as black holes and neutron stars.
Hence, it is crucial to study such object’s properties in
various theories of modified gravity in the presence of the
Maxwell sector.

FIG. 6. The black hole Gibbs free energy (50) as a function of
the horizon rh, for solution (25) with c ¼ 1, for various choices of
charge and gravitational modification.

FIG. 5. The heat capacity (47) as a function of the horizon rh,
for solution (25) with c ¼ 1, for various charge choices.
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In this work we investigated static and rotating charged
spherically symmetric solution in the framework of fðRÞ
gravity, allowing additionally the electromagnetic sector to
depart from linearity. Applying a convenient, dual descrip-
tion for the electromagnetic Lagrangian, and using as an
example the square-root fðRÞ correction, we were able to
solve analytically the involved field equations. The obtained
solutions belong to two branches: One that contains the
Kerr-Newman metric, namely the rotating charged black
hole solution of general relativity, as a particular limit and
one that arises purely from the gravitational modification
and does not recover the general relativity solution.
Moreover, we have shown that the two components of
the magnetic fields, of the nonlinear electrodynamics, are
connected by a constant which if it is vanished we acquire a
charged black hole with electric field only [66].
Analyzing the novel black hole solution that does not

have a general relativity limit we found that it has a true
central singularity which is hidden behind a horizon;
however, for particular parameter regions the horizon
disappears and the singularity becomes a naked one; i.e.,
we obtain a violation of the cosmic censorship theorem.
Furthermore, we investigated the thermodynamical prop-

erties of the solutions, such as the temperature, energy,

entropy, heat capacity, and Gibbs free energy. We extracted
the conditions on the gravitational modification parameter
in order to obtain entropy and quasilocal energy positivity.
Concerning temperature, we showed that it can become
negative for particular parameter values, and thus ultracold
black holes may be formed. Finally, we examined the
thermodynamic stability of the solutions by examining
the sign of the heat capacity, extracting the corresponding
conditions.
In summary, we showed that even small deviations from

general relativity and/or from linear electrodynamics may
lead to novel spherically symmetric solution branches, with
novel properties that do not appear in standard general
relativity. Since these properties may be embedded in the
gravitational waves profiles, they could serve as a smoking
gun of this subclass of gravitational modification.
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