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We investigate static and rotating charged spherically symmetric solutions in the framework of f(R)
gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient,
dual description for the electromagnetic Lagrangian, and using as an example the square-root f(R)
correction, we solve analytically the involved field equations. The obtained solutions belong to two
branches, one that contains the Kerr-Newman solution of general relativity as a particular limit, and one that
arises purely from the gravitational modification with no general relativity limit. The novel black hole
solution has a true central singularity which is hidden behind a horizon; however, for particular parameter
regions the horizon disappears and the singularity becomes a naked one. Furthermore, we investigate the
thermodynamical properties of the solutions, such as the temperature, energy, entropy, heat capacity, and
Gibbs free energy. We extract the entropy and quasilocal energy positivity conditions, we show that
negative-temperature, ultracold, black holes are possible, and we show that the obtained solutions are
thermodynamically stable for suitable model parameter regions.
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I. INTRODUCTION

The detection of gravitational waves from the binary black
hole and binary neutron star mergers by the LIGO-VIRGO
collaboration [1-3] opened the new era of multimessenger
astronomy. In this novel window to investigate the universe
the central role is played by spherically symmetric compact
objects and black holes. Since their properties are determined
by the underlying gravitational theory recently there has been
an increased interest in studying such solutions in various
extensions of general relativity (GR).

The simplest modification of GR arises by generalizing
the action through arbitrary functions of the Ricci scalar,
resulting in f(R) gravity [4,5]. Nevertheless, one can build
more complicated constructions using higher-order correc-
tions, such as the Gauss-Bonnet term G and its functions
[6-9], Lovelock combinations [10,11], Weyl combinations
[12], higher spatial derivatives as in Horava-Lifshitz gravity
[13], etc. On the other hand, one can be based in the
teleparallel formulation of gravity, and construct its mod-
ifications such as in f(7T) gravity [14-16], in f(T,Tg)
gravity [17], etc. Hence, in all these classes of modified
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gravity one can extract the spherically symmetric black
hole solutions and study their properties [18-57].

In general, the obtained spherically symmetric solutions
can be classified either in branches which are extensions of
the corresponding GR solutions, coinciding exactly with
them in a particular limit, or to novel branches that appear
purely from the gravitational modification and do not
possess a GR limit. In both cases, the obtained black holes
and compact objects present new properties which may be
potentially detectable in the gravitational waves arising
from mergers. Thus, studying the properties of spherically
symmetric solutions in various modified gravities is crucial
in order to put the new observational tool of multimes-
senger astronomy to work.

It is the aim of the present study to derive new charged
black hole solutions in the context of f(R) gravity,
allowing additionally for possible nonlinearities in the
Maxwell sector. The plan of the manuscript is as follows:
In Sec. II, we present a convenient way to handle the
possible electrodynamic nonlinearities. In Sec. III we
extract static and rotating spherically symmetric black hole
solutions and in Sec. IV we calculate all the thermody-
namical quantities such as the entropy, Hawking temper-
ature, heat capacity, and Gibbs free energy, analyzing
additionally the stability of the solutions. Finally, Sec. V
is devoted to discussion and conclusions.

© 2020 American Physical Society
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II. DUAL REPRESENTATION OF NONLINEAR
ELECTRODYNAMICS

In this section we present a new way for the description
of nonlinear electrodynamics, which is valid independently
of the specific electromagnetic Lagrangian and which
allows for an easy handling concerning the derivation of
field equations. We start with a general gauge-invariant
electromagnetic Lagrangian of the form L(F), where
F =1 F 3 F is the usual antisymmetric Faraday tensor
defined as F,3 =2V, 45, with V, the gauge potential
1-form and where square brackets denote symmetrization
[58]. As usual, linear, Maxwell electrodynamics is obtained
for L(F) = 4F.

For the purposes of this work we consider a dual
representation, introducing the auxiliary field P,
which has been proven convenient if one desires to
embed electromagnetism in the framework of general
relativity [59,60]. In particular, we impose the Legendre
transformation

HW=2FLs—L. (1)

with L = % Defining

Pﬂy - ,C]:]:#,/, (2)
we immediately find that H is an arbitrary function of the
invariant

1

Using (1), the Lagrangian of nonlinear electrodynamics can
be represented in terms of P as

while
F;w = HPwa (5)

with Hp = 28,
The field equations thus acquire the form [59]

9,(v=gP*) =0, (6)

and the corresponding energy-momentum tensor is
given as

grlemt = 2(HpP, P — 8, 2PHp —H]).  (7)

We mention that in general (7) has a nonvanishing
trace

gnlem _

8(H — HpP), (8)

which becomes zero only in the case of the linear theory.
Finally, the electric and magnetic fields in spherical
coordinates can be calculated as [59,60]

E:/ftrdr:/ﬂ'ﬂpptrdr,

Br - /frd)d(b_ /HpPr¢d¢,
Bg = /.Fg,dr: /prgrdl",

B¢ = /f¢,dr: /U‘Upp¢,dr. (9)

III. STATIC AND ROTATING BLACK HOLE
SOLUTIONS IN NONLINEAR
MAXWELL f(R) GRAVITY

In this section we consider nonlinear electrodynamics in
a gravitational background governed by f(R) gravity, and
we extract charged black hole solutions. The total action is
written as [61]

5= - / IR+ / VIL(F)dx. (10)

where /=g is the determinant of the metric g,,, and « is the
gravitational constant (from now on we set k = 1 and all
quantities are measured in these units). Performing varia-
tion with respect to the metric leads to the gravitational field
equations [62,63]:

1
g/u/ = R/wfR - Eg;u/f(R> - Q'Q;WA + g/,waR
— VMVDfR - 87[‘3’,"16”’”,/ =0, (11)

where [ is the D’Alembertian operator defined as
O0=V,Ve, V.,V is the covariant derivative of the

vector VP, fr = %,

momentum tensor ‘,Z”l“’"w is given by (7). Additionally,
taking the trace of (11) gives

and the electromagnetic energy-

E=TRfr —2f(R) —8A+30fx —Tem,  (12)
with ™™ given by (8).

A. Static solutions

In order to extract black hole solutions we consider a
spherically symmetric metric of the form

2

d
ds*> = H(r)dt* - 4

0o~ r2(d6* + sin® 0dg*).  (13)

Thus, the corresponding Ricci scalar becomes
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2—r’*H" —4rH' - 2H

I‘2 ’

R:

(14)

where from now on primes denote derivatives with respect
to r. Concerning the electromagnetic potential 1-form we
consider the general ansatz [64]

V = q(r)dt + n(¢)dr + s(r)de, (15)
|

1

gt =
' 479/ R3

with ¢(r),s(r),n(¢) three free functions reproducing the
electric and magnetic charges in the vector potential where
P=dV and V =V, dx".

In the following, without loss of generality, and just to
provide an example of the method at hand, we focus on the
square-root f(R) correction to general relativity, where
f(R) = R —2a\/R [65,66]. Inserting the metric (13) and
the potential (15) into the general field equations (11), (12),
(6) we obtain the following nonvanishing field equations:

{2R°HH" +3r°HH"* + rPH"[r*H"(12H — rH') =4’ H"> = 2r(31H — 1) H' +-48H (1 — H)]

+2r9H" +4r*H" (6rH' + 15H —4) +2r*H"[57r?H"” + 14rH' (57TH = 5) + 4(5+4H — 3H?))
+200r°H” +4r*H"?(96H —85) +8rH'(H —1)(27TH —23) +32(H—1)?(2H-1)}

2rsin®0q'q" (2r’H—rH' +1—H)

2S04 1 (s —ng) 2HS" 1 (s —ny) (rH —2H)]
(s'—ny){2rHs"(1—rH'—H —Hr*) = (s' = ny) [P H? = r(14+ H+2r"H)] + 2H(H — 1 — °H — r*H) }

- =0, (16
2r2rHs"(s' —ny) +2rsin*0q' q" + (s' — n,)*(rH' —2H)| (16)
4rHH' ¢'(s" — ny)
§t¢:23-2 1 / " ¢/ 7 =0, (17)
r’sin*0q'q" + (s' = ny)[2Hs" + (s' = ny)(rH' — 2H)]
1
Er=—={4rVR2rH—rH —H + 1)+ a[PH" (rH + 4H) — 2r*H"* + 4r’H"[(3 + H) — 4rH']
4r*VR?
—50r2H"” +4rH'(15 = 17H) — 16(1 +2H? — 3H)]} = 0, (18)
& = :
4r°VR3{2r3sin*0q'q" — (s' — ny)2Hs" + (s — ny)(rH' — 2H)|}
1
x {rVR{rH"{2rsin*0q'q" — (s' — ny)2Hs" + (s — ny)(rH' — 2H)|} — ErH’z(s’ —ny)* = 2r*H' q”sin’¢
- q¢'q"rsin*0 — 2rHs"(s' = ny)|(2rH — H') — (H + r*H)[(s' — ny)* = 2rH(¢" — 25'n, + 5')]}
—af2rsin’0q'q" — (s' — ny)[2Hs" + (s' — ny)(rH' — 2H)]}
x {2rSRHH" — 3SHH" + 2P H" [P H" (rH' — TH) + 4°*H” + 2rH'(14H — 1) — 22H(1 — H)]
— 44 TPH" + H™(18H + 9rH' — 5)] — 4P H'[332H™ + rH'(2TH — 34) + 10H + 8 — 18H?]
—208°H" — 4PH?(81H — 74) + 8r(15H — 16)(1 — H) + 16(1 — 4H + SH? = 2H%)}} =0, (19)
1
&?

ey R{2rsin*0q'q" — (s' — ny)[2Hs" + (s' — ny)(rH' — 2H)|}

X {2r5\/ﬁ{rH”{2r3sin26’q’q” — (s' = ny)2Hs" + (' — ny)(rH' — 2H)|} — [rH"?/2 — (H + r*H)](s' — n,)*
—rlg'q"r*sin?0 + 2Hs" (s' — ny)](2rH — H') = 2r[HH(¢* — 25'n,;, + %) — r’H ¢"*sin0]}

+ af{2r’sin®0q'q" — (s' — ny)[2Hs" + (s' — ny)(rH' — 2H)]}

x {2rSRHH"" + 3r°HH""* = 2r*H" [r*H" (rH' — TH) + 4r*H” + 2rH'(14H — 1) = 22H(1 — H)]

+4r4[r*H"™ + H"™(18H + 9rH' — 5)] + 4r?H"[33r*H"” + rH'(27H — 34) + 10H + 8 — 18H?]

+208r°H" + 4r*H"*(81H — 74) — 8rH'(15H — 16)(1 — H) — 16(1 — 4H + 5H? — 2H?)}} =0, (20)
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4rH'sin*0q’(s' — n,)

§¢f = 3ein? 2 : (21)
2rHs"(s" = ny) = 2r’sin"0q'q" + (s' — ny)*(rH' — 2H)
Finally, the trace equation (12) becomes
1
éz 6 S 3cin20. " / /" / /

2r°V R {2rsin*8q'q" — (s' — ny)[2Hs" + (s' = n,)(rH' — 2H)|}
x {r*VR{rPH"{2rsin*0q'q" — (s' — n,)[2rHs" + (s' — n,)(rH' = 2H)]} 4+ 4r°H ¢"*sin*0
—r(1+4r*H-2rH - H)[2q'q"r*sin*0 — 2Hs"(s' — n,)| — [2r*H"? — r(3H + 4r*H + 1)](s' — ny)*
—2H[¢"? —2s'ny + s?|(1 +2r°'H' — H + 4r°H)}
+ af{2rsin?0q'q" — (s' — n,)[2Hs" + (s' — ny)(rH' — 2H)]}
x {2rSRHH"" + 3r°HH""? = 2r*H" [r*H"(rH' — 6H) + 4r*H"”? + 2rH'(16H — 1) — 24H (1 — H)]
+4rH" +2r*H"* (3 — 17H — 5rH') — 4r?H"[41r°H” — 2rH'(16H’ — 23) + 4(H + 3 — 4H?)]
—136/°H" + 272 H™(106 — 117H) + $rH'(15H — 13)(1 — H) — 16(2H — 1)(1 — H)?}} =0. (22)

From Egs. (17) and (21) we acquire

s(r) = cyr, n(¢) = ca. (23)
Inserting (23) into Egs. (19) and (20) it is easy to show that
two of the other equations coincide, namely &,/ = §¢‘/’.
Therefore, the system of differential equations (16), (18),
(19), and (20) reduces to three differential equations of
three unknowns, H(r), H and, ¢(r), which can be solved to
give the following analytical solutions:

H() =3+ 4+5. g ==,
H(r):a[3c2+4(c—1)r}r2+\/ﬁ[(c—2)r2—2cl]
42 —crt ’
(24)

H) =555 )=
H(r):a[—3+12(c—1)r]r2+\/ﬁ[3a(c—2)r2+2}‘

12v2 = cr*
(25)

We stress that we adjust the constants ¢; and ¢, so that
solutions (24) and (25) satisfy the trace Eq. (22), too,
and hence the whole solution structure is consistent.
Additionally, concerning the parameter ¢ we deduce that
it must be non-negative in order to maintain the metric
signature and also the value O is excluded too in order to
obtain asymptotic flat spacetime at r — oo. If @ = 0 then
solution (24) holds for any 0 < ¢ while solution (25) does

not exist; nevertheless if a # 0 then we should restrict ¢ to
0 < ¢ < 2 in both solutions in order to acquire real H(r).

Concerning the function P we find P(r) = % Hence,
knowing H(r) we can find that

H(P) :4—732{-401 Va(c=2)es P12
€3
tacs[P(1=c/2)]7V2[3¢, +27*(c = 1)\/e3 P74}
(26)

Therefore, knowing from (1) that H=2FLr — L and
from (3) that P = L3F, we can rewrite (26) as

LEF
4c%
+acs L7 [F(1 = c/2)]71/?

X [Bc, + 274 (c = )G LZPFV4), (27)

2FLy—L = {~de) +V2(c = 2)es LA F1/2

which is a differential equation for L£(F).

According to the value of c¢ the solution of the above
differential equation will give a corresponding correction to
the standard electromagnetic Lagrangian. Since for our novel
solution we have 0 < ¢ < 2, in the rest of the work we focus
on the case ¢ = 1, since this leads to the simple solution (but
still a novel solution comparing to general relativity)

2
A =8Fr1 S UF 2 2
L(F) c + - ¢4+ ey (28)

As one can see, the first term is standard linear electromag-
netism, while the second term is the nonlinear correction of a
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square-root form. In the general ¢ case the correction terms
take more complicated forms.

Let us analyze the properties of the obtained spherically
symmetric solutions (24), (25). These can be rewritten in
the standard form as

2M 2
ds,* = —(E ——+q—2> dr* + —+ r2dQ?,
2 r r <§ M 4 g
r I
where M = —%, q = +/c2, (29)

for (24), and

2M g? dr?
dsy? = —<E ——+q—2> dr? +—r — + r2dQ?,
2 r r (g_Z_M ‘I_)
2 r r2
1 1
where M = —, =—, 30
6a 4 V6a (30)

for (25). The first solution branch includes the GR solution
in the limit ¢ -0 and ¢ — 2 (solution (24) is the
generalization of those obtained in [67] in the static and
noncharged case; see also [37,68—70]). On the other hand,
the second branch exists only in the case a # 0, and thus it
is a novel solution that arises from the f(R) gravitational
modification as well as from the electrodynamic non-
linearity. Hence, the two solutions, although looking
similar, they are fundamentally different, and the fact that
the mass of solution (30) depends only on 1/a is a
reflection of the novelty of the solution (such a connection
between the gravitational modification parameters with
the black hole quantities, in specific exact solutions, is
known to be the case in many modified gravity theories). In
this work we are interested in solution (30), i.e., (25),
exactly because it is a novel one with no general rela-
tivity limit.

In order to investigate the horizons and singularities of
the above solutions we calculate the Kretschmann, the
Ricci tensor square, and the Ricci invariants. For (24)
we find

RIAPR,=1"2{8ci(Tcy—r?) +4cir(12¢,+cr)
+crt(c—4)+4c,r* (e =2r) +4r3 (r+cyc) },
RIVR _8ci(ey+r)+ert(ert—4cy)+4rt(1-c)
e 18a%r8 ’

R="2F, (31)

while for (25) we acquire

—R‘“’MRWM, = (9a?r3)71{56 + 9r*a*[c - 2)?
—12ar*(c=2) = 12r?[a(c—2) — 1] +48r},

w 9r*a?(c =2)? + 12ar* (¢ —2) + 8
R Ry = 180218 ’

2—c

R:rz.

(32)

Expressions (31), (32) reveal that the spherically symmetric
solutions exhibit a true singularity at r = 0. Although in the
GR case this singularity is always hidden by a horizon,
when the f(R) correction is switched on this is not always
the case; namely, a naked singularity may appear. This
issue will be investigated in the next section.

Lastly, concerning the electric and magnetic charges,
expressions (9) give

[(c=2)r? =8m]v2—c+r*al(c—1)r+34?]
4c3r\/ﬁ '
B — car([2(c=2)r* +16m]v/2—c+3r?al(c—1) +24?])
/ 24c2\2—c ’
_ap([(c=2)r +8m]v2—c+rral2(c—1)+3¢%])
B 4cy>\/2—c¢ '
(33)

E=

B,

while By = 0. Equation (33) shows in a clear way that when
the constant ¢, = 0 we have no magnetic fields; namely, the
magnetic fields are related to the integration constant cy.

B. Rotating solutions

In this subsection we derive rotating solutions that satisfy
the field equations (11), (12), and (6). In order to achieve
this we apply the following transformation [71,72]:

¢ =Zp + ot,
t=Et+ wd, (34)
with @ being the rotation parameter and E = v/1 + w’.
Applying (34) to the metric (13) we obtain
2 _ =2 222 e A7 5
ds* = [B*H(r) — w*r*sin* 0]dt* — —— — r*d0
H(r)
— [E?r?sin* 0 — w?*H|d¢? + 20E[H — r? sin* 0]dtd¢p.
(35)

where H(r) is given by the previously extracted static
solutions (24), (25), and 0<r<oo, —o0 <t < 00,
0 < ¢ <2z. We mention that the static configuration
(13) can be recovered as a special case of the above general
metric, if the rotation parameter w is set to zero. Hence, for
the general gauge potential (15) we acquire the form

124072-5



G.G.L. NASHED and EMMANUEL N. SARIDAKIS

PHYS. REV. D 102, 124072 (2020)

V = [Eq(r) + ws(r)]di + n(¢)dr + [wq(r) + Es(r)]dd.
(36)

Note here that although the transformation (34) leaves the
local properties of spacetime unaltered, it does change them
globally as has been shown in [71], since it mixes compact
and noncompact coordinates. Thus, the two metrics (13)
and (35) can be locally mapped into each other but not
globally [71,72].

To conclude, we have succeeded in deriving new rotating
charged black hole solutions in f(R) gravity, using as a

specific example the case f(R) = R — 2ay/R. Similarly to
the static case, these belong to two branches, one that
contains the Kerr-Newman metric, namely the rotating
charged black hole solution of general relativity, as a
particular limit [the one arising inserting (24) into (35)]
and one that arises purely from the gravitational modifi-
cation and does not recover the general relativity solution
[the one arising inserting (25) into (35)]. Concerning the
singularity properties, as is clear from (35), these will be the
same with the static solution (13). Therefore, at r = 0 we
obtain a true singularity, and close to r = 0 the behavior of
the invariants is (K, R, R*) ~r~® and (R) ~ r™2.

IV. THERMODYNAMICS

In this section we focus on the investigation of the
thermodynamic properties of the obtained black hole
solutions. Since solution (24) contains the general relativity
result, in the following analysis we focus on the novel
solution (25) that arises solely from the gravitational
modification [64,66,73].

We start by introducing the Hawking temperature
as [74-77]

H'(ry)
4z

T, = (37)

where the event horizon is located at r = r, which
represents the largest positive root of H(r,) =0 that
satisfies H'(r,) # 0. The Bekenstein-Hawking entropy of
f(R) gravitational theory is given by [78,79]

$(r) = FAFR(r). (38)

with A being the area of the event horizon. Additionally, the
quasilocal energy in f(R) gravity is defined as [78,79]

1 2
Br) = [ dnlri? U R() =R Falra)} + 20
(39)

Finally, we can express the black hole mass as a function of
the horizon r;, and the charge g, which for the case (25),
(30) becomes

M, =" Fﬂ_]. (40)

The relation between the metric function H(r) and the
radial coordinate r is presented in Fig. 1, which shows the
possible horizons of the solution. Note that since, in this
work for simplicity, we are using natural units; in order to
be closer to physical cases we should have taken much
larger values of M and ¢, and then the radial distance would
take much larger values too while @ would take much
smaller values. However, since in mathematical terms the
physical properties of the solutions do not depend on the
scale, and in order to avoid graphs with very large/small
numbers, we prefer to remain in these representative
numbers of order one since they are adequate in order to
provide the physical features of the solution.

Moreover, the relation between M, and the horizon
radius is depicted in Fig. 2. As one can see, there is a
limiting horizon radius after which there is no horizon and
the black hole singularity will be a naked singularity. This
“degenerate horizon” value r,, can thus be calculated by

the condition 241 — 0, which for solution (25), (30) yields

ory,
V2
rdg = —\/E .
[
[
[
O — — e s s
| .
I :
I|:
— -5l
= e M=1,4 =0.05
T ----M=2,q =0.5
I
~104H — M=3,q-1
]
]
|
—15—!
0 2 4 6 8 10

FIG. 1. The metric function H(r) vs the radial coordinate r, for
solution (25) with ¢ = 1, for various mass and charge choices.
The black hole horizon is determined by the condition H(r) = 0.
The “degenerate horizon” ry, marks the limiting value after
which there is no horizon and the central singularity becomes a
naked one (see text).
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| ... 0=0.05
gl My
| — q=1
41
|
|
M, 27\\
\
0,'.-“.-_;__-;_. __________
-2
0 1 2 3
4

FIG. 2. The black hole mass as a function of the horizon r;,, for
solution (25) with ¢ = 1, for various charge choices.

Hence, as we can see, the cosmic censorship theorem can
be violated in nonlinear Maxwell f(R) gravity.

Concerning the Hawking temperature (37), calculating it
using the black hole solution (25) we find

cry? = 2¢°

T, = (41)

8r,>

We mention that 7, does not depend directly on the
gravitational modification parameter a (although it indi-
rectly does since the latter affects the horizon). In Fig. 3 we
depict the temperature behavior as a function of the
horizon. As we observe, for suitable parameter values this
can be negative, and, according to (41), this happens when

41—

3 q=0, c=1

T'n

FIG. 3. The black hole temperature (41) as a function of the
horizon r;, for solution (25), for solution (25) with ¢ = 1, for
various charge choices.

c < 2”%2. This implies a formation of an ultracold black hole

[80,81], which reveals the capabilities of the scenario
at hand.

As a next step, using expression (38) the entropy of the
black hole (25) is calculated as

S ar (V2 —c —ary)
h= :
2—-c

(42)

In Fig. 4 we show the behavior of the entropy as a function
of the horizon. Hence, by imposing the entropy positivity
condition we obtain

Ve—-2

I

a<

This is one of the main results of the present work, and
shows that the gravitational correction of f(R) gravity
must be suitably small in order to avoid nonphysical black
hole properties (see also the discussion in [82—87] for the
entropy negativity in various theories of modified gravity).

Similarly, using expression (39) we find the quasilocal
energy of the black hole (25) as

_ r(4v2 — ¢ + 4rpa — 3r,ca)
8vV2—c '

E, (43)

From (43) we conclude that in order to have a positive value
of the quasilocal energy we must have

42 - ¢

d ave=e
and @< ry(3c —4)

>4
c>—
3

(44)

FIG. 4. The black hole entropy (42) as a function of the horizon
ry,, for solution (25), for various choices of the gravitational
modification parameter a.
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or
4 4/2-¢
= d —_—. 45
c<z an a>rh(3c—4) (45)

We continue by examining the black hole thermo-
dynamical stability. As it is known, in order to analyze
it one has to examine the sign of its heat capacity Cj,, given
as [88-90]:

C

-1
dE, _ oM, (@) , (46)

:dTh_ (9rh 8rh

where E), is the energy. If the heat capacity C;, > 0 then the
black hole is thermodynamically stable; i.e., a black hole
with a negative heat capacity is thermally unstable.
Concerning the heat capacity of the black hole solution
(25), using Eq. (46) we acquire

C, = 211, (2% — cry?)

47
cry? —64° (47)

We mention that C, does not depend directly on the
gravitational modification parameter a, but only indirectly
through the effect of @ on the horizon. This expression
implies that in order to obtain a positive heat capacity we
must have

g > +0.5r/c. (48)

In Fig. 5 we depict C), as a function of the horizon, where
we observe that if ¢ satisfies the above inequality then
stability is obtained. We mention here that a negative heat
capacity is associated with a negative temperature, which
corresponds to rj, < rg,. At ry, = ry, both the temperature

104
]
ORI
_s]
10
0

FIG. 5. The heat capacity (47) as a function of the horizon ry,
for solution (25) with ¢ = 1, for various charge choices.

&) o ——
.. a=1,g=1
-51 --- 0=0.5,q=0.5
— 0=0.1 g=0.1
_10_

FIG. 6. The black hole Gibbs free energy (50) as a function of
the horizon ry,, for solution (25) with ¢ = 1, for various choices of
charge and gravitational modification.

and the heat capacity are exactly zero on the black hole
horizon. When r;, > r,,, both temperature and heat capac-
ity are positive and the solution is in thermal equilibrium.
Indeed, the thermodynamical stability of charged black
holes has been widely studied in various modified gravity
theories, e.g., the thermodynamics of Bardeen (regular)
black holes [91], of Schwarzschild-AdS solutions in two
vacuum scales case [92], of solutions in noncommutative
geometry [93-96], etc.

Finally, let us make some comments on the Gibbs free
energy, namely the free energy in the grand canonical
ensemble, defined as [79,97]

G(ry) = E(ry,) = T(ry)S(rp). (49)
Inserting (41), (42), and (43) into (49) we find

(6% + cr2)V2 — ¢ +ary(r? = 24%)
8ryv2 —c .

The behavior of the Gibb’s energy of the black holes (25) is
presented in Fig. 6 for particular values of the model
parameters. As we can see it is always positive when a > 0
which implies that it is more globally stable.

Gh:

(50)

V. DISCUSSION AND CONCLUSION

The radical advance in multimessenger astronomy opens
the possibility to test general relativity and investigate
modified gravity by the gravitational and electromagnetic
waves profile that arise from mergers of spherically
symmetric objects, such as black holes and neutron stars.
Hence, it is crucial to study such object’s properties in
various theories of modified gravity in the presence of the
Maxwell sector.
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In this work we investigated static and rotating charged
spherically symmetric solution in the framework of f(R)
gravity, allowing additionally the electromagnetic sector to
depart from linearity. Applying a convenient, dual descrip-
tion for the electromagnetic Lagrangian, and using as an
example the square-root f(R) correction, we were able to
solve analytically the involved field equations. The obtained
solutions belong to two branches: One that contains the
Kerr-Newman metric, namely the rotating charged black
hole solution of general relativity, as a particular limit and
one that arises purely from the gravitational modification
and does not recover the general relativity solution.
Moreover, we have shown that the two components of
the magnetic fields, of the nonlinear electrodynamics, are
connected by a constant which if it is vanished we acquire a
charged black hole with electric field only [66].

Analyzing the novel black hole solution that does not
have a general relativity limit we found that it has a true
central singularity which is hidden behind a horizon;
however, for particular parameter regions the horizon
disappears and the singularity becomes a naked one; i.e.,
we obtain a violation of the cosmic censorship theorem.

Furthermore, we investigated the thermodynamical prop-
erties of the solutions, such as the temperature, energy,

entropy, heat capacity, and Gibbs free energy. We extracted
the conditions on the gravitational modification parameter
in order to obtain entropy and quasilocal energy positivity.
Concerning temperature, we showed that it can become
negative for particular parameter values, and thus ultracold
black holes may be formed. Finally, we examined the
thermodynamic stability of the solutions by examining
the sign of the heat capacity, extracting the corresponding
conditions.

In summary, we showed that even small deviations from
general relativity and/or from linear electrodynamics may
lead to novel spherically symmetric solution branches, with
novel properties that do not appear in standard general
relativity. Since these properties may be embedded in the
gravitational waves profiles, they could serve as a smoking
gun of this subclass of gravitational modification.
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