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As Einstein’s equations for binary compact object inspiral have only been approximately or
intermittently solved by analytic or numerical methods, the models used to infer parameters of
gravitational wave (GW) sources are subject to waveform modeling uncertainty. Using a simple
scenario, we illustrate these differences then introduce a very efficient technique to marginalize over
waveform uncertainties, relative to a prespecified sequence of waveform models. Being based on RIFT, a
very efficient parameter inference engine, our technique can directly account for any available models,
including very accurate but computationally costly waveforms. Our evidence- and likelihood-based
method works robustly on a point-by-point basis, enabling accurate marginalization for models with
strongly disjoint posteriors while simultaneously increasing the reusability and efficiency of our
intermediate calculations.
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I. INTRODUCTION

Since the first gravitational wave detection GW150914
[1], the Advanced Laser Interferometer Gravitational Wave
Observatory (LIGO) [2] and Virgo [3,4] detectors have
continued to discover gravitational waves (GW) from
coalescing binary black holes (BBHs) and neutron stars.
The properties of each source are inferred by comparing
each observation to some estimate(s) for the GW emitted
when a BBH merge, commonly called an approximant. As
illustrated most recently by GW190521 [5,6], GW190814
[7], GW190412 [8], and the discussion in GWTC-2 [9],
these approximations disagree more than enough to pro-
duce noticable differences, consistent with prior work
[10–12]. Despite the ongoing generation of new waveforms
with increased accuracy [13–18], these previous investi-
gations suggest that waveform model systematics can
remain a limiting factor in inferences about individual
events [10] and populations [12,19].
Recently, Ashton and Khan [20] described and illustrated

marginalizing between a discrete set of waveformmodels in
a fully Bayesian way. In this procedure, the waveform-
marginalized posterior is the weighted average of the
posteriors pkðθÞ derived from each waveform model k
alone, weighted by the evidence Zk for (and prior pk for)
each model k: pðθÞ ¼ ½Pk pkðθÞpkZk�=

P
q pqZq. This

extremely simple procedure faces one obvious limitation:
analysis must be performed for every waveform model
of interest. Unfortunately, as many of the most accurate

time-domain waveform models incur exceptionally high
evaluation costs, and as most conventional parameter
estimation (PE) engines like LALInference [21] or
BILBY [22] are limited by this cost, the universe of possible
waveformsmust often omit the most expensive and accurate
waveform models. As the RIFT parameter inference engine
circumvents several issues associated with waveform evalu-
ation cost [23,24], despite retaining the original waveform
implementation (i.e., no surrogate generation), in this
work we examine novel extensions of this waveform-
marginalization technique that are uniquely adapted to
RIFT’s algorithm. Using a simple toy model, we demon-
strate the pernicious effects of model systematics, then show
how our technique efficiently mitigates them.
This paper is organized as follows. In Sec. II, we review

the use of RIFT for parameter inference, the two wave-
form models used in this work, the use of probability-
probability (PP) plots to diagnose systematic error with
noise, the use of zero-noise PE to isolate the systematic
uncertainty between waveforms, and our waveform mar-
ginalization technique. In Sec. III, we use two well-studied
waveform models to demonstrate the impact of contem-
porary model systematics, then marginalize over them. We
emphasize that all calculations in this section adopt signal
amplitudes and masses consistent with current observa-
tions. In Sec. V, we summarize our results and discuss
their potential applications to future GW source and
population inference.
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II. METHODS

A. RIFT review

A coalescing compact binary in a quasicircular orbit can
be completely characterized by its intrinsic and extrinsic
parameters. By intrinsic parameters we refer to the binary’s
masses mi, spins, and any quantities characterizing matter
in the system. For simplicity and reduced computational
overhead, in this work we assume all compact object spins
are aligned with the orbital angular momentum. By
extrinsic parameters we refer to the seven numbers needed
to characterize its spacetime location and orientation. We
will express masses in solar mass units and dimensionless
nonprecessing spins in terms of Cartesian components
aligned with the orbital angular momentum χi;z. We will
use λ, θ to refer to intrinsic and extrinsic parameters,
respectively.
RIFT [23] consists of a two-stage iterative process to

interpret gravitational wave data d via comparison to
predicted gravitational wave signals hðλ; θÞ. In one stage,
for each λα from some proposed “grid” α ¼ 1; 2;…N
of candidate parameters, RIFT computes a marginal
likelihood

Lmarg ≡
Z

Lðλ; θÞpðθÞdθ ð1Þ

from the likelihood Lðλ; θÞ of the gravitational wave signal
in the multidetector network, accounting for detector
response; see the RIFT paper for a more detailed specifi-
cation. In the second stage, RIFT performs two tasks. First,
it generates an approximation to LðλÞ based on its
accumulated archived knowledge of marginal likelihood
evaluations ðλα;LαÞ. This approximation can be generated
by Gaussian processes, random forests, or other suitable
approximation techniques. Second, using this approxima-
tion, it generates the (detector-frame) posterior distribution

ppost ¼
LmargðλÞpðλÞR
dλLmargðλÞpðλÞ

; ð2Þ

where pðλÞ is the prior on intrinsic parameters like mass
and spin. The posterior is produced by performing a
Monte Carlo integral: the evaluation points and weights
in that integral are weighted posterior samples, which are
fairly resampled to generate conventional independent,
identically distributed “posterior samples.” For further
details on RIFT’s technical underpinnings and perfor-
mance, see [23–25].

B. Waveform models

In this work, we employ two well-studied models for
nonprecessing binaries, whose differences are known to be
significant. We use SEOBNRV4 [15], an effective-one-body
model for quasicircular inspiral, and IMRPHENOMD [26,27],

a phenomenological frequency-domain inspiral-merger-
ringdown model.
The effective-one-body (EOB) approach models the

inspiral and spin dynamics of coalescing binaries via an
ansatz for the two-body Hamiltonian [28], whose corre-
sponding equations of motion are numerically solved in the
time domain. For nonprecessing binaries, outgoing gravi-
tational radiation during the inspiral phase is generated
using an ansatz for resumming the post-Newtonian expres-
sions for outgoing radiation including nonquasicircular
corrections, for the leading-order l ¼ 2 subspace. For
the merger phase of nonprecessing binaries, the gravita-
tional radiation is generated via a resummation of many
quasinormal modes, with coefficients chosen to ensure
smoothness. The final BH’s mass and spin, as well as some
parameters in the nonprecessing inspiral model, are gen-
erated via calibration to numerical relativity simulations of
BBH mergers.
The IMRPHENOMD model is a part of an approach that

attempts to approximate the leading-order (l ¼ 2) gravita-
tional wave radiation using phenomenological fits to the
Fourier transform of the gravitational wave strain, computed
from numerical relativity simulations, effective-one-body
waveforms and post-Newtonian calculation [13,29,30].
Also using information about the final BH state, this
phenomenological frequency-domain approach matches
standard approximations for the post-Newtonian gravita-
tional wave phase to an approximate, theoretically moti-
vated spectrum characterizing merger and ringdown.

C. Fiducial synthetic sources and PP tests

We will only explore the impact of systematics over a
limited fiducial population. Specifically, we consider a
universe of synthetic signals for three-detector networks,
withmasses drawn uniformly inmi in the region bounded by
M=M⊙ ∈ ½30; 60� and η ∈ ½0.2; 0.25� and with extrinsic
parameters drawn uniformly in sky position and isotropi-
cally in Euler angles, with source luminosity distances
drawn proportional to d2L between 1.5 Gpc and 4 Gpc.
These bounds are expressed in terms of M ¼ ðm1m2Þ3=5=
ðm1 þm2Þ1=5 and η ¼ m1m2=ðm1 þm2Þ2 and encompass
the detector-frame parameters ofmanymassive binary black
holes seen in GWTC-1 [31] and GWTC-2 [9]. All our
sources have nonprecessing spins, with each component
assumed to be uniform between ½−1; 1�. For complete
reproducibility, we use SEOBNRV4 and IMRPHENOMD,
starting the signal evolution at 18 Hz but the likelihood
integration at 20 Hz, performing all analysis with 4096 Hz
time series in Gaussian noise with known advanced LIGO
design power spectral densities [32]. For each synthetic
event and for each interferometer, the same noise realization
is used for both waveform approximations. Ensuring con-
vergence of the analyses, the differences between them
therefore arise solely due to waveform systematics. For
context, Fig. 1 shows the cumulative signal to noise ratio
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(SNR) distribution of one specific synthetic population
generated from this distribution. Though a small fraction
have substantial signal amplitudes, most events are near or
below the level of typical detection candidates. By using a
very modest-amplitude population to assess the impact of
waveform systematics, we demonstrate their immediate
impact on the kinds of analyses currently being performed
on real observations, let alone future studies.
One way to assess the performance of parameter infer-

ence is a probability-probability plots (usually denoted PP
plot) [33]. Using RIFT on each source k, with true
parameters λk, we estimate the fraction of the posterior
distributions that is below the true source value λk;α
[P̂k;αð<λk;αÞ] for each intrinsic parameter α, again assum-
ing all sources have zero spin. After reindexing the sources
so P̂k;αðλk;αÞ increases with k for some fixed α, the top
panel of Fig. 2 shows a plot of k=N versus P̂kðλk;αÞ for all
binary parameters. For the top panel, both injections and
inference are performed with the same model, and the
recovered probability distribution is consistent with
Pð<pÞ ¼ p, as expected.

D. Zero noise runs to assess systematic biases

Our synthetic data consists of expected detector
responses hðtÞ superimposed on detector noise realization
nðtÞ. The recovered posterior distribution’s properties and
in particular maximum-likelihood parameters depend on
the specific noise realization used. To disentangle the
deterministic effects of waveform systematics from the
stochastic impact of different noise realizations, we also
repeat our analyses with the “zero noise” realization:
nðtÞ ¼ 0.

E. Model-model mismatch

Several previous investigations (e.g., [34–40] and refer-
ences therein) have phenomenologically argued that the
magnitude of systematic biases are related to the model-
model mismatch, a simple inner-product-based estimate of
waveform similarity between two model predictions h1ðλÞ
and h2ðλÞ at identical model parameters λ:

MðλÞ ¼ 1 −max
tc;ϕc

jhh1jeið2πftcþϕcÞh2ij
jh1jjh2j

: ð3Þ

In this expression, the inner product hajbik ≡R
∞
−∞ 2dfãðfÞ�b̃ðfÞ=Sh;kðjfjÞ is implied by the kth detec-
tor’s noise power spectrum Sh;kðfÞ, which for the purposes
of waveform similarity is assumed to be the advanced
LIGO instrument, H1. In practice we adopt a low-frequency
cutoff fmin so all inner products are modified to

hajbik ≡ 2

Z
jfj>fmin

df
½ãðfÞ��b̃ðfÞ
Sh;kðjfjÞ

: ð4Þ

Figure 3 shows the distribution of mismatches for
our synthetic population, where h1 is generated using

FIG. 1. Cumulative SNR distribution for a synthetic population
of 100 events drawn from the fiducial BBH population described
in Sec. II C. To avoid ambiguity, this figure shows the expected
SNR (i.e., the SNR evaluated using a zero-noise realization).

FIG. 2. PP plot of events injected with SEOBNRV4 and recovered
with SEOBNRV4 (top panel) and IMRPHENOMD (bottom panel)
waveform. The dashed line indicates the 90% credible interval
expected for a cumulative distribution drawn from 100 uniformly
distributed samples.
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SEOBNRV4 and h2 with IMRPHENOMD. For simplicity, we
regenerate all signals at zero inclination, to avoid polari-
zation-related effects associated with the precise emission
direction. For our fiducial compact binary population, the
mismatches between these two models are typically below
10−2, consistent with previous reports on systematic
differences between these two waveforms and with their
similarity to even more accurate models and simulations
[12,15,41].

F. Marginalizing over waveform systematics

Suppose we have two models A and B for GW strain, and
use them to interpret a particular GW source. We have prior
probabilities pðAjλÞ and pðBjλÞ, characterizing our relative
confidence in these two models for a source with param-
eters λ.1 Suppose we have produced a RIFT analysis with
each model for this event, and have marginal likelihood
functions LAðλÞ and LBðλÞ evaluated at a single point λ. We
can therefore construct the marginal likelihood for λ by
averaging over both models:

LavðλÞ ¼ pðAjλÞLAðλÞ þ pðBjλÞLBðλÞ: ð5Þ

For simplicity the calculations in this work always adopt
pðAjλÞ ¼ pðBjλÞ ¼ 1=2. We can therefore transparently
integrate multimodel inference into RIFT as follows. We
assume we have a single grid of points λk such that both
ðλk;LAðλkÞÞ and ðλk;LBðλkÞÞ can be interpolated to pro-
duce reliable likelihoods and thus posterior distributions

pAðλÞ and pBðλÞ, respectively. At each point λk we there-
fore construct LavðλkÞ by the above procedure. We then
interpolate to approximate L̂ðλÞ versus the continuous
parameters λ.
Operationally speaking, we construct model-averaged

marginal likelihoods by the following procedure. First, we
construct a fiducial grid for models A and B, for example by
joining the grids used to independently analyze A and B.
We use an algorithm to integrate the extrinsic likelihood, a
process where each candidate GW signal is compared to a
regular grid of candidate source parameters to produce an
array of candidate likelihood values, to evaluate LAðλkÞ and
LBðλkÞ on this grid [23,42]. We construct LavðλkÞ as above.
We use the combinations ðλk;LavÞ with an algorithm to
construct the intrinsic posterior from this sampled data to
construct a model-averaged posterior distribution [23].
Our procedure bears considerable resemblance to the

approach suggested by Ashton and Khan, but we have
organized the calculation differently. In that approach,
Ashton and Khan used the evidences ZA ¼ R

LApðλÞdλ
and ZB for the two waveform models. While we can
compute both quantities with very high accuracy, we prefer
to directly average between waveform models at the same
choice of intrinsic parameters [i.e., via Eq. (5)] to ensure
that marginalization over waveform models is completely
decoupled from the interpolation techniques used to con-
struct L̂ from the sampled data.

III. RESULTS

Using our fiducial BBH population, we generated 100
synthetic signals using IMRPHENOMD, and another 100
synthetic signals with SEOBNRV4. For each signal, we
performed parameter inference with both IMRPHENOMD

and SEOBNRV4. These inferences allow us both to assess the
impact of waveform systematics in our fiducial population
and mitigate them.

A. Demonstrating and quantifying waveform
systematics

The PP plot provides the most compelling demonstration
of waveform systematics’ pernicious impact. Ideally, when
recovering a known model and a known population, we
expect to recover the injected values as often as they occur,
producing a diagonal PP plot. The top panel of Fig. 2 shows
precisely what we expect when we inject and recover with
the same model (here, SEOBNRV4). By contrast, the bottom
panel shows a PP plot generated using inference from
IMRPHENOMD on the same SEOBNRV4 injections. The PP
plot is considerably nondiagonal, reflecting frequent and
substantial parameter biases in our fiducial population.
Parameter biases introduced by waveform systematics

vary inmagnitude and direction over the parameter space. To
illustrate these offsets for the parameters x ¼ M, q, χeff , we
have evaluated the parameter shift Δx between the mean

FIG. 3. Cumulative mismatch distribution for all the synthetic
sources in our population. We evaluate the GW strain along the z
axis using SEOBNRV4 and IMRPHENOMD and then compute the
mismatch between them. This figure shows the cumulative
distribution of these mismatches, most of which are slightly less
than 10−2.

1For simplicity I will assume there are no internal model
hyperparameters, but the method is easily generalized to include
them.
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inferred with IMRPHENOMD and the mean inferred with
SEOBNRV4, relative to σρ, which is a product of ρ (the signal-
to-noise ratio, a measure of the signal amplitude) and the
statistical error (as measured by the standard deviation σ of
the posterior of the parameter x in question). (The combi-
nation σρ is approximately independent of signal amplitude,
allowing us to measure the effect of waveform systematics
for a fiducial amplitude.) Figure 4 shows a vector plot of
these scaled offsets, Δx=ρσ, as a function of two of the
parameters at a time. The length of the arrow corresponds to
the scaled shifts in the parameters M, q, and χeff , plotted

against the injected parameter values. The color scale shows
the remaining parameter. The top two panels show that shifts
in q ¼ m2=m1, χeff ¼ ðm1χ1;z þm2χ2;zÞ=ðm1 þm2Þ are
substantial. Parameter shifts for q generally increase with
χeff . Shifts in χeff are generally positive for positive χeff ,
negative for negative χeff , and strongly dependent on mass
ratio, with more substantial shifts at either comparable mass
or at very high mass ratio, respectively. In both cases, chirp
mass M has modest impact, with somewhat larger shifts
occurring at somewhat larger values of chirp mass. Most
extreme waveform systematics seem to be associated with
large mass ratio.
Relative differences in mean value only imperfectly

captures the differences between the two posteriors. As a
sharper diagnostic that includes parameter correlations,
we use the mean and covariance of each distribution in
M, q, χeff to generate a local Gaussian approximation for
each posterior, and then compute the KullbackLeibler
(KL) divergence between these two Gaussian approxi-
mations [23]. We expect more substantial differences and
thus larger KL divergence for stronger signals, whose
posteriors are more sharply constrained. To corroborate
our intuition, Fig. 5 shows a scatter plot with these KL
divergences on the horizontal axis and the largest value of
lnL on the vertical axis. As expected, for the strongest
signals, differences between the two waveform models are
the most pronounced.
One might expect that large parameter offsets are more

likely to occur when the data favors one model or another.
While conceivably true asymptotically, for our specific
synthetic population, we do not find a strong correlation
between the Bayes factor (BF) (ZSEOBNRV4=ZIMRPHENOMD)
and any parameter offsets. Figure 6 shows this BF plotted
versus the scaled parameter offsets in M, q, χeff . Large
offsets can occur without the data more strongly favoring
one model or the other and vice versa.

FIG. 4. Vector plot showing amplitude-scaled offsets between
SEOBNRV4 and IMRPHENOMD for parameters M and q (top
panel), M and χeff (middle panel), and q and χeff (bottom panel)
as a function of the respective parameters with color map being
the value of the parameter mentioned on the color scale.

FIG. 5. Figure showing KL divergences between the two
waveform models versus the log of the maximum likelihood
for the combined posteriors of M, q and χeff .
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B. A PP plot test for marginalizing
over waveform errors

We test our model-averaged waveform procedure using a
full synthetic PP plot procedure. Specifically, we use the
ns ¼ 100 synthetic source parameters. For each source, we
pick one waveform model A, B with probabilities pðAÞ,
pðBÞ, and use it to generate the signal. We then analyze the
signal using themodel-averaged procedure described above.
As a concrete example, the top panel of Fig. 7 shows

our analysis of one fiducial event in our synthetic sample.
The colored points show likelihood evaluations, with
color scale corresponding to the marginalized likelihood
evaluated with IMRPHENOMD. The blue and black con-
tours show the 90% credible intervals for SEOBNRV4

and IMRPHENOMD, respectively; the two posteriors differ
substantially (i.e., the shift in mean in m1 is of order one
standard deviation), illustrating the impact of model
systematics on parameter inference. The green contour
shows our model-marginalized posterior. For comparison,
the cross shows the injected source parameters, and the
model was IMRPHENOMD.
The bottom panel of Fig. 7 shows one PP plot corre-

sponding to applying our model-marginalized procedure to
a population where each source is randomly selected from
either IMRPHENOMD or SEOBNRV4. The dotted line shows a
90% frequentist interval for the largest of four random
cumulative distributions. This figure shows our PP plots are
consistent with the diagonal, as desired.

IV. DISCUSSION

In this work, we performed simple tests which repro-
duce significant differences between the models
SEOBNRV4 and IMRPHENOMD, and can be extended to
other available waveforms easily using RIFT, an efficient
parameter estimation engine. The PP plot test, a com-
monly used statistical test, can be used to confirm
differences between waveform models and, as shown in
Fig. 2, parameter estimation performed using a model
different from the injected model gives a nondiagonal PP
plot for most parameters. We calculated the magnitude and
direction of the offsets introduced due to using a wave-
form model different to the injected model, and these
differences are higher for extreme case scenarios, as
expected. A linear correlation between the KL divergence
computed for the two models and the log of the maximum
likelihood of the injected model, shows that high-SNR
signal will have larger differences in the inferred param-
eter from various models. Because the most informative
signals exhibit the largest parameter biases, waveform
systematics have the potential to strongly contaminate
population inference. Most importantly, we also demon-
strated a method to mitigate these waveform systematics
by marginalizing over the models used for parameter
estimation analyses.

FIG. 6. Figure showing BF for SEOBNRV4 versus IMRPHENOMD

plotted against differences between the SEOBNRV4 and IMRPHE-

NOMD waveforms for parameters M, q and χeff .

FIG. 7. Top panel: example of a model averaged result. The
blue and black curves show the 1D marginal distributions and 2D
90% credibles for SEOBNRV4 and IMRPHENOMD inferences,
respectively. The green curves show the corresponding model-
averaged result. Bottom panel: PP plot test for our model-
marginalized procedure.
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Our method requires as input some prior probabilities
pðXkjλÞ for different waveform models Xk. One way these
prior probabilities could be selected is by waveform
faithfulness studies between models and numerical rela-
tivity simulations. These fidelity studies inevitably suggest
waveform models vary in reliability over their parameter
space (e.g., [43,44]), suggesting pðXkjλÞ will depend
nontrivially on λ. Operationally, these model priors propa-
gate into each model’s posterior inferences as if parameter
inferences for model X are performed using a model-
dependent prior ∝ ppriorðλÞpðXkjλÞ, instead of a common
prior for all models. RIFT can seamlessly perform these
calculations at minimal added computational expense,
while simultaneously returning results for each model
derived from the conventional prior alone.

V. CONCLUSIONS

Many waveform models exist currently that describe
compact binary coalescences. Even though these are
derived by solving Einstein’s equations, the various ana-
lytical or numerical approximation considered bring in
differences and affect the parameter estimation process
leading to biased interpretation of results. Averaging over
the waveform models can mitigate these biases. Building

on prior directly comparable work [20], we have demon-
strated an efficient method to perform such model
marginalization.
Other techniques have been proposed to marginalize over

waveform model systematics. Notably, several groups have
proposed using the error estimates provided by their model
regressions (e.g., the Gaussian process error) [45]. Relative
to regression-based methods, our method has two notable
advantages. Our method can be immediately generalized to
include multiple waveform models. Critically, we plan to
introduce parameter-dependent weighting of the likelihood
from a waveform, since different waveforms are accurate in
different regimes. No other model-marginalization tech-
nique can presently provide this level of control.
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