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In the Bogomol’nyi-Prasad-Sommerfield (BPS) limit of Einstein-Yang-Mills-Higgs theory, we
construct numerically a non-Abelian wormhole supported by a phantom field. The probe limit is
the Yang-Mills-Higgs field in the background of Ellis wormhole when the gravity is switched off. The
wormhole solutions possess the Yang-Mills-Higgs hair in the presence of gravity; thus a branch of hairy
wormhole solutions emerge from the Ellis wormhole when the gravitational coupling constant increases.
We find that the masses of the wormholes and the scalar charge of the phantom field increase
monotonically when the gravitational coupling constant increases. The wormhole spacetime possesses a
double-throat configuration when the gravitational strength exceeds a critical value. Surprisingly, the
wormholes satisfy the null energy condition at large gravitational strength. We also briefly discuss the
redshift factor.
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I. INTRODUCTION

It is well known that the SU(2) Yang-Mills-Higgs (YMH)
theory with a Higgs field in the adjoint representation
possesses bothmagneticmonopole [1,2] andmultimonopole
[3–6] solutions with finite energy. The ’t Hooft–Polyakov
magnetic monopole [1,2] is the first solitonic monopole
solution in non-Abelian YMH theory with spontaneously
broken symmetry. The exact solutions of the magnetic
monopole and multimonopole are only found in the
Bogomol’nyi-Prasad-Sommerfield (BPS) limit with vanish-
ing Higgs self-interaction potential and satisfy the first-order
Bogomol’nyi equation [7,8]. Their mass also saturates the
lower bound,which is theBogomol’nyi bound [8]. However,
the numerical solutions can only be found beyond the BPS
limit when the Higgs potential is nonvanishing [9]. There
exist unstable and saddle-point solutionswhich do not satisfy
the Bogomol’nyi equation, but they are only solutions to
the second-order equations of motion of YMH theory—
for instance, the monopole-antimonopole pair [10] and
monopole-antimonopole chain solutions [11,12].
In the Einstein-Yang-Mills-Higgs (EYMH) system,

where the YMH field is coupled with gravity, a branch
of gravitating monopole solutions emerges from the
’t Hooft–Polyakov monopole in flat space [13–21]. In
the BPS limit, the mass of the gravitating monopole

decreases monotonically as the gravitational strength
increases. When the gravitational strength reaches a
critical value, the solutions of the gravitating monopole
end up as an extremal Reissner-Nordstrom black hole.
This also occurs for static axially symmetric gravitating
monopole solutions [22,23]. The counterpart EYMH
black holes also exist, and they possess a non-Abelian
gauge field outside the event horizon. Hence, they are also
dubbed as the “black hole within monopole” [14,16],
which is a counterexample to the “no hair” conjecture for
black holes. The monopole-antimonopole pairs [23–29]
and vortex rings [30,31] can also be constructed in the
EYMH system.
Recently, a type of non-Abelian wormhole has been

obtained numerically in the Einstein-Yang-Mills (EYM)
system where the throat of the wormhole is supported
by a phantom field [32]. These hairy wormholes solutions
possess a sequence of solutions, which are labeled by
the node number k of the gauge field function. They are
analogous to the Bartnik-McKinnon solutions, which are
the regular and spherically symmetric solutions of the
EYM system [33]. A phantom field is a real-valued scalar
field which has an opposite sign for the kinetic term. It
can be used to model the accelerated expansion of our
Universe in cosmology [34–37] and to construct some
compact objects such as black holes [38,39], black rings
[40], star-like objects [41], and wormholes [42–44].
The construction of traversable wormholes in GR usually

requires the violation of the energy condition [45] to
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prevent the collapse of the throat.1 A classic example of
such a traversable wormhole is the static Ellis wormhole,
which is supported by the phantom field [42–44]. However,
the Ellis wormhole possesses unstable radial modes
[49–51]. The static Ellis wormhole has also been gener-
alized to the higher-dimensional case [51], to the slowly
rotating case with perturbative methods [52,53], to the
rapidly rotating case in four [54,55] and five dimensions
with equal angular momenta [56], and also to the modified
gravity—e.g., the scalar-tensor theory [57].
Furthermore, several astrophysical signatures of worm-

holes have been proposed in order to search for their
existence in the near future, since they might mimic black
holes: for example, the shadow [58–60], the gravitational
lensing [61–67], the accretion disk around the wormhole
[68], and the ringdown phase in the emission of gravita-
tional waves [69].
Although there are also some wormhole-like structures

in EYMH theory reported in Refs. [70–72], the wormholes
in EYMH theory with a phantom field have not been
explored yet. In this paper, our motivation is based on the
solutions of particle-like and black holes in EYMH theory
giving rise to new and interesting phenomena due to the
presence of a non-Abelian field. Since the counterpart
EYMH black hole exists, the wormhole configuration with
non-Abelian YMH hair should also exist. Thus, we follow
the approach of Ref. [32] to numerically obtain the
symmetric wormhole solutions in EYMH with a phantom
field in the BPS limit and study their properties in this
paper. Our paper is organized as follows: In Sec. II, we
briefly introduce the YMH theory and present the equations
of motion. Subsequently, we derive the ordinary differential
equations (ODEs) from the equations of motion. We then
introduce the geometrical properties, the global charges, the
null energy condition of wormholes, and the boundary
conditions imposed on the ODEs. In Sec. III, we exhibit
and discuss our numerical results. In Sec. IV, we conclude
our research works and briefly discuss the stability of the
solutions and the possible outlook from this present work.

II. THEORETICAL FRAMEWORK

A. Theory and Ansätze

In the Einstein-Hilbert action, we consider Einstein
gravity to be coupled with a phantom field ψ and a gauge
field Aμ in SU(2) YMH theory in the BPS limit:

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
þ Lph þ LYMH

�
; ð1Þ

where the Lagrangian of the phantom field and YMH [23]
are given, respectively, by

Lph ¼
1

2
∂μψ∂μψ ;

LYMH ¼ −
1

2
TrðFμνFμνÞ − 1

4
TrðDμΦDμΦÞ: ð2Þ

The covariant derivative of the Higgs field and the gauge
field strength tensor are given, respectively, by

Fμν ¼ ∂μAν − ∂νAμ þ ie½Aμ; Aν�; ð3Þ

DμΦ ¼ ∂μΦþ ie½Aμ;Φ�; ð4Þ

where Aμ ¼ 1
2
τaAa

μ and Φ ¼ ϕaτa, with τa being the Pauli
matrices.
By varying the action with respect to the metric gμν, we

obtain the Einstein equation,

Rμν −
1

2
gμνR ¼ βðTph

μν þ TYMH
μν Þ; ð5Þ

where β ¼ 8πG, and the stress-energy tensors for the
phantom fieldTph

μν andYMHTYMH
μν are given, respectively, by

Tph
μν ¼ 1

2
gμν∂αψ∂αψ − ∂μψ∂νψ ; ð6Þ

TYMH
μν ¼ Tr

�
1

2
DμΦDνΦ −

1

4
gμμDαΦDνΦ

�

þ 2Tr

�
gαβFμαFνβ −

1

4
gμνFαβFαβ

�
: ð7Þ

The equations of motion for the matter fields are

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μψÞ ¼ 0; DμFμν ¼ ie
4
½Φ; DνΦ�;

DμDμΦ ¼ 0: ð8Þ

We employ the following line element to construct a
globally regular wormhole spacetime:

ds2 ¼ −F0ðηÞdt2 þ F1ðηÞ½dη2 þ hðηÞðdθ2 þ sin2 θdφ2Þ�;
ð9Þ

where hðηÞ ¼ η2 þ η20, with η0 as the throat parameter. The
wormhole spacetime possesses two asymptotically flat
regions in the limit η → �∞.
Likewise, we employ the spherically symmetric Ansatz

in a purely magnetic gauge field ðAt ¼ 0Þ for the gauge and
Higgs field [16]:

Aμdxμ ¼
1 − KðηÞ

2e
ðτφdθ − τθ sin θdφÞ; Φ ¼ HðηÞτη:

ð10Þ
1However, there are wormhole solutions that can be con-

structed in the modified theory of gravity without exotic matter
[46–48].
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B. Ordinary differential equations (ODEs)

We set the constant e ¼ 1. By substituting Eqs. (9) and (10) into the Einstein equation Eq. (5) and equations of motion for
the gauge fields [Eq. (8)], we obtain a set of second-order and nonlinear ODEs for the metric functions:

F00
1 þ

2η

h
F0
1 −

3F02
1

4F1

þ η20F1

h2
¼ β

F1

2
ψ 02 − β

ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 þ 2hF1H2K2

2h2
; ð11Þ

�
F0
1

2F1

þ η

h

�
F0
0

F0

þ F02
1

4F2
1

þ η

hF1

F0
1 −

η20
h2

¼ −
β

2
ψ 02 þ β

−ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 − 2hF1H2K2

2h2F1

; ð12Þ

F00
0 þ

�
−

F0
0

2F0

þ η

h

�
F0
0 þ

F0

F1

F00
1 þ

�
−
F0
1

F1

þ η

h

�
F0F0

1

F1

þ 2F0η
2
0

h2
¼ βF0ψ

02 − F0

�
−ðK2 − 1Þ2 þ h2F1H02

h2F1

�
: ð13Þ

K00 þ 1

2

�
F0
0

F0

−
F0
1

F1

�
K0 −

KðK2 − 1þ hF1H2Þ
h

¼ 0; ð14Þ

H00 þ 1

2

�
F0
0

F0

þ F0
1

F1

þ 4η

h

�
H0 −

2K2

h
¼ 0; ð15Þ

where the prime denotes a derivative of the functions with respect to the radial coordinate η.
We obtain a first-order integral from Eq. (8) for the phantom field:

ψ 0 ¼ D
h

ffiffiffiffiffiffiffiffiffiffiffi
F0F1

p ; ð16Þ

where D is the scalar charge of the phantom field. Then we replace the term ψ 02 by substituting ψ 0 ¼ D=ðh ffiffiffiffiffiffiffiffiffiffiffi
F0F1

p Þ into
Eqs. (11)–(13).
We solve Eqs. (11), (13), (14), and (15) numerically with Eq. (12), which is expressed as

D2 ¼ 2h2F0F1

β

�
−
�
F0
1

2F1

þ η

h

�
F0
0

F0

−
F02
1

4F2
1

−
η

hF1

F0
1 þ

η20
h2

þ β
−ðK2 − 1Þ2 þ 2hK02 þ h2F1H02 − 2hF1H2K2

2h2F1

�
ð17Þ

to monitor the quality of the numerical solutions with the
condition D2 ¼ const.

C. Geometrical properties

We introduce RðηÞ2 as the shape function for studying
the geometry of a wormhole:

RðηÞ2 ¼ F1h: ð18Þ

Note that RðηÞ is the circumferential radius of the worm-
hole and should not contain zero for a globally regular
wormhole solution. When R contains a local minimum,
which is known as a throat of the wormhole, then the
wormhole possesses a minimal surface area at the throat.
However, if R contains a local maximum, then it is an
equator of the wormhole, which corresponds to the maxi-
mal surface area of the wormhole.
For simplicity, we consider the metric functions sym-

metric with respect to the coordinate η ¼ 0, so we assume
that the circumferential radius of the wormhole at η ¼ 0

could be either a throat or an equator, which implies that R
should have an extremum at η ¼ 0 by requiring

R0ð0Þ ¼ 0 ⇒
ðhF0

1 þ 2ηF1Þ
2R

����
η¼0

¼ 0; ð19Þ

where we have to set F0
1ð0Þ ¼ 0. In particular, if the

wormhole only contains a single throat, then the throat
must be located at η ¼ 0 with the minimal surface area
Ath ¼ 4πRð0Þ2 ¼ 4πF1ð0Þη20.
Furthermore, the second-order derivative of R at η ¼ 0 is

given by

R00ð0Þ ¼ 2F1 þ hF00
1

2R

����
η¼0

¼ F1

R
; ð20Þ

where we have used F00
1ð0Þ from the ODEs. The wormhole

possesses either a throat or an equator at η ¼ 0, which can
be determined from the conditions R00ð0Þ> 0 or R00ð0Þ < 0,
respectively. Since R00ð0Þ> 0, Rð0Þ always remains a throat.
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Note that whenR0ðηcritÞ ¼ R00ðηcritÞ ¼ 0, the circumferential
radius forms a turning point at some value of the radial
coordinate ηcrit, and the geometry of the wormhole is in a
transition state inwhich the double throat and the equator can
simultaneously exist; this also implies that a transition can
occur from the single-throat configuration to the double-
throat configuration [73,74].
In addition, we can visualize the wormhole throat in

the equatorial plane ðθ ¼ π=2Þ by embedding the equato-
rial plane using the cylindrical coordinates ðρ;φ; zÞ in
Euclidean space:

ds2 ¼ F1dη2 þ hF1dφ2; ð21Þ

¼ dρ2 þ dz2 þ ρ2dφ2: ð22Þ

Hence, we obtain the expression for z from the comparison:

z ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F1 −
�
dρ
dη

�
2

s
dη; ρ≡ R: ð23Þ

We can also evaluate the surface gravity κ at the throat,
which is defined as

κ2 ¼ −
1

2
ð∇μζνÞð∇μζνÞ; ð24Þ

⇒ κ ¼ F0
0

2
ffiffiffiffiffiffiffiffiffiffiffi
F0F1

p ; ð25Þ

where ζμ ¼ ð1; 0; 0; 0Þ is the timelike Killing vector.
Equation (25) shows that κ vanishes for symmetric worm-
holes with a single throat but remains finite for wormholes
with a double-throat configuration.

D. Global charges

The wormhole solutions possess mass M as the global
charge associated with the asymptotic Killing vector ∂t.
The mass of the wormhole can be read off directly from the
asymptotic expansion of the metric at η → ∞,

F0 → 1 −
2GM
η

: ð26Þ

Recall that the charge of the phantom field is given by
D2. Then, the magnetic charge for the non-Abelian gauge
fields is given by [75,76]

PYMH ¼ 1

4π

I ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðFi
θφÞ2

r
dθdφ ¼ jPj; ð27Þ

where the integral is evaluated at the spatial infinity,
yielding P ¼ 0 for the hairy wormholes [32].

E. Null energy condition (NEC)

Since the construction of a wormhole requires the
violation of energy conditions, we can examine the NEC
of the wormhole, which states that

Tμνkμkν ≥ 0 ð28Þ

for all (future-pointing) null vectors kμ. Note that the
violation of the NEC also implies the violation of the
weak and strong energy conditions.
Since the wormhole spacetime is spherically symmetric,

there are two choices of null vector [48]:

kμ ¼
�
gtt;

ffiffiffiffiffiffiffiffiffiffi
−
gtt
gηη

r
; 0; 0

�
and kμ ¼

�
1; 0;

ffiffiffiffiffiffiffiffiffiffi
−
gtt
gθθ

r
; 0

�
;

ð29Þ

which yield two expressions to measure the violation of the
NEC:

−Tt
t þ Tη

η ¼ −
ψ 02

F1

þH02

F1

þ 2K02

hF2
1

¼ −
D2

h2F0F2
1

þH02

F1

þ 2K02

hF2
1

; ð30Þ

−Tt
t þ Tθ

θ ¼
K02

hF2
1

þH2K2

hF1

þ ðK2 − 1Þ2
h2F2

1

≥ 0: ð31Þ

F. Boundary conditions

Since we only consider the wormhole solutions with
metric functions symmetric with respect to η ¼ 0, we only
integrate the ODEs from η ¼ 0 to infinity. We impose eight
boundary conditions at η ¼ 0 and η ¼ ∞. First, we require
that the first-order derivative of the metric functions vanish
at the throat:

F0
0ð0Þ ¼ F0

1ð0Þ ¼ 0: ð32Þ

These conditions imply that the metric functions possess
the extremum at η ¼ 0. At infinity, the metric functions
approach Minkowski spacetime:

F0ð∞Þ ¼ F1ð∞Þ ¼ 1: ð33Þ

We impose the following boundary conditions for the
gauge fields by fixing their values at η ¼ 0, and they satisfy
the asymptotic flatness at infinity:

Kð0Þ ¼ 1; Hð0Þ ¼ 0; Kð∞Þ ¼ 0; Hð∞Þ ¼ 1:

ð34Þ
We solve the set of ODEs numerically using Colsys,

which solves boundary value problems for systems of
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nonlinear coupled ODEs based on the Newton-Raphson
method [77]. We scale the parameters by the throat
parameter η0:

η → η0η; h → η20h; β → η20β; H →
H
η0

: ð35Þ

Thus, we introduce a mass parameter μ, which is given by

μ ¼ βM
8πη0

: ð36Þ

We compactify the radial coordinate η by η ¼ η0 tan ðπx=2Þ
in the numerics.

III. RESULTS AND DISCUSSIONS

A. Probe limit

We start our investigation from the probe limit of the
wormhole in the BPS limit. When the gravity is switched
off (β ¼ 0), we see that the YMH field does not contribute
to the Einstein equation from Eqs. (11)–(13). Therefore,
the metric in Eq. (9) is the massless Ellis wormhole
½F0ðηÞ ¼ F1ðηÞ ¼ 1�, which is symmetric. The phantom
field is given by

ψ ¼ D
η0

�
arctan

�
η

η0

�
−
π

2

�
: ð37Þ

The pure YMH equations in the background of the Ellis
wormhole are then simplifed to

K00 ¼ KðK2 − 1þ hH2Þ
h

; ð38Þ

H00 ¼ −
2η

h
H0 þ 2K2

h
H: ð39Þ

The above ODEs are solved numerically and are shown in
Fig. 1. Note that the ’t Hooft–Polyakov monopole gives the
solution of the YMH theory. The corresponding theory
possesses an exact solution in the BPS limit [7], which is
given by

KðRÞ ¼ R
sinhðRÞ ; HðRÞ ¼ cothðRÞ − 1

R
: ð40Þ

The exact solution is stable, and its mass is unity.

B. With backreaction

We exhibit our numerical results by varying the gravi-
tational coupling constant β in the range [0, 400]. The
wormholes could take any real positive values of β; this is
in contrast to a YM wormhole, where the limiting con-
figuration is the extremal Reissner-Nordstrom black hole
for higher nodes [32]. Recall that an Ellis wormhole is

massless; its circumferential radius and scalar charge are
unity. Since the gauge fields do not present, then the Ellis
wormhole has the analogue of the Schwarzschild solution
for the black holes [32]. When we increase β from zero, the
solutions of hairy wormholes emerge from the Ellis worm-
hole; thus, the properties of these hairy wormholes differ
from Ellis wormholes when β increases. Figure 2(a) shows
that the hairy wormholes gain the mass when β increases
from zero; the mass increases monotonically as β increases.
Figure 2(b) shows that the scaled scalar charge of the
phantom field increases monotonically from unity as β
increases.
The metric component gtt is relevant with the observer in

the asymptotic region measuring the redshift factor z,
which describes the effect of gravitational redshift on a
photon being emitted from a source in the wormhole
spacetime [78]:

z ¼ λasym
λemit

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttð∞Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttð0Þ

p − 1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p − 1; ð41Þ

where λasym is the wavelength measured by the observer
and λemit is the wavelength of the photon in the wormhole.
For simplicity, we consider the photon to be emitted at the
throat η ¼ 0. Figure 2(c) exhibits that the profile for
the metric function F0 is strictly increasing from F0ð0Þ
to the asymptotic value, but the value of F0ð0Þ is strictly
decreasing when β increases. This gives rise to the observer
always measuring the wavelength of the photon as red-
shifted, as shown in Fig. 2(d). Similarly, the profile of the
function F1 in Fig. 2(e) is strictly decreasing from its
maximum value at η ¼ 0 to the asymptotic value. However,
we find surprisingly that the wormholes still can possess a
double-throat configuration, which we will discuss in detail
in the next paragraph. In Fig. 2(f), the gauge field K decays
faster, while the profile of gauge field H does not vary too
much when β increases.

 0

0.2

0.4

0.6

0.8

 1

 0  0.2  0.4  0.6  0.8  1
x

K(x)
H(x)

FIG. 1. The gauge fields KðxÞ and HðxÞ in the compactified
coordinate x in the probe limit.
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Let us turn our discussion to the geometry of these hairy
wormholes. Figure 3(a) shows that they possess only a
single throat at x ¼ 0 within the range 0 ≤ β < βcrit, since
R00ð0Þ > 0 in Fig. 3(b). Here βcrit is the critical value
of β, which is approximately equal to 64.630655. When

β ¼ βcrit, we see that R0ðxcritÞ ¼ R00ðxcritÞ ¼ 0 in Fig. 3(b);
at this stage the wormhole simultaneously develops a throat
at xth and an equator xeq at x ≈ 0.32237, while x ¼ 0 is
still maintained as a throat. This means that the transition
from the single-throat configuration to the double-throat

(a)
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 0  2  4  6  8  10  12  14  16

�/
�

2

�

Ellis w.

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2  4  6  8  10  12  14  16

lo
g 1

0(
�

2 D
2 )

�

Ellis w.

(c)

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  0.2  0.4  0.6  0.8  1

ln
(F

0(
x)

)

x

�=0.1
�=1.0
�=5.0
�=10.0
�=30.0
�=50.0
�=80.0
�=100.0
�=200.0
�=400.0

-0.05

 0

 0  0.5  1
-0.05

 0

 0  0.5  1
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(f)
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FIG. 2. (a) The scaled mass μ=α2 versus the scaled gravitational coupling constant α. (b) The logarithmic scaled scalar charge
log10ðα2D2Þ versus the scaled gravitational coupling constant α. (c) The metric function lnðF0ðxÞÞ in the compactified coordinate x for
several values of β. (d) The gravitational redshift z versus the gravitational coupling strength β. (e) The metric function F1ðxÞ in the
compactified coordinate x for several values of β. (f) The gauge fields KðxÞ and HðxÞ for several values of β in the compactified
coordinate x. The dot denotes the value for a massless Ellis wormhole.
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configuration can happen when β ≥ βcrit, as shown in
Fig. 3. In Fig. 3(a), the equator is always sandwiched
between the throats 0 < xeq < xth. We also observe that the

location of the equator xeq moves toward x ¼ 0, and the
location of another throat xth moves away from x ¼ 0;
hence the equator and the throat at x ¼ 0 are very close.
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FIG. 3. The properties of wormhole solutions. (a) The location of throats and the equator versus the gravitational coupling constant β.
(b) The second-order derivative of R in the compactified coordinate x for the throats and the equator versus the gravitational coupling
constant β. (c) The circumferential radius of the throats RðxthÞ and the equator RðxeqÞ in the compactified coordinate x versus the
gravitational coupling constant β. (d) The surface gravity κ at the throat xth versus the gravitational coupling constant β. (e) The
circumferential radius R of wormhole solutions for several values of β. (f) The violation of the scaled null energy condition (NEC) for
the wormhole solutions with several values of β in the compactified coordinate x. The constant α is defined as β ¼ 2α2. In (a)–(c), the
yellow curve denotes the throat at x ¼ 0. The green curve with a two-dashed line and the purple curve denote the equator xeq and another
throat at xth in the compactified coordinate x, respectively.
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This gives rise to the circumferential radius of the equator
being slightly larger than the circumferential radius of
the throat at x ¼ 0 for very large values of β, as shown
in Fig. 3(c). Here Rð0Þ increases monotonically as β
increases, which can be seen from Figs. 3(c) and 3(e).
When β < βcrit, the surface gravity κ vanishes for the

wormholes with a single throat, since F0
0ð0Þ ¼ 0. However,

another throat ηth appears in between the equator and the
asymptotically flat region when β ¼ βcrit; thus κ assumes a
finite value, as shown in Fig. 3(d). When β > βcrit, κ
increases to a maximum value and then decreases for very
large values of β. Furthermore, we can visualize the single-
throat and double-throat structures in the embedding
diagrams, which are shown in Fig. 4.
In Fig. 3(f), we scale the NEC by α2ð−Tt

t þ Tη
ηÞ, so that

we can compare the NEC of our wormholes with the Ellis
wormhole. We find that the violation of the NEC is the
largest for the Ellis wormhole, particularly at the throat.
When β increases, the violation of the NEC at the throat
decreases, and the surprise is that the wormholes satisfy the
NEC for large values of β. Note that the NEC vanishes at
the asymptotic flat region for a very small value of β.
However, the NEC assumes a finite value at the asymptotic
flat region when β becomes very large—the reason is that
the first and third terms vanish, but H0 does not vanish [as
can be seen from Fig. 2(f)]; thus the second term remains
finite. In addition, the NEC at the infinity has been
amplified due to the scaling factor α2.

IV. CONCLUSION AND OUTLOOK

We have obtained the symmetric wormholes which
are supported by the phantom field in the Einstein-Yang-
Mills-Higgs (EYMH) system in the Bogomol’nyi-Prasad-
Sommerfield (BPS) limit. When we switch off the gravity,
we obtain the probe limit, which is the Yang-Mills-Higgs
(YMH) field in the background of the Ellis wormhole.

In the presence of gravity, the wormholes possess the
nontrivial non-Abelian hair; thus, the hairy wormhole
solutions emerge from the Ellis wormhole, where the
wormholes gain the mass. The masses of wormholes and
the scaled scalar charge of the phantom field increase
monotonically when the gravitational coupling constant
increases.
When the gravitational strength is below a critical value,

the wormholes only possess a single throat at the radial
coordinate η ¼ 0; thus, the corresponding surface gravity
vanishes. When the gravitational strength is equal to the
critical value, an equator and another throat coexist simul-
taneously somewhere in the manifold; thus, the transition
from the single-throat to the double-throat configuration
can occur. The equator is sandwiched between the throat at
η ¼ 0 and another throat. Therefore, the surface gravity of
another throat assumes finite values. The circumferential
radius of the throat at η ¼ 0 increases monotonically and
still remains as the throat even in the strong gravitational
field. The circumferential radius of the equator is slightly
larger than the circumferential radius of the throat at η ¼ 0
because they are very close to each other in the large
gravitational coupling. The violation of the null energy
condition is the largest for the Ellis wormhole, particularly
at the throat. However, the violation of the null energy con-
dition decreases when the gravitational strength increases.
Thus, the wormholes satisfy the null energy condition in the
strong gravitational strength.
Since we only study the properties of hairy wormholes

with the vanishing Higgs self-interaction, a natural exten-
sion of this work would be to construct and investigate
the properties of hairy wormholes with finite Higgs self-
interaction. We have some preliminary results which show
that the properties of hairy wormholes are different than
the BPS case. With finite Higgs self-interaction, the masses
of wormholes increase from zero but decrease very
sharply when the gravitational strength reaches a critical
value. The scaled scalar charge also increases very sharply

FIG. 4. The isometric embedding of the wormholes in the Euclidean space for (a) β ¼ 10 (single throat) and (b) β ¼ 100 (double
throat).
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at the critical value of gravitational strength. The results (in
preparation) will be reported elsewhere [79].
Concerning the stability issue of the wormholes, the

wormhole solutions which are constructed by the phantom
field are generically unstable against the linear perturba-
tion [49–51,80–82]. Furthermore, the stability analysis has
shown that the particle-like and hairy black hole solutions
of the EYMH system are unstable [83–85]. Hence, we
conjecture that the EYMH hairy wormholes are unstable as
well, because they will inherit the instabilities from the Ellis
wormholes and behave qualitatively unstable as the com-
pact objects in the EYMH system. It would be of interest to
carry out a full linear stability analysis of hairy wormholes
consistently by perturbing all the functions. However, the
presence of the YMH field could introduce an extra degree
of freedom and cause the calculation of unstable modes to
become nontrivial. Since the calculation of linear stability
is tedious and requires a lot of effort, we leave this as
an independent investigation. Nevertheless, the unstable
modes disappear for sufficiently rapidly rotating Ellis

wormholes in five dimensions with equal angular momenta
[56]. Since the counterpart EYMH black holes can rotate, it
is interesting to construct the rotating EYMH wormholes,
which might be stable against the perturbations.
Since the static and regular EYMH solutions can also

possess only axial symmetry and need not be spherically
symmetric, their counterpart static black holes also can
possess only an axially symmetric horizon [22,23], which
is a counterexample to Israel’s theorem. Therefore, as a first
step to constructing the rotating wormholes in EYMH, we
could consider constructing the static hairy wormhole
solutions with a throat which is also axially symmetric.
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