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Recently, a toy model was introduced to demonstrate that screening mechanisms in alternative theories
of gravitation can hide additional effects. In this model a scalar field is charged under a Uð1Þ symmetry.
In sufficiently compact objects the scalar field spontaneously grows, i.e., the object scalarizes,
spontaneously breaking the Uð1Þ symmetry. Exactly as in the Uð1Þ Higgs mechanism this leads to the
emergence of a mass for the gauge field. The aim of this paper is to provide an example of the physical
consequences if we consider this toy model as a prototype of Weak Equivalence Principle (WEP)
violations. We model neutron stars with a dipolar magnetic field to compare the magnetic field behavior of
stars in Einstein-Maxwell theory on the one hand and in scalar-tensor theory with the, so-called,
gravitational Higgs mechanism on the other hand.
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I. INTRODUCTION

General Relativity (GR) has been tested many times
during the hundred years of its existence [1], including,
since September 2015, via direct gravitational wave obser-
vations. All of the observations made with the ground-
based laser interferometers LIGO and Virgo have so far
been in accordance with the predictions of GR [2–6].
Nevertheless, as Karl Popper has most famously stated in

[7], in empirical sciences it is never possible to verify a
theory. On the contrary, what makes a theory worth
studying is that it leads to hypotheses which, by experi-
ments, can be tested and falsified.
In other words, the number of tests passed by GR neither

makes it the true theory of gravitation nor removes the
necessity to perform more experiments and probe its
hypotheses.
Furthermore, there are questions which have not yet been

answered in a satisfactory way by GR: What exactly is dark
matter? Why does the cosmological constant have its
observed value? And, from a more holistic viewpoint on
physics, how can we find a theory of quantum gravity
which describes phenomena on all scales at all times?
In order to judge experimental outcomes and to design

new experiments, it is important to know which deviations
to expect. Stated differently, putting a theory to the test
becomes a lot easier if one has an alternative theory at hand
which makes some assumptions itself.

One of the simplest alternatives is scalar-tensor theory
(STT), the first example of which was introduced in 1961 by
C. Brans and R. H. Dicke [8]. By introducing an additional
scalar field into the Einstein-Hilbert action, one can make
alternate predictions with a minimum of additional ingre-
dients. It further offers mechanisms to avoid deviations from
GR in the Solar system while still predicting large
differences for other regimes where less constraints exist
[9–12]. These are “screening mechanisms”.
Introduced in [13,14], STT with a gravitational Higgs

mechanism provides a new perspective on this prominent
alternative theory of gravitation. It shows that a deviation
fromGRneed not only lead to changes in the laws of gravity,
but it might also trigger other effects, for example, in particle
physics. For demonstrative purposes the scalar field was
coupled to aUð1Þ field in [13],which then through theHiggs
mechanism makes the gauge field massive.
The important fact here is that tests of the Weak

Equivalence Principle (WEP) in the solar system do not
automatically imply its validity in the strong gravity
regime. What makes this interesting is that there are
theoretical reasons to believe the WEP should not be
generally valid, either through effective field theory
arguments—the WEP is not a symmetry so any couplings
it forbids should be generated quantum mechanically—or
by noting its absence (or even complete incoherence) in
most quantum gravity candidates. There is, however, a
large issue if one decides to give up the WEP. The number
of allowed couplings would be enormous. Additionally
they would have to generically be introduced at the level of
the standard model of particle physics and getting from

*verena.krall@tu-dresden.de
†acoates@ku.edu.tr

PHYSICAL REVIEW D 102, 124065 (2020)

2470-0010=2020=102(12)=124065(9) 124065-1 © 2020 American Physical Society

https://orcid.org/0000-0002-1598-9371
https://orcid.org/0000-0001-8856-3067
https://orcid.org/0000-0001-6048-2919
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.124065&domain=pdf&date_stamp=2020-12-29
https://doi.org/10.1103/PhysRevD.102.124065
https://doi.org/10.1103/PhysRevD.102.124065
https://doi.org/10.1103/PhysRevD.102.124065
https://doi.org/10.1103/PhysRevD.102.124065


there to a neutron star model would be an even more
difficult task than it already is (see e.g., [15]).
Themodel introduced in [13] has several short-comings if

onewishes to interpret it as a serious theory of nature, but it is
more than sufficient as a toy model to demonstrate the
principle that the WEP in the strong and weak gravity
regimes can be decoupled. Our goal here is to use this model
to understand the size of some observable differences in
neutron stars for even verymildWEP violations, tomotivate
study of the harder problem described above. To this end, we
first give a brief overview of the theoretical background
needed in Sec. II.
In Sec. III we then show that a nonvanishing photon

mass in STTwith the gravitational Higgs mechanism leads
to changes in the magnetic fields of scalarized neutron
stars. Finally, we will summarize and discuss our results
in Sec. IV.
Throughout the article, unless stated otherwise, we use

units defined by c ¼ G ¼ 1 and μ0 ¼ 4π.

II. THEORETICAL BACKGROUND

A. Scalar-tensor theory

As the name suggests, STT is a theory of gravity with a
metric and a scalar field. In the standard formulation of
STT, the scalar field φ couples nonminimally to the Ricci
scalar [16–18]:

SJ ¼
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
φR −

ωðφÞ
φ

∇μφ∇μφ − VðφÞ
�

þ Sm½gμν;ψ �: ð1Þ

Here, ωðφÞ determines the coupling of the scalar field to
curvature and VðφÞ is the potential of the scalar field.
After a conformal transformation to the so-called Einstein
frame ðg̃μν;ϕÞ, with gμν → g̃μν ¼ A−2ðϕÞgμν, and where ϕ

is defined implicitly through AðϕÞ ¼ φ−1=2, the action is
given by:

SE ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g̃

p
ðR̃ − 2g̃μν∇μϕ∇νϕ −UðϕÞÞ

þ Sm½A2ðϕÞg̃μν;ψ �: ð2Þ

Note that in this frame, the scalar field does not couple
nonminimally to the curvature, but instead it appears in the
matter action. The field equations found by varying the
action (2) are:

R̃μν¼2∂μϕ∂νϕ−
1

2
g̃μνUðϕÞþ8πG

�
T̃μν−

1

2
T̃g̃μν

�
; ð3aÞ

□g̃ϕ ¼ −4πGαðϕÞT̃ þ 1

4

dU
dϕ

; ð3bÞ

where the stress-energy tensor is given by T̃μν ≔
−2ð−g̃Þ−1=2δSm=δg̃μν. The function αðφÞ ¼ ∂ lnAðφÞ=∂φ
gives a measure of the strength of the coupling between
matter and the scalar field.
Note that the stress-energy tensor is no longer cova-

riantly conserved,∇μT̃μν ≠ 0. However, this does not mean
that in this frame suddenly the WEP is no longer valid. To
paraphrase [19], the WEP requires only that there is
universal free-fall for test particles, not that the existence
of this universality is immediately obvious by looking at
the action. In particular, everything found to be physically
valid in the Jordan frame must remain valid when we move
to the Einstein frame [18].

B. Spontaneous scalarization

The prototypical screening mechanism is spontaneous
scalarization [9,10]. An intuitive understanding of the
physics involved can be gained from the following
approach, the basis of which is again in [9].
First of all, to obtain GR solutions with a constant scalar

field, ϕ0, one can see, from Eqs. (3a) and (3b), that αðϕ0Þ ¼
dU
dϕ jϕ0

¼ 0 must be imposed. Now consider an expansion of

ϕ around this value to first order, ϕ ¼ ϕ0 þ ϵϕ̂. Inserting
this into the field equation (3b), we have:

ϵ□ϕ̂ ¼ ϵ

�
1

4

d2U
dϕ2

����
ϕ0

− 4πGT
dα
dϕ

����
ϕ0

�
ϕ̂: ð4Þ

Thus the perturbation has a mass, m2
ϕ ¼ 1

4
d2U
dϕ2 j

ϕ0

. We also

adopt the standard notation dα
dϕ jϕ0

¼ β, and so,

□ϕ̂ ¼ ðm2
ϕ − 4πGTjβjÞϕ̂ðþOðϵÞÞ ≔ −μ2ϕ̂; ð5Þ

where μ is the effective mass of ϕ̂.
As a heuristic, consider a homogeneous ball of dust in

flat space such that 4πGTjβj > m2
ϕ then, after a Fourier

transform, Eq. (5) gives:

ω2 ¼
�
2π

λ

�
2

− μ2; ð6Þ

whereω is the frequency of the variation of ϕ̂with time, λ is
its wavelength and μ is real. Hence, for large enough λ, the
frequency is imaginary and thus there is a tachyonic
instability of the scalar field. However, this instability will
only be effective if the smallest unstable wavelength fits
inside the matter distribution. When the stress energy tensor
is proportional to the density, as is true for this heuristic
and for low mass neutron stars, the critical value of jβj for
mϕ ¼ 0 is determined by the stellar compactness C,
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jβj ∼ πR�
GM�

¼ π

C
: ð7Þ

This is just a consequence of the facts that the threshold is
for λ ¼ R� and that μ2 ∝ ρ ∝ M�=R3�.
For static neutron stars with masses of about 1.4 M⊙,

scalarization only occurs if β ≲ −4 and is stronger the
smaller β is, as shown in [9]. When the scalar field grows,
the stability is finally restored due to backreaction.
The most stringent bound stemming from binary

pulsar experiments is that β ≳ −4.3 [20]. Furthermore,
as discussed e.g., in [21], to be consistent with cosmo-
logical observations one would need extreme fine-
tuning to allow for massless scalars and spontaneous
scalarization.
One way out of these strong constraints is provided by

adding a mass mϕ to the scalar field [22,23] . Within the
limits 10−16 eV ≪ mϕ ≲ 10−9 eV, spontaneously scalariz-
ing neutron stars would still be viable.

C. Gravitational Higgs mechanism

Using a toy model, it has been shown in [13,14] that
spontaneous scalarization in neutron stars can lead to
violations of the WEP in neutron star interiors. The model
used to demonstrate this is a combination of a scalar-tensor
Lagrangian in the Einstein frame and the Lagrangian
of a Uð1Þ field, Aμ, which we shall take to be the
electromagnetic field (in this section we use units defined
by c ¼ G ¼ ℏ ¼ 1):

SGH ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R
4
−
1

2
gμνDμϕDνϕ

	

−
1

4

Z
d4x

ffiffiffiffiffiffi
−g

p
FμνFμνþSm½A2ðϕ̄ϕÞgμν;Aμ;ΨA�; ð8Þ

where Dμϕ ¼ ∂μϕ − ieAμϕ is the gauge covariant deriva-
tive, e is the charge, Fμν ¼ ∇μAν −∇νAμ is the usual
field strength tensor and ΨA stands for all other matter
fields. For compatibility with the gauge symmetry the
conformal coupling depends only on the magnitude of ϕ,
i.e., A ¼ Aðϕ̄ϕÞ and we take exp ð1

2
βϕ̄ϕÞ with constant β.

The field equations obtained by varying the action (8)
are [13,14]:

ð□ − e2AμAμ − 2ieAμ∂μ − ie∇μAμÞϕ ¼ −4πTβϕ; ð9aÞ

∇μFμν ¼ Jν þ JðϕÞν þm2
γðϕ̄ϕÞAν; ð9bÞ

Gμν ¼ 8πðTμν þ TðϕÞ
μν þ TðAÞ

μν þ TðϕAÞ
μν Þ; ð9cÞ

where the following definitions have been used:

Jμ ¼ −
1ffiffiffiffiffiffi−gp δSm

δAμ ; ð10aÞ

TðϕÞ
μν ¼ 1

4π

�
∂μϕ̄∂νϕ −

1

2
gμνgλσ∂λϕ̄∂σϕ

�
; ð10bÞ

JðϕÞμ ¼ ie
8π

ðϕ̄∂μϕ − ϕ∂μϕ̄Þ; ð10cÞ

TðAÞ
μν ¼ FμλFν

λ −
1

4
gμνFλσFλσ

þm2
γðϕ̄ϕÞ

�
AμAν −

1

2
gμνgλσAλAσ

�
; ð10dÞ

TðϕAÞ
μν ¼ 2

�
JðϕÞμ Aν −

1

2
gμνgλσJ

ðϕÞ
λ Aσ

�
: ð10eÞ

As stated the action (8) is invariant under the Uð1Þ
transformation:

ϕ → ϕ · eieλ; ð11aÞ

Aμ → Aμ þ ∂μλ: ð11bÞ

Once a neutron star scalarizes, this symmetry is sponta-
neously broken which, through the Higgs mechanism,
generates a photon mass, mγðϕ̄ϕÞ ∝ e2ϕ̄ϕ. That this neces-
sarily leads to WEP violations is shown in the Appendix A.
In [14] it has been shown that for spherically symmetric,

static cases, scalarized stars can be electrically neutral but
still have a nonvanishing photon mass at the center. Even
for a coupling charge as small as e ¼ 10−36 C, a photon
mass of the order of several GeV is generated. It is maximal
in the center of the scalarized star and approaches zero in
the outer region. Thus, by introducing a coupling of the
scalar field to the electromagnetic potential, a clear
deviation from the standard model of particle physics
arises in a neutron star’s interior.
Aswe havementioned before, within thismodel, theweak

equivalence principle is violated. Through the action (8), the
scalar field does not only couple via the conformal factor in
the Einstein frame. There does not exist a transformation
which leads to a decoupling of ϕ from all the matter fields
simultaneously. Hence, there is a fifth force.

III. IMPACT OF A GRAVITATIONAL
HIGGS MECHANISM ON NEUTRON

STAR’S MAGNETIC FIELDS

In this section we study the impact of the scalar-Maxwell
coupling on the magnetic fields of neutron stars. We will
use the rather standard approximation of the magnetic
field as a test field. This can be justified by comparing the
energy contained by the test field to the other source fields
and the gravitational binding energy of the nonmagnetic
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background (see e.g., Sec. 3 of [24]). It is also worth
noting at this stage that, strictly speaking, we should also
include the effect of the modified electrodynamics on the
equation of state for the neutron star. Note however that,
generically, including these effects would make the results
less like GR and so only work towards the aim of this paper,
to demonstrate that the effects are large, even for small
couplings.
Note that, as the universe is not static, the dynamics of

the scalar field and the electromagnetic potential are also
worth investigation.

A. Approach

To compare the magnetic field of a neutron star in
Einstein-Maxwell theory with that in the toy model, we first
need to choose certain stellar properties which help us
speak of comparable objects.
We use stars with equal Arnowitt-Dessert-Misner

(ADM) mass and equal values of the radial component
of the magnetic field at the stellar radius, as these are two of
the main observables of magnetized neutron stars.
We assume that the matter inside of the neutron star

behaves like a perfect fluid and thus the stress-energy
tensor is given by:

Tμν
pf ¼ ðρþ PÞuμuν þ Pgμν; ð12Þ

with the pressure P, the density ρ and the 4-velocity of fluid
elements uμ.
The equation of state (EoS) that we use for both

theories is

P ¼ K · ρΓ; ð13Þ

with K ¼ 100, Γ ¼ 2 and ½ρ� ¼ ½P� ¼ km−2 (so we set
c ¼ G ¼ 1). This is a simple, classic model which still
gives realistic solutions for neutron stars.
For the function AðϕÞ, which describes the coupling of

the scalar field to matter, we use the quadratic model as
detailed in Sec. II:

AðϕÞ ¼ exp

�
1

2
βϕ2

�
: ð14Þ

For generating comparable neutron star solutions, the first
step is to choose a value for the central density of the
neutron star in STT which is high enough to ensure
scalarization. Next we determine a scalar field value, ϕc,
at the stellar center which leads to a vanishing scalar field at
infinity, ϕ0 → 0. This is a choice we make to underline the
possibility of large deviations inside the neutron star while
still restoring GR far from the star.
We consider the Tolman-Oppenheimer-Volkoff (TOV)

metric, i.e., the neutron stars we compute here are spheri-
cally symmetric and nonrotating:

ds2¼−e2ΦðrÞdt2þ e2ΛðrÞdr2þ r2ðdθ2þ sinθ2dφ2Þ: ð15Þ

The standard equations we use to compute the behavior
of the scalar field ϕðrÞ, the TOV functions ΦðrÞ and ΛðrÞ
and the pressure PðrÞ inside the neutron star can, for
instance, be found in [9].
With the relations νðrÞ ¼ 2ΦðrÞ and μðrÞ ¼

r
2
½1 − exp½−2ΛðrÞ��, ϕ0 can then be computed from values

at the stellar surface (index s) [9]:

ϕ0 ¼ ϕs þ
2ψ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν02s þ 4ψ2
s

p arctanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν02s þ 4ψ2

s

p
ν0s þ 2

R

�
: ð16Þ

One can also find the ADM mass mA from the surface
values with:

mA ¼
R2ν0s
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2μs
R

r

×exp

2
64− ν0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2s0 þ4ψ2
s

q arctanh

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2s0 þ4ψ2

s

q
ν0sþ 2

R

1
CA
3
75: ð17Þ

When we have found a neutron star in scalar-tensor theory
corresponding to a chosen central density ρc with a certain
ADM mass, we search for a star in GR which with a
different value for ρc reaches the same total mass. The
gravitational field of the star is in this case computed by
solving the TOV equations with ϕðrÞ ¼ dϕ

dr ¼ 0 ∀ r.
Next, we study the magnetic fields of the computed stars.

For this, we use the classical Maxwell theory in the GR case
and consider a Proca-like theory where the photon mass
varies with the scalar field for the scalarized star. Following
[25], we now introduce (in both theories) an electric current
Jμ and the vector potential Aμ of the form:

Jμ ¼ ð0; 0; 0; JϕÞ; and Aμ ¼ ð0; 0; 0; AϕÞ: ð18Þ

Thus, we have a vanishing electric field, Eμ ¼ 0, due to
the assumption that ideal magnetohydrodynamics are
valid here.
As in [25], we now assume that the current is given by a

dipole, Jϕðr; θÞ ¼ −j1ðrÞ sinðθÞ2, and make the ansatz
Aϕðr; θÞ ¼ −a1ðrÞ sinðθÞ2 for the potential.
For the external field of the star in Einstein-Maxwell

theory there exists an analytic solution describing the
behavior of a1 in the stellar exterior as a function of the
magnetic dipole moment μb observed at infinity [25,26]:

aðexÞ1 ¼ −
3μb
8M3

r2
�
ln

�
1 −

2M
r

�
þ 2M

r
þ 2M2

r2

�
; ð19Þ

As in [27], we calculate a1, a01, Br and Bθ in units of the
mean magnetic field strength, μb=R3.
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In the interior of the neutron star in GR we have to solve
the following differential equation (which is Maxwell’s
equation with the definitions for Aμ and Jμ inserted):

−4πj1ðrÞ ¼ −
2a1ðrÞ
r2

þ e−2ΛðrÞa001ðrÞ
þ e−2ΛðrÞa01ðrÞ½Φ0ðrÞ − Λ0ðrÞ�: ð20Þ

For the current function we use (see e.g., [27]):

jðinÞ1 ¼ f0r2ðρþ PÞ: ð21Þ

Here the constant f0 has to be found by setting the values of
a1ðr ¼ RÞ and a01ðr ¼ RÞ equal to the ones we get from the
analytic exterior solution (19) and by requiring that the
vector potential and its first derivative vanish at the stellar
center.
As mentioned at the beginning of this section, our aim is

to find equally massive neutron stars which have the same
surface values for the radial component of the magnetic
field both in STT and in GR. The relation between the
vector potential and the radial component of the magnetic
field at θ ¼ 0 is1 [27]:

Br ¼
2a1
r2

: ð22Þ

Hence, if we want to have BGR
r ðr ¼ RGRÞ ¼

BSTT
r ðr ¼ RSTTÞ, we have to set the vector potential at

the boundary of the STT star to

aP1ðr ¼ RSTTÞ ¼ aMW
1 ðr ¼ RGRÞ ·

R2
STT

R2
GR

; ð23Þ

where the superscripts P and MW stand for Proca and
Maxwell, respectively.
To find the derivative of aP1 at the stellar surface, it is

necessary to know what asymptotic flatness would require
of the magnetic field. Due to the mass arising from a scalar
field which is not constant, one cannot simply use the
standard results. Comparing the stress-energy tensor to the
Einstein tensor one finds

m2
γðϕ̄ϕÞAμAν ∝ ϕ̄ϕAμAν ∼

1

r3
: ð24Þ

Going back to our neutron star model, we thus find
aP

0
1 ðr ¼ RSTTÞ by requiring that a1ðrÞ → 0 at least as fast

as 1=
ffiffiffi
r

p
for large r, because ϕðr > RÞ ∝ 1=r [9]. This also

ensures that the stellar magnetic field approaches zero at
high distances from the star.

Now having determined the boundary values for our
electromagnetic potential in the STT-Higgs case, all that is
left to do is to determine the constant f0 such that a001
vanishes at the stellar center and a1 solves the Proca-like
equations inside the star,

−4πj1 ¼ e−2Λ½a001 −a01ðΛ0−Φ0Þ�−a1

�
2

r2
þebϕ2

�
: ð25Þ

Here, the constant eb is given by

eb ¼
�
μ0c4e2

4πGℏ2

	
SI
¼

�
e2

ℏ2

	
NGU

; ð26Þ

where the subscript NGU points to the system of natural
geometric units defined by c ¼ G ¼ 1 and μ0 ¼ 4π.
The code with which the described steps are taken is

written in Python. We use a fourth order Runge-Kutta
method to solve the differential equations and a bisection
method for root-finding.

B. Results

We have modeled the magnetic fields and electromag-
netic potentials for three different setups:
(1) A neutron star in Einstein-Maxwell theory with the

EoS given in Eq. (13).
(2) A neutron star in STT without a photon mass

with β ¼ −6.
(3) A neutron star in STT with a gravitational Higgs

mechanism, where β ¼ −6 and the constant eb takes
the three values 0.1, 1 and 10.

The point that we want to make, that an alternative theory
of gravity could have drastic consequences also on matter
physics, is not strongly influenced by the precise choices of
the scalar-tensor theory. For our demonstrative purposes we
thus find it justified to assume a massless ϕ and to use an
already ruled out value for β.

FIG. 1. Ratio ðBSTT
r − BGR

r Þ=BGR
r at r ¼ 0.01R

1Note that, as in [27], we use here the tetrad components of the
magnetic field.
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Note that the photon mass is given by mγ ≈
3.5177 × 10−43

ffiffiffiffiffi
eb

p
ϕ kg so, even for the highest value

of eb plotted in Figs. 1 and 2, the photon mass would be
only of order 10−42 kg, which is less than 1 eV. Higher
values have not been considered to avoid a loss of
numerical precision. See Table I for the charge and the
photon mass corresponding to the three chosen eb.
As scalarized stars allow for higher masses and larger

radii than those with the same equation of state in GR, we
have only been able to compare the behavior of the
magnetic field for a certain range of values for ϕ. The
mass-radius curve for the stars considered here is shown in
Fig. 3. Additionally, we have listed the central values of the
scalar field ϕc and the central densities ρc in GR and STT
corresponding to the various ADM masses in Table II.
To evaluate the results of our code, we have plotted in

Figs. 1 and 2 the deviations of the radial magnetic field
componentBr from theEinstein-Maxwell case for thevarious
masses, divided by the respective value BGR

r . All values are
given in units of μb=R3, where R is the radius of the GR star.

As can be seen in Fig. 4, for large r ≫ R the radial
magnetic field approaches zero, as we have required it to.
Also, the higher the photon mass, the more the radial

magnetic field differs from the Einstein-Maxwell and the
standard STT case in the vicinity of the star. This might be
seen in a change of particle movement in the accretion disc
and thus cause a variation in the emission spectrum of the
neutron star. When electrons move in a magnetic field, they
are forced on a circular orbit and, due to the acceleration
they feel, emit synchrotron radiation. The energy quanta
emitted are

Es ¼
ℏee
mec

B; ð27Þ

where ee is the electron charge, me its mass and B the
magnetic field in which it moves [28].

FIG. 2. Ratio ðBSTT
r − BGR

r Þ=BGR
r at r ¼ 1.99R

TABLE I. Values used for eb and the corresponding values for e
and mγ=ϕ in SI units and in units of electron charges ee.

eb e½C� e½ee� mγ=ϕ [kg] mγ=ϕ [eV]

0.1 9.59 × 10−54 5.98 × 10−35 1.11 × 10−43 6.23 × 10−8

1.0 3.03 × 10−53 1.89 × 10−34 3.52 × 10−43 1.97 × 10−7

10.0 9.59 × 10−53 5.98 × 10−34 1.11 × 10−42 6.23 × 10−7

FIG. 3. Mass and radius for a star in GR and in STT with the
EoS given above.

TABLE II. Stellar properties for the ADM masses used here.

mA ½M⊙� ϕc ρSTTc ½kg km−3� ρGRc ½kg km−3�
0.9400 0.1891 2.0 × 1027 1.33 × 1027

1.0464 0.2335 2.5 × 1027 1.67 × 1027

1.0723 0.2410 2.6 × 1027 1.77 × 1027

1.0996 0.2481 2.7 × 1027 1.88 × 1027

1.1284 0.2548 2.8 × 1027 2.01 × 1027

1.1588 0.2610 2.9 × 1027 2.17 × 1027

1.1905 0.2669 3.0 × 1027 2.36 × 1027

1.2237 0.2723 3.1 × 1027 2.60 × 1027

1.2582 0.2774 3.2 × 1027 2.92 × 1027

FIG. 4. BrðrÞ for a neutron star with mA ¼ 1.2582 M⊙.
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So the ratio of energies in the case of two different
magnetic fields, Ba and Bb, is equal to the ratio of the field
values, Ea

Eb
¼ Ba

Bb
.

Thus, as in our models for stars with eb ≠ 0 we find that
ðBSTT

r =BGR
r Þ < 1 in the vicinity of the star, we expect a shift

to lower frequencies in the synchrotron emission spectrum.

IV. DISCUSSION

In this paper, we have compared the magnetic fields of
neutron stars in Einstein-Maxwell theory and in STT with
the gravitational Higgs mechanism. To do so, we chose
neutron stars with equal ADM masses and equal surface
values of the magnetic field’s radial component. Our results
show that a change of the photon’s mass due to scalariza-
tion would indeed have a significant impact on magnetic
fields. Even for photon masses of the order of 10−42 kg we
expect an increase of the central magnetic field by up to
70%. In the vicinity of the neutron star, the radial
component of the magnetic field would be up to 80%
lower than what is expected from GR predictions.
If the gravitational Higgs mechanism was in effect, we

would thus expect a high discrepancy between the mea-
sured values of internal and external magnetic fields of
neutron stars. The results gained using various observa-
tional methods would lead to seemingly contradictory
assumptions on themagnetic field strength for the same star.
If predictions are made based solely on observations of

the external field in the interior of, especially, a strongly
magnetized neutron star (magnetar) there would be sig-
nificant deviations which will affect the interpretation of the
quasiperiodic oscillation (QPO) spectra [29,30] of both
global magneto-elastic [31–33] and/or localized crust
oscillations [34] associated with the geometry and dynam-
ics of the magnetic field. During the last two decades, the
modeling of the observed QPOs led to significant progress
in associating the QPOs with the equation of state (EoS)
and the strength and geometry of the magnetic field. These
theoretical developments were based in classical general

relativistic and sometime Newtonian estimations. A new
magnetar hyper-flare [35] e.g., observed by NuSTAR hyper
flare will be the ultimate test of the various approaches but
also of the classical approach to the intensity and geometry
of their interior magnetic field.
In the exterior of neutron stars the magnetic field is the

main reason for being observed and its speculated intensity
and geometry is constraining their parameters. This means
that, for example, issues such as the dipole spin braking, the
interpretation of the X-ray spectra and even the accretion
models [36,37] can be affected by the presence of the
gravitational Higgs mechanism. Actually, a number of
modern instruments are aiming in performing tests on the
aforementioned potential issues [38]. As an example, we
refer to one of themain goals ofNuSTAR related to accretion
powered pulsars [37,39]. That is the cyclotron resonance
scattering that is associated with quantum mechanical
effects causing photons at specific energies to scatter away
from the line of sight and in this way producing dips in the
X-ray spectra. These energies are associated with the
magnetic field strength and the knowledge of these values
is directly linked with the associated accretion progress.
We thus emphasize that if the WEP was violated in the

strong gravity regime, great care would be in order when
interpreting observations of the interior or exterior mag-
netic fields of neutron stars.
As the model discussed here can only be considered as a

toy model for demonstrative purposes, future research is
needed to study in detail possible effects of alternative
theories of gravitation beyond changing the laws of gravity.
Furthermore, it is not within the realm of the present paper
to propose concrete experiments and predict specific
observations that would unambiguously point to the pres-
ence of a STT with a gravitational Higgs mechanism. By
contrast, we aimed at providing a proof of principle
revealing new promising directions of research in the field
of alternative gravitational theories.
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APPENDIX A: DEMONSTRATION OF WEP
VIOLATION IN THE GRAVITATIONAL

HIGGS MODEL

Here we demonstrate that the motion of test particles in
the gravitational Higgs model is not universal. In particular,
photons follow different paths than the rest of matter. To do
so we first note that the rest of matter follows the geodesics
on the, would be, Jordan metric,

FIG. 5. BSTT
r =BGR

r for a neutron star with mA ¼ 1.2582 M⊙.
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ũα∇̃αũβ ¼ 0; ðA1Þ

where ∇̃ is the connection associated to the metric
A2ðϕ̄ϕÞgμν. We use the Uð1Þ gauge freedom to set ϕ real
and use the conformal factor A ¼ exp ðβϕ2=2Þ, the basic
conclusion is independent of these choices. Using the
standard relations for conformal transformations we can
rewrite Eq. (A1) as

uα∇αuβ ¼ −βϕð∇αϕÞðgαβ þ uαuβÞ: ðA2Þ

We now compare this to the geometric optics limit of the
equation for the Uð1Þ field, following the notation of
Sec. 22.5 of [40]. Note that naive application of this
formalism for massive particles also takes the ultrarelativ-
istic limit, as we are interested in the effects of the mass
term one needs to be careful. To investigate the limit we are
interested in we take

Aμ ¼ Re

�
ðaμ þ ϵbμ þOðϵ2ÞÞ exp iθ

ϵ

�
; ðA3Þ

where ϵ is a book-keeping parameter, and we must treat ϕ
as of order 1=ϵ. Taking the divergence of Eq. (9b) with the
above ansatz we find, to lowest order,

aμ∇μθ≡ aμkμ ¼ 0; ðA4Þ

i.e., in this gauge the photon has transverse polarization.
Using this one can show that Eq. (9b) reduces to

k2 ¼ −e2ϵ2ϕ2 ≡ −m2
γ ; ðA5Þ

So the wave vector is indeed timelike, as one would
expect for a massive field. If we call the unit timelike
vector in the same direction l, then one can show (setting
ϵ → 1),

lα∇αlβ ¼ −ð∇α logϕÞðgαβ þ lαlβÞ; ðA6Þ

which is not equivalent to the equation for other particles
(A2).2 Therefore the WEP is violated. As a final note, the
logarithm should not cause concern for the behavior of
photons in the ϕ → 0 limit of the theory as arriving at
Eq. (A6) requires assuming ϕ is non-negligible and was
calculated in the “Proca gauge”, which is known to behave
badly as mγ → 0.

APPENDIX B: COMPARING RADIAL
MAGNETIC FIELDS OF STARS WITH

EQUAL COMPACTNESS

In Sec. III B we have compared radial magnetic fields of
neutron stars with equal ADM mass. A different plausible
approach for observing the effect of STT with a gravita-
tional Higgs mechanism on the magnetic field strengths
would be to compare instead stars with equal compactness,
i.e., ðM=RÞGR ¼ ðM=RÞSTT. To see whether a fixed com-
pactness changes the main results presented in Sec. III B,
we recreated the plots 4 and 5 in Figs. 6–7 for two stars
with ðM=RÞGR ¼ ðM=RÞSTT ≈ 0.18. As can be seen, the
observations discussed in the main text of this paper stay
valid also for this exemplary case, allowing us to assume
that the chosen approach does not lead to unintended
misinterpretations.

FIG. 6. BrðrÞ for a neutron star with mA=R ¼ 0.18.

FIG. 7. BSTT
r =BGR

r for a neutron star with mA=R ¼ 0.18.

2One can make them equivalent by choosing the conformal
factor A ¼ cϕ, with c a constant.
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