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We study the effects of general relativistic gravity on the Hill stability, that is, the stability of a multibody
system against a close approach of one orbit to another, which has been hitherto studied mainly in
Newtonian mechanics and applied to planetary systems. We focus in this paper on the three-body problem
and extend the Newtonian analyses to the general relativistic regime in the post-Newtonian approximation.
The approximate sufficient condition for the relativistic Hill stability of three-body systems is derived
analytically and its validity and usefulness are confirmed numerically. In fact, relativity makes the system
more unstable than Newtonian mechanics in the sense of the Hill stability as expected by our theoretical
prediction. The criterion will be useful to analyze the results of large-scale N-body simulations of dense
environments, in which the stability of three-body subsystems is important.
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I. INTRODUCTION

The orbital stability of multibody systems is one of the
oldest research fields in astronomy. Numerous astrono-
mers, physicists, and mathematicians have tackled this
problem multifacetedly. The Hill stability problem is one of
the research topics in the field; it started from the study on
the lunar motion by Hill [1]. The Hill stability is an orbital
stability against a close approach: the system is said to be
Hill stable if none of the pairs of orbits in the system
experiences a close approach for all the time.
Hill’s paper [1] and the following works [2–4] analyzed

the Hill stability for limited three-body systems, using the
Jacobi integral. These systems are called the circular
restricted three-body systems, in which two components
have much smaller masses than the other one and are
orbiting this massive component in a coplanar and circular
way. They found for this class of three-body systems that if
the initial distance between the two orbits Δ is large
enough, the lighter two objects are separated by the so-
called forbidden region all the time and hence cannot come

close to each other; i.e., the system is Hill stable. A more
detailed analysis using Hill’s coordinates was given by
Hénon and Petit [4].
Various authors have extended these investigations to

more general three-body systems (see [5–7] and references
therein). The essential idea in these works is that the
allowed and forbidden regions for each component in the
system can be analyzed from the relation between the
values of the total energy and angular momentum.
The Hill stability problem has been also investigated in

the context of the evolution and formation of planetary
systems. After the first discovery of the extrasolar planetary
system in 1992 [8], Gladman [9] recast the sufficient
condition for the Hill stability derived by Marchal and
Bozis [5] into simple inequalities for the orbital separations
Δ > Δcr by employing several approximations appropriate
for the planetary systems.
In 1996, Chambers et al. [10] explored the Hill stability

for four- and more-than-four-body systems numerically.
Quite unexpectedly, the sufficient condition for the Hill
stability of a similar sort was not found for these more-than-
three-body systems. Instead, Chambers et al. [10] obtained
a log-linear relation between the time it takes the system to
experience a close approach Tstab and the initial orbital
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separation Δ. The configurations considered in their paper
were again limited to those with three components that
have small masses and rotate around a massive object in
coplanar and circular orbits. Numerous authors have
followed suit and investigated the relation between Tstab
and Δ for other systems with different configurations:
elliptical orbits [11–14], noncoplanar orbits [15], unequal
initial orbital separations [16], and somewhat more massive
planets [17]. The resultant relations between the system
scale and the onset time of instability have been applied to
the studies of the formation of planetary systems [18–20],
in which the instability time is supposed to give the
timescale for the collision of planetesimals.
So far, almost all works discussing the Hill stability

have used Newtonian mechanics. It is fine for the studies
of satellites, planets, and planetesimals. It is not so fine,
however, if one wants to consider multibody systems
composed of compact objects such as black holes (BH),
neutron stars (NS), and white dwarfs in tight orbits.
General relativity (GR) must be taken into account then
instead of Newtonian mechanics to calculate the evolution
of such systems.
Although such relativistic multibody systems may not

be as common as the Newtonian systems in our
Universe, there is indeed an example actually observed:
the PSR J0337þ 1715 system is a relativistic three-body
system composed of a millisecond pulsar and two
white dwarfs [21]. More relativistic systems containing
massive BHs will be detected with gravitational waves
(GW) by future satellite-borne GW detectors like the Laser
Interferometer Space Antenna (LISA) [22–24] or with
radio observations of pulsars [25,26]. In these systems,
multibody interactions between compact objects are def-
initely important to make compact binaries that experience
coalescence in the Hubble time [27–31]. The multibody
interactions in dense environments like globular clusters or
galactic centers are investigated with large-scale N-body
numerical simulations [32,33], in which the effect of the
presence of supermassive black holes (SMBH) or inter-
mediate-mass black holes (IMBH) at the center of the
system is also explored [34–36].
In spite of the increasing attention to the relativistic

multibody systems, few researches have been devoted to a
systematic examination of the stability of such systems
in general relativity. One exception is the paper by Ge and
Alexander [37], which was limited to the Schwarzschild
geometry, however, and the application of their analysis to
other systems with various configurations is not easy.
Our motivation in this paper is hence to investigate the

GR effect on the Hill stability. We use the post-Newtonian
approximation instead of the fully relativistic gravity as
in Ge and Alexander [37] to facilitate the application to
different configurations. In this paper, we address only
the Hill stability problem for relativistic three-body
systems and confine the discussion to the configurations

that have an SMBH or IMBH at the center of the
system and two much-smaller-mass objects orbiting it,
for simplicity. Other configurations and more-than-three-
body systems will be discussed in our subsequent papers.
We extend the theoretical Newtonian analysis in the
previous works to the post-Newtonian gravity and give
approximate sufficient conditions for the relativistic
Hill stability. Numerical simulations are also conducted
in the post-Newtonian approximation to test the con-
ditions. We demonstrate that the systems are more Hill
unstable in the relativistic calculation than in the
Newtonian calculation and that the results are quantita-
tively in agreement with our theoretical prediction.
Our conditions will be useful not only to predict the
stability of relativistic three-body systems but also to
analyze the results of large-scale N-body simulations of
dense star clusters.
This paper is organized as follows. In §II, we explain

the Hill stability more precisely. The theoretical analysis
to give the approximate sufficient conditions for the
relativistic Hill stability, one of the main achievements
of this paper, is also given in this section. In §III, we
describe the method of the numerical simulations run in
this paper to test the stability conditions. The results and
some discussions are presented in §IV. We conclude the
paper in §V.

II. THEORETICAL ANALYSIS OF HILL
STABILITY

A. Brief review of Newtonian analysis

The generalized Hill stability for three-body systems is
defined by Marchal and Bozis [5] as follows: a triple
system is Hill stable if it can be grouped into a close
bounded binary and a third body orbiting it. Note that this
case, in which the third body escapes from the system, is
Hill stable according to this definition.
The Hill stability of a given three-body system can be

judged with the topological analyses that were much
elaborated in 1970s and 1980s (see, e.g., [3–7]). The phase
space of the third body in the triple system is divided
into allowed and forbidden regions. If the orbit of the third
body is separated from the orbit of the inner binary by the
forbidden region in the phase space, they cannot approach
each other closely and the system is Hill stable. This means
that the existence of the forbidden region between the two
orbits is the sufficient condition for the Hill stability of the
three-body system. Below we summarize how the allowed
and forbidden regions are obtained from the quantities that
characterize the three-body system in Newtonian mechan-
ics. Although the contents in this subsection are not
original, it will facilitate the understanding of our exten-
sions that follow in later sections.
In the analysis of the three-body system, Sundman’s

inequality (see, e.g., [37,38]), which is written as
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�X
j

mjr2j

��X
j

mjv2j

�

≥
���X

j
mjrj × vj

���2 þ ���X
j
mjrj · vj

���2; ð1Þ

is known to be very convenient. In this inequality, mj, rj,
and vj normally mean the mass, position, and velocity
vectors of the jth object, respectively. We remark, however,
that the two vectors are actually arbitrary, and mj can take
an arbitrary positive value in fact. The subscript j runs from
1 to N, which is an arbitrary integer. In this paper we take
N ¼ 3. The proof of this inequality is given in Appendix A.
If mj, rj, and vj are chosen to be the mass, position, and
velocity vectors as usual, inequality (1) can be rewritten
with some characteristic quantities of the system as

2

�X
j

mjr2j

�
ðHN −UÞ ≥ J2 þ

���X
j
mjrj · vj

���2; ð2Þ

where HN, U, and J are the total Hamiltonian, the
gravitational potential and the magnitude of the total
angular momentum, respectively, and are given as

HN ¼ 1

2

X
j

mjv2j þ U; ð3Þ

U ¼ −
1

2

X
i

X
j≠i

Gmimj

rij
; ð4Þ

where G is the gravitational constant, rij ¼ jri − rjj is the
distance between the ith and jth objects, and

J ¼
����
X
j

mjrj × vj

����: ð5Þ

Since the second term on the right-hand side of inequality
(2) is positive, we have

2

�X
j

mjr2j

�
ðHN −UÞ ≥ J2: ð6Þ

This inequality depends only on the positions. With two
of the three positions being fixed, inequality (6) gives the
condition that the remaining position should satisfy, which
then provides the allowed regions characterized by the
conserved quantities of the system HN and J. The Hill
stability of the three-body system can be hence judged from
the conserved quantities and the positions of two objects in
the system.
Marchal and Bozis [5] parametrized inequality (6) in a

nice way and gave the sufficient condition of the Hill
stability for general three-body systems as an inequality.
Gladman [9] rewrote approximately the inequality in an

even simpler form with the orbital elements when the mass
of the central object overwhelms other objects orbiting it
and the orbital planes are coplanar. In that limited case,
the conserved quantities are approximately given with the
initial orbital elements as

HN ≈ −
Gm1m2

2ain
−
Gm1m3

2aout
; ð7Þ

J2 ≈ ðJin þ JoutÞ2; ð8Þ

where a and e are the semimajor axis and the eccentricity,
and the subscripts “in” and “out” mean the inner and outer
orbits, respectively; Jin and Jout are defined as

Jin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

m2
1m

2
2

m1 þm2

ainð1 − e2inÞ
s

; ð9Þ

Jout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

m2
1m

2
3

m1 þm3

aoutð1 − e2outÞ
s

: ð10Þ

When the two orbiting objects have equal masses, the
sufficient conditions obtained in his work are summarized
as follows:
(1) For initially circular orbits (ein; eout ¼ 0)

aout − ain
ain

> 3μ
1
3; ð11Þ

with μ being the ratio of the mass of the orbiting
objects to that of the central object.

(2) For initially low eccentric orbits (ein; eout ≤ μ
1
3)

aout − ain
ain

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

3
ðe2in þ e2outÞ þ 9μ

2
3

r
: ð12Þ

(3) For initially highly eccentric orbits (ein ¼ eout ¼
e > μ

1
3)

aout − ain
ain

>

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ e2

2ð1 − e2Þ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − e2

1 − e2

svuut

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − e2

1 − e2

s
−
1

2

1
CA

2

− 1: ð13Þ

These Newtonian conditions will be compared with our
numerical results in §IV. In the following sections, we
extend inequality (6) to include GR effects in the post-
Newtonian approximation. Finding a nice parametrization
of the resultant inequality as for the Newtonian case is a big
challenge and will be deferred to a future work.
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B. Post-Newtonian analysis

Now we present one of the main results of this paper. The equations of motion in the first-order post-Newtonian (1PN)
approximation are called the Einstein-Infeld-Hofmann equations [39]:

dvk
dt

¼ −G
X
n≠k

mn
xk − xn
jxk − xnj3

�
1 − 4

G
c2

X
n0≠k

mn0

jxk − xn0 j
−
G
c2

X
n0≠n

mn0

jxn − xn0 j
�
1 −

ðxk − xnÞ · ðxn − xn0 Þ
2jxn − xn0 j2

�

þ
�jvkj

c

�
2

þ 2

�jvnj
c

�
2

− 4
vk · vn
c2

−
3

2

�ðxk − xnÞ
jxk − xnj

·
vn
c

�
2
	
−
G
c2

X
n≠k

mnðvk − vnÞ
jxk − xnj3

ðxk − xnÞ · ð3vn − 4vkÞ

−
7

2

G2

c2
X
n≠k

mn

jxk − xnj
X
n0≠n

mn0 ðxn − xn0 Þ
jxn − xn0 j3

: ð14Þ

The 1PN Hamiltonian and linear momentum of a general N-body system are obtained from Eq. (14) as

HPN ¼ 1

2

X
j

mj

�
v2j −

X
i≠j

Gmi

rij

�
þ 1

c2
X
j

mj

�
3

8
v4j þ

3

2
v2j
X
i≠j

Gmi

rij
þ 1

2

X
i≠j

X
k≠j

G2mimk

rijrjk

−
1

4

X
i≠j

Gmi

rij
f7vi · vj þ ðvi · njiÞðvj · njiÞg

	
; ð15Þ

Pj ¼ mjvj þ
�
1

2c2
mjvj

�
v2j −

X
i≠j

Gmi

rij

�

−
G
2c2

X
i≠j

mimj

rij
ðvj · njiÞnji

	
; ð16Þ

where the subscript j means the jth object and runs from 1
to 3 for the three-body system. The total angular momen-
tum J is defined as

J ¼
X
j

rj × Pj: ð17Þ

The total energy and total angular momentum given by
Eqs. (15) and (17), respectively, are conserved quantities of
the system.
The target in this paper is the triple systems that have a

central object with a large mass m1 like SMBH or IMBH
and two orbiting objects with much smaller masses
m2; m3 ≪ m1. In this limited case, the barycenter of the
system sits almost on the central object, and if the
coordinate origin is set on the barycenter, the following
approximate relations hold:

r1 ≈ 0; ð18Þ

r2 ≈ r2 − r1; ð19Þ

r3 ≈ r3 − r1; ð20Þ

v1 ≈ 0; ð21Þ

v2 ≈ v2 − v1; ð22Þ

v3 ≈ v3 − v1: ð23Þ

With these approximations, the three-body 1PNHamiltonian
Eq. (15) can be recast into the following form:

HPN ≈m2H
ð1−2Þ
rel þm3H

ð1−3Þ
rel −

Gm2m3

r23
; ð24Þ

whereHð1−2Þ
rel andHð1−3Þ

rel are the 1PN specific Hamiltonians
for the relative motions r2 − r1 and r3 − r1, respectively.
Here we neglected 1PN correction terms proportional to
m2m3 or m1m2m3 because they are formally of the order of

m2ð∼m3Þ=m1×, the dominant 1PN corrections, m2H
ð1−2Þ
rel

and m3H
ð1−3Þ
rel , and are confirmed by direct numerical

evaluations to be always smaller by a factor of 106 in our
simulations indeed. Each 1PN specific Hamiltonian Hrel as
well as the specific linear momentum p of the relative motion
r ¼ ri − r1 were derived by Richardson and Kelly [40] as

Hrel ¼
1

2
p · p −

Gðm1 þmiÞ
r

−
1

c2

�
σ0ðp · pÞ2

þ σ1
r
p · pþ σ2

r2
þ σ3

r3
ðr · pÞ2

	
; ð25Þ

p ¼ vþ 1

c2

�
4σ0v2vþ

2σ1
r

vþ 2σ3
r3

ðr · vÞr
	
: ð26Þ

The coefficients in Eqs. (25) and (26) are given as
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σ0 ¼
1 − 3χ

8
; ð27Þ

σ1 ¼
Gðm1 þmiÞð3þ χÞ

2
; ð28Þ

σ2 ¼ −
G2ðm1 þmiÞ2

2
; ð29Þ

σ3 ¼
Gðm1 þmiÞχ

2
; ð30Þ

χ ¼ m1mi

ðm1 þmiÞ2
: ð31Þ

In Eq. (25) we may make the following replacements
Gðm1þm2Þ≈Gm1, r2−r1≈r2 and v2−v1≈v2. Denoting
the terms of the order of 1=c2 in Hrel as Xðr; pÞ, we write
Hð1−2Þ

rel and Hð1−3Þ
rel as

Hð1−2Þ
rel ≈

1

2
p2 · p2 −

Gm1

r12
þ Xð1−2Þðr2; p2Þ; ð32Þ

Hð1−3Þ
rel ≈

1

2
p3 · p3 −

Gm1

r13
þ Xð1−3Þðr3; p3Þ: ð33Þ

Substituting these expressions in Eq. (24), we can rewrite the
total Hamiltonian as

HPN ≈
1

2
m2p2

2 þ
1

2
m3p2

3 þU þm2Xð1−2Þðr2; p2Þ
þm3Xð1−3Þðr3; p3Þ; ð34Þ

where U is the Newtonian gravitational potential Eq. (4).
As remarked in §II A, the two vectors in Sundman’s

inequality (1) can be chosen arbitrarily. In the post-
Newtonian analysis, we take the specific linear momentum
p instead of the velocity v to obtain

�X
j

mjr2j

��X
j

mjp2
j

�

≥
���X

j
mjrj × pj

���2 þ ���X
j
mjrj · pj

���2: ð35Þ

Note that the terms with j ¼ 1 are almost vanishing for
the systems of our concern in this paper. Following the
procedure in §II A, we can further rewrite inequality (35) in
terms of the characteristic quantities of the system as

2

�X
j

mjr2j

�
ðHPN −U −m2Xð1−2Þðr2; p2Þ

−m3Xð1−3Þðr3; p3ÞÞ ≥ J2: ð36Þ

The above inequality is the relativistic counterpart
of inequality (6). However, this is not very convenient.
The difficulty here is that Xð1−2Þðr2; p2Þ and Xð1−3Þðr3; p3Þ

depend not only on the position but also on the specific
linear momentum. In order to obtain the allowed or
forbidden region, they need to be approximated somehow
with the functions of the position alone. Here we propose to
apply the virial theorem in the 1PN approximation, which
was derived by Chandrasekhar and Contopoulos [41],
individually to the two-body systems consisting of the
central object and one of the orbiting objects:

v2i ≈
Gm1

ri

�
1 −

3

c2
Gm1

ri

�
: ð37Þ

In fact, the last term in Eq. (37) can be neglected because it
is employed in those terms that are already of the 1PN order
and, as a result, becomes of higher PN orders. When the
higher order term is neglected, this approximation is
reduced to the Newtonian virial relation. Rigorously speak-
ing, this relation holds only for the average over the orbital
cycle unless the orbit is circular. In this paper, however, we
use this relation even for elliptic orbits pointwise as an
approximation, and it turns out that it is very successful.
Substituting this approximation in Eq. (26) and employ-

ing the result in the definition of Xð1−iÞðri; piÞ, we obtain

Xð1−iÞðri; piÞ ≈ −
9

8

1

c2
G2m2

1

r2i
þO

�
v4i
c4

�
: ð38Þ

Note that the angle θ between ri and pi always appears as
p2ð3þ χ cos2 θÞ in Xð1−iÞðri; piÞ and is neglected because
χ ≪ 1. With this approximated Xð1−iÞðri; piÞ, Eq. (36) is
also approximately written as

2

�X
j

mjr2j

��
HPN −U þ 9

8

G2m2
1

c2

�
m2

r22
þm3

r23

��
≥ J2:

ð39Þ

This inequality is more like the Newtonian counterpart,
Eq. (6), and is the basis for the following analysis.
Next we bound HPN from above and J2 from below in

inequality (39), employing the initial orbital elements as

HPN ≲ −
Gm1m2

2ain
−
Gm1m3

2aout
þ 19

8

G2m2
1

c2

�
m2

a2inð1 − einÞ2

þ m3

a2outð1 − eoutÞ2
�
; ð40Þ

J2 ≳ J2in;N

�
1þ 7

c2
Gm1

ainð1þ einÞ
	
þ 2Jin;NJout;N

×

�
1þ 7

2

Gm1

c2

�
1

ainð1þ einÞ
þ 1

aoutð1þ eoutÞ
�	

þ J2out;N

�
1þ 7

c2
Gm1

aoutð1þ eoutÞ
	
; ð41Þ

GENERAL RELATIVISTIC EFFECTS ON HILL STABILITY OF … PHYS. REV. D 102, 124063 (2020)

124063-5



where Jin;N and Jout;N are given in Eqs. (9) and (10). These
correspond to Eqs. (7) and (8), respectively. The detailed
derivations of these estimations are presented as follows.
By using the virial relation Eq. (37), the Hamiltonian

HPN is approximately written as

HPN ≈
1

2
m2v22 þ

1

2
m3v23 þ U

þ 19

8

1

c2

�
G2m2

1m
2
2

r22
þ G2m2

1m
2
3

r23

�
: ð42Þ

The Newtonian orbital energy can be rewritten with the
initial semimajor axes ain and aout as

1

2
m2v22 −

Gm1m2

r2
≈
1

2

m1m2

m1 þm2

v212 −
Gm1m2

r12

¼ −
Gm1m2

2ain
; ð43Þ

1

2
m3v32 −

Gm1m3

r3
≈
1

2

m1m3

m1 þm3

v213 −
Gm1m3

r13

¼ −
Gm1m3

2aout
: ð44Þ

The term for the gravitational interaction between m2

and m3, Gm2m3=r23, can be neglected because it is much
smaller than Gm1m2=r12 and Gm1m3=r13. In order to use
inequality (39) we should bound the Hamiltonian from
above. The last term in Eq. (42) can be evaluated with
following relation

1

r2
≤

1

a2ð1 − eÞ2 : ð45Þ

In this evaluation, we used the periapsis distance in the
Kepler orbit as the minimum value of the distance between
the central and orbiting objects. The Hamiltonian is now
estimated as Eq. (40).
The square of magnitude of the angular momentum J2

can be estimated similarly. The total angular momentum J
is written as

J ¼ Jin;N

�
1þ 1

c2

�
v22
2
þ 3Gm1

r2

�	

þ Jout;N

�
1þ 1

c2

�
v23
2
þ 3Gm1

r3

�	
; ð46Þ

where Jin;N ¼ m2r2 × v2 and Jout;N ¼ m3r3 × v3 are the
Newtonian angular momenta of the inner and outer orbits,
whose magnitudes are expressed with the orbital elements
in Eqs. (9) and (10). The magnitude of the total angular
momentum squared J2 is given as

J2 ¼ J2in;N

�
1þ 2

c2

�
v22
2
þ 3Gm1

r2

�	

þ 2Jin;N · Jout;N

�
1þ 1

c2

�
v22 þ v23

2

þ 3Gm1

�
1

r2
þ 1

r3

��	

þ Jout;N

�
1þ 2

c2

�
v23
2
þ 3Gm1

r3

�	
þO

�
v4

c4

�
: ð47Þ

The scalar product of the inner and outer angular momenta
can be replaced as Jin;N · Jout;N ¼ Jin;NJout;N because the
systems considered in this paper have the coplanar pro-
grade orbits and the two angular momenta are aligned with
each other. We employ the virial relation Eq. (37) again in
Eq. (47) as

J2 ≈ J2in;N

�
1þ 7

1

c2
Gm1

r2

	

þ 2Jin;NJout;N

�
1þ 7

2

Gm1

c2

�
1

r2
þ 1

r3

�	

þ Jout;N

�
1þ 7

1

c2
Gm1

r3

	
þO

�
v4

c4

�
: ð48Þ

We should bound J2 from below this time to use the result
in inequality (39). The following relation is employed:

1

r
≥

1

að1þ eÞ : ð49Þ

Here the maximum value of the distance between the
central and orbiting objects is set as the apoapsis distance in
the Kepler orbit. Then the total angular momentum squared
is estimated as Eq. (41).
Employing these inequalities (40) and (41) in inequality

(39) and fixing the positions of two objects, we finally
obtain the allowed and forbidden regions of the remaining
body. As explained earlier for the Newtonian case, the
existence of the forbidden region between two orbits may
be interpreted as a sufficient condition of the 1PN Hill
stability for the triple system with a massive central object
and two orbiting objects with much smaller masses.
We evaluate inequalities (39), (40), and (41) numerically
to obtain the forbidden region for some models in §IV.
We also compare the sufficient condition so obtained with
the results of numerical three-body simulations in the 1PN
approximation to validate our criterion.

III. NUMERICAL SIMULATIONS

In order to test the relativistic Hill stability condition we
obtained, we conduct some numerical simulations follow-
ing Chambers et al. [10], who computed Newtonian
orbital evolutions of multibody systems of various initial
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orbital separations until instability occurs in the sense of
Hill stability. The onset of the instability was judged from
the orbital separation during the simulation. From the
relation between the initial orbital separation and the time
when the system becomes unstable we can obtain the
condition of the Hill stability.
In the following, we conduct similar simulations both in

the Newtonian and the first-order post-Newtonian approx-
imations and compare the results. Note that neglected
higher order terms in the PN approximation may have
some important effects on the Hill stability. For example,
some authors recently have studied the 1.5 PN order
effects, that is, the spin-orbit coupling called the Lense-
Thrring effect, on the orbital evolution of the hierarchical
triple systems [42–44]. The 2.5 PN order effects corre-
sponding to the GW emission may be also important:
it extracts energy from the inner orbit more efficiently
than from the outer orbit [45], and, as a result, the orbital
separation will become larger, thus affecting the Hill
stability. In this paper, however, we ignore these interest-
ing higher order effects and focus on the 1PN effect as a
first step. We will give a rough estimation of these effects
in §IV, though. They will be investigated in detail in
future works.
Our numerical models of relativistic three-body sys-

tems are divided into two groups: those with an SMBH
(we call it the SMBH group) as a central object and the
others with an IMBH (we refer to it as the IMBH group).
Each group has three models: circular, small-eccentricity
(small-e) and large-eccentricity (large-e) models accord-
ing to the classification by Gladman [9]; in the circular
model, the inner and outer orbits are both circular,
whereas in the low- and high-eccentricity models, the
two orbits have eccentricities that satisfy e < μ1=3 and
e > μ1=3, respectively.
The important parameters in the initial conditions are

summarized for all the models in Table I. There are six
orbital elements for each orbit in general. We use the
so-called Kepler elements: the semimajor axis a, the
eccentricity e, the inclination i, the argument of periastron
ω, the longitude of ascending node Ω, and the mean
anomaly M. In the SMBH group, we fix the inner semi-
major axis ain to 1.0 au while in the IMBH group, ain is
determined so that the period of the inner orbit should be
the same as the counterpart in the SMBH group to facilitate
comparison. All the models have coplanar and prograde
orbits, that is, the relative inclination between the inner and
outer orbits is zero. The longitude of the ascending node Ω
cannot be defined in this case.
Note that the Newtonian Hill stability in noncoplanar

systems are investigated in detail by Grishin et al. [46].
They showed that, for highly inclined hierarchical three-
body systems, the Kozai-Lidov mechanism operates and
affects the stability. It is known, on the other hand, that GR
suppresses the Kozai-Lidov mechanism in some parameter

regimes [47,48]. Although its ramification for the stability
is an interesting issue, it is beyond the scope of our paper
and will be addressed in future.
As mentioned repeatedly, we are concerned in this paper

with the relation between the onset time of the orbital
instability and the initial orbital separation Δ, which is
defined as the difference of the semimajor axes in the units
of the mutual Hill radius R0

Hill:

aout − ain ¼ ΔR0
Hill; ð50Þ

where R0
Hill is defined as

R0
Hill ≡

�
μ2 þ μ3

3

�1
3 ain þ aout

2
; ð51Þ

with μi being the ratio of the mass of the ith orbiting object
to the mass of the central object. For each model, we
change the value of Δ from 1.0 by an increment of 0.1 and
compute the orbital evolution both in the Newtonian
and 1PN approximations. The initial mean anomalies of
the two orbiting objects Min and Mout are set randomly
except that they should be separated by at least 20°. For
each value of Δ we perform three runs with different
combinations of mean anomalies.
The Kepler elements are transformed to the positions and

velocities in the Cartesian coordinates of the constituent
bodies, the detail of which is given in Appendix B 1 (see
also, e.g., Murray and Dermott [49]). The Newtonian and
1PN [Eq. (14)] equations of motion are numerically inte-
grated by using the sixth order implicit Runge-Kutta (IRK)

TABLE I. The important parameters in the initial conditions for
all models treated in this paper. The third and fourth columns, m1

and mi, are the masses of the central object and the orbiting
objects in the three-body system. The subscript i runs from 2 to 3.
In this paper, we set m2 ¼ m3. The fifth column, ain, is the
semimajor axis of the inner orbit. The semimajor axis of the outer
orbit, aout, is determined from the parameter Δ as explained in the
text. The sixth column, e, is the eccentricity, which is assumed to
be common to the inner and outer orbits. The last column, ω, is
the argument of periapsis of the two orbits, which are assumed to
be the same. Note that, in the circular orbit, we cannot define the
argument of periapsis. The information about the other orbital
elements, for example, the inclinations and the mean anomalies,
are given in the text.

Group Model m1½M⊙� mi½M⊙� ain[au] e ω[deg]

SMBH Circular 106 1.0 1.0 0 � � �
SMBH Small-e 106 1.0 1.0 0.009 0
SMBH Large-e 106 1.0 1.0 0.1 0
IMBH Circular 103 1.0 0.1 0 � � �
IMBH Small-e 103 1.0 0.1 0.009 0
IMBH Large-e 103 1.0 0.1 0.2 0
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method [50].1 Each run is continued up to either the onset
of instability or 106 yrs. When the integration is completed,
we reconvert the positions and velocities at each time step
into the orbital elements of the osculating orbit, the detail of
which is explained in Appendix B 2.
We decide that the instability sets in when the difference

of the distance of the periastron of the outer orbit and that of
apoastron of the inner orbit becomes smaller than one of the
Hill radii of the two orbiting objects:

aoutð1 − eoutÞ − ainð1þ einÞ < RHill;i; ð52Þ

where RHill;i is the Hill radius of the ith object defined as

RHill;2 ≡
�
μ2
3

�1
3

ain ð53Þ

for the second object and is given similarly for the third
object with μ2 and ain being replaced with μ3 and aout,
respectively. We remark that some authors employed a
different criterion of close encounter: the separation of two
orbits should become smaller than the mutual Hill radius.
The Hill radius and the mutual Hill radius are not much
different from each other, however. We hence do not think
that the change of the criterion would produce qualitatively
different results. As mentioned earlier, if Eq. (52) is
satisfied at some point in the simulation, we record the
time as the onset time of instability Tstab. If, on the other
hand, the system has a stable evolution up to 106 yrs in all
the three calculations for the same Δ but different initial
mean anomalies for the consecutive three values of Δ, we
stop the calculation for that model.

IV. RESULT AND DISCUSSION

A. SMBH group

We show the 1PN evolutions of orbital elements of
the SMBH small-e model with Δ ¼ 13.3 in Fig. 1 as an
example of our simulations. The evolutions of the semi-
major axes and eccentricities are exhibited in the top and
middle panels, respectively, whereas the evolutions of the
apoastron distance of the inner orbit and of the periastron
distance of the outer orbit are presented in the bottom panel.
We can see that both the semimajor axes and the eccen-
tricities are fluctuating around their initial values until the

separation between the apoastron distance of the inner orbit
and the periastron distance of the outer orbit ceases to
satisfy the criterion of the Hill stability. In this case, Tstab is
2793 yrs.
The relations between Δ and Tstab are summarized in

Figs. 2–4 for the models in the SMBH group, which corres-
pond to the circular, small-e and large-e models, respec-
tively. In these figures, the blue dots show the Newtonian
results while the cyan triangles are the results obtained
by the 1PN calculations. In all the figures, Tstab is shorter
for the 1PN calculations than for the Newtonian ones,
that is, the 1PN evolutions are more unstable than the
Newtonian counterparts in the sense of Hill stability.

FIG. 1. The 1PN-evolution of the orbital elements for the
SMBH small-e model with Δ ¼ 13.3. The top and middle panels
show the evolutions of the semimajor axes and eccentricities,
respectively. The bottom panel exhibits the time variations of the
apoastron distance of the inner orbit and the periastron distance of
the outer orbit. The inset is the enlargement of the onset time of
the instability. The purple and green lines represent the inner- and
outer-orbital elements, respectively. The onset time of instability
Tstab is 2793 yrs in this case.

1There are different methods to calculate long-term relativistic
orbital evolutions. One of the most commonly used formulas is
the so-called double-averaging method, which is derived by
averaging the Hamiltonian with respect to both the inner and
outer orbits. In this method, the Newtonian gravitational inter-
action between the inner and outer orbits is normally treated
perturbatively and Will [51,52] stressed the importance of the
cross terms between the above Newtonian terms and the post-
Newtonian terms, which are commonly omitted. We remark that,
in our calculations, we integrate the equations of motion directly
and the effects of the cross terms are automatically included.
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The periastron shift, which provides extra perturbations
in the former, may be the cause of the earlier instability. In
fact, the timescale of the periastron shift tP can be estimated
from the Lagrange planetary equations (see, e.g., [26,49]).
It is written with the 1PN averaged potential V1PN ¼
3G2m2

1=ðc2a2in
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2in

p
Þ (see, e.g., [53]) and the mean

motion of the inner orbit nin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm1=a3in

q
as

tP ¼ nina2in
V1PN

≈
1

3π

ain
rg;1

Pin

∼ 2day

�
ain

1.0 au

��
rg;1

0.020 au

�
−1
�

Pin

0.365 day

�
; ð54Þ

where rg;1 ¼ 2Gm1=c2 is the Schwarzschild radius of the
central object and Pin is the period of the inner orbit. We

find that this timescale is not much longer than the period
of the inner orbit, and, more importantly, it is smaller than
Tstab in the Newtonian case as should be evident, e.g., for
Δ < 4.0 in Fig. 2. This suggests that the periastron shift
affects indeed the 1PN Hill stability.
The time to the onset of instability Tstab grows almost

monotonically in the circular and small-e models whereas,
in the large-emodel, its behavior is more complicated. This
is because the initial mean anomalies become an important
factor for the orbits with large eccentricities. In Fig. 4,
we can confirm this by comparing the results of the 1PN
calculations with initial mean anomalies fixed to three
different values: magenta, brown, and purple triangles are
the 1PN results for ðMin;MoutÞ ¼ ð0°; 0°Þ, (0°,180°), and
(180°,90°), respectively. One observes that Tstab grows
almost monotonically with the initial separation Δ when
the initial mean anomaly is fixed. For the models with
ðMin;MoutÞ ¼ ð180°; 90°Þ, Tstab grows rapidly around
Δ ¼ 25.0, whereas it remains a small value until Δ ¼
35.0 for ðMin;MoutÞ ¼ ð0°; 0°Þ. These two results are
probably the extremes and encompasses the results with
other mean anomalies.
The black dashed lines in these figures correspond

to the sufficient conditions given by Gladman [9]
[Eqs. (11)–(13)]. As seen in the figures, Gladman’s
sufficient conditions are consistent with our Newtonian
results, whereas they are clearly inconsistent with the 1PN
results. It is hence inappropriate to apply Gladman’s
Newtonian sufficient conditions for Hill stability to such
compact multibody systems containing a SMBH as con-
sidered here.
On the other hand, our new sufficient conditions for

the Hill stability works much better as shown with red
solid lines in these figures. They are excellent particularly

FIG. 3. The same as Fig. 2 but for the small-e model in the
SMBH group.

FIG. 2. The relation between Δ and the onset time of instability
for the circular model in the SMBH group. The blue dots show
the results of the Newtonian calculations, whereas the cyan
triangles are the results from the 1PN calculations. See the text for
details on other lines.

FIG. 4. The same as Figs. 2 and 3 but for the large-e model in
the SMBH group. Three 1PN calculations with fixed initial mean
anomalies are shown in the triangles with different colors.
Magenta, brown, and purple triangles are the results of the
1PN calculations with ðMin;MoutÞ ¼ ð0°; 0°Þ, ð0°; 180°Þ, and
ð180°; 90°Þ, respectively.
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for the circular orbits (see Fig. 2). In the case of the
eccentric orbits, they tend to overestimate Δ somewhat
(Figs. 3 and 4). Considering that the criterion is supposed to
be a sufficient condition for the Hill stability and that the
stability is rather sensitive to the initial mean anomaly as
just mentioned, we think that our criterion is a substantial
improvement from Gladman’s. We will return to these
results later.
In order to analyze these results further, we map the

allowed regions of motion for the third body, using Eq. (6)
for the Newtonian and Eq. (39) for the 1PN cases. In so
doing, we need to fix the positions of the central and inner-
orbiting objects, i.e., Δ and r12, in addition to the values of
H and J. Since r12 fluctuates in time as should be obvious
from the bottom panel in Fig. 1, we try a range of values of
r12. In Fig. 5, we show the maps of the allowed regions
drawn for the circular models with Δ ¼ 2.0, 3.0, and 3.6;
the top left and right panels show the whole map for
Δ ¼ 2.0 and the enlargement of the vicinity of the inner-
orbiting object; the bottom left and right panels are the
enlarged figures for Δ ¼ 3.0 and Δ ¼ 3.6, respectively.
The cross points in these figures indicate the positions of
the central SMBH and the inner-orbiting object. We fix the
value of r12 to 1.01ain. The color shows the value of

fN ¼ 2

�X
j

mjr2j

�
ðHN −UÞ − J2: ð55Þ

If fN is positive (bluish region), inequality (6) is satisfied,
that is, the position of concern lies in the allowed region for
the third body. On the other hand, if fN is negative (reddish
region), the position is in the forbidden region and the third
body cannot enter the region. The green line is a contour for
fN ¼ 0, which corresponds to the boundary between the
allowed and forbidden regions.
For Δ ¼ 2.0, the forbidden region covers the inner orbit

except around the inner-orbiting object. As Δ increases,
the forbidden region is expanded. As a matter of fact, at
Δ ¼ 3.0, the forbidden region is extended to the Lagrangian
point L1 between the central and inner-orbiting objects; at
Δ ¼ 3.6, the forbidden region reaches another Lagrangian
point L2 and the inner-orbiting object is now completely
surrounded by the forbidden region. This means that the
third body is not allowed to approach the inner-orbiting
object as closely as the Hill radius, that is, the system is
Hill stable. This behavior of the Newtonian allowed
region is consistent with what was found by Marchal and
Bozis [5].
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FIG. 5. The Newtonian allowed/forbidden regions for the third body of the circular model in the SMBH group. Upper two panels show
the results for Δ ¼ 2.0. The upper right panel is the enlargement of the inner-orbiting object. The counterparts for Δ ¼ 3.0 and 3.6 are
displayed in the bottom left and right panels, respectively. The value of function fN is represented by colors. The bluish and reddish
regions correspond to the allowed and forbidden regions, respectively. The green lines are contours for fN ¼ 0, which are the boundary
dividing the two regions. Cross points are the positions of the central SMBH and the inner-orbiting object. The distance between them is
fixed to 1.01ain.
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The allowed region in the 1PN approximation shows a
similar behavior. The enlarged maps for Δ ¼ 12.4 and 12.8
are exhibited in Fig. 6. The color in this figure shows the
value of

f1PN ¼ 2

�X
j

mjr2j

�

×
�
HPN −U þ 9

8

G2m2
1

c2

�
m2

r22
þm3

r23

��
− J2: ð56Þ

As in the Newtonian maps in Fig. 5, the bluish and reddish
regions correspond to the allowed and forbidden regions
for the third body, respectively, and the green line is the
boundary between them.
The forbidden region is extended to the inner Lagrangian

point L1 at Δ ¼ 12.4 (see left panel of Fig. 6), whereas at
Δ ¼ 12.8 it is further expanded to the outer Lagrangian

point L2 and covers the inner-orbiting object completely.
These results suggest that the arrival of the forbidden
region at L2 may be regarded as the sufficient condition
of the Hill stability both in the Newtonian and 1PN
calculations.
The local minimum of f1PN is close but not completely

identical to the Newtonian counterpart. Figure 7 shows the
values of fN and f1PN on the X axis with Y ¼ 0 forΔ ¼ 3.6
in the Newtonian calculation and for Δ ¼ 12.8 in the 1PN
calculation. The left panel is the whole view and the right
one is the enlargement of the inner-orbiting object. The
blue and cyan lines are the values of fN and f1PN,
respectively. The black dashed lines are the positions of
the central and inner-orbiting objects. In this figure, r12 is
fixed to 1.01ain in both the Newtonian and 1PN calcu-
lations. The Newtonian Lagrangian points are exhibited
as red solid lines; the X coordinates of the Newtonian
Lagrangian points are given [49] as
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FIG. 6. The 1PN allowed/forbidden regions for the third body of the circular model in the SMBH group. The left and right panels show
the results for Δ ¼ 12.4 and 12.8, respectively. The value of function f1PN is represented by colors. The bluish and reddish regions
correspond to the allowed and forbidden regions, respectively. The green lines are contours for f1PN ¼ 0, which are the boundary
dividing the two regions. The cross point in each panel indicates the position of the inner-orbiting object. The distance between the
central SMBH to the inner-orbiting object is fixed to 1.09ain.
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FIG. 7. The values of functions fN (blue) and f1PN (cyan) as a function of X on the Y axis. The right panel is an enlargement of the
inner-orbiting object. The values of Δ are Δ ¼ 3.6 and 12.8 for the Newtonian and 1PN cases, respectively. The black lines indicate the
positions of the central SMBH and inner-orbiting object. The distance between them is fixed to 1.01ain in both calculations. The red
lines show the Newtonian Lagrangian points.
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XL1
¼

�
1 −

�
μ2
3

�1
3

�
r12; ð57Þ

XL2
¼

�
1þ

�
μ2
3

�1
3

�
r12; ð58Þ

XL3
¼ −

�
1 −

7

12
μ2

�
r12: ð59Þ

The local minimum points of f1PN are slightly dislocated
from those of fN , which coincide with the Lagrangian
points, and are hence referred to as the 1PN Lagrangian
points.
The Newtonian and 1PN sufficient conditions are

exhibited in Figs. 2–4 as the red solid lines. In drawing
these figures, we take the following steps: fixing r12, we
first search for the value of Δ in the range of RHill;2 to
50RHill;2, at which the forbidden region appears for the
first time; we then vary the value of r12 in the range of
0.5ainðein − 1Þ to 1.5ainðein þ 1Þ, looking for the maxi-
mum value of Δ, at which the forbidden region contains the
inner-orbiting object. This value of Δ is regarded as the
sufficient condition of Hill stability.
One finds that the Newtonian red lines agree well with

Gladman’s sufficient conditions. As a sufficient condition
for the Hill stability, they are indeed consistent with the
results of the numerical simulations although they give a bit
less tight a criterion for the large-e case. The discrepancies
from Gladman’s conditions may be due to the fact that we
search numerically the maximum Δ by changing r12 and Δ
independently within a finite range.
The 1PN lines, drawn according to our new criterion, on

the other hand, are also consistent with the results of the
1PN simulations. As sufficient conditions for the 1PN Hill
stability, it is a little too tight for the circular case as seen
in Fig. 2 whereas they are looser for larger eccentricities
compared with the Newtonian case. Some of the approx-
imations in §II B may be responsible for these discrepan-
cies: in fact, the virial relation Eq. (37) is not strictly
satisfied and may have caused the small discrepancy seen in
Fig. 2; in the small- and large-e cases, the approximations
used in Eqs. (45) and (49) may be too conservative and may
have produced the not-so-tight conditions in Figs. 3 and 4.
So far we have neglected the higher-order PN terms in

our simulations. Their importance may be roughly esti-
mated as follows. According to Barker and O’Connell [54],
the timescale tLT of the Lense-Thrring precession, which
occurs at the 1.5 PN order, is given as

tLT ¼ 2c3a3inð1 − e2inÞ3=2
χ1G2m2

1ð4þ 3m2=m1Þ

∼ 1 yr

�
χ1
0.1

��
ain

1.0 au

�
3
�

m1

106 M⊙

�
−2
; ð60Þ

where χ1 ≤ 1 is the Kerr parameter. This timescale is rather
short and hence may have an important effect on the
relativistic Hill stability even if the Kerr parameter of the
central SMBH is not so large. Its detailed analysis will be a
future work.
The timescale for GW emissions, which emerge at the

2.5 PN order, is estimated as [55]

tGW¼ 5

256

c5

G3

ain
m1m2ðm1þm2Þ

∼105 yr

�
ain

1.0 au

�
4
�

m1

106 M⊙

�
−2
�

m2

1.0M⊙

�
−1
: ð61Þ

This is essentially the timescale for the merger of the inner-
orbiting object with the central SMBH, that is, if Tstab
is longer than tGW, the inner orbit collapses before the
system becomes Hill unstable. In such a case, the so-called
extreme mass ratio inspiral with an outer perturber might
be observed [56,57]. How the GW emission affects the
sufficient conditions themselves is another interesting topic
that will be addressed in future.
These interesting but unaddressed effects notwithstand-

ing, we think that our approximate 1PN sufficient con-
ditions for the relativistic Hill stability is a useful tool,
for example, to estimate the stability of multibody systems,
which may be used before conducting costly direct
numerical simulations.

B. IMBH group

In the simulations for models in the IMBH group, the
relations between Δ and Tstab obtained in the 1PN calcu-
lations are not so different from the Newtonian ones. In
fact, they show the same behavior as the Newtonian results
of the counterparts in the SMBH group. Figures 8–10 show
the results of the circular, small-e and large-e models,
respectively.2

One finds that our Newtonian sufficient conditions are
overlapped with the 1PN counterparts. This is as expected,
though, because the last term in the left-hand side of
inequality (39) is negligibly small in these cases and
inequalities (6) and (39) become almost identical. The
timescale of the periastron shift tP is ∼2.0 × 103 days in
this case and is much longer than Pin and, more impor-
tantly, somewhat longer than Tstab in the Newtonian case.

2In our long-term simulations, the typical error in the con-
servation of total angular momentum is less than 1%. For a small
number of models in the IMBH group, we found much larger
numerical errors of more than a few tens of percentage points.
This occurred when large eccentricities are excited in their orbital
evolutions. In these cases, we should have employ much shorter
time steps to resolve fast motions near the periastron, which we
could not afford, though. We hence just excluded those appa-
rently failed computations with the relative error more than 5%
from the analysis.
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This implies again that the 1PN effects do not affect the Hill
stability very much.
The 1PN effect on the Hill stability is hence important

only for the system with the last term in the left-hand side
of Eq. (39) comparable with the total Hamiltonian or the
Newtonian potential. We find that this is not the case for
the systems with the 103 M⊙ IMBH and the inner-orbital
semimajor axis ain ¼ 0.1 au. The difference between
Gladman’s sufficient conditions and ours seen in Fig. 8
may be due to our numerical procedure to derive the
sufficient conditions from the mapping of the allowed
region as we discussed earlier. It is interesting that
Gladman’s conditions fail to reproduce the results of our
Newtonian simulation in Fig. 8. This may be due to some
additional approximations used to derive Eq. (12) such as
an expansion in eccentricity, which may not be justified for
the large-e model in the IMBH group.
Finally, we give an estimate of the neglected higher-order

PN effects as done in §IVA. The timescale of the Lense-
Thrring precession, which occurs at the 1.5PN order, is
evaluated as

tLT ∼ 103 yr

�
χ1
0.1

��
ain

0.1 au

�
3
�

m1

103 M⊙

�
−2
: ð62Þ

This is not so long compared with the typical value of Tstab
in Fig. 8 and the 1.5 PN order effect may affect the
relativistic Hill stability for the system of current concern.
The secular effect of the GW emission at the 2.5 PN order,
on the other hand, is estimated as

tGW ∼ 107 yr

�
ain

0.1 au

�
4
�

m1

103 M⊙

�
−2
�

m2

1.0 M⊙

�
−1
: ð63Þ

As discussed in §IVA, if Tstab is indeed longer than this
value, the inner object will merge with the central object
before the system becomes unstable in the sense of Hill
stability.

V. CONCLUSION

We studied the relativistic Hill stability problem for
three-body systems containing an SMBH or an IMBH as
the central object. We extended the formalism to obtain the
sufficient condition for the Hill stability in Newtonian
mechanics to relativistic mechanics in the 1PN approxi-
mation. On the theoretical side, we derived approximate
sufficient conditions for the relativistic Hill stability by
substituting the 1PN Hamiltonian and total angular
momentum into Sundman’s inequality and then employing
the virial relation. We found just as in the Newtonian case
that a forbidden region lies between the two orbiting
objects in some cases, the fact we adopted to judge Hill
stability of the system.
In the numerical analysis, we directly integrated the 1PN

equations of motion called the Einstein-Infeld-Hofmann
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FIG. 9. The same as Fig. 2 but for the small-e model in the
IMBH group.
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FIG. 10. The same as Fig. 2 but for the large-e model in the
IMBH group.
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FIG. 8. The same as Fig. 2 but for the circular model in the
IMBH group.
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equations with the sixth-order implicit Runge-Kutta method.
Following the previous studies done in Newtonian mechan-
ics, our simulations were conducted for numerous three-
body systems with different initial separationsΔ between the
orbits to investigate the relation between Δ and the onset
time Tstab of the orbital instability.
The systems we considered in these simulations were

divided into two groups: one containing an SMBH as the
central object and the other with an IMBH. Each group
consisted of three models: circular, small-e, and large-e
models. The relation between Δ and Tstab was investigated
for each model in each group, and the result was compared
with the sufficient condition derived analytically in this
paper.
In the SMBH group, the general relativistic effects are

non-negligible. In fact, the 1PN orbital evolutions were
more unstable than the Newtonian counterparts in all
models. The numerical results were consistent with our
new criterion as a sufficient condition for the relativistic
Hill stability, particularly for the circular and small-e
models. The criterion is not so stringent in the large-e
models, although it is valid as a sufficient condition. This is
probably because the approximation we adopted for the
position r to evaluate the inequality is somewhat too
conservative.
In the IMBH group, the results obtained in the 1PN

calculations are not so different from the Newtonian ones.
This results implies that the 1PN effect is not important
for the Hill stability of the three-body systems in the
IMBH group. Incidentally, we found that Gladman’s
conditions are inconsistent with the numerical results
for the large-e models, whereas our criterion is still valid
in these cases.
We estimated but did not include some higher-order PN

effects (the Lense-Thirring precession and GWemissions)
in this paper for simplicity. The timescales, on which these
effects become appreciable, will be short compared with
Tstab near the threshold for stability both in the SMBH
and IMBH groups. This indicates that these processes
cannot be ignored to obtain a more tight condition, which
will be an interesting topic worth further investigation.
These remaining issues notwithstanding, we think our
new conditions will be useful as a measure for the orbital
stability of relativistic multibody systems, which one can
employ before conducting costly numerical simulations
for such systems.
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APPENDIX A: PROOF OF SUNDMAN’S
INEQUALITY

The Sundman’s inequality (1) can be proved by using the
well-known Cauchy’s inequality, which is given as

���X
j
ðAjBjÞ

���2 ≤ ���X
j

ðAjÞ2
������X

j

ðBjÞ2
���; ðA1Þ

where Aj and Bj are the components of arbitrary vectors
A and B. The components in right-hand side of Eq. (1) are
estimated as

����
X
j

mjrj × vj

���� ≤
X
j

mjrjvjj sin γjj

¼
X
j

ffiffiffiffiffiffiffiffiffiffi
mjr2j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjv2jsin

2γj

q
ðA2Þ

����
X
j

mjrj · vj

���� ≤
X
j

mjrjvjj cos γjj

¼
X
j

ffiffiffiffiffiffiffiffiffiffi
mjr2j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjv2jcos

2γj

q
; ðA3Þ

where γj is the angle between rj and vj. Applying Cauchy’s
inequality to the square value of Eqs. (A2) and (A3) gives

���X
j
mjrj × vj

���2 ≤
����
X

j

ffiffiffiffiffiffiffiffiffiffi
mjr2j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjv2jsin

2γj

q ����
2

≤
�X

j

mjr2j

��X
j

mjv2jsin
2γj

�
; ðA4Þ

���X
j
mjrj · vj

���2 ≤
����
X

j

ffiffiffiffiffiffiffiffiffiffi
mjr2j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mjv2jcos

2γj

q ����
2

≤
�X

j

mjr2j

��X
j

mjv2jcos
2γj

�
: ðA5Þ

Sundman’s inequality (1) is immediately obtained if the
summation of both two inequalities are taken.

APPENDIX B: TRANSFORMATION
OF ORBITAL ELEMENTS

1. Initial condition

Initial configurations of our models are set up by using
six orbital elements: semimajor axis a, eccentricity e,
inclination i, argument of periastron ω, longitude of
ascending node Ω, and mean anomaly M. These orbital
elements are transformed to the Cartesian coordinates of
the constituent bodies. Here we describe the transformation
of orbital elements assuming a general orbit that has i ≠ 0
and e ≠ 0, which means its longitude of ascending node Ω
and argument of periastron ω can be defined. In the case of
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orbit with i ¼ 0, which means the longitude of ascending
node Ω cannot be defined, Ω in the below equations
can be neglected. In case of circular orbit with e ¼ 0, which
means the argument of periaston ω cannot be defined, we
alternatively have another degree of freedom to fix the x axis
in the Cartesian coordinates. More detail explanations about
orbital elements are in [49], for example.
First, we calculate the eccentric anomaly u by solving the

following equation with the Newton-Raphsom method:

M ¼ u − e sin u: ðB1Þ
We transform u to the true anomaly ν with the following
equation,

ν ¼ arctan

�
sin u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

cos u − e

�
: ðB2Þ

The true anomaly ν gives the polar coordinates of a body on
the orbit as

r ¼ að1 − e2Þ
1 − e cos ν

; ðB3Þ

ψ ¼ Ωþ arctanftanðωþ νÞ cos iÞg; ðB4Þ

θ ¼ arccosfsinðωþ νÞ sin ig: ðB5Þ

The origin of these coordinates is put at the position of the
central star in our models. The velocity of a body in these
coordinates is described as

_r ¼ gr _ν; ðB6Þ

_θ ¼ gθ _ν; ðB7Þ

_ψ ¼ gψ _ν; ðB8Þ

where gr, gθ, gψ , and _ν are given as

gr ¼
að1 − e2Þe sin ν
ð1þ e cos νÞ2 ; ðB9Þ

gθ ¼ −
1

sin θ
cos ðωþ νÞ sin i; ðB10Þ

gψ ¼ cos2ðψ −ΩÞ cos i
cos2ðωþ νÞ ; ðB11Þ

_ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðm1 þmiÞ

�
2

r
−
1

a

�
1

f2r þ ðrfθÞ2 þ ðr sin θfψÞ2
s

:

ðB12Þ

We then change these polar coordinates to the Cartesian
coordinates and shift their origins to the center of the mass

of the entire system. The numerical integration is done on
these Cartesian coordinates.

2. Postprocess

The computational results are transformed back to the
orbital elements of the osculating orbit of each time step.
Here we explain the way to get all six Kepler elements from
the instantaneous position and velocity. We remark that
although what we especially need in this paper is only the
semimajor axis and eccentricity, the other orbital elements,
for example the inclination, will be important in more
general analysis that will be done in future work. The
semimajor axis a is obtained as

a ¼ −
Gðm1 þmiÞ

2E
: ðB13Þ

In this expression, E is the specific orbital energy given as

E ¼ 1

2
v2 −

Gðm1 þmiÞ
r

; ðB14Þ

where v and r are the absolute values of relative velocity
v ¼ vi − v1 and relative position vector r ¼ xi − x1. The
inclination i, eccentricity e, and longitude of the ascending
node Ω are described as the following equations:

i ¼ arccos

�ðr × vÞz
jr × vj

�
; ðB15Þ

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jr × vj2
aGðm1 þmiÞ

s
; ðB16Þ

Ω ¼ arccos

�ðn × ðr × vÞÞx
jn × ðr × vÞj

�
; ðB17Þ

where the subscripts stand for the components of vectors
and n is the unit vector normal to the x − y plane of
the reference frame. The argument of periastron ω is
obtained as following way. At first, the true anomaly f
is calculated as

f ¼ arccos

�
að1 − e2Þ − r

er

�
: ðB18Þ

Next, the angle of the orbiting object from the ascending
node on the orbital plain θ is also calculated as

θ ¼ arccos

�
x cosΩþ y sinΩ

r

�
: ðB19Þ

The argument of periastron is finally obtained as the
difference of these arguments,

ω ¼ θ − f: ðB20Þ
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