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We study cosmological perturbation theory with scalar field and pressureless dust in the Hamiltonian
formulation, with the dust field chosen as a matter-time gauge. The corresponding canonical action
describes the dynamics of the scalar field and metric degrees of freedom with a nonvanishing physical
Hamiltonian and spatial diffeomorphism constraint. We construct a momentum space Hamiltonian
that describes linear perturbation and show that the constraints to this order form a first class system.
We then write the Hamiltonian as a function of certain gauge invariant canonical variables and show that it
takes the form of an oscillator with time dependent mass and frequency coupled to an ultralocal field. We
compare our analysis with other Hamiltonian approaches to cosmological perturbation theory that do not
use dust-time.
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I. INTRODUCTION

The diffeomorphism symmetry of general relativity (GR)
is manifested in its canonical formulation through the
presence of phase space constraints that generate a closed
Poisson algebra. The Hamiltonian is a linear combination
of these constraints, and so vanishes on shell [1,2]. The path
to a physical nonvanishing Hamiltonian requires selecting
a function on the phase space as a choice of time; the
negative of the phase space variable conjugate to the time
choice provides this Hamiltonian [3]. It is clear that there
are numerous choices for physical Hamiltonians, and the
classical dynamics generated using these, for given ansatze,
leads ultimately to the same solutions, but in different
charts, and covering different regions of the spacetime
manifold.
In early work on general relativity, time choices were

divided into “intrinsic,” where time is a function of the
spatial metric, and “extrinsic,” where time is a function of
the extrinsic curvature (or the momentum conjugate to the
spatial metric). Two frequently studied examples of such
choices are 3-volume, and trace of the extrinsic curvature
(York time) [4].
For GR with matter fields, there is also the possibility of

using matter phase space functions as clocks. Examples of
such clocks date back to early studies of cosmological
models where a scalar field was used as a clock [5]. More
generally Brown and Kuchar [6] gave a prescription for
using a 4-component fluid field coupled to GR as a matter
reference system for time and space. This idea, along with

the older one of scalar field time, has subsequently been
used in many works with the aim of building models for
quantum gravity [7–10].
There are two closely related approaches in which

geometric or matter reference systems may be used for
classical and quantum models. One of these is to fix the
gauge and solve the corresponding constraint strongly
and thereby obtain a partially or fully gauge fixed (or
“deparametrized”) system. The other is to use “relational”
observables [11] without deparametrizing, where the evo-
lution of one variable is observed relative to that of the
chosen clock variable. This latter procedure generates
gauge invariant (Dirac) observables through eliminating
the arbitrary time parameter t by inverting the evolution of a
clock phase space variable T: one inverts TðtÞ → tðTÞ in
some domain, and then substitutes tðTÞ into any other
observables OðtÞ of interest, OðtÞ → OðtðTÞÞ.
In this paper we apply a specific matter time gauge—

dust-time—to the cosmological perturbation theory in the
Hamiltonian formulation. The principal advantage of
this gauge is that the physical Hamiltonian takes a simple
form: it is exactly the same algebraic expression as the
Hamiltonian constraint. At this first stage we do not fix
the spatial diffeomorphism symmetry, which remains as a
decoupled gauge symmetry until we proceed to a second
order expansion of the canonical action. We emphasize that
the process we follow applies to GR coupled to dust and
any other matter fields, including additional scalars, fer-
mions, or gauge fields; in the dust-time gauge the physical
Hamiltonian is always the same algebraic expression as the
Hamiltonian constraint, and the spatial diffeomorphism
decouples in the same way as for the case of a single scalar
field we develop here.
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Our work is not the first to construct a Hamiltonian
perturbation theory for cosmology. The first such analysis
was given in [12]; others using the relational approach have
appeared recently [13,14]. However, our approach differs
from both in several respects, the primary one being that we
use only a clock field and fix a matter-time gauge strongly
at the outset before proceeding to cosmology [7]. This step
simplifies the analysis significantly by removing the
Hamiltonian constraint at the outset. Another important
difference is that the theory we consider, GR, with dust and
scalar field, has four local physical degrees of freedom,
two gravitational, one scalar, and one dust. Therefore, after
selecting the dust-time gauge, the metric acquires an
additional degree of freedom. In these aspects our work
complements these earlier works, with little overlap. The
approach we follow was used by one of the authors for
studying perturbations on Minkowski space [15]; the work
presented here may be considered an extension of this to
cosmological perturbation theory. It may be generalized to
include additional matter fields.
The general framework for the dust-time perturbation

theory we develop has direct application to inflatonþ
matter cosmology. In particular, one of the perturbation
equations we derive is exactly the Mukhanov-Sasaki
equation, with the difference that the time parameter in
it refers to dust-time. This provides a direct connection with
one of the standard results of covariant perturbation theory.
Furthermore, the formalism we develop extends readily to
matter fields in addition to dust and scalar fields; the dust-
time physical Hamiltonian and diffeomorphism constraints
can be expanded to second order for any additional fields,
and their corresponding perturbation equations derived in a
manner similar to what we display for the inflaton.
This work may also be viewed in a wider context of

GR coupled to special types of matter. These include the
Einstein-Aether models [16], where a dynamical vector
field of timelike norm is added to the GR action. A
linearized analysis of these models has been performed,
with the result that the graviton modes decouple from
the aether modes [17]. The other model is the so-called
mimetic gravity [18,19], where the conformal mode of the
spacetime metric is encoded as a scalar field with an
arbitrary potential. This extra mode in the gravitational field
represents self-interacting matter with arbitrary potential
[20,21] and has been used to model inflationary and
bouncing cosmologies [22]. Given these analogies, it is
potentially useful to consider this work in the larger context
of Einstein-Aether [23] and mimetic gravity theories.
Indeed, the dust-time gauge we employ here may be
considered a natural choice for all scalar-tensor theories
of gravity, among which Einstein-Aether and mimetic
gravity are but two examples.
In the next section we review the use of the dust-time

gauge in the Arnowitt-Deser-Misner (ADM) canonical
framework [6,7]. In Sec. III we develop the linearized

perturbation theory by expanding the Hamiltonian and
diffeomorphism constraints about an arbitrary Friedmann-
Lemaitre-Robertson-Walker(FLRW)-scalar solution. We
show from the canonical perspective that the graviton
equations turn out to be exactly those derived in the standard
covariant perturbation theory without dust (see e.g., [24]),
and that the vector modes may be gauged away. In Sec. IV
we introduce diffeomorphism invariant phase space
variables to study the scalar field and curvature degrees
of freedom (which are independent degrees of freedom in the
dust-time gauge). In Sec. V we give a detailed comparison
with standard perturbation theory. We conclude in Sec. VI
with a summary and possible future directions. Several
Appendixes provide details of our calculations: Appendix A
gives details of the Hamiltonian perturbation expansion,
Appendix B gives a derivation of the graviton equation, and
Appendix C provides a proof that the linearized constraints
are first class.

II. HAMILTONIAN GRAVITY WITH DUST

We consider GR coupled to dust and a scalar field.
The action is

S¼−
1

2π

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p
mðgab∂aT∂bTþ1Þ

þ
Z

d4xLðΦÞ: ð1Þ

The second term is the dust action, and the last term is the
minimally coupled scalar field with an arbitrary potential
VðΦÞ. With ua ¼ gab∂bT, the dust energy-momentum
tensor is

Tab
D ¼ muaub þm

2
gabðgcducud þ 1Þ: ð2Þ

Thus on shell, m is interpreted as the dust energy density.
The ADM canonical theory obtained from this action is

S ¼
Z

dtd3xðπab _qab þ pΦ _Φþ pT
_T − NH − NaCaÞ; ð3Þ

where the pairs ðqab; πabÞ, ðΦ; pΦÞ, and ðT; pTÞ are,
respectively, the phase space variables of gravity, scalar
field, and dust. The lapse and shift functions, N and Na, are
the coefficients of the Hamiltonian and diffeomorphism
constraints

H ¼ HG þHD þHΦ; ð4Þ

Ca ¼ CGa þ CDa þ CΦa

¼ −2Dbπ
b
a þ pT∂aT þ pΦ∂aΦ; ð5Þ

where
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HG ¼ 1ffiffiffi
q

p
�
πabπab −

1

2
π2
�
−

ffiffiffi
q

p
Rð3Þ; ð6Þ

HD ¼ 1

2

�
p2
T

m
ffiffiffi
q

p þm
ffiffiffi
q

p ðqab∂aT∂bT þ 1Þ
�
; ð7Þ

HΦ ¼ 1

2

�
p2
Φffiffiffi
q

p þ ffiffiffi
q

p
qab∂aΦ∂bΦ

�
; ð8Þ

∂a and Da are the spatial partial and covariant derivatives,
and Rð3Þ is the spatial Ricci scalar. The fieldm appears only
in HD as an auxiliary field. We can therefore solve its
equation of motion for m and substitute the result back
into HD:

m ¼ � pTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqab∂aT∂bT þ 1Þ

p ; ð9Þ

HD ¼ sgnðmÞpT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qab∂aT∂bT þ 1

q
: ð10Þ

With this expression for HD, the final canonical action
retains the form (3), but now with no dependence on m
except for its sign.

A. Dust-time gauge

We now introduce a partial gauge fixing by setting a
time gauge to obtain a physical Hamiltonian; this fixes the
time-reparametrization invariance, while the spatial diffeo-
morphisms remain as a full gauge symmetry. We use the
dust-time gauge [7,25] which equates the physical time
with the dust field; i.e., the spatial hypersurfaces are level
surfaces of the dust field,

λ≡ T − ϵt ≈ 0; ϵ ¼ �1: ð11Þ

This is a special case of the Brown-Kuchar matter reference
frame system which is designed to fix all four coordinate
conditions. The condition (11) has a nonzero Poisson
bracket with the Hamiltonian constraint, so this pair of
conditions constitutes a second class set. According to the
Dirac criteria, a gauge condition is considered suitable if
the matrix of second class constraints is invertible at all
points [2]. In the present case this matrix is

C ¼
�

0 fλ;Hg
fH; λg 0

�
¼ sgnðmÞ

�
0 1

−1 0

�
: ð12Þ

This matrix is invertible everywhere on the manifold.
Therefore the dust-time gauge does not break down at
any point and is therefore a robust choice. The second
condition on a canonical gauge is that it be preserved in
time. This gives an equation for the lapse function:

ϵ ¼ _T ¼
�
T;

Z
d3xðNHþ NaCaÞ

�				
T¼t

¼ sgnðmÞN:

ð13Þ

Solving the Hamiltonian constraint for pT and substitut-
ing the gauge condition back into (3) gives the gauge fixed
action

SGF ¼
Z

dtd3x½πab _qab þ pΦ _Φ

− ϵsgnðmÞðHG þHΦÞ − NaCa�: ð14Þ

This identifies the physical Hamiltonian density

HP ¼ ϵsgnðmÞðHG þHΦÞ ¼ sgnðNÞðHG þHΦÞ; ð15Þ

where the last equality follows from (13). Thus the physical
Hamiltonian is determined up to an overall sign of the lapse
function. Since we are free to choose the lapse up to sign,
we will work with N ¼ 1. The corresponding spacetime
metric is

ds2 ¼ −dt2 þ ðdxa þ NadtÞðdxb þ NbdtÞqab: ð16Þ

In the following we apply the dust-time canonical action
(14) to flat FLRW cosmology and construct the linearized
perturbation theory. At this stage we note the central
difference with standard perturbation theory: we have a
physical Hamiltonian not a Hamiltonian constraint; there-
fore the gauge invariant observables we work with are those
that are invariant under the spatial diffeomorphisms.
Furthermore, the physical Hamiltonian (15) is what would
be the Hamiltonian constraint for the gravity-scalar system.
As a result, per point we have three physical degrees of
freedom in the metric, and one in the scalar field; the
presence of the third degree of freedom in the metric is due
ultimately to the fact that our starting action had a dust
field. As we will show, these can be rearranged into two
graviton modes, a curvature perturbation, and the scalar
field, with a relatively simple coupled dynamics.

III. COSMOLOGICAL PERTURBATION THEORY

Our starting point for developing a canonical perturba-
tion theory for flat FLRW models is the selection of a
background solution starting with the action (14). This
starting point is distinct from all standard treatments of the
subject, both canonical and covariant, with the key differ-
ence being that the Hamiltonian constraint is no longer a
constraint, but is instead the physical Hamiltonian. This has
several consequences, the main one being that the addi-
tional local degree of freedom that came from the dust
emerges in the metric perturbation.
Let us take the following parametrization for the ADM

variables for the background solution:
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qð0Þab ¼ ā2ðtÞeab; πabð0Þ ¼
�
p̄ðtÞ
6āðtÞ

�
eab; ð17Þ

Φð0Þ ¼ ϕ̄ðtÞ; pð0Þ
Φ ¼ p̄ϕðtÞ; ð18Þ

Nað0Þ ¼ 0; ð19Þ

where eab is the Euclidean metric and ðāðtÞ; p̄ðtÞÞ and
ðϕ̄ðtÞ; p̄ϕðtÞÞ are the scale factor and scalar field and their
conjugate momenta. Substituting these into the dust-time
gauge fixed canonical action (14) gives the reduced action
for the background

S ¼
Z

dt½ _̄a p̄þ _̄ϕp̄ϕ − H̄�; ð20Þ

where

H̄ ¼ −
p̄2

24ā
þ p̄2

ϕ

2ā3
þ ā3Vðϕ̄Þ: ð21Þ

The background spacetime metric with this parametriza-
tion, with N2 ¼ 1 in the dust-time gauge, is of the standard
form

ds2 ¼ −dt2 þ ā2ðtÞeabdxadxb: ð22Þ

The background equations of motions are

_̄a ¼ −
p̄
12ā

; ð23aÞ

_̄p ¼ −
p̄2

24ā2
þ 3p̄2

ϕ

2ā4
− 3ā2Vðϕ̄Þ; ð23bÞ

_̄ϕ ¼ p̄ϕ

ā3
; ð23cÞ

_̄pϕ ¼ −ā3V0ðϕ̄Þ; ð23dÞ

where V 0ðϕ̄Þ ¼ dV=dϕjϕ̄. The physical Hamiltonian is a
constant of the motion in the dust-time gauge, since it is not
explicitly time dependent; this is unlike other time gauges,
such as volume time a3 ¼ t. The background solutions
therefore fall into three classes: H̄ ¼ 0, H̄ > 0, and H̄ < 0.
The first of these corresponds to the condition

p̄2

24ā
¼ p̄2

ϕ

2ā3
þ ā3Vðϕ̄Þ; ð24Þ

which by the equation of motion for ā (and restoring the
8πG factor) is the Friedmann equation

H̄2 ¼ 8πG
3

�
p̄2
ϕ

2ā6
þ Vðϕ̄Þ

�
; ð25Þ

where H̄ ¼ _̄a=ā. For the cases H̄ ¼ μ ¼ const ≠ 0, the
conservation of the physical Hamiltonian may be written

H̄2 ¼ 8πG
3

�
p̄2
ϕ

2ā6
þ Vðϕ̄Þ − μ

ā3

�
; ð26Þ

which shows that μ gives the dust energy density contribu-
tion to the Friedmann equation. This completes our summary
of the background solutions in the dust-time gauge.

A. Linearized theory

We define the following expansion of phase space
variables and the shift vector:

qabðt; x⃗Þ ¼ āðtÞ2eab þ habðt; x⃗Þ; ð27aÞ

πabðt; x⃗Þ ¼ p̄ðtÞ
6āðtÞ e

ab þ pabðt; x⃗Þ; ð27bÞ

Naðt; x⃗Þ ¼ 0þ ξaðt; x⃗Þ; ð27cÞ

Φðt; x⃗Þ ¼ ϕ̄ðtÞ þ ϕðt; x⃗Þ; ð27dÞ

pΦðt; x⃗Þ ¼ p̄ϕðtÞ þ pϕðt; x⃗Þ: ð27eÞ

Here the fields hab; pab;ϕ; pϕ are, respectively, the per-
turbations of the gravitational and scalar field phase space
variables, and ξa is the perturbation of the shift vector.
These are substituted into the physical Hamiltonian

and spatial diffeomorphism constraint, which are then
expanded to second order in the perturbations. This leads
to the second order action for the perturbations

Sð2Þ ¼
Z

dtd3x½ _habpab þ _ϕpϕ −Hð2Þ − ξaCð1Þ
a �; ð28Þ

where Hð2Þ is the second order perturbation of the

Hamiltonian and Cð1Þ
a is the first order perturbation of

the spatial diffeomorphism constraint. The latter is all that
is required since the shift is first order. We note also that
terms linear in the perturbations vanish when the back-
ground solution is imposed; the first order symplectic
term in the action combines with the first order term
Hð1ÞjS̄ to give zero, and the first order diffeomorphism

term ðNað0ÞCð1Þ
a þ ξaCð0Þ

a ÞjS̄ ¼ 0. (S̄ denotes evaluation on
the background solution.) The expressions for

Hð2Þ ¼ HGð2Þ þHΦð2Þ; ð29Þ

Cð1Þ
a ¼ CGð1Þ

a þ CΦð1Þ
a ð30Þ

are the following:

VIQAR HUSAIN and MUSTAFA SAEED PHYS. REV. D 102, 124062 (2020)

124062-4



HGð2Þ ¼ ā

�
pabpab −

1

2
p2

�
þ 1

ā

�
p̄
6ā

��
pabhab −

1

2
hp

�
þ 1

8ā3

�
p̄
6ā

�
2
�
5habhab −

3

2
h2
�

−
h
2ā3

�
∂a∂bhab −

1

2
∂2h

�
þ hab

2ā3

�
∂b∂chca −

1

2
∂2hab

�
; ð31Þ

Hϕð2Þ ¼ p2
ϕ

2ā3
þ ā

2
eab∂aϕ∂bϕþ ā3

2
V 00ðϕ̄Þϕ2 þ ā

�
−

p̄ϕ

2ā6
pϕ þ

1

2
V 0ðϕ̄Þϕ

�
h

þ p̄2
ϕ

8ā7

�
habhab þ

1

2
h2
�
−

1

4ā
Vðϕ̄Þ

�
habhab −

1

2
h2
�
; ð32Þ

Cð1Þ
a ¼−2ā2∂bpab−

p̄
3ā

�
∂chac−

1

2
∂ah

�
þ p̄ϕ∂aϕ: ð33Þ

All indices in these equations are raised and lowered by
the Euclidean metric eab; ∂2 ¼ eab∂a∂b, h ¼ habeab, and
p ¼ pabeab. The derivation of these expressions appears in
Appendix A.

B. Linearized theory in momentum space

We next write the action for the perturbations and the
shift in spatial Fourier modes, as this significantly sim-
plifies the remaining analysis. We set

habðt; x⃗Þ ¼
Z

d3k½eik⃗:x⃗MI
abhIðt; k⃗Þ�; ð34Þ

pabðt; x⃗Þ ¼
Z

d3k½eik⃗:x⃗Mab
I pIðt; k⃗Þ�; ð35Þ

ϕðt; x⃗Þ ¼
Z

d3k½eik⃗:x⃗ϕ̃ðt; k⃗Þ�; ð36Þ

pϕðt; x⃗Þ ¼
Z

d3k½eik⃗:x⃗p̃ϕðt; k⃗Þ�; ð37Þ

ξaðt; x⃗Þ ¼
Z

d3k½eik⃗:x⃗ξ̃aðt; k⃗Þ�: ð38Þ

Here the matrices MI
ab; I ¼ 1…6 (to be defined below)

form a time independent basis for 3 × 3 symmetric matrices
that give a decomposition of the gravitational phase space
variables into the canonical set ðhI; pIÞ. The matrices MI

must satisfy the orthogonality condition

TrðMIMJÞ ¼ MI
abM

Jab ¼ δIJ; ð39Þ

to ensure that the symplectic structure is preserved when
the canonical action for perturbations (28) is written in k
space, i.e.,

Z
d3xdtpab _hab →

Z
d3kdtpI

_hI: ð40Þ

A suitable matrix basis that fulfills this requirement may
be constructed using the unit mode vector and two unit
orthogonal vectors in the plane transverse to ka,

ϵa3 ≡ ka=jkj; ϵa1; ϵa2: ð41Þ

Since we would like to characterize the matrices M
as having defined helicity with respect to rotations
about the ka axis, we replace ϵa1; ϵ

a
2 with the eigenvectors

of the rotation matrix Jθ about the ka axis. These
are ϵa� ¼ ðϵa1 � iϵa2Þ=

ffiffiffi
2

p
, and satisfy Jθϵ� ¼ e�iθϵ�,

Jθϵ3 ¼ ϵ3, and eabϵa−ϵbþ ¼ 1 and eabϵa�ϵ
b
� ¼ 0. Using the

set ðϵ3; ϵ�Þ, the Euclidean metric may be written as

eab ¼ 2ϵðaþ ϵbÞ− þ ϵa3ϵ
b
3 .

The six matrices MI are constructed from the elements

ϵa3ϵ
b
3; ϵða− ϵ

bÞ
þ ; ϵða3 ϵ

bÞ
� ; ϵa�ϵ

b
�: ð42Þ

Under Jθ, the first two transform as scalars, the second two as
vectors, and the last two as tensors. However, as they stand,
these do not satisfy the desired orthogonality conditions (39).
This is achieved by the following linear combinations:

Mab
1 ¼ 1ffiffiffi

3
p eab; ð43Þ

Mab
2 ¼

ffiffiffi
3

2

r �
ϵa3ϵ

b
3 −

1

3
eab

�
; ð44Þ

Mab
3 ¼ iffiffiffi

2
p ðϵa−ϵb− − ϵaþϵbþÞ; ð45Þ

Mab
4 ¼ 1ffiffiffi

2
p ðϵa−ϵb− þ ϵaþϵbþÞ; ð46Þ

Mab
5 ¼ iðϵða− ϵbÞ3 − ϵðaþ ϵ

bÞ
3 Þ; ð47Þ

Mab
6 ¼ ϵða− ϵ

bÞ
3 þ ϵðaþ ϵ

bÞ
3 ; ð48Þ
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where again the first pair transforms as scalars, the next pair as
tensors, and the last pair as vectors. Let us also note a fewother
properties of these matrices:

eabMI
ab ¼ 0; I ¼ 2…6;

kaMI
ab ¼ 0; I ¼ 3; 4;

kakbMI
ab ¼ 0; I ¼ 5; 6: ð49Þ

Thus in the decomposition of the Fourier transform of the
metric perturbation h̃abðk; tÞ≡MI

abhIðk; tÞ, h1, h2 are the
scalarmodes,h3,h4 are the transverse traceless tensormodes,
and h5, h6 are the transverse vector modes. The same
properties hold for the momenta pI conjugate to hI. The
shift perturbation may also be decomposed into longitudinal
and transverse components:

ξ̃aðt; k⃗Þ ¼ ξ1ðt; k⃗Þϵa1 þ ξ2ðt; k⃗Þϵa2 þ ξjjðt; k⃗Þϵa3: ð50Þ

In summary, so far we have decomposed the perturba-
tions habðx; tÞ; pabðx; tÞ into longitudinal and transverse
Fourier modes hIðk; tÞ; pIðk; tÞ; I ¼ 1…6, with well-
defined physical properties, and a related expansion for
ξa. (The scalar field perturbation of course does not require
any decomposition.) We now write the canonical action in k
space using this decomposition.

C. Canonical action in momentum space

As is standard in field theory, writing an action in
momentum space using (34) requires field redefinitions
after implementing the reality conditions such as h̃�abðt; kÞ ¼
h̃abðt;−kÞ. One way to do this is to write h̃abðk; tÞ ¼
h̃Rabðk; tÞ þ ih̃Iabðk; tÞ, impose the reality condition, restrict
the action to be over independent modes, and then redefine
modes to give an action with integration over all k.
Following these steps, and using the decompositions

h̃abðk; tÞ ¼ MabIhIðk; tÞ;
p̃abðk; tÞ ¼ MabIpIðk; tÞ; i ¼ 1…6; ð51Þ

gives the k space action

Sð2Þ ¼
Z

dtd3k½ _hIpI þ _̃ϕp̃ϕ − H̃ð2Þ − iξ̃aC̃ð1Þ
a �; ð52Þ

where H̃ð2Þ ¼ H̃Gð2Þ þ H̃ϕð2Þ and

H̃Gð2Þ ¼ ā

�
pIpI −

3

2
p2
1

�
þ 1

ā

�
p̄
6ā

��
pIhI −

3

2
h1p1

�

þ 1

8ā3

�
p̄
6ā

�
2
�
5hIhI −

9

2
h21

�

−
k2

6ā3

��
h1 −

h2ffiffiffi
2

p
�

2

−
3

2
ðh23 þ h24Þ

�
; ð53aÞ

H̃ϕð2Þ ¼ p̃2
ϕ

2ā3
þ ā

2
k2ϕ̃2 þ ā3

2
V 00ðϕ̄Þϕ̃2

þ
ffiffiffi
3

p
ā

�
−

p̄ϕ

2ā6
p̃ϕ þ

1

2
V 0ðϕ̄Þϕ̃

�
h1

þ p̄2
ϕ

8ā7

�
hIhI þ

3

2
h21

�
−
Vðϕ̄Þ
4ā

�
hIhI −

3

2
h21

�
:

ð53bÞ

The linearized diffeomorphism constraint in momentum

space C̃ð1Þ
a ¼ 0 is

C̃ð1Þ
a ¼ C̃G

a þ C̃ϕ
a

¼ −2ā2kbMI
abpI −

p̄
3ā

�
kcMI

achI −
ffiffiffi
3

p
ka
2

h1

�

þ p̄ϕkaϕ̃: ð54Þ

A further expansion of C̃ð1Þ
a using the properties of the MI

basis reveals its longitudinal and transverse components:

C̃ð1Þ
a ¼ k

�
−
2ā2ffiffiffi
3

p ðp1 þ
ffiffiffi
2

p
p2Þ

þ p̄

6
ffiffiffi
3

p
ā
ðh1 − 2

ffiffiffi
2

p
h2Þ þ p̄ϕϕ̃

�
ϵ3a

−
ffiffiffi
2

p
k

�
ā2p6 þ

�
p̄
6ā

�
h6

�
ϵ1a

−
ffiffiffi
2

p
k

�
ā2p5 þ

�
p̄
6ā

�
h5

�
ϵ2a: ð55Þ

Similarly, the gravitational Hamiltonian may be written
as a sum of scalar ðh1; h2Þ, tensor ðh3; h4Þ, and vector
ðh5; h6Þ components, and their canonical momenta:

H̃Gð2Þ ¼ HS þHV þHT; ð56Þ
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HS ¼ ā

�
p2
2 −

1

2
p2
1

�
þ 1

ā

�
p̄
6ā

��
h2p2 −

1

2
h1p1

�

þ 1

8ā3

�
p̄
6ā

�
2
�
1

2
h21 þ 5h22

�

−
1

6ā

�
k
ā

�
2
�
h1 −

1ffiffiffi
2

p h2

�
2

; ð57aÞ

HV ¼ āðp2
5 þ p2

6Þ þ
1

ā

�
p̄
6ā

�
ðp5h5 þ p6h6Þ

þ 5

8ā3

�
p̄
6ā

�
2

ðh25 þ h26Þ; ð57bÞ

HT ¼ āðp2
3 þ p2

4Þ þ
1

ā

�
p̄
6ā

�
ðp3h3 þ p4h4Þ

þ 1

4ā

�
5

2ā2

�
p̄
6ā

�
2

þ
�
k
ā

�
2
�
ðh23 þ h24Þ: ð57cÞ

This shows that only the scalar canonical pairs ðh1; p1Þ and
ðh2; p2Þ interact with each other, while all the other pairs
are mutually decoupled. Denoting the longitudinal and
transverse components of the diffeomorphism constraint by
Ck and C⊥, we note also that

fHS; C⊥g ¼ 0; fHV;Ckg ¼ 0; fHT; Cag ¼ 0: ð58Þ

Thus the graviton modes are diffeomorphism invariant (to
this order). All propagating modes appear with a factor k2

so the vector modes are nonpropagating; the last term inHS

is the curvature perturbation up to an overall factor.

D. Partial gauge fixing: Removal of vector modes

At this stage it is useful to perform a gauge fixing to
remove the vector modes. This involves imposing canoni-
cal gauge conditions on these modes and solving strongly
the corresponding diffeomorphism constraint components.
The above decomposition reveals the convenient choice

h5 ¼ h6 ¼ 0: ð59Þ

These are second class with the components C⊥,

fh5; C⊥g ¼ fh6; C⊥g ¼
ffiffiffi
2

p
kā2; ð60Þ

unless ā ¼ 0 or k ¼ 0. Since we are interested in propa-
gating modes (where the diffeomorphism constraint is
not identically zero), and in regions far from a potential
singularity, these gauge choices are sufficient. C⊥ ¼ 0 is
then solved by setting p5 ¼ p6 ¼ 0.
The resulting H̃Gð2Þ is now

H̃Gð2Þ ¼ HS þHT; ð61Þ

and the second order scalar field Hamiltonian becomes

H̃ϕð2Þ ¼ p̃2
ϕ

2ā3
þ ā

2
k2ϕ̃2 þ ā3

2
V 00ðϕ̄Þϕ̃2

þ
ffiffiffi
3

p
ā

�
−
�
p̄ϕ

2ā6

�
p̃ϕ þ

1

2
V 0ðϕ̄Þϕ̃

�
h1

þ p̄2
ϕ

8ā7

�
hIhI þ

3

2
h21

�
−
Vðϕ̄Þ
4ā

�
hIhI −

3

2
h21

�
;

ð62Þ

where the sums hIhI in the last line now excludes the vector
modes h5, h6. The first term is the standard Hamiltonian of
the scalar field perturbation ðϕ̃; p̃ϕÞ on the ðā; ϕ̄Þ homo-
geneous background; the second term contains the cou-
pling of the scalar field perturbation to the metric scalar
mode h1; the last term is a potential for the graviton and
metric-scalar modes.
The diffeomorphism constraint is reduced to only its

longitudinal component

C̃k ≡ −2ā2ðp1 þ
ffiffiffi
2

p
p2Þ þ

�
p̄
6ā

�
ðh1 − 2

ffiffiffi
2

p
h2Þ

þ
ffiffiffi
3

p
p̄ϕϕ̃ ¼ 0: ð63Þ

In summary, the gauge fixing (59) leaves a simpler system
for the remaining degrees of freedom: the metric scalar
modes ðh1; h2Þ, the graviton modes ðh3; h4Þ, and the scalar
field mode ϕ̃.

E. Graviton equation

The graviton part of the second order canonical action is

Sg ≡
Z

dtd3k½pI _hI −Hg�; I ¼ 3; 4; ð64Þ

whereHg is the sum ofHT in (57c) and the graviton parts of
Hϕð2Þ in (53b). For comparison with covariant perturbation
theory, where the expansion qab ¼ ā2ðtÞðeab þ habÞ is
used, let us make the transformation

hI → ā2hI; pI → ā−2pI: ð65Þ

With this, the symplectic term transforms to

_hIpI → _hIpI þ 2

�
_̄a
ā

�
hIpI ¼ _hIpI −

p̄
6ā2

hIpI; ð66Þ

where the last step uses the equation of motion of the
background. Therefore Hg transforms to
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Hg ¼ 1

ā3
ðp2

3 þ p2
4Þ þ

�
p̄
3ā2

�
ðp3h3 þ p4h4Þ

þ ā3

4

�
p̄2
ϕ

2ā6
− Vðϕ̄Þ þ 5

2

�
p̄
6ā2

�
2

þ
�
k
ā

�
2
�
ðh23 þ h24Þ:

ð67Þ

Although this expression forHg looks involved, it is readily
verified that the canonical equations of motion

_hI ¼ fhI; Hgg; _pI ¼ fpI;Hgg; ð68Þ

together with Eqs. (23) of the background ðā; p̄Þ, lead to the
standard wave equation

ḧI þ 3

�
_̄a
ā

�
_hI þ

k2

a2
hI ¼ 0; I ¼ 3; 4: ð69Þ

Thus the graviton mode equation is unchanged in the
canonical dust-time gauge. The calculation leading to this
has some nontrivial steps (see Appendix B).

IV. SCALAR MODES

We have so far seen that the dust-time physical
Hamiltonian in momentum space, in the time independent
matrix basis M, provides a relatively simple way to
analyze cosmological perturbations. Specifically we
showed from a canonical perspective how the vector
perturbations are removed, and the graviton equation
remains unchanged.
We now turn to the remaining degrees of freedom

ðh1; h2; ϕ̃Þ, with dynamics described by HS (57a) and
H̃ϕð2Þ (62),

HSϕ ≡ ā

�
p2
2 −

1

2
p2
1

�
þ 1

ā

�
p̄
6ā

��
h2p2 −

1

2
h1p1

�
þ 1

8ā3

�
p̄
6ā

�
2
�
1

2
h21 þ 5h22

�

−
1

6ā

�
k
ā

�
2
�
h1 −

1ffiffiffi
2

p h2

�
2

þ p̄2
ϕ

8ā7

�
5

2
h21 þ h22

�
þ Vðϕ̄Þ

4ā

�
1

2
h21 − h22

�

þ p̃2
ϕ

2ā3
þ ā

2
k2ϕ̃2 þ ā3

2
V 00ðϕ̄Þϕ̃2 þ

ffiffiffi
3

p
ā

�
−
�
p̄ϕ

2ā6

�
p̃ϕ þ

1

2
V 0ðϕ̄Þϕ̃

�
h1; ð70Þ

subject to the remaining diffeomorphism constraint Ck (63).
The Hamiltonian HSϕ is of the form of hSðhi; piÞþ

hϕðϕ̃; p̃ϕÞ þ hIntðϕ̃; p̃ϕ; h1Þ. It is notable that the scalar
field perturbation ϕ̃ interacts with only the metric-scalar
mode h1 in the last term. The constraint Ck depends on
the remaining phase space variables and is also explicitly
time dependent through the background solution
ðā; p̄; p̄ϕÞ; it is therefore useful to check that it is remains
first class, i.e.,

_̃Ck ¼
�
C̃k;

Z
d3kHSϕ

�
þ ∂C̃k

∂t ¼ 0: ð71Þ

This is indeed the case (see Appendix C).
At this stage we have one first class constraint Ck and

three configuration variables h1; h2;ϕ. Therefore there are
two physical configuration degrees of freedom in the metric
perturbation (in addition to the two graviton modes we have
already discussed). We recall that this is unlike the standard
cosmological perturbation theory where the starting point
has only the metric and scalar field perturbations; in the
model we are studying, there is also the dust field, which
was fixed as the time coordinate, thereby leaving an
additional physical configuration variable in the metric
perturbation. We now turn to identifying two physical

diffeomorphism invariant variables and their conjugate
momenta. These satisfy

fO; C̃kg ¼ 0: ð72Þ

A. Diffeomorphism invariant observables

For linear perturbation we are interested in observables
O defined by (72) that are linear in the phase space
variables ðh1; h2; p1; p2; ϕ̃; p̃ϕÞ. There are many choices.
We are interested in diffeomorphism invariant canonical
pairs and an expression for the physical Hamiltonian (70) in
terms of such pairs. Let us note that ϕ̃ is already invariant
since p̃ϕ does not appear in C̃k. A few other elementary
ones are

H ≡ h1 −
h2ffiffiffi
2

p ; P≡ p1 þ
p2

2
ffiffiffi
2

p ; ð73Þ

A1 ≡ h1 −
�
12ā3

p̄

�
p1; A2 ≡ h2 þ

�
6ā3

p̄

�
p2; ð74Þ

B1 ¼ h1 −
�

2ā2ffiffiffi
3

p
p̄ϕ

�
p̃ϕ; B2 ¼ h2 −

�
2

ffiffiffi
2

p
ā2

3p̄ϕ

�
p̃ϕ:

ð75Þ
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These may be used to construct invariant canonical pairs
by taking linear combinations with coefficients that are
functions of the background solution.
The first of these observables H is proportional to the

Ricci curvature Rð3Þ of the spatial slice. To see this we note
that to linear order

Rð3Þ ¼ 1

ā4
ð∂a∂bhab − ∂2hÞ: ð76Þ

In the M basis in momentum space, this becomes

R̃ð3Þ ¼ 4

�
k
ā

�
2
�

1

2
ffiffiffi
3

p
ā2

�
h1 −

h2ffiffiffi
2

p
��

≡ −4
�
k
ā

�
2

ψ : ð77Þ

The ψ in the last term defines the curvature perturbation
used in the covariant theory. It is readily verified that a
momentum conjugate to ψ is

Pψ ≡ −
8ā2ffiffiffi
3

p
�
p1 þ

p2

2
ffiffiffi
2

p
�
: ð78Þ

This satisfies

fPψ ; C̃kg ¼ 0; fψ ; Pψg ¼ 1: ð79Þ

A second canonical pair is found by noting that the scalar
field perturbation ϕ is diffeomorphism invariant,

fϕ; C̃kg ¼ 0: ð80Þ

For notational convenient we define γ ≡ ϕ̃. A diffeomor-
phism invariant variable canonically conjugate to γ is

Pγ ¼ p̃ϕ þ 2
ffiffiffi
3

p āp̄ϕ

p̄
ðp1 þ

ffiffiffi
2

p
p2Þ; ð81Þ

and this satisfies

fPγ; C̃kg ¼ fPγ;ψg ¼ fPγ; Pψg ¼ 0; fγ; Pγg ¼ 1:

ð82Þ

(We note that p̃ϕ is canonically conjugate to ϕ̃, but it is not
gauge invariant, hence the need to define an alternative
conjugate momentum that is gauge invariant.) Although the
Hamiltonian (70) may be written down in terms of these
variables, it is more convenient to use a different set that is
useful to make contact with the conventional perturbation
theory without the dust field. For this reason we select the
following diffeomorphism invariant canonical pairs. The
first pair is

R ¼ ψ −
�

ā p̄
12p̄ϕ

�
ϕ̃; ð83Þ

PR ¼
�
48k2ā3

p̄

�
ψ þ

ffiffiffi
2

3

r �
p̄
ā

�
A2; ð84Þ

and the second pair is

χ ¼
�
ā3

p̄ϕ

�
ϕ̃; ð85Þ

Pχ ¼ 4āk2ψ þ
� ffiffiffi

3
p

p̄
18ā

��
_̄pϕ

p̄ϕ
− 3H̄

�
A1

−
ffiffiffi
2

3

r �
p̄ _̄pϕ

3āp̄ϕ

�
A2 −

� ffiffiffi
3

p
p̄2
ϕ

2ā5

�
B1: ð86Þ

These satisfy

fR; PRg ¼ fχ; Pχg ¼ 1;

fPR; Pχg ¼ fPR; χg ¼ fPχ ;Rg ¼ fR; χg ¼ 0: ð87Þ

We can now write the Hamiltonian (70) in terms of these
canonical variables. Before doing this it is convenient to fix
a gauge and solve the diffeomorphism constraint Ck ¼ 0;
since the variables are diffeomorphism invariant, their
values would of course be unaffected. We choose the gauge

h1 ¼ 0: ð88Þ

This choice removes the interaction of h1 and ϕ in the
Hamiltonian (70), thereby simplifying it considerably. It is
second class with Ck:

fh1; Ckg ¼ −2ā2; ð89Þ

unless ā ¼ 0. Setting h1 ¼ 0 and solving the diffeomor-
phism constraint for p1,

p1 ¼ −
ffiffiffi
2

p �
p2 þ

p̄
6ā3

h2

�
þ

ffiffiffi
3

p
pϕ̄

2ā2
ϕ̃; ð90Þ

gives the fully reduced theory for the gauge invariant pairs
ðR; PRÞ and ðχ; PχÞ. The final action is

Sð2ÞGF ≡
Z

dtd3k½ _RPR þ _χPχ −Hð2Þ�; ð91Þ

where the k-space Hamiltonian density takes the remark-
ably simple form

Hð2Þ ¼ 1

2ā

�
1

z2
P2
R þ k2ðzRÞ2

�

þ
�

ā3

2p̄2
ϕ

�
P2
χ −

�
ā p̄
12p̄2

ϕ

�
PRPχ ; ð92Þ
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with

z ¼ −
12p̄ϕ

p̄
: ð93Þ

The equations of motion following from this Hamiltonian
are

_R ¼
�

1

āz2

�
PR þ

�
ā

zp̄ϕ

�
Pχ ; ð94Þ

_PR ¼ −
�
k2z2

ā

�
R; ð95Þ

_χ ¼
�
ā3

p̄2
ϕ

�
Pχ þ

�
ā

zp̄ϕ

�
PR ¼

�
1

H̄

�
_R; ð96Þ

_Pχ ¼ 0 ⇒ Pχ ¼ C: ð97Þ

These lead to the second order equations

R̈þ
�
_ζ

ζ

�
_Rþ

�
k2

ā2

�
R ¼ Cf̄ðtÞ; ð98Þ

χ̈ þ
�
_α

α

�
_χ ¼ 1

H̄

�
Cf̄ −

k2

ā2
R
�
; ð99Þ

where ζ ¼ āz2, α ¼ H̄ζ, and f̄ðtÞ is the following function
of the background solution:

f̄ ¼
�

ā
zp̄ϕ

�
·
þ
�
_ζ

ζ

��
ā

zp̄ϕ

�
¼

_̄H

ā3 _̄ϕ
: ð100Þ

Thus the equation for R resembles that obtained in the
usual cosmological perturbation theory, but now has a
forcing term that is a function f̄ of the background fields
and Pχ ¼ C; for the choice C ¼ 0 this equation is the same
as that in usual cosmology. The equation for χ, on the other
hand, is ultralocal because there is no term in it of the form
k2χ, which would indicate the presence of spatial deriva-
tives of χ; k dependence of χ therefore arises solely from
the source term of (99). This is not surprising since we
would not expect a second propagating degree of freedom
starting with a theory containing pressureless dust. Indeed
this is also what is obtained for perturbation theory on flat
spacetime [15]. As a final comment in these equations we
note that (99) may be rewritten using the variable

χ̃ ≡ χ −
R
H̄
; ð101Þ

leading to

̈χ̃ þ
�
_α

α

�
_̃χ ¼ 1

α

d
dt

��
ζ
_̄H
H̄

�
R
�
; ð102Þ

which removes the k2 term on the right-hand side of (99).
This shows the ultralocality of χ̃ due to the absence of the
spatial derivative propagation term k2χ̃—the same reason-
ing as for χ.
Let us summarize the results so far. We started with the

theory of GR coupled to dust and a scalar field. This theory
has four physical field degrees of freedom, of which two
are gravitational. The Hamiltonian perturbation analysis we
presented therefore must also have the same number. By
fixing the dust-time gauge, one of these four degrees of
freedom manifests itself in the metric. Thus, after identify-
ing the two graviton modes, we are left with an additional
scalar mode, which as we have seen turns out to be
ultralocal.

V. COMPARISON WITH PERTURBATION
THEORY WITHOUT DUST

It is useful to compare the dust-time perturbation theory
we have developed above with a similar Hamiltonian
treatment of standard perturbation theory. This begins with
the ADM Hamiltonian action of GR coupled to only a
scalar field. This is Eq. (3) with T ¼ PT ¼ 0. Expansion of
this action about a homogeneous and isotropic background
solution is of the form (27), with the additional expansion
of the lapse function

Nðx; tÞ ¼ N̄ðtÞ þ δNðx; tÞ; ð103Þ

where we have taken N̄ðtÞ as the lapse function of the
background. The second order action changes from (28) to

Sð2Þ ≡
Z

d3xdt
h
_habpab þ _ϕpϕ − δNHð1Þ

− N̄ðtÞHð2Þ − ξaCð1Þ
a

i
; ð104Þ

where Hð2Þ and Cð1Þ
a are exactly as given in (29), and

Hð1Þ ¼ −
1

ā

��
p̄
6ā

��
1

4

�
p̄
6ā

�
hþ ā2p

�
þ ∂a∂bhab − ∂2h

�

þ p̄ϕ

ā3

�
pϕ −

p̄ϕ

4ā2
h

�
þ ā

�
ā2V 0ðϕ̄Þϕþ Vðϕ̄Þ

2
h

�
:

ð105Þ

We recall that h ¼ habeab and p ¼ pabeab. In the following
we will take the background lapse N̄ðtÞ ¼ 1.
We see that this second order action has two constraints

obtained by varying with respect to the lapse and shift
perturbation δNðx; tÞ and ξaðx; tÞ. The action also displays
a nonvanishing Hamiltonian N̄ðtÞHð2Þ, where N̄ðtÞ is a
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fixed background function that cannot be varied in the
second order action; it is of course varied in the zeroth order
action to give the background Hamiltonian constraint
H̄ ¼ 0. Thus, in comparison to the dust-time gauge theory,
we have the additional constraint Hð1Þ ¼ 0. In momentum
space, in the basis (hI, pI) (40), this is expanded as

H̃ð1Þ ¼ −
1

ā

��
p̄
6ā

��
1

4

�
p̄
6ā

�
h̃þ ā2p̃

�
− kakbh̃

ab þ k2h̃

�

þ p̄ϕ

ā3

�
p̃ϕ −

p̄ϕ

4ā2
h̃
�
þ ā

�
ā2V 0ðϕ̄Þϕ̃þ Vðϕ̄Þ

2
h̃
�

ð106aÞ

¼ −
ffiffiffi
3

p

ā

��
p̄
6ā

��
1

4

�
p̄
6ā

�
h1 þ ā2p1

�

þ
ffiffiffi
2

p
k2

3
½

ffiffiffi
2

p
h1 − h2�

�
þ p̄ϕ

ā3

�
p̃ϕ −

ffiffiffi
3

p
p̄ϕ

4ā2
h1

�

þ ā

�
ā2V 0ðϕ̄Þϕ̃þ

ffiffiffi
3

p
Vðϕ̄Þ
2

h1

�
: ð106bÞ

It is important to note that H̃ð1Þ is a function of only the
scalar metric modes h1 and h2 and their conjugate momenta
p1 and p2, in addition to scalar field perturbations
ðϕ̃; p̃ϕÞ—the graviton modes appear only in H̃ð2Þ.
After solving the transverse parts of the diffeomorphism

constraints and removing the vector modes as before,
only the parallel component of the constraint Ck ¼ 0

(63) remains. The momentum space action for the scalar
perturbations ðh1; h2;ϕÞ becomes

SSϕ ≡
Z

dtd3k
h
p1

_h1 þ p2
_h2 þ p̃ϕ

_̃ϕ −HSϕ

− δÑH̃ð1Þ − ξ̃kC̃
ð1Þ
k
i
; ð107Þ

where HSϕ is given in (70) and δÑðk; tÞ is the lapse
perturbation in momentum space. We now note that the
constraints obtained by varying this action with respect to
ξ̃k and δÑðk; tÞ are first class. We have already verified that
Ck is first class (Appendix C). We also find that

d
dt

H̃ð1Þ ¼ fH̃ð1Þ; HSϕg þ ∂
∂t H̃

ð1Þ ¼ C̃k ¼ 0 ð108Þ

and

fH̃ð1Þ; C̃kg ¼ −H̄ ¼ 0; ð109Þ

where the last equality follows from the background
Hamiltonian constraint H̄ ¼ 0; recall that this is the theory
without dust. This is a satisfying structure demonstrating
explicitly that the second order perturbed system is first

class. It also shows that, of the three scalar perturbation
modes ðh1; h2; ϕ̃Þ, only one is a physical degree of freedom
(due to the two constraints H̃ð1Þ ¼ 0 and C̃k ¼ 0). We can
now proceed to obtain gauge invariant observables, i.e.,
those that Poisson commute with C̃k and H̃ð1Þ. We note
that, unlike the case with dust, only one canonical pair of
gauge invariant variables is required (due to the presence of
two constraints instead of one).

A. Gauge invariant variables

Gauge invariant variables O must now satisfy

fO; H̃ð1Þg ¼ fO; C̃kg ¼ 0: ð110Þ

We have already noted that the curvature perturbation

ψ ¼ −
1

2
ffiffiffi
3

p
ā2

�
h1 −

h2ffiffiffi
2

p
�

ð111Þ

defined in (77) satisfies fψ ; Ckg ¼ 0. However,

fψ ; H̃ð1Þg ¼ p̄
12ā2

≠ 0; ð112Þ

therefore ψ is not invariant under the second constraint, and
therefore not fully gauge invariant. By noting that

fϕ̃; H̃ð1Þg ¼ p̄ϕ

ā3
; ð113Þ

we observe that the linear combination

R≡ ψ −
�

ā p̄
12p̄ϕ

�
ϕ̃ ð114Þ

satisfies

fR; H̃ð1Þg ¼ 0; fR; C̃kg ¼ 0: ð115Þ

This R is exactly the same variable we used for the dust
case. We have now learned that it is also invariant under the
transformation generated byHð1Þ. Similarly we note that its
conjugate momentum defined in (84) satisfies

fR; PRg ¼ 1; fPR; H̃
ð1Þg ¼ 0; fPR; C̃kg ¼ 0:

ð116Þ

Thus the canonically conjugate pair ðR; PRÞ is fully gauge
invariant to this order.
We note also that any scaled variables of the type

ðgR; PR=gÞ, where g ¼ gðā; p̄; ϕ̄; p̄ϕÞ is an arbitrary func-
tion of the background variables, are also gauge invariant
(since the fixed background does not participate in the
Poisson bracket for the perturbations). The choice
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g ¼ −
12p̄ϕ

p̄
≡ z ð117Þ

gives the Mukhanov-Sasaki (MS) variable

ν≡ −
�
12p̄ϕ

p̄

�
R ¼

�
ā _̄ϕ

H̄

�
R ¼ ā

�
ϕ̃þ

_̄ϕ

H̄
ψ

�
; ð118Þ

where the second equality follows from the background
equations (23).

B. Gauge fixed action

As the last step, we fix two gauges corresponding to
the two first class constraints H̃ð1Þ ¼ 0 and C̃k ¼ 0, and we
solve these constraints strongly to obtain the final canonical
action from (107) for the remaining unconstrained gauge
invariant physical degrees of freedom. The final action will
be a functional of the canonical pair R; PR. This may then
be recast in terms of the MS variable ν and its conjugate
momentum Pν.
We set the gauge conditions

ϕ̃ ¼ 0; h1 ¼ 0: ð119Þ

These satisfy

fϕ̃; H̃ð1Þg ¼ p̄ϕ

ā3
; fh1; C̃kg ¼ −2ā2; ð120Þ

therefore the constraints and gauge conditions form second
class pairs. Solving the constraints for p1 and p̃ϕ gives

p1 ¼ −
ffiffiffi
2

p

ā2

��
p̄
6ā

�
h2 þ ā2p2

�
; ð121Þ

p̃ϕ ¼ −
1ffiffiffi
6

p
p̄ϕ

�
p̄2

6
h2 þ 2ā2k2h2 þ ā3p̄p2

�
: ð122Þ

In this gauge, the invariant variables R and PR become

R ¼ 1

2
ffiffiffi
6

p
ā2

h2;

PR ¼
ffiffiffi
2

3

r �
p̄
ā
þ 12ā

p̄
k2
�
h2 þ 2

ffiffiffi
6

p
ā2p2: ð123Þ

Substituting the gauge conditions and solutions of the
constraints into the action (107), and expressing variables
in terms of R and PR, gives

SSGF ≡
Z

dtd3k½ _RPR −HS
GF�; ð124Þ

where

HS
GF ¼ 1

2ā

�
1

z2
P2
R þ k2ðzRÞ2

�
: ð125Þ

This is the same as the action for the dust-time case (92),
but with χ ¼ Pχ ¼ 0.
As the last step in comparison with standard perturbation

theory, we derive from this action the MS equation. We
noted the definition of the MS variable ν in (118). The
conjugate momentum is Pν ¼ PR=z. The action (124)
transforms to

SSGF ¼
Z

dtd3k½Pν _ν −Hν�; ð126Þ

with

Hν ¼
1

2ā
ðP2

ν þ k2ν2Þ þ _z
z
νPν: ð127Þ

This gives the equation of motion

ν̈þ H̄ _νþ
�
k2

ā2
−
̈z
z
− H̄

_z
z

�
ν ¼ 0: ð128Þ

In conformal time dt ¼ ādτ this becomes the familiar MS
equation

ν00 þ
�
k2 −

z00

z

�
ν ¼ 0: ð129Þ

To summarize this section, we have seen that the gauge
invariant canonical variables ðR; PRÞ that we used in the
dust-time setting are also invariant under the local time
transformation generated by the additional constraint H̃ð1Þ.
This is in fact why we used these for the dust-time case,
rather than variables that are only invariant under the
diffeomorphism constraint C̃k. There are many other
possibilities for canonical pairs invariant under only the
latter, but these do not provide a direct connection with the
standard perturbation theory.

VI. SUMMARY AND DISCUSSION

We presented the Hamiltonian theory of cosmological
perturbations for GR coupled to dust and a scalar field, in
the dust-time gauge. The analysis demonstrates the follow-
ing features: (i) the graviton modes decouple from other
degrees of freedom and their equations of motion are
unchanged, (ii) the vector modes are removed by gauge
fixing in the same way as for flat space perturbation theory
[15], (iii) there remain two coupled scalar modes, one of
which (R) satisfies a wave equation with a source, and the
other (χ) satisfies an ultralocal equation with a source
dependent on k; these two equations generalize the usual
perturbation equations.
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We also applied the same Hamiltonian decomposition,
using the canonical variables ðhI; pIÞ to the standard
cosmological perturbation theory. This differs from the
Hamiltonian formalism presented in [12] in several
respects. These include our use of a scale factor indepen-
dent basis for decomposing metric perturbations, a dem-
onstration that the perturbed constraints are first class, a
calculation of the constraint algebra, and finally a step-by-
step application of the reduction to physical degrees of
freedom using the Dirac procedure. Thus our work pro-
vides a more detailed view of Hamiltonian perturbation
theory for cosmology, in addition to its extension to the
dust-time gauge.
Our final equations in the dust-time gauge (98) and (99)

lead ultimately to the MS equation with an external forcing
term dependent on the background solution and an addi-
tional ultralocal equation for the field χ. These may have
observational consequences which we intend to explore in
future work. The special solution Pχ ¼ 0 removes the
source term, and so leads to exactly the MS equations plus
the equation for χ. However, this case contributes no
additional energy density since the terms proportional to
Pχ in the Hamiltonian density (92) vanish for this case.
Therefore the general case Pχ ≠ 0 is more interesting for
exploring cosmological consequences.
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APPENDIX A: DERIVATION OF SECOND
ORDER HAMILTONIAN

Recall that the physical Hamiltonian density for general
relativity consists of a curvature and kinetic part:

HGR ¼ −
ffiffiffi
q

p
Rð3Þ þ πabπ

abffiffiffi
q

p −
π2

2
ffiffiffi
q

p : ðA1Þ

We list the expansions of the different pieces. The metric
and its inverse are

qab ¼ ā2eab þ ϵhab; ðA2aÞ

qab ¼ eab

ā2
− ϵ

hab

ā4
; ðA2bÞ

where ϵ tracks the order in perturbation. We will first
compute the determinant using the usual definition:

q ¼ εabcεdef

3!
qadqbeqcf; ðA3Þ

where εabc is the Levi-Civita symbol. We expand the metric
as defined in Eq. (A2a) and follow the steps detailed below
to obtain the metric determinant:

q ¼ εabcεdef

3!
ðā2ead þ ϵhadÞðā2ebe þ ϵhbeÞðā2ecf þ ϵhcfÞ

¼ ā6

3!
εabcεdefeadebeecf þ

ϵā4

2
εabcεdefeadebehcf þ

ϵ2ā2

2
εabcεdefeadhbehcf

¼ ā6

3!
εdefε

def þ ϵā4

2
εcdeε

defhcf þ
ϵā2

2
εbcd εdefhbehcf

¼ ā6 þ ϵā4ecfhcf þ
ϵ2ā2

2
ðebeecf − ebceefÞhbehcf

¼ ā6 þ ϵā4hþ ϵ2ā2

2
ðh2 − habhabÞ: ðA4Þ

We can calculate q�1
2 using a Taylor expansion

to second order in perturbations. We list the results
below:

ffiffiffi
q

p ¼ ā3 þ ϵāh
2

þ ϵ2

8ā
ðh2 − 2habhabÞ; ðA5aÞ

1ffiffiffi
q

p ¼ 1

ā3
−

ϵh
2ā5

þ ϵ2

8ā7
ðh2 þ 2habhabÞ: ðA5bÞ

We will now calculate the curvature terms. It is natural to
start with the Christoffel symbols

Γa
bc ¼ ϵ

qad

2
ðhbd;c þ hcd;b − hbc;dÞ

¼ ϵ

�
ead

2ā2
ðhbd;c þ hcd;b − hbc;dÞ

�

− ϵ2
�
had

2ā4
ðhbd;c þ hcd;b − hbc;dÞ

�
; ðA6Þ
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where every partial derivative is spatial. The three Ricci scalar is

Rð3Þ ¼ ϵ

ā4
ð∂a∂bhab − ∂2hÞ þ ϵ2

ā6
½hab∂a∂bhþ hab∂2hab − 2hai∂b∂ihab − ð∂ahabÞð∂chbcÞ�

þ ϵ2

ā6

�
ð∂ahabÞð∂bhÞ −

1

4
ð∂ahÞð∂ahÞ þ 3

4
ð∂chabÞð∂chabÞ −

1

2
ð∂chab∂ahbcÞ

�
: ðA7Þ

Now we will calculate the momentum terms. We start with the specification for πab:

πab ¼ p̄
6ā

eab þ ϵpab: ðA8Þ

We will calculate π in detail; we start with the definition

π ¼ qabπab ¼ ðā2eab þ ϵhabÞ
�
p̄
6ā

eab þ pab

�
¼ 3ā2

�
p̄
6ā

�
þ ϵ

�
ā2pþ

�
p̄
6ā

�
h
�
þ ϵ2habpab: ðA9Þ

A similar calculation for πab reveals

πab ¼ ða2Þ2
�
p̄
6ā

�
eab þ ϵ

�
2a2

�
p̄
6ā

�
hab þ ða2Þ2pab

�
þ ϵ2

�
2ā2pdðahbÞd þ

�
p̄
6ā

�
hadhbd

�
: ðA10Þ

We substitute these results in the expression for the Hamiltonian density, expand to second order in perturbations, and
simplify where possible using integration by parts. The curvature and kinetic terms from (A1) are, respectively,

−
ffiffiffi
q

p
Rð3Þ ¼ hab

2ā3

�
∂b∂chac −

∂2hab
2

�
−

h
2ā3

�
∂a∂bhab −

∂2h
2

�
; ðA11aÞ

πabπ
abffiffiffi
q

p −
π2

2
ffiffiffi
q

p ¼ 1

ā

�
p̄
6ā

��
pabhab −

hp
2

�
þ ā

�
pabpab −

p2

2

�
þ 1

8ā3

�
p̄
6ā

�
2
�
5habhab −

3h2

2

�
: ðA11bÞ

APPENDIX B: DERIVATION OF GRAVITON
EQUATION

The graviton equations are those for the phase space
variables hIðk; tÞ and pIðk; tÞ for I ¼ 3, 4 derived from the
Hamiltonian (67):

_hI ¼
2

ā

��
p̄
6ā

�
hI þ

pI

ā2

�
; ðB1aÞ

_pI ¼
ā3

2

�
−
k2

ā2
−

5

2ā2

�
p̄
6ā

�
2

þ Vðϕ̄Þ − p̄2
ϕ

2ā6

�
hI

−
2

ā

�
p̄
6ā

�
pI: ðB1bÞ

The first of these gives

pI ¼ ā2
�
ā
2
_hI −

�
p̄
6ā

�
hI

�
ðB2Þ

and

ḧI ¼
1

3ā2
ð _̄p − 2p̄ H̄ÞhI þ

�
p̄
3ā2

�
_hI −

6H̄
ā3

pI þ
2

ā3
_pI;

ðB3Þ

where H̄ ≡ _̄a=ā ¼ −p̄=12ā2 from the equations for the
background. Substituting for pI and _pI into the last
equation gives

ḧI ¼
�
1

3ā2
ð _̄pþ p̄ H̄Þ − k2

ā2
þ 3

2ā2

�
p̄
6ā

�
2

þ Vðϕ̄Þ − p̄2
ϕ

2ā6

�
hI

− 3H̄ _hI: ðB4Þ

Finally, using the background equation (23) for _̄p gives

ḧI þ 3H̄ _hI þ
�
k
ā

�
2

hI ¼ 0: ðB5Þ
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APPENDIX C: DIFFEOMORPHISM CONSTRAINT IS FIRST CLASS

To show that the diffeomorphism constraint C̃k (63) is first class we must show that

dC̃k
dt

¼ fC̃k; HSϕg þ ∂C̃k
∂t ¼ 0: ðC1Þ

The first term is

fC̃k; HSϕg ¼ −2ā2ð _p1 þ
ffiffiffi
2

p
_p2Þ þ

�
p̄
6ā

�
ð _h1 − 2

ffiffiffi
2

p
_h2Þ þ

ffiffiffi
3

p
p̄ϕ

_̃ϕ

¼ −
p̄
3
ðp1 þ

ffiffiffi
2

p
p2Þ −

�
1

4a

�
p̄
6ā

�
2

þ 1

ā

�
p̄ϕ

2ā

�
2

−
āVðϕ̄Þ

2

�
ðh1 − 2

ffiffiffi
2

p
h2Þ þ

ffiffiffi
3

p
ā3V 0ðϕ̄Þϕ̃; ðC2Þ

and the second term is

∂C̃k
∂t ¼ −4ā _̄a ðp1 þ

ffiffiffi
2

p
p2Þ þ

�
_̄p
6ā

−
_̄a p̄
6ā2

�
ðh1 − 2

ffiffiffi
2

p
h2Þ þ

ffiffiffi
3

p
_̄pϕϕ̃: ðC3Þ

Substituting into this the equations for the background (23) and collecting terms gives

dC̃k
dt

¼ 0: ðC4Þ

Similar steps show that the same results holds for the transverse components of the linearized diffeomorphism constraint.
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