
 

Canonical loop quantization of the lowest-order projectable Horava gravity

Xiangdong Zhang ,1 Jinsong Yang,2 and Yongge Ma 3,*

1Department of Physics, South China University of Technology, Guangzhou 510641, China
2School of Physics, Guizhou University, Guiyang 550025, China

3Department of Physics, Beijing Normal University, Beijing 100875, China

(Received 6 August 2020; revised 21 November 2020; accepted 23 November 2020; published 28 December 2020)

The Hamiltonian formulation of the lowest-order projectable Horava gravity, namely the so-called λ-R
gravity, is studied. Since a preferred foliation has been chosen in projectable Horava gravity, there is no
local Hamiltonian constraint in the theory. In contrast to general relativity, the constraint algebra of λ-R
gravity forms a Lie algebra. By canonical transformations, we further obtain the connection-dynamical
formalism of the λ-R gravity theories with real suð2Þ connections as configuration variables. This
formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the λ-R gravity.
While the quantum kinematical framework is the same as that for general relativity, the Hamiltonian
constraint operator of loop quantum λ-R gravity can be well defined in the diffeomorphism-invariant
Hilbert space. Moreover, by introducing a global dust degree of freedom to represent a dynamical time, a
physical Hamiltonian operator with respect to the dust can be defined and the physical states satisfying all
the constraints are obtained.
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I. INTRODUCTION

It is well known that all the fundamental interactions of
Nature, except for gravity, can be described in the frame-
work of quantum field theory (QFT). Since gravity is
universally coupled to all the matter fields, the quantum
nature of matter field implies that gravity should be also
quantized. In addition, around the singularities of the big
bang and black holes interior, the space-time curvature
becomes divergent. Hence it is generally expected that
general relativity (GR), as a classical theory, is no longer
valid there, and quantum physics should be taken into
account. If a quantum theory of gravity could be available,
the singularities would be smoothed out by a certain
physically meaningful quantum description. Motivated
by the above considerations, to realize the quantization
of gravity serves as one of the main driving forces in
theoretical physics in the past decades [1], and various
approaches have been pursued, including string/M-theory
[2] and loop quantum gravity (LQG) [3–6].
As a background-independent approach to quantize GR,

LQG has been widely investigated in the past 30 years
[3–6]. It is remarkable that, as a nonrenormalizable theory,
GR can be nonperturbatively quantized by the loop quan-
tization procedure. This background-independent quantiza-
tion method relies on the key observation that classical GR
can be cast into the connection-dynamical formalism with

the structure group ofSUð2Þ. TheLQGquantizationmethod
has been successfully generalized to fðRÞ gravity [7,8],
scalar-tensor gravity [9], and Weyl gravity [10].
The notion of time plays an important role in any

quantum gravity theories and on how to implement
particular proposals in technical terms [11]. In the
Hamiltonian framework of GR, one assumes that a
Lorentzian spacetime M is diffeomorphic to a product
M ¼ R ⊗ Σwith Σ being a smooth spacelike hypersurface,
and R being a preferred time direction following from the
usual requirement of global hyperbolicity, which ensures
that the causal structure of spacetime is sufficiently well
behaved. The spacetime diffeomorphism invariance of
GR in restored by the diffeomorphism and Hamiltonian
constraints in the Hamiltonian framework. Thus, different
choices of foliation can be considered as a part of the gauge
freedom of GR.
As a different kind of gravity theories, the so-called

Hořava-Lifshitz gravity was proposed [12], associated with
a preferred foliation of spacetime. As a consequence, these
theories are only invariant under a subset of spacetime
diffeomorphisms, namely those that do not change the
preferred foliation. The remaining invariant group consists
of three-dimensional diffeomorphisms acting independ-
ently on each leaf Σt (labeled by time t) and space-
independent time reparametrizations. The most general
action of the metric fields which is at most quadratic in
derivatives and invariant under this reduced symmetry
group is not the concise Einstein-Hilbert action, but in a
rather complicated form [12].
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By giving up the space-time covariance, Hořava-Lifshitz
gravity becomes renormalizable in QFT perturbative quan-
tization [13–15]. However, from the nonperturbative view-
point, the LQG quantization method has not been extended
to these theories. It is well known that the loop quantization
highly relies on the connection-dynamical formalism of
the corresponding gravity theories, while the connection-
dynamical formalism of the Hořava-Lifshitz gravity is still
absent. Note that due to the extremely complicated form
of Hořava-Lifshitz gravity theories, one usually performs
the quantization procedures in some simpler cases, for
example, in lower dimensions [14,15] or in the symmetry-
reduced case such as the cosmological situations [16].
The low energy limit of Hořava-Lifshitz gravity, which is

suitable for most astrophysical objects as well as cosmo-
logical applications [17,18], can be described by the
following action:

S ¼ 1 − β

16πG

Z
dt

Z
Σ
d3xN

ffiffiffi
q

p �
KabKab −

1þ ν

1 − β
K2

þ 1

1 − β
Rþ σ

1 − β
aiai

�
; ð1:1Þ

where G is the gravitational constant, Kab is the extrinsic
curvature of a spatial hypersurface Σ, K ≡ Kabqab, R
denotes the scalar curvature of the 3-metric qab induced
on Σ, ai ¼ ∂iðlnNÞ, β, σ and ν are coupling constants.
The coupling constants must satisfy a series of theoretical
requirements, such as the absence of gradient instabilities
and ghosts [19–21], as well as experimental constraints,
including the absence of vacuum Cherenkov radiation [22],
solar system experiments [23,24], gravitational wave
propagation bounds from GW170817 [25,26], and cosmo-
logical constraints [27–29]. Those constraints suggest that
β and σ are vanishingly small as β ≤ 10−15 and σ ≤ 10−7.
However the other coupling constant ν is relatively uncon-
strained aside from the stability requirements and cosmo-
logical bounds [26,29,30] such that 0 ≦ ν≲ 0.01–0.1.
Therefore, in this paper, we are going to quantize the
four-dimensional simpler model of gravity by setting β ¼
σ ¼ 0 [26,31], which is the lowest-order Horava gravity.
This theory is sometimes called the λ-R gravity model
[32–35]. Thus the action of λ-R gravity reads [32–35]

S ¼ 1

16πG

Z
dt

Z
Σ
d3x

ffiffiffi
q

p
NðKabKab − λK2 þ RÞ

≡
Z

d4xL ð1:2Þ

with the coupling parameter λ≡ 1þ ν. This theory serves
as the minimal generalization of GR, since action (1.2)
reduces to Einstein-Hilbert action by setting λ ¼ 1. It was
first proposed and investigated in a purely classical context
in Ref. [32]. Though it is simpler, the λ-R gravity theory

shares the same kinetic term and the symmetry of the
Hořava-Lifshitz gravity. It has been shown in Refs. [33–35],
that the nonprojectable λ-R gravity models are equivalent to
GR in the asymptotically flat case, while the projectable
sector of λ-R gravity is inequivalent to GR. More precisely,
by choosing a preferred foliation the usual localHamiltonian
constraint of GR was removed. As shown in Refs. [36,37],
the absence of the local constraint leads to an additional
strongly coupled scalar degree of freedom, which becomes
dynamical here. Then the coupling of λ-R gravity to matter
would suggest a universal scalar (fifth) force in nature,
which has not been seen. Nevertheless, the projectable
theory provides a practicable model to test the scheme of
LQG. Thus, we will focus on the projectable model of λ-R
gravity, where the lapse functionN is only a function of time
t [34,35].
This paper is organized as follows: We will present a

detailed Hamiltonian analysis of λ-R gravity to obtain its
connection-dynamical formalism in Sec. II. Then in Sec. III,
the λ-R gravity will be nonperturbatively quantized by the
LQG method based on the connection dynamics, and the
quantum Hamiltonian constraint operator for λ-R gravity
will be constructed. In Sec. IV, the nonrotational dust field
will be introduced to represent a dynamical time and the
physical Hamiltonian operator will be defined so that the
physical states can be obtained. Our result will be summa-
rized in the last section. Throughout the paper, we use Latin
alphabet a; b; c; � � � for spatial indices, and i; j; k; � � � for
internal indices, and set 8πG ¼ 1 for simplicity.

II. HAMILTONIAN ANALYSIS

Starting from action (1.2), by Legendre transformation,
the momentum conjugate to the dynamical variable qab
reads

pab ¼ ∂L
∂ _qab ¼

N
ffiffiffi
q

p
2

ðKab − λKqabÞ: ð2:1Þ

The Hamiltonian of λ-R gravity can be derived as a liner
combination of constraints [33,34,36],

Htotal ¼
Z
Σ
d3xðNaCa þ NCÞ; ð2:2Þ

where the shift vector Na is a vector-valued function on Σ,
N is a constant in every spatial slice. The smeared diffeo-
morphism and Hamiltonian constraints read respectively

CðN⃗Þ ¼
Z
Σ
d3xNaCa ≡

Z
Σ
d3xNað−2DbðpabÞÞ; ð2:3Þ

C̃0¼
Z
Σ
d3xC

≡
Z
Σ
d3x

�
2ffiffiffi
q

p
�
pabpab−

λ

3λ−1
p2

�
−
1

2

ffiffiffi
q

p
R

�
ð2:4Þ
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where we fix N ¼ 1 from now on. Note that the
Hamiltonian constraint C̃0 is a global constraint rather
than a local one, which does not generate local gauge
transformations. The symplectic structure is given by the
following nontrivial Poisson bracket between the canonical
variables,

fqabðxÞ; pcdðyÞg ¼ δðca δ
dÞ
b δ

3ðx; yÞ: ð2:5Þ

Straightforward calculations show that the constraints (2.3)
and (2.4) comprise a first-class system as [36]

fCðN⃗Þ; CðN⃗0Þg ¼ Cð½N⃗; N⃗0�Þ; ð2:6Þ

fC̃0; CðN⃗Þg ¼ 0; ð2:7Þ

fC̃0; C̃0g ¼ 0: ð2:8Þ

This constraint algebra has the nice property of a Lie
algebra, and the diffeomorphism constraints also nicely
form an ideal. This implies that in the canonical quantiza-
tion it is possible to define the Hamiltonian constraint
operator directly on the diffeomorphism invariant Hilbert
space.
To set up the classical foundation of loop quantization,

we can employ the canonical transformation technique for
metric theories of gravity to obtain the connection dynami-
cal formalism of λ-R gravity. Let

K̃ab ¼ Kab −
1 − λ

2
Kqab: ð2:9Þ

Then the conjugate momentum pab of qab could be
rewritten as

pab ¼
ffiffiffi
q

p
2

ðK̃ab − K̃qabÞ: ð2:10Þ

We define the new geometric variables through

Ea
i ¼

ffiffiffi
q

p
eai ; K̃a

i ≡ K̃abejbδij; ð2:11Þ
where eai is the triad on Σ such that qabeai e

b
j ¼ δij. Now we

extend the phase space of the theory to the space consisting
of pairs ðEa

i ; K̃
i
aÞ. It is then easy to see that the symplectic

structure (2.5) can be derived from the following Poisson
brackets:

fK̃j
aðxÞ; Eb

kðyÞg ¼ −δbaδ
j
kδ

3ðx; yÞ; ð2:12Þ

fEa
j ðxÞ; Eb

kðyÞg ¼ 0; ð2:13Þ

fK̃j
aðxÞ; K̃k

bðyÞg ¼ 0: ð2:14Þ

Thus there is a direct symplectic reduction from the
extended phase space to the original one. In this sense

the transformation from conjugate pairs ðqab; pcdÞ to
ðEa

i ; K̃
j
bÞ is canonical. Note that the symmetry of K̃ab,

i.e., K̃ab ¼ K̃ba, gives rise to an additional constraint in the
extend phase space as

Gjk ≡ K̃a½jEa
k� ¼ 0: ð2:15Þ

So we can make a second canonical transformation by
defining [4,6]:

Ai
a ¼ Γi

a þ γK̃i
a; ð2:16Þ

where Γi
a is the spin connection determined by the

densitized triad Ea
i , and γ is a nonzero real number which

is usually called the Barbero-Immirzi parameter in the
community of LQG [38]. It is clear that our new variable Ai

a
coincides with the Ashtekar-Barbero connection of GR
[38,39] when λ ¼ 1. Therefore our new variable Ai

a serves
as an extension of the Ashtekar-Barbero connection for λ-R
gravity. The Poisson brackets among the new variables read

fAj
aðxÞ; Eb

kðyÞg ¼ γδbaδ
j
kδðx; yÞ; ð2:17Þ

fAi
aðxÞ; Aj

bðyÞg ¼ 0; ð2:18Þ

fEa
j ðxÞ; Eb

kðyÞg ¼ 0: ð2:19Þ

Now, the phase space of λ-R gravity consists of conjugate
pairs ðAi

a; Eb
j Þ. Combining Eq. (2.15) with the compati-

bility condition,

∂aEa
i þ ϵijkΓ

j
aEak ¼ 0; ð2:20Þ

we obtain the standard Gaussian constraint

Gi ¼ DaEa
i ≡ ∂aEa

i þ ϵijkA
j
aEak; ð2:21Þ

which justifies Ai
a as an suð2Þ connection. Note that, had

we let γ ¼ �i, the (anti-)self-dual complex connection
formalism would be obtained. The original diffeomorphism
constraint as well as the Hamiltonian constraint can be
expressed in terms of new variables up to Gaussian
constraint as

CλR
a ¼ 1

γ
Fi
abE

b
i ¼ 0; ð2:22Þ

C0 ¼
Z
Σ
d3xCλR

¼ 1

2

Z
Σ
d3x

�
ðFj

ab − ð1þ γ2ÞϵjmnK̃m
a K̃n

bÞ
ϵjklEa

kE
b
lffiffiffi

q
p

þ 2 − 2λ

1 − 3λ

ðK̃i
aEa

i Þ2ffiffiffi
q

p
�

¼ 0; ð2:23Þ
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where Fi
ab ≡ 2∂ ½aAi

b� þ ϵiklA
k
aAl

b is the curvature of the

suð2Þ-connection Ai
a. The total Hamiltonian can be

expressed as a linear combination

Htotal ¼
Z
Σ
d3xðΛiGi þ NaCλR

a þ CλRÞ: ð2:24Þ

It is easy to check that the smeared Gaussian constraint,
GðΛÞ ≔ R

Σ d
3xΛiðxÞGiðxÞ, generates SUð2Þ gauge trans-

formations on the phase space, while the smeared con-
straint VðN⃗Þ ≔ R

Σ d
3xNaðCλR

a − Ai
aGiÞ generates spatial

diffeomorphism transformations on the phase space.
Together with the Hamiltonian constraint, it is straightfor-
ward to show that the constraints algebra has the following
form:

fGðΛÞ;GðΛ0Þg ¼ Gð½Λ;Λ0�Þ; ð2:25Þ

fGðΛÞ;VðN⃗Þg ¼ −GðLN⃗ΛÞ; ð2:26Þ

fGðΛÞ; C0g ¼ 0; ð2:27Þ

fVðN⃗Þ;VðN⃗0Þg ¼ Vð½N⃗; N⃗0�Þ; ð2:28Þ

fVðN⃗Þ; C0g ¼ 0; ð2:29Þ

fC0; C0g ¼ 0: ð2:30Þ

Hence the constraints are all of first class. To summarize,
the λ-R gravity has been cast into the suð2Þ-connection
dynamical formalism. It is worth noting that in the LQG of
GR, although the Hamiltonian constraint is well defined in
gauge-invariant Hilbert space HG, it is difficult to define it
directly in the diffeomorphism-invariant Hilbert space
HDiff. Moreover, since the constraint algebra of GR does
not form a Lie algebra, the quantum anomaly might appear
after quantization. In contrast, the diffeomorphism con-
straints nicely form an ideal in λ-R gravity. Therefore the
Hamiltonian constraint operator could be defined directly
in HDiff.

III. QUANTIZATION OF λ-R THEORY

Based on the connection dynamical formalism, the
nonperturbative loop quantization procedure can be
straightforwardly extended to the λ-R gravity. The kin-
ematical structure of λ-R gravity is just the same as that of
LQG for GR [5,6]. The kinematical Hilbert space,
Hkin ≔ Hgr

kin, of the λ-R gravity is spanned by the spin-
network basis ψαðAÞ ¼ jα; j; ii over graphs α ⊂ Σ, where j
labels the irreducible representations of SUð2Þ associated
to the edges of α and i denotes the intertwiners assigned to
the vertices linking the edges. The basic operators are the
quantum analog of holonomies, heðAÞ ¼ P exp

R
e Aa, of

connections and densitized triads smeared over 2-surfaces,
EðS; fÞ ≔ R

S ϵabcE
a
i f

i. Note that the whole construction is
background independent, and the spatial geometric oper-
ators of LQG, such as the area [40], the volume [41,42], and
the length operators [43,44], are still valid here. As in LQG,
it is straightforward to promote the Gaussian constraint
GðΛÞ to a well-defined operator [4,6]. Its kernel is the
internal gauge-invariant Hilbert space HG with gauge-
invariant spin-network basis. Moreover the diffeomor-
phisms of Σ act covariantly on the cylindrical functions
in HG, and hence the so-called group averaging technique
can be employed to solve the diffeomorphism constraint
[5,6], which gives rise to the desired gauge and diffeo-
morphism invariant Hilbert spaceHDiff for the λ-R gravity.
The remaining nontrivial task for λ-R gravity is to

implement the Hamiltonian constraint (2.23) at quantum
level. In order to compare the Hamiltonian constraint of λ-R
gravity with that of GR in connection formalism, we write
Eq. (2.23) as C0 ¼

P
3
i¼1 Ci, where the terms C1, C2 take

the same form as the Euclidean and Lorentzian terms in GR
[5,6], i.e.,

C1 ¼ HEð1Þ ¼ 1

2

Z
Σ
d3xFj

ab

ϵjklEa
kE

b
lffiffiffi

q
p ; ð3:1Þ

C2 ¼ −
ð1þ γ2Þ

2

Z
Σ
d3xϵjmnK̃m

a K̃n
b

ϵjklEa
kE

b
lffiffiffi

q
p : ð3:2Þ

Hence the difference comes from the completely new term,

C3 ¼
Z
Σ
d3x

ð2 − 2λÞ
1 − 3λ

ðK̃i
aEa

i Þ2ffiffiffi
q

p : ð3:3Þ

This term can be treated by the similar regularization
techniques developed for the Hamiltonian in the LQG
[4]. We may triangulate Σ in adaptation to some graph α
underling a cylindrical function in Hkin and reexpress
connections by holonomies. To this aim, we first note
the following classical identity:

K̃ ¼
Z
Σ
d3xK̃i

aEa
i ¼

1

γ2
fHEð1Þ; Vg; ð3:4Þ

whereHEð1Þ is the Euclidean term and V is the volume [4].
Therefore, one can further regularize Eq. (3.3) by the point-
splitting method and obtain

C3 ¼ lim
ϵ→0

Cϵ
3

¼ lim
ϵ→0

Z
Σ
d3y

Z
Σ
d3x

ð2 − 2λÞ
1 − 3λ

χϵðx − yÞ

×
K̃i

aðxÞEa
i ðxÞffiffiffiffiffiffiffiffi

VUϵ
x

p K̃j
bðyÞEb

j ðyÞffiffiffiffiffiffiffiffi
VUϵ

y

p ; ð3:5Þ
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where χϵðx − yÞ is the characteristic function of a box Uϵ
x

containing x with scale ϵ and satisfies the relation

lim
ϵ→0

χϵðx − yÞ
ϵ3

¼ δ3ðx − yÞ; ð3:6Þ

and VUϵ
x
denotes the volume of Uϵ

x. Now, we triangulate Σ
into elementary tetrahedra Δ with scale ϵ, and denote the
triangulation by T . For each Δ, we single out one of its
vertices, and call it vðΔÞ. Then, as Δ → vðΔÞ, we have

Z
Δ
d3x

K̃i
aðxÞEa

i ðxÞffiffiffiffiffiffiffiffi
VUϵ

x

p ≈
2

γ2

�
HE

Δ;
ffiffiffiffiffiffiffiffiffiffiffiffi
VUϵ

vðΔÞ

q �
; ð3:7Þ

where

HE
Δ ¼ 2

3γ
ϵIJKTrðhαIJðΔÞhsKðΔÞfh−1sKðΔÞ; VUϵ

v
gÞ: ð3:8Þ

Here sIðΔÞ; I ¼ 1, 2, 3, denote the three edges of
Δ incident at vðΔÞ, ðI; J; KÞ ∈ fð1; 2; 3Þ; ð2; 3; 1Þ;
ð3; 1; 2Þg such that the triple ðsIðΔÞ; sJðΔÞ; sKðΔÞÞ has
positive orientation induced by Σ, and αIJðΔÞ ≔
sIðΔÞ ∘ aIJðΔÞ ∘ sJðΔÞ is the loop based at vðΔÞ with
aIJðΔÞ being the edge of Δ connecting those endpoints
of sIðΔÞ and sJðΔÞ which are distinct from vðΔÞ. Thus Cϵ

3

in Eq. (3.5) can be expressed as

Cϵ
3 ¼

4

γ4
ð2 − 2λÞ
1 − 3λ

X
Δ;Δ0∈T

χϵðvðΔÞ − vðΔ0ÞÞ

×

�
HE

Δ;
ffiffiffiffiffiffiffiffiffiffiffiffi
VUϵ

vðΔÞ

q ��
HE

Δ0 ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VUϵ

vðΔ0Þ

q �
: ð3:9Þ

Note that all the terms in (3.9) including the Euclidean term
HE

Δ and volume VUϵ
vðΔÞ

could be promoted as well-defined

operators in the gauge-invariant Hilbert space HG.
Furthermore, for a given graph α, one constructs a
triangulation T ðαÞ of Σ adapted to α [4]. Notice that the
volume operator acts only at vertices of α, and for
sufficiently small ϵ the function χϵðvðΔÞ; vðΔ0ÞÞ ¼ 0 unless
vðΔÞ ¼ vðΔ0Þ. Thus (3.9) can also be promoted as a well-
defined regularized operator acting on any ψαðAÞ ∈ HG as

Ĉϵ
3ψαðAÞ ¼

4

γ4ðiℏÞ2
ð2 − 2λÞ
1 − 3λ

X
v∈VðαÞ

82

EðvÞ2

×
X

vðΔÞ¼vðΔ0Þ¼v

�
ĤE

Δ;
ffiffiffiffiffiffi
V̂v

q �

×

�
ĤE

Δ0 ;
ffiffiffiffiffiffi
V̂v

q �
ψαðAÞ; ð3:10Þ

where the first summation is over the vertices v of α, the
second summation is over Δ with vðΔÞ ¼ v, EðvÞ ¼ ðnðvÞ

3
Þ

is the possible choice of triples for a vertex v with nðvÞ
edges, and

ĤE
Δ ≔

2

3iℏγ
ϵIJKTrðĥαIJðΔÞĥsKðΔÞ½ĥ−1sKðΔÞ; V̂v�Þ: ð3:11Þ

In LQG of GR, because the diffeomorphism-invariant
Hilbert space HDiff is not preserved by the Hamiltonian
constraint operator, the Hamiltonian operator can only be
well defined in HG rather than HDiff. However, in λ-R
gravity, since the lapse N is a constant, HDiff would be
preserved by the Hamiltonian constraint operator, and
hence we can further define the Hamiltonian operator in
HDiff. Note that a diffeomorphism-invariant state can be
produced from a state ψαðAÞ ∈ HG by the group averaging
method as [4–6]

P̂DiffαψαðAÞ ≔
1

nα

X
φ∈GSα

ÛφψαðAÞ; ð3:12Þ

where the operator Ûφ denotes the finite diffeomorphism
φ∶Σ → Σ, GSα ¼ Diffα=TDiffα is the group of graph
symmetries with Diffα being the group of all diffeo-
morphisms preserving the graph α, TDiffα is its subgroup
which has trivial action on α, and nα is the number of the
elements in GSα.
Since the regularized operator Ĉϵ

3 with different value of
ϵ are diffeomorphic to each other, we can naturally define
the action of the limit operator Ĉ3 ¼ limϵ→0 Ĉϵ

3 on the
diffeomorphism-invariant state as

Ĉ3P̂DiffαψαðAÞ ≔ lim
ϵ→0

1

nαðϵÞ

X
φ∈GSαðϵÞ

ÛφĈϵ
3ψαðAÞ; ð3:13Þ

where αðϵÞ represents the new graphs produced by the
action of Ĉϵ

3 on α. Note that Eq. (3.13) does not depend on
ϵ, since all the graphs αðϵÞ are diffeomorphism equivalent
to each other. Similar to the definition of Ĉ3, it is
straightforward to define the whole Hamiltonian constraint
operator Ĉ0 in HDiff as

Ĉ0P̂DiffαψαðAÞ ≔ lim
ϵ→0

1

nαðϵÞ

X
φ∈GSαðϵÞ

X
i¼1;2;3

Ûφ

× Ĉϵ
iψαðAÞ; ð3:14Þ

with

Ĉϵ
1 ¼

X
v∈VðαÞ

8

EðvÞ
X

vðΔÞ¼v

ĤE
Δ; ð3:15Þ

Ĉϵ
2 ¼ −

4ð1þ γ2Þ
3ðiℏγÞ3

X
v∈VðαÞ

8

EðvÞ
X

vðΔÞ¼v

ϵIJK

× TrðĥsIðΔÞ½ĥ−1sIðΔÞ; ˆ̃Kv�ĥsJðΔÞ½ĥ−1sJðΔÞ; ˆ̃Kv�
× ĥsKðΔÞ½ĥ−1sKðΔÞ; V̂v�Þ; ð3:16Þ
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where ˆ̃Kv ≔ 1
iℏγ2 ½ĤE

v ; V̂v� with ĤE
v ≔

P
vðΔÞ¼v Ĥ

E
Δ. Note

that, to have a well-defined adjoint operator of Ĉ0 [45], we
used the freedom of choosing the spin representations
attached to each new added loop in (3.14) to ensure that the
valence of any vertex would not be changed by the action
of Ĉ0.

IV. A PHYSICAL HAMITONIAN
AND PHYSICAL STATES

It should be noted that even in projectable λ-R gravity,
due to the existence of the global Hamiltonian constraint,
there still exists a global gauge freedom corresponding to
the global time reparametrization. Thus, in the correspond-
ing quantum theory, the Hamiltonian constraint operator
has to vanish on physical states. Therefore, the time
problem of quantum gravity is still there. The purpose
of this section is to overcome this problem by introducing a
single global dust degree of freedom to represent a
dynamical time. In a theory of gravity with time repar-
ametrization invariance, in order to pick up a unique time to
represent the evolution of physical states [11], one naturally
takes the viewpoint of relational evolution [46–49]. This
allows one to map the totally constrained theory into a
theory with a true nonvanishing Hamiltonian with respect
to some chosen dynamical (emergent) time variable. The
dynamical “time” can be achieved at the classical level as
well as the quantum level. The combination of LQG with
the relational evolution framework makes it possible to
solve the quantum Hamiltonian constraint.
The action of a nonrotational dust model in a covariant

spacetime reads

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Mðgab∂aT∂bT þ 1Þ; ð4:1Þ

where T is the configuration variable of the nonrotational
dust, and M is the rest mass density of the dust field. Its
Hamiltonian can be written as [50]

HD ¼
Z

d3x

�
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ qabCD

a CD
b

q
þ NaCD

a

�
; ð4:2Þ

where π is the conjugate momentum of T and
CD
a ¼ −π∂aT. In order to introduce the nonrotational dust

model, which was widely used in LQG literature [50–53],
to represent a dynamical time for the λ-R gravity, we
consider the case that the dust is adapted to the spacetimes
of Horava gravity so that the time foliation of the space-
times coincides with the hypersurfaces of constant T. In the
other words, certain function tðTÞ of the dust configuration
variable T is employed to define the given time foliation of
Horava spacetimes. Note that tðTÞ needs not to be a fixed
function. Thus the global time reparametrization freedom
still exists.

As the gauge group of Horava theory consists of the
foliation-preserving diffeomorphisms, the projectable
version of the theory concerns only the case that the lapse
function depends only on time t [34]. Note that for the
adapted nonrotational dust, we have qab∂aT ¼ 0, and
hence the dust has no local degrees of freedom. Thus, in
the case of projectable λ-R gravity with the adapted
nonrotational dust, the global Hamiltonian constraint reads

Ctotal ¼
Z

d3xðπðxÞ þ hðxÞÞ

≔
Z

d3xðπðxÞ þ CλRðxÞÞ ¼ 0: ð4:3Þ

Hence one can define a physical Hamiltonian hphy ¼R
d3xhðxÞ which generates the evolution of the system

with respect to the dynamical time T.
In the quantum theory, one would expect to imple-

ment the constraint corresponding to (4.3) through a
Schrodinger-like equation

iℏ
∂
∂TΦðA; TÞ ¼ ĥphyΦðA; TÞ ð4:4Þ

for certain quantum states ΦðA; TÞ. Note that in certain
simplifiedmodels of quantumgravity, there are different ideas
to treat the Hamiltonian constraint as a true Hamiltonian
[54,55]. Since loop quantum λ-R gravity has been constructed
in previous sections and the gravitational Hamiltonian con-
straint Ĉ0 is well defined by (3.14) on any diffeomorphism-
invariant state Φ½α�ðAÞ ¼ P̂DiffαψαðAÞ ∈ HDiff, it is
convenient to define the physical Hamiltonian operator
ĥphy as a self-adjoint extension of the symmetric operator
1
2
ðĈ0 þ Ĉ0

†Þ. Then the general solutions to Eq. (4.4) read

Φ½α0�ðA; TÞ ¼ e−
i
ℏĥphyTΦ½α�ðAÞ; ð4:5Þ

with an arbitrary given Φ½α�ðAÞ ∈ HDiff. Thus, the physical
Hilbert space of the coupled system is unitarily isomorphic
to HDiff.

V. CONCLUSION

In the previous sections, a detailed construction of
connection-dynamical formalism of the lowest-order proj-
ectable Horava gravity is given. This theory is the so-called
λ-R gravity. Since a preferred foliation has been chosen in
projectable Horava gravity, there is no local Hamiltonian
constraint. We obtain a connection dynamics with real
suð2Þ connections as configuration variables. In contrast to
GR, the constraint algebra of λ-R gravity forms a Lie
algebra, and the Hamiltonian (2.23) possesses an extra term
which would vanish for λ ¼ 1. This classical connection-
dynamical formalism enables us to extend the scheme of
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nonperturbative loop quantum gravity to the λ-R theories of
gravity. While the quantum kinematical framework is the
same as that for GR, the global Hamiltonian constraint of
loop quantum v gravity has been rigorously constructed as
a well-defined operator in the diffeopmorphism-invariant
Hilbert space.
To overcome the time problem related to the global time

reparametrization freedom of the projectable λ-R gravity,
the nonrotating dust adapted to the Horava spacetimes is
introduced as a dynamical time. The physical time evolu-
tion with respect to the dust is then naturally defined. As a
result, the quantum dynamics of the coupled system is
dictated by a Schrodinger-like equation. For an arbitrarily
given initial diffeomorphism-invariant state, the physical
quantum Hamiltonian operator would generate and thus
completely determine the forthcoming quantum state with
respect to the dynamical time. Moreover, the physical states
we obtained satisfy all the constraints, and the physical
Hilbert space of the coupled system is unitarily isomorphic
to the diffeomorphism-invariant Hilbert space of λ-R
gravity. Therefore, we obtained a quantum theory of gravity

in which the Dirac algorithm of canonical quantization
for a totally constrained system could be completely
realized.
There are of course a few issues that deserve further

investigating in our loop quantum v theory of gravity. First,
it is interesting to study some symmetry-reduced models of
our loop quantum λ-R gravity, which might tell us more
physical properties of the quantum λ-R gravity. Second,
how to extend LQG to the nonprojectable version of λ-R
gravity is an interesting issue. Third, if our result could be
generalized to the general Hořava-Lifshitz gravity, it would
be helpful to get a better understanding on the quantum
gravity without Lorentzian invariance.
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