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We construct a generalization of the standard ΛCDM model, wherein we simultaneously replace the
spatially flat Robertson-Walker metric with its simplest anisotropic generalization (LRS Bianchi I metric),
and couple the cold dark matter to the gravity in accordance with the energy-momentum squared gravity
(EMSG) of the form fðTμνTμνÞ ∝ TμνTμν. These two modifications—namely, two new stiff fluid-like terms
of different nature—can mutually cancel out, i.e., the shear scalar can be screened completely, and
reproduce mathematically exactly the same Friedmann equation of the standard ΛCDMmodel. This evades
the BBN limits on the anisotropy, and thereby provides an opportunity to manipulate the cosmic microwave
background quadrupole temperature fluctuation at the desired amount. We further discuss the conse-
quences of the model on the very early times and far future of the Universe. This study presents also an
example of that the EMSG of the form fðTμνTμνÞ ∝ TμνTμν, as well as similar type other constructions, is
not necessarily relevant only to very early Universe but may even be considered in the context of a major
problem of the current cosmology related to the present-day Universe, the so-called H0 problem.
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I. INTRODUCTION

The standard ΛCDM (Lambda cold dark matter) model
has begun to be seen, with an increasing consensus, as an
approximation to a more realistic model that still needs to
be fully understood [1]. As it is in good agreement with
most of the currently available data [2–5], the deviations
from the standard ΛCDM are not expected to be too drastic
from the phenomenological point of view, even if they can
be conceptually very different. Indeed, the recent theoreti-
cal (e.g., de Sitter swampland conjecture [6–13]) and
observational (e.g., persistent tensions among some
existing datasets [14–27]) developments, along with the
notoriously challenging theoretical issues related to Λ
[28,29], suggest that accomplishment of a successful
extension of the standard ΛCDM would not be a straight-
forward task. Its extensions, so far, mostly focus on
replacing either Λ (the positive cosmological constant)
with a dynamical dark energy or the general relativity (GR)
with a modified gravity theory [30–34]. In fact, there is
another option that has not been emphasized much;
replacing the spatially maximally symmetric and flat

Robertson-Walker (RW) metric assumption of the model
with a more generic metric, e.g., with an anisotropic metric,
which typically results in a dynamical geometrical modi-
fication (likewise the spatial curvature) in the usual
Friedmann equation of the standard ΛCDM, the shear
scalar—a measure of the anisotropic expansion. The
spatially flat RW background assumption has convention-
ally been justified via the standard inflationary scenarios
employing canonical scalar fields [35–38], wherein the
space dynamically flattens and very efficiently isotropizes
(cosmic no-hair theorem [39,40]). Allowing anisotropic
expansion factors—while retaining isotropic spatial curva-
ture—leads to a generalized Friedmann equation bringing
in average Hubble parameter along with a shear scalar [41–
44] mimicking the stiff fluid (described by an equation of
state of the form p ¼ ρ [45,46]) and hence diluting faster
than any other physical source (for which p ¼ ρ is the
causality limit [44]) as the Universe expands. The stiff
fluid-like shear scalar is typical for general relativistic
anisotropic universes with isotropic spatial curvature filled
only with isotropic perfect fluids with no peculiar velocities
[44]. Hence, it is not expected there to be an anisotropic
expansion at measurable levels in the observable Universe.
Nevertheless, the interest in anisotropic cosmologies has
never been ceased, as, for instance, deviations from the
stiff fluid-like shear scalar might imply the necessity of
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replacing Λ with anisotropic stresses that excludes the most
common dark energy models such as the minimally coupled
scalar fields. See [47] for a list of well known anisotropic
stresses (vector fields, spatial curvature anisotropies etc.)
and their effects on the expansion anisotropy/shear scalar.
This interest has frequently been reinforced by some new
observations. See, for instance, Refs. [48–53] and refer-
ences therein, for hints of unexpected features in the cosmic
microwave background (CMB) data from the WMAP and
Planck missions and in other types of independent cosmo-
logical data. And, Refs. [54–63] suggesting that the lack of
quadrupole moment in the CMB temperature angular
power spectrum [48–51] can be addressed by anisotropic
expansion driven, well after the matter-radiation decou-
pling, by anisotropic dark energy (see also [64–70], and, for
constraints on such models, [71–74]). Seeking possible
significant deviations from isotropic expansion occupies an
important place in the upcoming projects such as the Euclid
mission [75], as it can be very illuminating to the nature of
dark energy—namely, generically, modified gravity theo-
ries induce nonzero anisotropic stresses that lead to
characteristic modifications on the dynamics of the shear
scalar, see, e.g., [76–79]. All these works focus on the idea
of relaxing the limits upon the anisotropic expansion by
making the shear scalar less stiff, by replacing either Λ with
an anisotropic dark energy model or GR by a modified
gravity theory model that can induce an anisotropic dark
energy. Through such setups, the limits obtained from big
bang nucleosynthesis (BBN) can beweakened considerably
with respect to the ones imposed by the CMB [47].
However, the Friedmann equation, say HðzÞ, in such
models in general deviates from that of the ΛCDM model
because of both the replacement of Λ with an anisotropic
fluid and the modified shear scalar dynamics led by it.
In this work, on the other hand, relying on energy-

momentum squared gravity (EMSG), we look for a new
possibility of that the stiff fluid-like shear scalar is retained
(i.e., no anisotropic stresses employed) but its contribution
to HðzÞ is compensated by CDM, so that, for instance, the
CMB quadrupole temperature fluctuation can be manipu-
lated with giving rise to no deviation, on average, from
either the standard ΛCDM model or the standard BBN.
From the Einstein-Hilbert action of GR, it is possible to
design a generalization involving nonlinear matter terms,
by adding some analytic functions of a new scalar T2 ¼
TμνTμν formed from the energy-momentum tensor (EMT),
Tμν, of the matter fields [80]. Such generalizations result in
new contributions by the usual matter fields to the right-
hand side of the Einstein field equations without invoking
new forms of matter and lead in general to nonconservation
of the matter fields. The EMSG of the form fðT2Þ ¼ αT2

(with α being a real constant), which considers simply the
linear contributions of the new scalar, has been studied in
various contexts in [81–93]. The EMSG of this form is
unique in that the dust in this case satisfies the conservation

of the EMTand yet its linear (usual) contribution, ρm, to the
HðzÞ is accompanied by its quadratic (new) contribution,
αρ2m, which mimics stiff fluid as exactly like the shear scalar
does too. It is noteworthy that such an additional quadratic
contribution of the matter energy density is reminiscent of
the braneworld scenarios [94] for α > 0 and the loop
quantum gravity [95] for α < 0.
The observational upper limits on the present-day

density parameter of a stiff fluid-like term included in
the standard ΛCDM Friedmann equation can be adopted
from [96]; it is ∼10−15 from the latest cosmological data
(viz., joint CMB and BAO dataset), and ∼10−23 from BBN.
Thus, in both extensions of the standard ΛCDM model—
i.e., in either its simplest anisotropic extension or its
extension via the CDM coupled to the gravity in accordance
with the EMSG of the form fðT2Þ ¼ αT2—, the stiff fluid-
like term involving in the Friedmann equation should today
be very small (viz., the corresponding present-day density
parameter should be less than 10−23) not to spoil the
successful description of the Universe all the way to the
BBN era. This might give the impression that such
extensions to the standard ΛCDM model are permitted
to be relevant only to the dynamics of the Universe well
before the BBN. In what follows in the paper, we will
discuss and show that this is not the case, particularly, when
these two extensions are simultaneously employed. We
proceed with constructing a generalization of the standard
ΛCDM model, wherein we simultaneously replace the
spatially flat RW metric with its simplest anisotropic
generalization (LRS Bianchi I), and couple the CDM to
the gravity in accordance with the EMSG of the form
fðT2Þ ∝ T2, while all other sources exist in the standard
model of particle physics couple as usual in accordance
with GR. Then we will focus on that these two modifica-
tions can mutually cancel out owing to the possibility of
α < 0 (for which the new contributions of the CDM will
resemble a stiff fluid with a negative energy density), viz.,
the shear scalar can be screened completely, and reproduce
mathematically exactly the same Friedmann equation of the
standard ΛCDM model. This allows us to get around the
BBN limits on the anisotropic expansion, and thereby
provides us an opportunity to manipulate the CMB quadru-
pole temperature fluctuation at the desired amount through
a slightly anisotropic expansion in the late Universe. We
further discuss the consequences of this model on the very
early times and far future of the Universe, and finally
briefly that such constructions may even be considered in
the context of a major problem of the current cosmology,
the so-called H0 problem [97].

II. MODEL

We begin with the action constructed by the inclusion of
the term fðTμνTμν;LmÞ in the usual Einstein-Hilbert action
with a bare cosmological constant Λ as follows [98];

AKARSU, BARROW, and UZUN PHYS. REV. D 102, 124059 (2020)

124059-2



S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
ðR − 2ΛÞ þ fðTμνTμν;LmÞ

�
; ð1Þ

where κ is Newton’s constant scaled by a factor of 8π
(henceforth κ ¼ 1), R is the scalar curvature, g is the
determinant of the metric gμν, Lm is the Lagrangian density
corresponding to the matter field described by the energy-
momentum tensor Tμν, and the units have been used such
that c ¼ 1. We retain Λ in accordance with the Lovelock’s
theorem stating that it arises as a constant of nature like κ
[99,100]. In the usual fashion, we vary the action (1) with
respect to the inverse metric gμν as

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
δRþ ∂f

∂ðTαβTαβÞ
δðTσϵTσϵÞ

δgμν
δgμν

þ ∂f
∂Lm

δLm

δgμν
δgμν −

1

2
gμνδgμν

×

�
1

2
ðR − 2ΛÞ þ fðTσϵTσϵ;LmÞ

��
; ð2Þ

and define the EMT of the matter field as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

¼ gμνLm − 2
∂Lm

∂gμν ; ð3Þ

for which we assumed that Lm depends only on the metric
tensor components and not on its derivatives.
We proceed with the most straightforward example of

the EMSG, which considers the linear contribution of the
new scalar T2 ¼ TμνTμν in the action (1), described by

fðTμνTμν;LmÞ ¼
X
i

ðαiTðiÞ
μνT

μν
ðiÞ þ LðiÞ

m Þ; ð4Þ

where, i denoting the ith matter field (fluid), the summation
over index i is used for simplicity’s sake as it avoids the
cross-terms involving the product of the energy densities of
different fluids in the field equations, and αi’s are constants
that determine the coupling strength of the EMSG mod-
ifications to gravity for the ith fluid (cf. [98]). The action
we proceed with is thus specified as follows;

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
− Λþ

X
i

ðαiTðiÞ
μνT

μν
ðiÞ þ LðiÞ

m Þ
�
; ð5Þ

from which the modified Einstein field equations read

Gμν þ Λgμν ¼
X
i

TðiÞ
μν þ

X
i

αiðTðiÞ
σϵTσϵ

ðiÞgμν − 2ΞðiÞ
μν Þ: ð6Þ

Here Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor and the new

tensor is defined as

ΞðiÞ
μν ¼ −2LðiÞ

m

�
TðiÞ
μν −

1

2
gμνT ðiÞ

�
− T ðiÞTðiÞ

μν

þ 2TγðiÞ
μ TðiÞ

νγ − 4Tσϵ
ðiÞ

∂2LðiÞ
m

∂gμν∂gσϵ ; ð7Þ

where T ðiÞ is the trace of the EMTof the ith fluid, TðiÞ
μν , and

the last term vanishes as the EMT (3) does not include the

second variation of LðiÞ
m . We see, from (6), that the covariant

divergence of the total EMT reads

∇μ
X
i

TðiÞ
μν ¼ −∇μ

X
i

αiðTðiÞ
σϵTσϵ

ðiÞgμν − 2ΞðiÞ
μν Þ; ð8Þ

which implies, unless αi ¼ 0 (GR), the total EMT is not

conserved in general. We consider LðiÞ
m ¼ pi for the

definition of the matter Lagrangian density that leads to

the EMT of the form TðiÞ
μν ¼ ðρi þ piÞuμuν þ pigμν (where

ρi and pi are, respectively, the energy density and the
thermodynamic pressure of the ith fluid and uμ is the four-
velocity satisfying uμuμ ¼ −1 and ∇νuμuμ ¼ 0) describing
an isotropic perfect fluid form of matter field [101,102].
Using this for barotropic equation of states as wi ¼ pi

ρi
¼

constant, we obtain

TðiÞ
μνT

μν
ðiÞ ¼ ρ2i ð3w2

i þ 1Þ;
ΞðiÞ
μν ¼ −ρ2i ð3wi þ 1Þðwi þ 1Þuμuν: ð9Þ

Thus, the covariant divergence of the total EMT (8) reads

X
i

½_ρi þ Θð1þ wiÞρi� ¼
X
i

αi
2Θwið1þ wiÞð5þ 3wiÞρ2i
1þ 2αið1þ 8wi þ 3w2

i Þρi
;

ð10Þ
where Θ ¼ Dμuμ is the volume expansion rate and a dot
denotes derivative with respect to the comoving proper time
t. Note that, unless αi ¼ 0 (GR), the local conservation of
the total EMT is recovered only for wi ¼ 0;−1;− 5

3
.

We consider the locally rotationally symmetric (LRS)
Bianchi I metric, the simplest anisotropic extension of the
spatially flat RW metric,

ds2 ¼ −dt2 þ a2ðtÞdx2 þ b2ðtÞðdy2 þ dz2Þ; ð11Þ

where faðtÞ; bðtÞ; bðtÞg are the directional scale factors
along the principal axes fx; y; zg [42–44]. The correspond-
ing average expansion scale factor reads sðtÞ ¼ ðab2Þ13, and
from which the average Hubble parameter H ¼ Θ

3
≡ _s

s ¼
1
3
ðHa þ 2HbÞ, where Ha ¼ _a

a and Hb ¼ _b
b are the direc-

tional Hubble parameters along the x- and y- (or z-) axes,
respectively. And, we consider the usual cosmological
fluids: CDM (c) and baryons (b) described by wc ¼
wb ¼ 0, and radiation (photon γ and neutrinos ν) (r)
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described by wr ¼ 1
3
. However, we suppose the CDM

arbitrarily couples to gravity in accordance with the
EMSG (i.e., αc is not necessarily null), while the particles
present in the Standard Model (SM) of particle physics (b,
γ, and three types of ν) couple to gravity in the same way as
in the GR (i.e., for these αr ¼ αb ¼ 0). Consequently,
calculating the relevant tensors given in (9), and using
(6), we reach the following set of modified Einstein field
equations:

2HaHb þH2
b − Λ ¼ ρb þ ρc þ αcρ

2
c þ ρr; ð12Þ

−2 _Hb − 3H2
b þ Λ ¼ αcρ

2
c þ

ρr
3
; ð13Þ

− _Ha − _Hb −H2
a −H2

b −HaHb þ Λ ¼ αcρ
2
c þ

ρr
3
: ð14Þ

This set of equations can alternatively be written in terms
of the average expansion rate HðzÞ and the shear scalar σ2

(which is defined, to quantify the anisotropic expansion, as
σ2 ¼ 1

2
σαβσ

αβ, where σαβ ¼ 1
2
ðuμ;ν þ uν;μÞhμαhνβ − 1

3
uμ;μhαβ

is the shear tensor with hμν ¼ gμν þ uμuν being the pro-
jection tensor [43]). Accordingly, as σ2 ¼ 1

3
ðHa −HbÞ2 for

the LRS Bianchi I metric (11), we reach

3H2 − σ2 − Λ ¼ ρb þ ρc þ αcρ
2
c þ ρr; ð15Þ

−2 _H − 3H2 − σ2 þ Λ ¼ αcρ
2
c þ

ρr
3
; ð16Þ

_σ þ 3Hσ ¼ 0; ð17Þ

which are the energy density (15), average pressure (16)
and shear propagation (17) equations, respectively. It is
reasonable to assume that, on cosmological scales, these
matter fields are interacting only gravitationally, which
leads to the separation of (10) into the different pieces for
each one. We notice that, despite the fact that CDM
contributes to the field equations in a modified way, it
satisfies the local conservation of the EMT [i.e., (10)
vanishes] and scales as usual as ρc ¼ ρc0s−3. Since the
radiation and baryons couple to gravity as in the GR, these
also scale as usual as ρr ¼ ρr0s−4 and ρb ¼ ρb0s−3. The
shear propagation equation (17) dictates that the shear
scalar scales as σ2 ¼ σ20s

−6. Here, throughout the paper as
well, a subscript 0 attached to any quantity denotes its
present-day (s ¼ 1) value. Consequently, we reach the
following modified Friedmann equation for our model:

H2

H2
0

¼ ΩΛ0 þΩb0s−3 þ Ωr0s−4

þΩc0ðs−3 þ α0cs−6Þ þΩσ0s−6; ð18Þ
where ΩΛ0 þ Ωb0 þΩr0 þ Ωc0ð1þ α0cÞ þΩσ0 ¼ 1 with
α0c ≡ αcρc0. Here Ωi0 ¼ ρi0

3H2
0

are the present-day density

parameters of the ith matter field, while ΩΛ0 ¼ Λ
3H2

0

and

Ωσ0 ¼ σ2
0

3H2
0

are those corresponding to Λ and σ2.

III. ΛCDM WITH HIDDEN ANISOTROPIC
EXPANSION

Our model presents a mechanism for screening the shear
scalar, which can even lead to the standard ΛCDM
Friedmann equation in spite of anisotropic expansion:
viz., collecting the like terms in (18) together we obtain

H2

H2
0

¼ ΩΛ0 þ ðΩb0 þ Ωc0Þs−3 þΩr0s−4

þ ðΩσ0 þ α0cΩc0Þs−6; ð19Þ

wherein α0cΩc0s−6 (the quadratic contribution of the CDM
energy density due to the EMSG) for α0c < 0 perpetually
screens Ωσ0s−6 (the contribution of the shear scalar), and
the particular setting

α0c ¼ −
Ωσ0

Ωc0
ð20Þ

even hides it and leads to the Friedmann equation

H2

H2
0

¼ ðΩb0 þΩc0Þs−3 þ Ωr0s−4 þΩΛ0; ð21Þ

which is mathematically exactly the same with that of the
standard ΛCDM model. Physically, on the other hand, the
HðzÞ here is the average expansion rate, and the expansion
rates along the principal axes, viz., Ha and Hb, need not
necessarily be the same. This screening mechanism can be
supposed to be working since then the times much before
the BBN, as the CDM production is typically expected to
occur much earlier than the BBN takes place—e.g., if CDM
could be described by weakly interacting massive particles
(WIMPs), starting from the energy scale ∼0.1 TeV corre-
sponding to the time (redshift) scale ∼10−10 s (z ∼ 1015),
whereas these are ∼0.1 MeV and ∼100 s (z ∼ 109) for the
standard BBN [103].
The model-independent upper limits on the present-day

anisotropic expansion in terms of Ωσ0 is of the order of
Oð10−3Þ, e.g., from type Ia Supernovae [104,105] (see also
[106–109]). This, within the simplest anisotropic (i.e.,
Bianchi I) generalization of the standard ΛCDM
(α0c ¼ 0), implies the domination of the shear scalar at
z ∼ 10 and hence the spoilt of the successful description of
the earlier (z≳ 10) Universe. Indeed, while the constraint
on a stiff fluid-like term (ρs ¼ ρs0s−6, likewise the shear
scalar) on top of the standard ΛCDM model is Ωs0 ≲ 10−3

from the combined HðzÞ and Pantheon data set (relevant to
z≲ 2.4), it is tightened to Ωs0 ≲ 10−15 when the combined
BAO and CMB (relevant to z ∼ 1100) data set also is
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included, and Ωs0 ≲ 10−23 upon demanding no significant
deviation from the standard BBN (relevant to z ∼ 109) [96].
All these can straightforwardly be adopted to our model
upon defining Ωs0 ¼ Ωσ0 þ α0cΩc0 in (19). And our model,
thus, can simultaneously accommodate the constraints
Ωs0 ≲ 10−23 (even Ωs0 ¼ 0) and Ωσ0 ≲ 10−3, by means
of the screening term α0cΩc0 for suitably chosen values of
α0c. However, as the shear scalar still scales as σ2 ∝ s−6, the
typical upper limit Ωσ0 ∼ 10−20 derived from the observed
CMB quadrupole temperature fluctuation (ΔT=T ∼ 10−5)
setting an upper limit at the same order of magnitude on the
anisotropy at the recombination era (

ffiffiffiffiffiffiffiffi
Ωrec

σ

p
∼ 10−5 at

zrec ∼ 103) still applies [110–113]. Consequently, one
can think of manipulating the CMB quadrupole temper-
ature via anisotropic expansion consistent withΩσ0 ∼ 10−20

while retaining exactly the same expansion history for the
comoving volume element of the Universe as that of the
standard ΛCDM model all the way to the time (redshift)
scale of ∼10−10 s (z ∼ 1015), which can be promising, for
instance, to address the so-called “quadrupole temperature
problem” [48–51].

IV. MANIPULATING CMB QUADRUPOLE
TEMPERATURE FLUCTUATION

As anisotropic expansion implies different evolution of
the temperature of the free streaming photons for the
different expansion factors in three orthogonal axes, it
can be used for manipulating the quadrupole (multipole
l ¼ 2 corresponding to the angular scale θ ¼ π=2) power
spectrum of temperature fluctuations in the CMB, ΔT, with
no consequences on the higher multipoles. The evolution of
the photon temperature along the x-axis and y-axis (or

z-axis) is given by Tx ¼ T0
a0
a ¼ T0e

−
R

Hadt and Ty ¼
T0

b0
b ¼ T0e

−
R

Hbdt, where T0 ¼ 2.7255� 0.0006 K
[114] is the present-day CMB monopole temperature
[47,115]. Accordingly, the difference between the photon
temperatures along the y- and x-axes since the recombi-
nation (z ¼ zrec) to the present time (z ¼ 0) due to the
anisotropic expansion, ΔTσ ≡ Ty − Tx, reads

ΔTσ ¼ T0

Z
t0

trec

ðHa −HbÞdt ¼ T0

Z
t0

trec

ffiffiffi
3

p
σdt

¼ 3T0

ffiffiffiffiffiffiffiffi
Ωσ0

p Z
zrec

0

H0ð1þ zÞ2
H

dz ð22Þ

for small anisotropies (so e−
R

Hadt ≃ 1 −
R
Hadt etc). We

use dt ¼ − dz
Hð1þzÞ with z ¼ 1

s − 1 being the average redshift

defined from the average expansion scale factor and assume
the CMB was last scattered at the recombination redshift
(epoch) zrec (trec). Thus, under the condition (20) retaining
exactly the same expansion history for the comoving
volume element with that of the standard ΛCDM, we
can have change in ΔT up to

ΔTσ ¼ 3T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−α0cΩc0

p Z
zrec

0

H0ð1þ zÞ2
H

dz ð23Þ

on top of the best fit standardΛCDMmodel predicted value
ΔTstd ≈ 34 μK (ΔTstdþvar ≈ 28 μK when the cosmic vari-
ance is included) [54,116], and bring it to the observed
value by the Planck satellite ΔTPLK ≈ 14 μK [49]. Namely,
we can make use of the observational best fit values
from the recent Planck release [5], Ωb0 ¼ 0.049
and Ωc0 ¼ 0.264, along with the recombination redshift
zrec ≈ 1090 and the present-day radiation density parameter
Ωr0 ≈ 10−4. Then, if we set Ωσ0 ¼ 4 × 10−21—correspond-
ing to α0c ¼ −1.52 × 10−20ðαc ¼ −1.8 × 10−11 cm3=ergÞ
from (20)—we obtain Ωrec

σ ¼ 1.23 × 10−11 along with that
ΔTσ ¼ 20.5 μK, which, provided that the orientation of the
expansion anisotropy is set suitably, can reduce ΔT from
ΔTstd ≈ 34 μK predicted within the standard ΛCDM to the
observed value ΔTPLK ≈ 14 μK.
For the radiation dominated era (for z > zeq, where zeq ¼

−1þ ðρc0 þ ρb0Þ=ρr0 is the matter-radiation equality red-
shift)—during which Λ and the usual (linear) contribution
of the CDM energy density are negligible but the shear
scalar and the new (quadratic) contribution of the CDM
energy density are subdominant—we can rewrite Eq. (15)
as 3H2 ¼ ρr þ ρs, where ρr ¼ π2

30
g�T4 and ρs ¼ αcρ

2
c þ σ2,

or, in a more useful form, as 3H2 ¼ π2

30
g̃�T4 with

g̃� ¼ ð1 −ΩsÞ−1g�, the modified effective number of
degrees of freedom, where Ωs ¼ Ωσð1þ α0c

Ωc0
Ωσ0

Þ and g� is
the usual effective number of degrees of freedom counting
the number of relativistic species determining the radiation
energy density (cf. [117,118]). In the SM at T ¼ 1 MeV,
g� ¼ 5.5þ 7

4
Nν, where Nν ¼ 3 (Nν ¼ 3.045 when small

corrections for nonequilibrium neutrino heating are
included in the thermal evolution) is the effective number
of (nearly) massless neutrino flavors [116]. g̃� is usually
parametrized by ΔNν ¼ Nν − 3 (the deviation of Nν

from the SM value Nν ¼ 3) as g̃� ¼ ð1þ 7
43
ΔNνÞg�. Con-

sequently, at the time of freeze-out, viz., when the rate of
the weak-interaction that interconverts neutrons and pro-
tons falls behind the Hubble expansion rate at Tfr∼1 MeV,
these two relations given above for g̃� imply that the stiff
fluid-like term (ρs) in our model can be regarded as a
change in the total number of effectively massless degrees
of freedom as

Ωfr
s ¼ 7

43
ΔNν ð24Þ

for small Ωfr
s values—so ð1 −Ωfr

s Þ−1 ≃ 1þ Ωfr
s . This can

then be translated into the density parameter of the stiff
fluid-like term at the recombination through the relation

Ωrec
s ¼ Ωfr

s ð1þ zfrÞ−2ð1þ zeqÞ−1ð1þ zrecÞ3 ð25Þ
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(cf. [47]). For the freeze-out redshift zfr ∼ 109, consistent
with the standard BBN, along with zeq ¼ 3390 and zrec ¼
1090 from the best fit values of the standard ΛCDM in the
recent Planck release [5], it turns out that Ωrec

s ¼ 6.23 ×
10−14ΔNν (or Ωrec

s ¼ 3.83 × 10−13Ωfr
s ). Next, using Ωb0 ¼

0.049, Ωc0 ¼ 0.264, and Ωr0 ≈ 10−4 as well, we obtain
Ωs0 ¼ 3.24 × 10−10Ωrec

s implying Ωs0¼2.02×10−23ΔNν.
All these, finally, lead to Ωfr

s ¼ 0.163, Ωrec
s ¼ 6.23 × 10−14

and Ωs0 ¼ 2.02 × 10−23 for ΔNν ¼ 1, and Ωfr
s ¼ 0.05,

Ωrec
s ¼ 1.87 × 10−14 and Ωs0 ¼ 6.06 × 10−24 for the upper

limit of ΔNν ¼ 0.30 from the recent Planck release [5].
In the case of the straightforward Bianchi I extension of

the standard ΛCDM (α0c ¼ 0), these limits simply corre-
spond to the limits on the shear scalar and hence, through
(22), on ΔTσ as well. Namely, now, we have Ωfr

σ ¼ 0.05,
Ωrec

σ ¼ 1.87 × 10−14, and Ωσ0 ¼ 6.06 × 10−24 leading to
ΔTσ ¼ 0.82 μK. Thus, in this case, the BBN restricts the
possible manipulation upon the CMB quadrupole temper-
ature fluctuation via the anisotropic expansion to insignifi-
cant values (viz., ΔTσ ≲ 1 μK). In our model, on the other
hand, the limit Ωs0 ≲ 10−23 required by the BBN does not
necessarily lead to ΔTσ ≲ 1 μK. It can still be satisfied
when Ωσ0 ∼ 10−21 (or Ωrec

σ ∼ 10−11), which leads to an
amount of manipulation upon the CMB quadrupole temper-
ature fluctuation on the same order of magnitude with its
observed value, provided that the gravitational coupling of
the CDM is augmented by the EMSG with α0c ∼ −10−20.
Moreover, under the condition (20), we reproduce exactly
the same expansion history with that of the standard
ΛCDM cosmology all the way to BBN era with an
additional opportunity of manipulating the CMB quadru-
pole temperature fluctuation at desired values. Thus, our
model provides us with opportunity to fine tune the CMB
quadrupole temperature fluctuation (e.g., for addressing the
so-called quadrupole temperature problem) without leading
to any other measurable alteration in the standard ΛCDM.

V. EARLY AND LATE DYNAMICS

We have reached, by eliminating the terms scaling as s−6

in (19) via the condition Ωs0 ¼ 0 given in (20), exactly the
same mathematical form of the Friedmann equation of
the standardΛCDM, where however physically,HðzÞ is the
average expansion rate and anisotropic expansion is
allowed. This relies on the cooperation between the
CDM coupled to gravity in accordance with the EMSG
of the form fðT2Þ ∝ T2 and the anisotropic expansion, and
hence will be valid all the way to the CDM generation
redshift zc. And, this redshift is typically considered to be
much larger than the BBN redshift zBBN ∼ zfr. Therefore,
even if it is guaranteed that the average expansion rate of
the Universe during BBN equals the one in the standard
BBN (in spite of that Ωσ0 ¼ 4 × 10−21, which leads to
ΔTσ ≈ 20.5 μK manipulation in the CMB quadrupole
temperature fluctuation), for the times z > zc (i.e., when

CDM did not exist yet) the Universe is described by the
general relativistic LRS Bianchi I cosmological model
[43,44] in the presence of radiation (which approximates
the LRS Kasner vacuum solution [119] with the increasing
redshift). On the other hand, this opportunity of letting
safely to ΔTσ ≈ 20.5 μK manipulation is in fact not subject
to the condition Ωs0 ¼ 0 (which evades BBN limits),
but jΩs0j≲ 10−23 (corresponding to jΔNνj ≲ 0.30 in line
with the limits given in the recent Planck release [5]).
Consideration of this slightly relaxed condition gives rise to
several other possibilities for the dynamics of the early
Universe for z > zBBN: (I) In the case of 0 < Ωs0 ≲ 10−23,
as z increases, the stiff fluid-like term domination over
radiation can develop at a redshift either smaller or larger
than zc. And, for z > zc, the Universe is described by the
general relativistic LRS Bianchi I cosmological model in
the presence of radiation. (II) In the case of −10−23≲
Ωs0 < 0, the stiff fluid-like term—which, in this case,
yields negative energy density as α0cΩc0 < −Ωσ0 < 0—
brings in the following three different scenarios: (a) As z
increases, the stiff fluid-like term slows down the increment
of HðzÞ in redshift, but z ¼ zc is reached before it starts to
decrease HðzÞ itself. And, for z > zc, the Universe is
described by the general relativistic LRS Bianchi I cos-
mological model in the presence of radiation. (b) As z
increases, the stiff fluid-like term slows down the increment
of HðzÞ in redshift and then it starts to decreaseHðzÞ itself,
but z ¼ zc is reached beforeHðzÞ vanishes. And, for z > zc,
the Universe is described by the general relativistic LRS
Bianchi I cosmological model in the presence of radiation
(so,HðzÞ starts to increase with redshift once again). (c) As
z increases, the stiff fluid-like term slows down the incre-
ment of HðzÞ in redshift and it eventually decreases HðzÞ
until it vanishes completely before z ¼ zc is reached. This
is the most interesting one among the possible scenarios, as
it implies that the CDM was never generated but was
always there, and that the Universe started to expand from a
nonzero volume.
As the Universe continues to expand in the future (when

−1 ≤ z < 0), both the deviation from GR (viz., the quad-
ratic contribution of the CDM energy density due to the
EMSG) and the expansion anisotropy (viz., the shear
scalar) keep on diluting faster than all the other terms that
constitute the standard ΛCDM part in (19), namely, our
model will asymptotically approach the usual standard
ΛCDM model—i.e., the Universe isotropizes and the
EMSG approaches the GR—and the de Sitter solution in
the arbitrarily far future.
We have contented ourselves with just commenting on

the very early (z > zBBN) and future (z < 0) dynamics of
the Universe, rather than presenting a comprehensive
analysis. Yet, one may find it quite enlightening to see
Ref. [120]—examines the cosmological model which
includes stiff fluid source on top of the standard ΛCDM
model—regarding, in particular, the evolution of the
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average expansion scale factor in our model, and
Ref. [46]—presents an investigation of anisotropic cosmol-
ogies in the presence of stiff fluid with a positive energy
density (reminiscent of our model for αc > 0).

VI. REMARKS AND FUTURE PERSPECTIVES

The simplest anisotropic extension of the standard
ΛCDM model—just extends the spatially flat RW metric
to the Bianchi I—leads to a generalized Friedmann equa-
tion that brings in the average Hubble parameter HðzÞ
along with a shear scalar of the form σ2 ¼ σ20ð1þ zÞ6, i.e.,
mimicking stiff fluid with a positive energy density [96].
Our model (18) then just adds into it another stiff fluid-like
term, αcρ2c ¼ α0cρc0ð1þ zÞ6, the quadratic contribution of
the CDM energy density scaled by the constant α0c, which is
not necessarily positive while determining the gravitational
coupling strength of CDM in accordance with the EMSG of
the form fðT2Þ ∝ T2. The Bianchi I metric, however, is
atypical in that it brings in no restoring forcelike term in the
shear propagation equation [cf. (17)], whereas one set of
such terms come, in more complicated anisotropic metrics,
from anisotropic spatial curvature of the metric itself
[43,44,47]. This implies that the stiff fluid-like shear scalar
is not generic, even for the general relativistic cosmologies
in the presence of usual cosmological fluids (isotropic
perfect fluids with no peculiar velocities) only. For in-
stance, the Bianchi VII0 metric [43,44]—the most general
spatially homogeneous and flat anisotropic metric—yields,
in addition to the simple expansion-rate anisotropies
present in the Bianchi I, an anisotropic spatial curvature
that resembles a traceless anisotropic fluid [47]. It causes,
in the general relativistic universes close to isotropy, the
shear scalar to scale as σ2 ∝ ð1þ zÞ5 during the dust era
and as σ2 ∝ lnðz=zfrÞ−2ð1þ zÞ4 during the radiation era,
hence the limit on its present-day density parameter from
BBN to be weaker than that from CMB—in contrast to the
situation in the Bianchi I—, and both of the limits to be
weaker than the ones derived when the Bianchi I metric is
considered [47,117]. It is conceivable that, if we switch to
the Bianchi VII0 metric in our model as well, it will cause
the same shear scalar dynamics. For, contrarily to the
modified theories of gravity (e.g., the scalar-tensor theories
of gravity [76–79]) in general, the EMSG does not induce
nonzero anisotropic stresses [83], and therefore leads to the
same shear propagation equations [cf. (17)] with the usual
ones derived in GR. Consequently, as the shear scalar in
this case will grow slower than the stiff fluid-like contri-
bution of CDM, it is no more possible to achieve the mutual
cancellation of these two terms perpetually and write (21).
Thus, if we reconsider our model by switching to the
Bianchi VII0 metric, we expect the strongest limits upon the
shear scalar to come from CMB, and the ones on the stiff
fluid-like contribution of CDM to come from BBN (viz., as
in this case we can write Ωs0 ¼ α0cΩc0, it will be necessary

to satisfy jα0cΩc0j≲ 10−23—implying jα0cj≲ 10−22 for
Ωc0 ∼ 0.25—corresponding to jΔNνj≲ 0.30 in line with
the limits given in the recent Planck release [5]).
The discussion in the previous paragraph shows also

that, to create a measurable change in the CMB quadrupole
temperature fluctuation without spoiling the successes of
the standard BBN, it is no more needed in the case of the
Bianchi VII0 to apply the mechanism of screening the shear
scalar by the stiff fluid-like contribution of CDM. Indeed, it
is well known that the strong limits upon the shear scalar
(so the anisotropic expansion) are usually model-dependent
and can be vastly weakened by promoting its simplest stiff
fluid-like behavior to a more complex dynamical one by
means of an anisotropic fluid (either an actual source or an
effective source from a modified gravity theory) and/or a
nontrivial anisotropic spatial curvature exits in more
generic anisotropic metrics such as the Bianchi VII0
[47]. Our work distinguishes from such works as it studies
a possibility of an alternative mechanism weakening the
limits upon shear scalar through screening its contribution
to HðzÞ instead of modifying it. Namely, by counterbal-
ancing the shear scalar term Ωσ0ð1þ zÞ6 via the new term
α0cΩc0ð1þ zÞ6 from the gravitational coupling of CDM in
accordance with the EMSG of the form fðT2Þ ∝ T2, we
have evaded the limits upon the anisotropic expansion
coming from the enhancing influence of the shear scalar on
HðzÞ (e.g., the limits from BBN), but kept on using the ones
coming directly from the anisotropy in the expansion itself
(e.g., the limits from the CMB quadrupole temperature
fluctuations). This feature of our model would be more
significant, if it turns out that there is one additional
neutrino species beyond the three predicted by the
Standard Model of particle physics (as, e.g., suggested
for alleviating the so-called H0 tension [121]). For, it
amounts to Ωσ ∼ 0.16 during BBN and so leaves less room
for the anisotropic expansion (see Sec. IV), but there can
still be anisotropic expansion large enough to have a
measurable effect in the CMB radiation, since we can still
evade the BBN limits by compensating the contributions
both from the shear scalar and additional neutrino species.
In our study, we have focused on the aspect of the model

that the matter field coupled to the gravity in accordance
with a suitably arranged EMSG setup can compensate for
the enhancing influence of anisotropy on the average
expansion rate of the Universe. Yet, through this model,
we have learned also lessons on some other aspects of the
cosmological models that employ EMSG. It would be
useful to briefly mention the some that may give insight
into the possible prospective works. In the literature to date,
the EMSG of the form fðT2Þ ∝ T2, as well as its power-law
generalization fðT2Þ ∝ T2η with η > 1

2
(known also as

EMPG), has been mostly studied in the context of the
early Universe dynamics and used, particularly, to avoid—
replace with a nonsingular beginning/bounce—the initial
big bang singularity [81–84,87,89,92]. For, the new
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contributions of the matter field to the Friedmann equation
in these studies scale faster than the usual (linear) con-
tributions; therefore, the earlier times the more effective
these new contributions are. We, however, notice that all
these studies consider spatially homogeneous and isotropic
RWmetric and then the inclusion of anisotropy can prevent
such scenarios from happening. Namely, it is possible that,
as we move backward in time, the shear scalar grows fast
enough to dominate over the new contributions of the
matter field before these could give rise to a nonsingular
beginning/bounce and then the very early Universe will be
best described by the usual anisotropic spacetime vacuum
solutions of GR (e.g., by the Kasner vacuum solution). In a
realistic description of the Universe one can suppose the
observable Universe is almost-exactly isotropic but not
exactly isotropic. Therefore, it is important to pick,
among these scenarios developed under the RW metric
assumption, the ones that can survive when anisotropy is
included. One another lesson is that, the EMSGmodels that
add, into the Friedmann equation, the new contributions of
the matter fields scaling faster than the usual (linear)
contributions do have consequences on not only the early
Universe but also the late Universe. The particular model
we have studied here presents a good example of this, as it
evades the BBN limits on the present-day expansion
anisotropy of the Universe. And a closer look reveals that,

beyond the limited framework we have drawn in this work,
it may have consequences on a major problem relevant to
the present-day Universe, the so-called H0 problem. The
stiff fluid-like term for αc > 0 in our model can be regarded
as an increment in the total number of effectively massless
degrees of freedom [see Eq. (24)], which has been
considered as one of the possible solutions for the H0

problem [97]. Finally, the study we have carried out here
can be extended to more complicated constructions by
considering more generic anisotropic metrics and/or func-
tions of fðT2Þ, albeit, most likely, one will need to
compromise both the energy-momentum conservation
law and simplicity we have had in this particular setup here.
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Cargèse lectures 1998, NATO Sci. Ser. C 541, 1 (1999).

[44] G. F. R. Ellis, R. Maartens, and M. A. H. MacCallum,
Relativistic Cosmology (Cambridge University Press,
Cambridge, England, 2012).

[45] Ya. B. Zel’dovich, The equation of state at ultrahigh
densities and its relativistic limitations, J. Exp. Theor.
Phys. 14, 1143 (1962), http://www.jetp.ac.ru/cgi-bin/e/
index/e/14/5/p1143?a=list.

[46] J. D. Barrow, Quiescent cosmology, Nature (London) 272,
211 (1978).

[47] J. D. Barrow, Cosmological limits on slightly skew
stresses, Phys. Rev. D 55, 7451 (1997).

[48] C. L. Bennett et al., Seven-year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: Are there cos-
mic microwave background anomalies?, Astrophys. J.
Suppl. Ser. 192, 17 (2011).

[49] P. A. R. Ade et al. (Planck Collaboration), Planck 2013
results. XV. CMB power spectra and likelihood, Astron.
Astrophys. 571, A15 (2014).

[50] D. J. Schwarz, C. J. Copi, D. Huterer, and G. D. Starkman,
CMB anomalies after Planck, Classical Quantum Gravity
33, 184001 (2016).

[51] Y. Akrami et al. (Planck Collaboration), Planck 2018
results. VII. Isotropy and Statistics of the CMB, Astron.
Astrophys. 641, A7 (2020).

[52] M. R. Wilczynska et al., Four direct measurements of the
fine-structure constant 13 billion years ago, Sci. Adv. 6,
eaay9672 (2020).

[53] K. Migkas, G. Schellenberger, T. Reiprich, F. Pacaud,
M. Ramos-Ceja, and L. Lovisari, Probing cosmic isotropy
with a new X-ray galaxy cluster sample through the
LX − T scaling relation, Astron. Astrophys. 636, A15
(2020).

[54] L. Campanelli, P. Cea, and L. Tedesco, Ellipsoidal
Universe can Solve the CMB Quadrupole Problem, Phys.
Rev. Lett. 97, 131302 (2006).

[55] L. Campanelli, P. Cea, and L. Tedesco, Cosmic microwave
background quadrupole and ellipsoidal Universe, Phys.
Rev. D 76, 063007 (2007).

[56] T. Koivisto and D. F. Mota, Accelerating cosmologies with
an anisotropic equation of state, Astrophys. J. 679, 1
(2008).

[57] D. C. Rodrigues, Anisotropic cosmological constant and
the CMB quadrupole anomaly, Phys. Rev. D 77, 023534
(2008).

[58] T. Koivisto and D. F. Mota, Vector field models of inflation
and dark energy, J. Cosmol. Astropart. Phys. 08 (2008)
021.

[59] L. Campanelli, Model of universe anisotropization, Phys.
Rev. D 80, 063006 (2009).

SCREENING ANISOTROPY VIA ENERGY-MOMENTUM SQUARED … PHYS. REV. D 102, 124059 (2020)

124059-9

https://doi.org/10.1103/PhysRevD.92.123516
https://doi.org/10.1103/PhysRevD.92.123516
https://doi.org/10.1038/s41550-017-0216-z
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1088/1475-7516/2018/09/025
https://doi.org/10.1088/1475-7516/2018/09/025
https://doi.org/10.1103/PhysRevD.99.043506
https://doi.org/10.1007/s10714-020-2665-4
https://doi.org/10.1007/s10714-020-2665-4
https://doi.org/10.1103/PhysRevD.102.023518
https://arXiv.org/abs/1908.09139
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1103/PhysRevD.101.063528
https://arXiv.org/abs/2003.04935
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.75.559
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.12942/lrr-2010-3
https://doi.org/10.1016/j.physrep.2011.04.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevD.28.2118
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
http://www.jetpletters.ac.ru/ps/1488/article_22720.shtml
https://doi.org/10.1093/mnras/162.4.307
https://doi.org/10.1093/mnras/162.4.307
https://doi.org/10.1086/151965
https://doi.org/10.1007/978-94-011-4455-1_1
http://www.jetp.ac.ru/cgi-bin/e/index/e/14/5/p1143?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/14/5/p1143?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/14/5/p1143?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/14/5/p1143?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/14/5/p1143?a=list
https://doi.org/10.1038/272211a0
https://doi.org/10.1038/272211a0
https://doi.org/10.1103/PhysRevD.55.7451
https://doi.org/10.1088/0067-0049/192/2/17
https://doi.org/10.1088/0067-0049/192/2/17
https://doi.org/10.1051/0004-6361/201321573
https://doi.org/10.1051/0004-6361/201321573
https://doi.org/10.1088/0264-9381/33/18/184001
https://doi.org/10.1088/0264-9381/33/18/184001
https://doi.org/10.1051/0004-6361/201935201
https://doi.org/10.1051/0004-6361/201935201
https://doi.org/10.1126/sciadv.aay9672
https://doi.org/10.1126/sciadv.aay9672
https://doi.org/10.1051/0004-6361/201936602
https://doi.org/10.1051/0004-6361/201936602
https://doi.org/10.1103/PhysRevLett.97.131302
https://doi.org/10.1103/PhysRevLett.97.131302
https://doi.org/10.1103/PhysRevD.76.063007
https://doi.org/10.1103/PhysRevD.76.063007
https://doi.org/10.1086/587451
https://doi.org/10.1086/587451
https://doi.org/10.1103/PhysRevD.77.023534
https://doi.org/10.1103/PhysRevD.77.023534
https://doi.org/10.1088/1475-7516/2008/08/021
https://doi.org/10.1088/1475-7516/2008/08/021
https://doi.org/10.1103/PhysRevD.80.063006
https://doi.org/10.1103/PhysRevD.80.063006


[60] L. Campanelli, P. Cea, G. L. Fogli, and L. Tedesco,
Anisotropic dark energy and ellipsoidal Universe, Int. J.
Mod. Phys. D 20, 1153 (2011).

[61] T. Koivisto and D. F. Mota, Dark energy anisotropic stress
and large scale structure formation, Phys. Rev. D 73,
083502 (2006).

[62] P. Cea, Confronting the ellipsoidal universe to the Planck
2018 data, Eur. Phys. J. Plus 135, 150 (2020).

[63] Ö. Akarsu, N. Katırcı, A. A. Sen, and J. A. Vazquez, Scalar
field emulator via anisotropically deformed vacuum en-
ergy: Application to dark energy, arXiv:2004.14863.

[64] R. A. Battye and A. Moss, Anisotropic perturbations due to
dark energy, Phys. Rev. D 74, 041301 (2006).

[65] T. Koivisto and D. F. Mota, Anisotropic dark energy:
Dynamics of background and perturbations, J. Cosmol.
Astropart. Phys. 06 (2008) 018.

[66] A. Cooray, D. E. Holz, and R. Caldwell, Measuring
dark energy spatial inhomogeneity with supernova data,
J. Cosmol. Astropart. Phys. 11 (2010) 015.

[67] Ö. Akarsu, T. Dereli, and N. Oflaz, Accelerating aniso-
tropic cosmologies in Brans-Dicke gravity coupled to a
mass-varying vector field, Classical Quantum Gravity 31,
045020 (2014).

[68] T. S. Koivisto and F. R. Urban, Disformal vectors and
anisotropies on a warped brane Hulluilla on Halvat Huvit,
J. Cosmol. Astropart. Phys. 03 (2015) 003.

[69] L. Heisenberg, R. Kase, and S. Tsujikawa, Anisotropic
cosmological solutions in massive vector theories,
J. Cosmol. Astropart. Phys. 11 (2016) 008.

[70] W. Yang, S. Pan, L. Xu, and D. F. Mota, Effects of
anisotropic stress in interacting dark matter-dark energy
scenarios, Mon. Not. R. Astron. Soc. 482, 1858 (2019).

[71] D. F. Mota, J. R. Kristiansen, T. Koivisto, and N. E.
Groeneboom, Constraining dark energy anisotropic stress,
Mon. Not. R. Astron. Soc. 382, 793 (2007).

[72] S. Appleby, R. Battye, and A. Moss, Constraints on the
anisotropy of dark energy, Phys. Rev. D 81, 081301
(2010).

[73] S. A. Appleby and E. V. Linder, Probing dark energy
anisotropy, Phys. Rev. D 87, 023532 (2013).

[74] L. Amendola, S. Fogli, A. Guarnizo, M. Kunz, and
A. Vollmer, Model-independent constraints on the cosmo-
logical anisotropic stress, Phys. Rev. D 89, 063538
(2014).

[75] L. Amendola et al. (Euclid Theory Working Group),
Cosmology and fundamental physics with the Euclid
satellite, Living Rev. Relativity 21, 2 (2018).

[76] M. S. Madsen, Scalar fields in curved spacetimes, Classical
Quantum Gravity 5, 627 (1988).

[77] L. O. Pimentel, Energy-momentum tensor in the general
scalar-tensor theory, Classical Quantum Gravity 6, L263
(1989).
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